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Abstract: A causality analysis aims at estimating the interactions of the observed variables and
subsequently the connectivity structure of the observed dynamical system or stochastic process. The
partial mutual information from mixed embedding (PMIME) is found appropriate for the causality
analysis of continuous-valued time series, even of high dimension, as it applies a dimension reduction
by selecting the most relevant lag variables of all the observed variables to the response, using
conditional mutual information (CMI). The presence of lag components of the driving variable in this
vector implies a direct causal (driving-response) effect. In this study, the PMIME is appropriately
adapted to discrete-valued multivariate time series, called the discrete PMIME (DPMIME). An
appropriate estimation of the discrete probability distributions and CMI for discrete variables is
implemented in the DPMIME. Further, the asymptotic distribution of the estimated CMI is derived,
allowing for a parametric significance test for the CMI in the DPMIME, whereas for the PMIME,
there is no parametric test for the CMI and the test is performed using resampling. Monte Carlo
simulations are performed using different generating systems of discrete-valued time series. The
simulation suggests that the parametric significance test for the CMI in the progressive algorithm
of the DPMIME is compared favorably to the corresponding resampling significance test, and the
accuracy of the DPMIME in the estimation of direct causality converges with the time-series length to
the accuracy of the PMIME. Further, the DPMIME is used to investigate whether the global financial
crisis has an effect on the causality network of the financial world market.

Keywords: Granger causality; conditional mutual information; mixed embedding; symbol sequences;
discrete-valued time series; financial complex network

1. Introduction

A challenge in many domains of science and engineering is to study the causality of
observed variables in the form of multivariate time series. Granger causality has been the
key concept for this, where Granger causality from one variable to another suggests that
the former improves the prediction ahead in time of the latter. Many methods have been
developed based on the Granger causality idea to identify directional interactions among
variables from their time series (see [1] for a recent comparative study of many Granger
causality measures) and have been applied in various fields, such as economics [2], medical
sciences [3], and earth sciences [4]. Of particular interest are measures of direct Granger
causality that estimate the causal effect of the driving to the response variable that cannot
be explained by the other observed variables. The estimated direct causal effects can then
be used to form connections between the nodes being the observed variables in a causality
network that estimates the connectivity (coupling) structure of the underlying system.

The studies on the Granger causality typically regard the continuous-valued time
series, and often the number K of the time series is relatively high, and the underlying
system is complex [5,6]. However, in some applications, the observations are discrete
valued, e.g., the sign of the financial index return, the levels of precipitation, the counts of
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spikes in the electroencephalogram, and the counts of significant earthquake occurrences
within successive time intervals. In this work, we propose an appropriate method to
estimate the direct Granger causality on discrete-valued multivariate time series.

In the analysis of discrete-valued multivariate time series, termed symbol sequences
when no order of discrete values is assumed, the causality effects are estimated typically
in terms of the fitted model. Different approaches have been proposed for the form
of the probability distribution models based on strong assumptions about the structure
of the system, i.e., a multivariate Markov chain. One of the most known approaches
giving a model of reduced form is the mixture transition distribution (MTD) [7], which
restricts the initially large number of parameters, assuming that there is only an effect
of each lag variable separately [8,9]. Recently, the MTD was adapted for the causality
estimation in [10,11] and discussed in the review in [12]. Other approaches assume the
Poisson distribution [13,14] and the negative binomial distribution [15,16]. In the category
of autoregressive models are Pegram’s autoregressive models [17,18] and multivariate
integer-valued autoregressive models (MINAR) [19,20]. Another proposed method, which,
however, simplifies the problem to a linear one, is the so-called CUTE method [21]. Having
obtained the model under given restrictions, one can then identify the causality of a driving
variable to the response variable from the existence of lag terms of the driving variable in
the model form.

Here, we follow a different approach and estimate the causality relationships directly
using the information measures of mutual information (MI) and conditional MI (CMI).
These measures have been employed to estimate causality and derive causality networks
from continuous-valued time series [1,22,23]. For discrete-valued time series, MI and CMI
have been used, e.g., for the estimation of the Markov chain order [24] and the estimation
of autocorrelation in conjunction with Pegram’s autoregressive models [25]. They have
also been used on discrete data derived from continuous-valued time series, either as
ranks of components of embedding vectors [26,27] or as ordinal patterns [28–30]. However,
we are not aware of any work on using information measures for a causality analysis of
discrete-valued multivariate time series or symbol sequences (there is a reference to this in
the supplementary material in [31]).

The framework of the proposed analysis is the estimation of the direct causality of a
discrete driving variable X to a discrete response variable Y from the symbol sequences of
K observed discrete variables, where X and Y are two of them. The direct causality implies
the dependence of Y at one time step ahead, Yt+1, on X at some lag τ ≥ 0, Xt−τ that cannot
be explained by any other variable at any lag. In the model setting, the direct causality
is identified by the presence of the term Xt−τ in the model for Yt+1. In the information
theory setting, it is identified by the presence of significant information of Xt−τ for the
response Yt+1 that cannot be explained by other lag variables, which is quantified by the
CMI of Xt−τ and Yt+1 given the other lag variables. We develop this idea in a progressive
algorithm that builds a set of the most informative lag variables for Yt+1, called the discrete
partial conditional mutual information from mixed embedding (DPMIME), based on a
similar measure called the PMIME for continuous variables [32,33]. The presence of lag
variables Xt−τ (for one or more different lags τ) in the derived set, the so-called mixed
embedding vector, identifies the existence of the direct causality from X to Y, and the
relative contribution of the lag variables of X in explaining Yt+1 conditioned on the other
components of the mixed embedding vector (regarding the other K− 1 variables) quantifies
the strength of this relationship. Further, we develop a parametric significance test for the
CMI of the selected lag variable and Yt+1 at each step of the DPMIME algorithm, which
does not have an analogue in the PMIME regarding continuous variables.

In the evaluation of the DPMIME with Monte Carlo simulations, we compare the
DPMIME to PMIME on discretized time series from continuous-valued systems and also
discrete-valued time series generated by multivariate sparse Markov chains and MTD and
MINAR systems, with a predefined coupling structure. We also compare the parametric
significance test to the resampling significance test in the DPMIME. Further, we form the
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causality networks of five capital markets from the DPMIME, using the sign of the change
in the respective daily indices, as well as other causality measures (computed on the values
of the indices), and we compare the networks from each measure before and after the global
financial crisis of 2008.

The structure of the paper is as follows. First, in Section 2, we present the proposed
measure DPMIME along with the resampling and parametric test for the CMI. In Section 3,
we assess the efficiency of the proposed DPMIME measure with a resampling and paramet-
ric test and compare the DPMIME to the PMIME in a simulation study. The results of the
application regarding the global financial crisis are presented in Section 4, and finally, in
Section 5, the main conclusions are drawn.

2. Discrete Partial Mutual Information from Mixed Embedding

In this section, we present the measure of discrete partial mutual information from
mixed embedding (DPMIME), the parametric significance test, and the resampling signif-
icance test used in the DPMIME. We also present performance indices for the causality
measure when all the K(K− 1) causal effects are estimated for all possible directed pairs of
the K observed discrete variables.

2.1. Iterative Algorithm for the Computation of DPMIME

Let {x1,t, x2,t, . . . , xK,t}, t = 1, 2, . . . , n, be the observations of a stochastic process on
K discrete random variables X1, X2, . . . , XK, typically a multivariate Markov chain. The
discrete variables can be nominal or ordinal, and for convenience hereafter, we refer to the
data as multivariate symbol sequence.

We are interested in defining a measure for the direct causality from X to Y, where X
and Y are any of the K observed discrete variables. For a sufficiently large number of lags
L, we formulate the set Wt of candidate lag variables that may have information explaining
the response Y at one time step ahead, Yt+1. The set Wt has K · L components (’·’ denotes
multiplication), Xi,t−τ , i = 1, . . . , K, τ = 0, . . . , L− 1. The algorithm DPMIME aims to build
up progressively the so-called mixed embedding vector, i.e., a subset wt of Wt of the most
informative lag variables explaining Yt+1.

In the first step, the first lag variable to enter wt is the one that maximizes the MI
with Yt+1,

w1 = arg max
w∈Wt

I(Yt+1; w) (1)

and wt = w1
t = [w1] (the superscript denotes the iteration, equal to the cardinality of the

set). The MI of two variables X and Y is defined in terms of entropy and probability mass
functions (pmfs) as [34]

I(X; Y) = H(X) + H(Y)− H(X, Y) = ∑
x,y

p(x, y) log
pX,Y(x, y)

pX(x)pY(y)
,

where H(X) is the entropy of X, the sum is over all values x and y of X and Y, pX,Y(x, y)
is the joint pmf of (X, Y), and pX(x) is the pmf of X. The pmfs are assumed to regard
the multinomial probability distribution and are estimated by the maximum likelihood
estimate, where the probability for each value or pair of values is simply given by the
relative frequency of occurrence in the sample (the multivariate symbol sequence). In the
subsequent steps, the CMI instead of the MI is used to find the new component to enter wt.
Suppose that at step j, the j most relevant lag variables to Yt+1 are found forming wt = wj

t.
The next component to be added to wj

t is one of the components in Wt \ wj
t (the K · L

components except the j components already selected) that maximizes the CMI to Yt+1, i.e.,
the mutual information of the candidate w and Yt+1 conditioned on the components in wj

t

wj+1 = arg max
w∈Wt\w

j
t

I(Yt+1; w|wj
t). (2)
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The CMI of two variables X and Y given a third variable Z is defined in terms of entropy
and pmfs as [34]

I(X; Y|Z) = −H(X, Y, Z) + H(X, Z) + H(Y, Z)− H(Z)

= ∑
x,y,z

pX,Y,Z(x, y, z) log
pX,Y,Z(x, y, z)pZ(z)
pX,Z(x, z)pY,Z(y, z)

.

At each step, when the lag variable is selected, using (1) for the first step and (2) for the sub-
sequent steps, a significance test is run for the MI in (1) and the CMI in (2). The parametric
and resampling significance tests are presented in detail later in this section. For the step
j + 1, where wj+1 is found in (2), if the CMI I(Yt+1; wj+1|w

j
t) is found statistically signifi-

cant by the parametric or resampling test, the wt is augmented as wt = wj+1
t = [wj

t, wj+1].
Otherwise, there is no significant lag variable to be added to the mixed embedding vector
and the algorithm terminates, giving the mixed embedding vector wt = wj

t.
The components of the mixed embedding vector wt obtained upon termination of the

algorithm are grouped in lag variables of the driving variable X, wX
t , the response variable

Y, wY
t , and all other K− 2 variables, wZ

t , expressed as wt = [wX
t , wY

t , wZ
t ]. If wX

t is empty,
i.e., no-lag variable Xt−τ has information to explain Yt+1 in view of the other lag variables,
there is no direct causality from X to Y. Otherwise, we quantify the direct causality from X
to Y as the proportion of the information of Yt+1 explained by the lag variables of X. The
measure DPMIME is thus defined as

DPMIMEX→Y =

0, if wX
t = ∅.

I(Yt+1;wX
t |wY

t ,wZ
t )

I(Yt+1;wt)
, otherwise.

(3)

In the following, we present the resampling test and the parametric test for the significance
of the CMI of the response Yt+1 and the selected component wj+1 given the components

already selected in wj
t, I(Yt+1; wj+1|w

j
t).

2.2. Randomization Test for the Significance of CMI

First, we do not assume any asymptotic parametric distribution of the estimate of
I(Yt+1; wj+1|w

j
t) under the null hypothesis H0 : I(Yt+1; wj+1|w

j
t) = 0. Thus, the empirical

distribution of the estimate of I(Yt+1; wj+1|w
j
t) is formed by resampling on the initial

sample of the variables Yt+1, wj+1 and wj
t. For this, we follow the resampling scheme of the

so-called time-shifted surrogates for the significance test for correlation or causality [35,36].
The resampling is actually applied only to wj+1. To retain both the marginal distribution
and intra-dependence (autocorrelation) of wj+1 and destroy any inter-dependence to Yt+1

and wj
t, we shift cyclically the symbol sequence of wj+1 by a random step k [35] (We

do not consider here the case of periodic or periodic-like symbol sequences, where this
randomization scheme is problematic, as it is likely that the generated surrogate symbol
sequence is similar to the original symbol sequence.). Thus, for the original symbol sequence
{wj+1,1, wj+1,2, . . . , wj+1,n} of wj+1, a randomized (surrogate) symbol sequence for the
random step k is

{w∗j+1,1, w∗j+1,2, . . . , w∗j+1,n} = {wj+1,k+1, . . . , wj+1,n, wj+1,1, . . . , wj+1,k}.

We derive a number Q of such randomized symbol sequences and compute for each of
them the corresponding estimates of I(Yt+1; wj+1|w

j
t) under the H0, denoted

I(Yt+1; w∗1j+1|w
j
t), I(Yt+1; w∗2j+1|w

j
t), . . . , I(Yt+1; w∗Qj+1|w

j
t).
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These Q values form the empirical null distribution of the estimate of I(Yt+1; wj+1|w
j
t). The

H0 is rejected if the estimate of I(Yt+1; wj+1|w
j
t) on the original data is at the right tail of

the empirical null distribution. To assess this, we use rank ordering, where r0 is the rank of
the estimate of I(Yt+1; wj+1|w

j
t) in the ordered list of the Q + 1 values, assuming ascending

order. The p-value of the one-sided test is 1− (r0 − 0.326)/(Q + 1 + 0.348) (using the
correction in [37] to avoid extreme values such as p = 0 when the original value is last
in the ordered list, which is formally not correct). The DPMIME measure in Equation (3)
derived using resampling test of CMI is denoted DPMIMErt.

2.3. Parametric Test for the Significance of CMI

Entropy and MI on discrete variables are well-studied quantities and there is rich
literature about the statistical properties and distribution of their estimates. For the signifi-
cance test for the CMI I(X; Y|Z) for three discrete scalar or vector variables X, Y, and Z, the
most prominent of the parametric null distribution approximations are worked out in [38],
namely the Gaussian and Gamma distributions. For the Gamma null distribution, following
the work in [39], it turns out that Î(X, Y) follows approximately the Gamma distribution

Î(X, Y) ∼ Γ
(
(PX − 1)(PY − 1)

2
,

1
n ln 2

)
,

where n is the sample size and PX is the number of the possible discrete values of X. Further,
it follows that Î(X, Y|Z) is also approximately Gamma distributed

Î(X, Y|Z) ∼ Γ
(

PZ
2
(PX − 1)(PY − 1),

1
n ln 2

)
. (4)

We use the Gamma distribution to approximate the null distribution of the estimate of
I(Yt+1; wj+1|w

j
t) for the significance test of CMI, setting Yt+1, wj+1 and wj

t as X, Y, and Z,
respectively, in Equation (4). The parametric significance test is right-sided, as is for the re-
sampling significance test, and the p-value is the complementary of the Gamma cumulative
density function for the value of the estimate of I(Yt+1; wj+1|w

j
t). The DPMIME measure

in Equation (3) derived using the parametric test of CMI is denoted DPMIMEpt. Both
tests in the computation of DPMIMErt and DPMIMEpt are performed at the significance
level α = 0.05.

2.4. Statistical Evaluation of Method Accuracy

For a system of K variables, there are K(K− 1) ordered pairs of variables to estimate
causality. In the simulations of known systems, we know the true interactions between
the system variables from the system equations. We further assume that the causal effects
in each realization of the system match the designed interactions. Though this cannot be
established analytically, former simulations have shown that for weak coupling, below the
limit of generalized synchronization, the match holds [1]. Thus, we can assess the match of
the K(K− 1) estimated causal effects to the true causal dependencies using performance
indices. Here, we consider the indices of specificity, sensitivity, Matthews correlation
coefficient, F-measure, and Hamming distance. All the indices refer to binary entries, i.e.,
there is causal effect or not, so we do not use the magnitude of DPMIME in (3), but only if
it is positive or not.

The sensitivity is the proportion of the true causal effects (true positives, TPs) correctly
identified as such, given as sens = TP/(TP + FN), where FN (false negative) denotes the
number of pairs having true causal effects but have gone undetected. The specificity is the
proportion of the pairs correctly not being identified as having causal effects (true negatives,
TNs), given as spec = TN/(TN + FP), where FP (false positive) denotes the number of pairs
found falsely to have causal effects. For the perfect match of estimated and true causality,
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sensitivity and specificity are one. The Matthews correlation coefficient (MCC) weighs
sensitivity and specificity [40]

MCC =
TP · TN− FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

MCC ranges from −1 to 1. If MCC = 1, there is perfect identification of the pairs of true
and no causality; if MCC = −1, there is total disagreement and pairs of no causality are
identified as pairs of causality and vice versa, whereas MCC at the zero level indicates
random assignment of pairs to causal and non-causal effects. The F-measure is the harmonic
mean of precision and sensitivity. The precision, also called positive predictive value, is
the number of detected true causal effects divided by the total number of detected casual
effects, F = TP/(TP + FP). The F-measure (FM) ranges from 0 to 1. If FM = 1, there is
perfect identification of the pairs of true causality, whereas if FM = 0, no true coupling
is detected. The Hamming distance (HD) is the sum of false positives (FPs) and false
negatives (FNs). Thus, HD obtains non-negative integer values bounded below by zero
(perfect identification) and above by K(K− 1) if all pairs are misclassified.

3. Simulations

One of the aims of the simulation study is to assess whether and how the DPMIME
on discrete-valued time series attains the causality estimation accuracy of PMIME on the
respective continuous-valued time series. Therefore, we generate discrete-valued time series
on the basis of the causality structure of a continuous-valued time series. The continuous-
valued time series is generated by a known dynamical system so that the original causal
interactions are given by the system equations. In the simulation study, we consider four
different ways to generate discrete-valued time series aiming at having the original causal
interactions, as presented below.

1. Continuous to Discrete by quantization (Con2Dis): The multivariate symbol sequence of
a predefined number of symbols M is directly derived by quantization of the values
of the multivariate continuous-valued time series of K observed variables. The range
of values of each variable is partitioned to M equiprobable intervals and each interval
is assigned to one of the M symbols.

2. Realization of estimated sparse Markov Chain (SparseMC): The multivariate symbol se-
quence is generated as a realization of a Markov chain of reduced form estimated on
the Con2Dis multivariate symbol sequence (as derived above from the continuous-
valued multivariate time series). First, the transition probability matrix of a Markov
chain of predefined order L is estimated on the Con2Dis multivariate symbol sequence.
An entry in this matrix regards the probability of a symbol of the response variable
conditioned on the ‘word’ of size K · L of L last symbols of all K variables. For M
discrete symbols, the size of the transition probability matrix for one of the K response
variables is MK·L×M. The causal interactions in the original dynamical system assign
zero transition probabilities to words that contain non-existing causal interactions
so that the Markov chain has a reduced form as the lag variables are less (or much
less for a sparse causality network) than K · L. For example, let us assume the case
of K = 3, L = 2, and M = 2 and the true lag causal relationships for the response
X1,t+1 are X1,t, X1,t−1, and X2,t. The full form of the Markov chain comprises 23·2 = 64
conditioned probabilities for each of the two symbols of X1,t+1, but we estimate only
the 23 = 8 probabilities as the lag variables X2,t−1, X3,t, and X3,t−1 are not considered
to have any causal effect on X1,t+1. Even for a sparse causality network (few true
lag causal relationships), the multivariate Markov chain can only be estimated for
relatively small values of K, L, and M. Once the sparse transition probability matrix is
formed, the generation of a multivariate symbol sequence of length n goes as follows.
The first L symbols for each of the K variables are chosen randomly, and they assign
to the initial condition. Then, for times t + 1, t = L + 1, ..., n + T, the new symbol of
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each of the K variables is drawn according to the estimated conditioned probabilities.
Finally, the first T symbols for each variable are assigned to a transient period and are
omitted to form the SparseMC multivariate symbol sequence of length n.

3. Realization of estimated mixture transition distribution model (MTD): Instead of deter-
mining the multivariate Markov chain of reduced form in SparseMC, a specific and
operatively more tractable form called mixture transition distribution model (MTD)
has been proposed [41]. In essence, instead of determining the transition probability
from the word of the causal lag variables to the response variable, the MTD deter-
mines the transition probability from each causal lag variable to the response variable.
Here, as lag variable, we consider any lag of the driving variable to the response in
the true dynamical system, e.g., for the example above for the driving variable X2
to the response X1, we consider both lags of X2 (assuming L = 2) and not only the
true lag one. In its full form, the MTD assumes that the state probability distribution
of the j-th variable at time t + 1 (response variable) depends on the state probability
distribution of all K variables at the last L times as

Xj,t+1 =
K

∑
i=1

L

∑
l=1

λj,i,l Pj,i,lXi,t−l+1, i = 1, 2, . . . , K, t = L, L + 1, . . . ,

where Pj,i,l is the transition probability from Xi,t−l+1 to Xj,t+1, and λj,i,l is a parameter
giving the weight on Xi,t−l+1 in determining Xj,t+1, and for j = 1, 2, . . . , K, the fol-
lowing holds ∑K

i=1 ∑L
l=1 λj,i,l = 1. We restrict the full form of MTD by dropping from

the sum the variables that are non-causal to Xj, preserving that the remaining λj,i,l
sum up to one. Thus, λj,i,l denotes the strength of lag causality from Xi,t−l+1 to Xj,t+1.
Further, after a simulation study for the optimal tolerance threshold λ0, we determine
λ0 = 0.01, and if λj,i,l < λ0, we set λj,i,l = 0 to omit terms having small coefficients. In
this way, we attempt to retain only significant dependencies of the response on the lag
variables. We use the estimated MTD model as the generating process and generate
a multivariate symbol sequence. To fit MTD to the Con2Dis multivariate symbol se-
quence, we use the package markovchain package in R language [42], implementing
the fitting of higher-order multivariate Markov chains as described in [43,44].

4. Realization of estimated multivariate integer-autoregressive system (MINAR): Another
simplified form of the multivariate Markov chain is given by the multivariate integer-
autoregressive systems (MINAR) [19]. Here, we do not estimate MINAR from
the Con2Dis multivariate symbol sequence, as done for the sparse multivariate
Markov chain (SparseMC) and the MTD process, but define the MINAR of order
one, MINAR(1), by setting to zero the coefficients that regard no-lag causality in
the original dynamical system. Therefore, the j-th variable at time t is given as
Xj,t = ∑K

i=1 αi,j ◦ Xi,t−1 + Rj,t for j = 1, . . . , K, where αi,j ∈ [0, 1] are the coefficients
of MINAR(1) (set to zero if the corresponding driver–response relationship does not
exist in the original dynamical system), ◦ denotes the thinning operator (The thinning
operator defines that a ◦ x is the sum of x Bernoulli outcomes of probability a.), and
Rj,t is a random variable taking integer values from a given distribution (here, we
set the discrete uniform of two symbols). We note that the way the integer-valued
sequence is generated does not determine a fixed number of integer values for each of
the K variables so that the generated multivariate symbol sequence does not have a
predefined number M of symbols.

The multivariate symbol sequences of all four types are generated under the condition
of preserving the coupling structure of the original continuous-valued system. However,
only the first type Con2Dis directly preserves the original coupling structure, as the Con2Dis
multivariate symbol sequence is directly converted from the continuous-valued realization
of the original system. For the other three types, a restricted model is first fitted to the
Con2Dis multivariate symbol sequence, which is then used to generate a multivariate
symbol sequence. Among the three models, the sparse Markov chain (SparseMC) is best
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constrained to preserve the original coupling structure. The other two models, the MTD
and MINAR, are included in the study as there are known models for discrete-valued
time series, adapted here to the given coupling structure. However, the MTD does not
preserve the exact lag coupling structure of the original system and the MINAR generates
multivariate symbol sequences of varying number of symbols at each realization so that
the estimation of the causality structure with the DPMIME on the MTD and MINAR
multivariate symbol sequences is not expected to be accurate.

We compute the DPMIME on each multivariate symbol sequence and evaluate the
statistical accuracy of the DPMIME to estimate the true variable interactions and subse-
quently the true coupling network. Further, we compute also the PMIME on the initial
continuous-valued time series and examine whether DPMIME can attain the accuracy
of PMIME.

3.1. The Simulation Setup

In the simulation study, we use as the original dynamical system the coupled Hénon
maps [33,45] and consider four settings regarding different connectivity structures for
K = 5 (here, the K variables constitute the K subsystems being coupled). We also consider
a vector stochastic process as a fifth generating system.

The first system (S1) has an open-chain structure of K = 5 coupled Hénon maps, as
shown in Figure 1a, defined as

X1,t+1 = 1.4− X2
1,t + 0.3X1,t−1

X2,t+1 = 1.4− (0.5C(X1,t + X3,t) + (1− C)X2,t)
2 + 0.3X2,t−1

X3,t+1 = 1.4− (0.5C(X2,t + X4,t) + (1− C)X3,t)
2 + 0.3X3,t−1 (5)

X4,t+1 = 1.4− (0.5C(X3,t + X5,t) + (1− C)X4,t)
2 + 0.3X4,t−1

X5,t+1 = 1.4− X2
5,t + 0.3X5,t−1

The first and last variable in the chain of K = 5 variables drives its adjacent variable and
each of the other variables drive the adjacent variable to its left and right. The coupling
strength C is set to 0.2 regarding weak coupling.

The second system (S2) has a randomly chosen structure, as shown in Figure 1b, and
it is defined as

X1,t+1 = 1.4− X1,t((1− C)X1,t + CX3,t) + 0.3X1,t−1

X2,t+1 = 1.4− X2
2,t + 0.3X2,t−1

X3,t+1 = 1.4− X3,t(0.5CX2,t + (1− C)X3,t + 0.5CX5,t) + 0.3X3,t−1 (6)

X4,t+1 = 1.4− X4,t(0.5CX2,t + 0.5CX3,t + (1− C)X4,t) + 0.3X4,t−1

X5,t+1 = 1.4− X5,t(CX4,t + (1− C)X5,t) + 0.3X5,t−1

The coupling strength C is set to 0.5. There is no predefined pattern for the interactions of
the variables, other than the number of interactions being six, as for S1.

The other two systems, S3 and S4, also have a randomly chosen structure similar to S1
(see Figure 1c,d). S3 is defined as

X1,t+1 = 1.4− X1,t((1− C)X1,t + CX5,t) + 0.3X1,t−1

X2,t+1 = 1.4− X2
2,t + 0.3X2,t−1

X3,t+1 = 1.4− X3,t((1− C)X3,t + CX5,t) + 0.3X3,t−1 (7)

X4,t+1 = 1.4− X4,t((1− C)X4,t + CX5,t) + 0.3X4,t−1

X5,t+1 = 1.4− X5,t

(
1
3

CX1,t +
1
3

CX2,t +
1
3

CX3,t + (1− C)X5,t

)
+ 0.3X5,t−1
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and S4 is defined as

X1,t+1 = 1.4− X2
1,t + 0.3X1,t−1

X2,t+1 = 1.4− X2,t(CX1,t + (1− C)X2,t) + 0.3X2,t−1

X3,t+1 = 1.4− X3,t(CX2,t + (1− C)X3,t) + 0.3X3,t−1 (8)

X4,t+1 = 1.4− X4,t(CX3,t + (1− C)X4,t) + 0.3X4,t−1

X5,t+1 = 1.4− X5,t(0.5CX1,t + 0.5CX4,t + (1− C)X5,t) + 0.3X5,t−1

The coupling strength C is set to 0.5 for S3 and 0.4 for S4. System S3 has node 5 as a hub
(three in-coming and three out-going connections) and system S4 has a causal chain from
node 1, to 2, to 3, to 4.

The fifth system (S5) is a vector autoregressive process on K = 5 variables (model 1
in [46]), and it is defined as

X1,t+1 = 0.4X1,t − 0.5X1,t−1 + 0.4X5,t + u1,t+1

X2,t+1 = 0.4X2,t − 0.3X1,t−3 + 0.4X5,t−1 + u2,t+1

X3,t+1 = 0.5X3,t − 0.7X3,t−1 − 0.3X5,t−2 + u3,t+1 (9)

X4,t+1 = 0.8X4,t−2 + 0.4X1,t−1 + 0.3X2,t−1 + u4,t+1

X5,t+1 = 0.7X5,t − 0.5X5,t−1 − 0.4X4,t + u5,t+1

The terms uj,t+1 are white noise with zero mean. The connectivity structure of S5 is shown
in Figure 1e.

1

2 3 4

5

(a)

4

2 3 1

5

(b)

2

1 5 3

4

(c)

1

2 3 4

5

(d)

4

1 2 3

5

(e)

Figure 1. The graphs of the connectivity structure of the simulated systems: (a) open-chain structure
(S1), (b–d) randomly chosen structure for (S2)–(S4), respectively, and (e) vector autoregressive
process (S5).

To derive statistically stable results, we generate 100 realizations for each system and
for different time-series lengths n. The number of symbols (M) for the discretization of the
continuous-valued multivariate time series is 2 and 4, respectively. For the discretization,
an equiprobable partition is used so that when M = 2, all values of the time series larger
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than the median are set to 0 and the rest to 1, and when M = 4, the quartiles of the time
series define the four symbols.

3.2. An Illustrative Example

The performance of the DPMIME is first illustrated with a specific example, focusing
on the first two equations of system S1 and thus considering as a response in the DPMIME
(and PMIME) only the first and second variable. We consider only the first type (Con2Dis)
for the generation of the multivariate symbol sequence with M = 2 symbols and length
n = 1024. The parametric test for the significance of each component to be added to
the mixed embedding vector is used (DPMIMEpt), and the maximum lag is L = 5. The
PMIME is computed for the same L = 5 on the continuous-valued time series (before
discretization). Table 1 shows the frequency of occurrence of any of the 25 lag terms in the
mixed embedding vector of DPMIMEpt and PMIME for the response X1 and X2 in 100
Monte Carlo realizations. For the true lag terms, i.e., the terms that occur in the system
equations, the frequencies are highlighted.

Table 1. Each cell in columns 2–5 has the frequency of occurrence over 100 realizations of the
lag variable (first column) in the mixed embedding vector for DPMIMEpt and PMIME, where the
response is the first or the second variable of system S1 and for n = 1024, L = 5, and M = 2. The
frequencies of the lag variables occurring in the system equations are highlighted.

X1,t+1 X2,t+1

DPMIMEpt PMIME DPMIMEpt PMIME

X1,t 100 100 6 1
X1,t−1 100 100 84 99
X1,t−2 100 5 3 0
X1,t−3 100 1 2 0
X1,t−4 92 0 1 0
X2,t 0 0 100 100
X2,t−1 0 0 91 100
X2,t−2 0 0 72 5
X2,t−3 0 0 8 1
X2,t−4 0 0 31 0
X3,t 1 0 32 44
X3,t−1 0 0 39 53
X3,t−2 0 0 15 6
X3,t−3 1 0 10 1
X3,t−4 1 0 5 0
X4,t 0 0 0 0
X4,t−1 0 0 1 0
X4,t−2 0 0 0 0
X4,t−3 0 0 0 0
X4,t−4 0 0 0 0
X5,t 0 0 0 0
X5,t−1 0 0 0 0
X5,t−2 0 0 0 0
X5,t−3 0 0 0 0
X5,t−4 0 0 0 0

The variable X1,t+1 depends on the variables X1,t and X1,t−1, which are selected
by both algorithms of DPMIMEpt and PMIME in all realizations (frequency 100). The
DPMIMEpt selects also the lag terms X1,t−2, X1,t−3, and X1,t−4 of the response variable, but
their inclusion in the mixed embedding vector does not result in any false causal effects.
(It turns out that it is hard to find the exact lag components of the driving variable in the
case of discrete-valued time series, which questions the use of DPMIME for building the
input of a regression model to the response.) No other lag terms are found (the maximum
frequency is one).
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The second equation of S1 defines the dependence of X2,t+1 on X1,t, X2,t, X2,t−1, and
X3,t. For X2 as response, both algorithms do not include the lag term X1,t in the mixed
embedding vector (frequency 6 for DPMIMEpt and 1 for PMIME) but include instead X1,t−1
(frequency 84 for DPMIMEpt and 99 for PMIME) so that the variable X1 is represented
in the mixed embedding vector and the correct causal effect from X1 to X2 is established.
The lag terms X2,t and X2,t−1 are always present in the mixed embedding vector for both
algorithms (X2,t occurs less frequently at 91% for DPMIMEpt) and terms of larger lag of
X2 occur for DPMIMEpt at a smaller frequency. The representation of X3 in the mixed
embedding vector is spread over the two first lags for PMIME and to the first four lags
for DPMIMEpt so that though the true lag term X3,t is not well identified (frequency 32
and 44 for DPMIMEpt and PMIME, respectively), the causal effect from X3 to X2 is well
established. The variables X4 and X5 are not represented in the mixed embedding vector,
and thus both DPMIMEpt and PMIME correctly find no causal effect from these variables
to X2.

The example shows that the two algorithms have a similar performance, with DP-
MIMEpt tending to include more lag terms of the causal variables, but both algorithms do
not include lag terms of variables that have no causal effect on the response variable.

3.3. System 1

The example above is for the first two variables of S1, and in the following, we compute
DPMIMEpt and PMIME for all K = 5 response variables of S1 and detect the presence
of causal effects by the presence of a lag term (or terms) of the driving variable in the
mixed embedding vector for the response variable. The true causal effects as derived by
the equations of S1 are X1 → X2, X2 → X3, X3 → X2, X3 → X4, X4 → X3, and X5 → X4.
The distribution of the DPMIMEpt and PMIME (in the form of boxplots) and the rate of
detection of causal effects (numbers under the boxplots) for all 20 directed variable pairs
are shown in Figure 2.

Figure 2. Boxplots of DPMIMEpt (M = 2) and PMIME for all variable pairs of S1, for 100 realizations
of the system S1, using L = 5 and n = 1024. At each panel, the number of times the causal effect is
detected is displayed below each boxplot.

Both measures perfectly define the non-existent causal effects with a percentage of
detection less than 3%. The DPMIMEpt detects the true causal effects in high percentages,
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approaching the perfect identification achieved by PMIME. However, as seen by the size
of the boxplots, the DPMIME obtains smaller values than the PMIME. Though both are
defined by the same CMI to MI ratio in (3), this ratio is smaller for the DPMIME.

To quantify the performance of the DPMIMEpt and PMIME at each realization of
S1, we calculate the performance indices sens, spec, MCC, FM, and HD on the 20 binary
directed connections, where six of them are true. In Table 2, the average indices over the
100 realizations of S1 for n = 1024 are shown for both measures.

Table 2. Average of sensitivity (sens), specificity (spec), MCC, F-measure (FM), and Hamming
distance (HD) over 100 realizations of system S1 for the causality measures DPMIMEpt (M = 2) and
PMIME, using L = 5 and n = 1024.

DPMIMEpt PMIME

sens 0.952 1
spec 0.994 0.999
MCC 0.956 0.999
FM 0.956 0.999
HD 0.380 0.010

For the DPMIMEpt using M = 2, both sensitivity and specificity are very high, and
the overall indices are high as well, e.g., the HD shows that more often none or less often
one causal effect out of 20 causal effects is misclassified (average HD is 0.38). Thus, the
performance of the DPMIMEpt is close to the almost perfect performance of the PMIME.

Next, we compare the parametric test (PT) and resampling test (RT) for the CMI used
in the DPMIME as the criterion to terminate the algorithm building the mixed embedding
vector. We consider the four types for generating multivariate symbol sequences (Con2Dis,
SparseMC, MTD, and MINAR) and for M = 2 and M = 4 symbols. The latter does not
apply to MINAR as the generated sequences have not a predefined number of symbols
(integers). In the comparison, we again use as reference (gold standard) the PMIME, because
this is computed directly on the continuous-valued time series, whereas the DPMIMEpt
and DPMIMErt are computed on the discrete-valued time series. We also examine the
performance of measures for different time-series lengths n. Here, we only report results
for the performance index MCC in Table 3.

The DPMIMEpt and DPMIMErt fail to define the pairs with causal and non-causal
effects when applied to the multivariate symbol sequences generated by the MTD. As
already mentioned, the MTD model fails to preserve the causality of the original system
and, in turn, the generated discrete-valued sequences do not allow for the estimation of
the true causal effects. For example, for M = 2 when n = 1024, the performance indices
sens, spec, MCC, FM, and HD are 0.36, 0.60, −0.03, 0.31, and 9.41, respectively, indicating a
very low specificity. The DPMIME using either significance test on the Con2Dis sequences
scores similarly in the MCC and at a lower level than the PMIME, converging to the highest
level with the increase of n. This holds for both M = 2 and M = 4, but for M = 4,
the performance of DPMIME is worse than that of PMIME and the difference decreases
with n, indicating that for a larger number of symbols longer time series are needed. The
accuracy of DPMIME on the SparseMC sequences is similar as for the Con2Dis sequences
when M = 4, but for M = 2, the accuracy does not improve with n unlike in the case of
Con2Dis. The DPMIME performs better on MINAR sequences than on MTD sequences,
especially when the resampling significance test is used in DPMIME. In this particular case,
the parametric test is not as accurate as the resampling test. The finding that DPMIMEpt
and DPMIMErt (except in the case of MINAR) perform similarly has practical importance
because we can rely on DPMIMEpt and save computation time, which for long time series
and many observed variables, DPMIMErt would be computationally very intensive.



Entropy 2022, 24, 1505 13 of 21

Table 3. Average MCC over 100 realizations of system S1 for the causality measures DPMIME using
L = 5, number of symbols M = 2, 4 (column 1), the parametric test (PT), and the resampling test (RT)
(column 2) on multivariate sequences of type Con2Dis, SparseMC, MTD, and MINAR, as well as
PMIME (colum 3), and for n = 512, 1024, 2048, 4096 (columns 4–7, respectively).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.78 0.96 1 1

RT Con2Dis 0.76 0.95 1 1

PT SparseMC 0.72 0.79 0.79 0.80

RT SparseMC 0.71 0.82 0.83 0.82

PT MTD −0.02 −0.03 −0.05 −0.05

RT MTD 0.00 −0.01 −0.04 −0.03

M = 4

PT Con2Dis 0.49 0.70 0.99 1

RT Con2Dis 0.39 0.70 0.99 1

PT SparseMC 0.54 0.72 1 1

RT SparseMC 0.43 0.72 1 1

PT MTD 0.00 −0.02 −0.03 −0.06

RT MTD 0.00 −0.02 −0.02 0.03

PT MINAR 0.08 0.12 0.25 0.43

RT MINAR 0.41 0.61 0.75 0.81

PMIME 0.98 1 1 1

Similar results as for MCC in Table 3 are obtained using the performance index HD,
as shown in Figure 3a. The misclassification is larger when the time series gets smaller
(from 4096 to 512) for the same number of symbols M, and when M gets larger (from 2 to
4) for the same n. However, the HD is at the same level for all these settings for DPMIMEpt
and DPMIMErt, and for both measures, it converges to zero (no misclassification of all 20
variable pairs) for n ≥ 2048, as does PMIME even for small n.
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Figure 3. Average HD over 100 realizations of system S1 in (a) and S2 in (b) for the causality measures
DPMIME (L = 5) using symbols M = 2, 4 (denoted with M and the number 2 or 4 in the beginning
of each word label in the abscissa), the parametric test, and the resampling test (given by PT or RT
after the symbol notation of each word label) on multivariate sequences of type Con2Dis, SparseMC,
MTD (present only in (a)), and MINAR, as well as PMIME (the acronym is at the end of each word
label), and for n = 512, 1024, 2048, 4096, as given in the legend.
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3.4. System 2

System S2 differs from S1 in that it has a randomly chosen coupling structure. We show
the summary results of the performance index MCC in Table 4 and the HD in Figure 3b.
The performance of DPMIMEpt and DPMIMErt on the Con2Dis and SparseMC sequences
is similar to that on system S1 for the different settings of time-series length n and number
of symbols M (the MTDs are not included in the results due to their poor performance in
the previous system). The accuracy in detecting the true causal effects is better for smaller
M when n is small, converging to the highest performance level with n and faster for M = 4
(MCC = 1 and HD = 0). The highest level is again attained by PMIME even for the smallest
time-series length n = 512. For the smallest n = 512, the performance of DPMIMEpt and
DPMIMErt is better for system S2 than for system S1. Another difference to system S1 is
that for the largest tested n = 4096, the DPMIMEpt and DPMIMErt reach the highest level
for M = 4 but not for M = 2, indicating that once there is enough data, the use of the
largest number of symbols allows for a better detection of the causal effects. For system
S2, the DPMIMEpt and DPMIMErt on the MINAR sequences give similar MCC scores
that do not tend to get higher with n, unlike the respective scores for system S1. This lack
of improvement with n in the causality estimation on MINAR sequences is attributed to
the varying number of integers of the generated time series increasing with n so that the
number of symbols M is relatively large compared to the length of time series n.

Table 4. As for Table 3 but for system S2 (MTD not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.92 0.97 0.98 0.97

RT Con2Dis 0.93 0.97 0.98 0.98

PT SparseMC 0.76 0.76 0.75 0.75

RT SparseMC 0.82 0.80 0.79 0.78

M = 4

PT Con2Dis 0.78 0.77 1 1

RT Con2Dis 0.73 0.77 1 1

PT SparseMC 0.75 0.77 1 1

RT SparseMC 0.74 0.77 1 1

PT MINAR 0.29 0.38 0.49 0.54

RT MINAR 0.42 0.53 0.49 0.43

PMIME 1 1 1 1

3.5. System 3 and System 4

Systems S3 and S4 also have a randomly chosen structure, as with system S2. The
summary results of the performance index MCC are shown in Table 5 for S2 and Table 6
for S3.

For the different settings of both S2 and S3, the generation of symbol sequences by
Con2Dis and SparseMC, the number of symbols M = 2 and M = 4, and the time-series
lengths n, the DPMIMEpt and DPMIMErt always perform similarly and less accurately
than the PMIME. There are however differences in the DPMIME in Con2Dis and SparseMC
with respect to M. As for S1 and S2, for both S3 and S4, the DPMIME on SparseMC
symbol sequences tends to perform better for M = 4 than for M = 2, and this occurs more
consistently for a larger n. On the other hand, the DPMIME on Con2Dis symbol sequences
tends to perform better for M = 2 than for M = 4, particularly for a smaller n. For a larger
n, for S3, the best performance is observed for Con2Dis and M = 2, and for S4, SparseMC
and M = 4.
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Table 5. As for Table 3 but for system S3 (L = 5, MTD and MINAR not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.8 0.93 0.93 0.95

RT Con2Dis 0.78 0.92 0.94 0.95

PT SparseMC 0.73 0.75 0.73 0.76

RT SparseMC 0.75 0.79 0.77 0.79

M = 4

PT Con2Dis 0.68 0.76 0.81 0.88

RT Con2Dis 0.68 0.76 0.81 0.88

PT SparseMC 0.65 0.76 0.81 0.88

RT SparseMC 0.65 0.76 0.80 0.88

PMIME 0.98 0.99 1 1

Table 6. As for Table 3 but for system S4 (L = 5, MTD and MINAR not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.94 0.98 0.99 0.94

RT Con2Dis 0.93 0.98 0.99 0.96

PT SparseMC 0.68 0.73 0.70 0.72

RT SparseMC 0.74 0.79 0.75 0.75

M = 4

PT Con2Dis 0.82 0.81 0.78 0.70

RT Con2Dis 0.86 0.85 0.80 0.72

PT SparseMC 0.79 0.87 0.98 1

RT SparseMC 0.77 0.87 0.97 1

PMIME 0.99 0.99 1

3.6. System 5

System S5 is a five-dimensional vector autoregressive process of order 4. This system is
chosen in order to examine the performance of the causality measures in a linear stochastic
system. The summary results of the performance index MCC are presented in Table 7.
First, it is worth noting that the PMIME does not reach the highest accuracy level as for
the nonlinear deterministic systems S1–S4, but the MCC ranges from 0.76 to 0.78 for the
different n. The highest accuracy level is attained by the DPMIMEpt for a smaller n and the
DPMIMEpt for a larger n on the Con2Dis symbol sequences when M = 4. For M = 4, the
randomization test tends to outperform the parametric test for a larger n and attains the
maximum MCC = 1. On the other hand, when M = 2, the accuracy of both tests is at the
same level and does not improve significantly with the increase of n as does for PMIME.

Table 7. As for Table 3 but for system S5 (L = 8, MTD and MINAR not included).

n = 512 n = 1024 n = 2048 n = 4096

M = 2

PT Con2Dis 0.61 0.71 0.72 0.75

RT Con2Dis 0.66 0.74 0.74 0.76

PT SparseMC 0.60 0.65 0.68 0.67

RT SparseMC 0.66 0.68 0.71 0.70

M = 4

PT Con2Dis 0.81 0.98 0.88 0.86

RT Con2Dis 0.75 0.98 1 0.98

PT SparseMC 0.82 0.98 0.88 0.86

RT SparseMC 0.75 0.98 1 0.98

PMIME 0.77 0.78 0.78 0.76
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3.7. Effect of Observational Noise

In the last part of the simulation study, we investigate the effect of observational noise,
restricting to observational noise on the original continuous-valued time series. We consider
system S1 and add to each of the five generated time series white Gaussian noise with
standard deviation (SD) being a given percentage of the SD of the time series. The Con2Dis
approach with M = 2 is then applied to derive the symbol sequences of different lengths n
and the DPMIME is applied using the parametric test (DPMIMEpt) and randomization test
(DPMIMErt). In Table 8, the results are presented, including the PMIME measure as well.
The type of test does not seem to affect the performance of the DPMIME for all different
noise levels. For noise levels up to 10%, the MCC is rather stable and effectively the same
as for the noise-free symbol sequences and decreases with a further increase in noise level
(20% and 40%) for all different n. However, even for the high noise level of 40% when
n = 4096, the MCC is 0.8 for DPMIMEpt and 0.85 for DPMIMErt and close to the MCC for
PMIME at 0.89. Overall, a smooth decrease in the accuracy of the DPMIME is observed
with the increase in the level of observational noise, which suggests the appropriateness of
DPMIME for real-world symbol sequences.

Table 8. Average MCC over 100 realizations of system S1 for the causality measures DPMIMEpt
and DPMIMErt on the Con2Dis symbols sequences (M = 2) and PMIME on the original continuous-
valued time series (column 2), where noise of different levels is added (column 1), and the time-series
length is n = 512, 1024, 2048, 4096 (columns 3–6). The added white noise is Gaussian with standard
deviation given by the percentage of the standard deviation of the data.

Noise Measure n = 512 n = 1024 n = 2048 n = 4096

0%

PMIMEpt 0.78 0.96 1 1

PMIMErt 0.76 0.95 1 1

PMIME 0.98 1 1 1

5%

PMIMEpt 0.81 0.95 0.98 0.99

PMIMErt 0.80 0.94 0.98 0.99

PMIME 0.99 1 1 1

10%

PMIMEpt 0.76 0.95 0.99 0.99

PMIMErt 0.78 0.95 1 0.99

PMIME 0.95 0.99 1 1

20%

PMIMEpt 0.72 0.87 0.93 0.93

PMIMErt 0.71 0.88 0.94 0.94

PMIME 0.92 0.96 0.97 0.97

40%

PMIMEpt 0.46 0.67 0.76 0.80

PMIMErt 0.48 0.70 0.80 0.85

PMIME 0.70 0.84 0.88 0.89

4. Application to Real Data

We consider a real-world application to compare DPMIME to other causality mea-
sures. These are the linear direct causality measure called the conditional Granger causality
index (CGCI) [47,48], the information-based direct causality measure of partial transfer
entropy (PTE) [49], and finally, the original partial mutual information from mixed embed-
ding (PMIME).

The dataset is the Morgan Stanley Capital International (MSCI) market capitalization
weighted index of five selected markets in Europe and South America: Greece, Germany,
France, UK, and USA. Specifically, we consider two datasets: the first one is in the time
period 1 January 2004 to 31 January 2008 and the second one in the period from 3 March
2008 to 30 March 2012. The separation was made with regard to the occurrence of the global
financial crisis (GFC), also referred to as the Great Recession, dated from the beginning
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of year 2008 to year 2013 [50]. The two selected periods are therefore called preGFC and
postGFC. The interest here is to study whether and how each of the causality measures
detects changes in the connectivity structure in the system of the five markets from preGFC
to postGFC. Each dataset comprises n=1065 observations, which correspond to daily returns
(first differences in the logarithms of the indices). For DPMIME, the data were discretized to
two symbols: 1 if the return is positive and 0 otherwise. For consistency, the amount of past
information denoted L is the same for all causality measures and set to L = 2, where for
DPMIME and PMIME L stands for the maximum lag, for PTE it stands for the embedding
dimension, and for CGCI it stands for the order of the (restricted and unrestricted) vector
autoregressive (VAR) model.

The causality measures DPMIMEpt, PMIME, CGCI, and PTE are computed for each
pair of national markets in the preGFC and postGFC periods. While DPMIME and PMIME
assign zero to the non-significant causal relationships, CGCI and PTE require a threshold,
here given by the parametric significance test for CGCI and the resampling significance test
for PTE (the time-shifted surrogates as for the significance of CMI in DPMIMErt). Then,
the causality networks are formed drawing weighted connections with weights being the
value of the significant measure, and the networks are shown in Figure 4 for the preGFC
and postGFC periods.
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Figure 4. The causality networks of weighted connections for the preGFC period using the measures
DPMIMEpt in (a), PMIME in (b), CGCI in (c), and PTE in (d), and respectively for the postGFC period
in (e–h).

All causality measures suggest the USA market has a causal effect on many other
markets before and after the GFC. In the DPMIMEpt networks (Figure 4a,e), there is in
additional causal effect from UK to Germany in both the preGFC and postGFC periods,
while the driving from France to UK in preGFC reverses in the postGFC period. Regarding
the latter, the PMIME networks show the opposite, UK to France in preGFC and France to
UK in postGFC (Figure 4b,f). The PMIME networks show no causal effect of USA on Greece
in both periods, which has no straightforward interpretation. In the postGFC period, the
PMIME finds a bidirectional causal relationship for the USA and UK. The CGCI measure
gives almost full networks in both periods (Figure 4c,g), failing to reveal any particular
connectivity structure in the system of the five national markets. On the other hand, the
PTE turns out to be the most conservative measure, giving only the causal effect of the USA
to UK, Germany and France (not Greece) in both periods (Figure 4d,h).

The DPMIMErt gave similar results to DPMIMEpt (not shown here). We repeated
the same analysis for the DPMIME and L = 1, and the results were stable. Overall, the
DPMIME estimates reasonable causal relationships, the USA to all four other markets in



Entropy 2022, 24, 1505 18 of 21

both periods, whereas the PMIME and PTE exclude Greece, and the UK and France causal
relationship changes direction from preGFC to postGFC.

5. Discussion

In this study, we propose a Granger causality measure for discrete-valued multivariate
time series or multivariate symbol sequences based on partial mutual information from
a mixed embedding named DPMIME. The rationale is to build the so-called mixed em-
bedding vector that has as components the lag terms of the observed variables that best
explain the response ahead in time. To quantify the causality of a driving variable to a
response variable in view of all the observed variables, we first check whether the lag
terms of the driving variable are included in the mixed embedding vector. If there are not
any, then the measure is zero and there is no causal effect, whereas if there are, then the
proportion of the information on the response explained by these lag terms determines
the strength of the causal effect from the driving to the response. For the termination of
the algorithm building the mixed embedding vector, we develop a parametric test using
a Gamma approximation of the asymptotic null distribution of the conditional mutual
information, CMI (information of the tested lag term and the response given the other
lag terms already included in the mixed embedding vector). This is a main difference
to the PMIME, the analogue of the same algorithm already developed by our team for
continuous-valued time series. The PMIME employs a resampling significance test as there
is no parametric approximation of the null distribution of the CMI for continuous variables.
Another main difference to the PMIME is that for discrete-valued time series, we use a
different estimate for the information measures of the mutual information, MI, and CMI
used in the algorithm, i.e., we use the maximum likelihood estimate for the probabilities of
all discrete probability distributions involved in the definition of the MI and CMI, whereas
in the PMIME, the nearest neighbor estimate [51] is used for the entropies involved in the
definition of the MI and CMI. We develop two versions of the DPMIME, one using the
parametric significance test for the termination criterion, denoted DPMIMEpt, and another
using the resampling significance test, denoted DPMIMErt, as for the PMIME.

The previous studies of our research team have showed that the PMIME is one of the
most appropriate measures to estimate direct causality in multivariate time series and par-
ticularly in the setting of high-dimensional time series (many observed variables) [1,27,52].
Therefore, to evaluate the proposed measure DPMIME for the causality of discrete-valued
multivariate time series and multivariate symbol sequences, we compare it to the PMIME.
For the simulations, dynamical systems of continuous-valued variables were used to gener-
ate multivariate time series and compute on them the PMIME. Then, the discrete-valued
time series were generated by discretizing the continuous-valued time series, denoted
Con2Dis. Moreover, systems for the generation of discrete-valued time series were fitted
to the Con2Dis multivariate sequence: the sparse Markov Chain (SparseMC), the mixture
transition distribution models (MTD), and the multivariate integer-autoregressive systems
(MINAR). The simulations showed that the MTD cannot preserve the original coupling
structure, whereas the varying number of integers (assigned to symbols) of the MINAR se-
quences complicates the use of the DPMIME on these sequences. The SparseMC sequences
could preserve sufficiently well the coupling structure in the discrete-valued (Con2Dis)
and continuous-valued time series, as the DPMIME could detect the original causality
relationships almost as well in the SparseMC sequences as in the Con2Dis sequences. Thus,
the main focus in the simulation study was on the performance of the DPMIMEpt and
DPMIMErt (for the parametric and resampling significance test) on the Con2Dis multivari-
ate symbol sequences, as compared to the PMIME, where the latter has the role of golden
standard as it is computed on the complete available information from the system, i.e., the
continuous-valued time series. Further, we assess whether the DPMIMEpt can perform
as well as the DPMIMErt, as the DPMIMEpt is much faster to compute and would be
preferred in applications.
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The simulation systems are coupled Hénon maps of five subsystems, one with an
open-chain coupling structure and the other three with a different randomly chosen cou-
pling structure, as well as a vector autoregressive process (VAR) on five variables. The
performance indices were computed on binary causality estimates (presence or absence
of causal effect) for all pairs of variables (subsystems). The average of the performance
indices over 100 realizations for each setting of the time-series length n and number of
symbols M from the discretization were reported. The results on all the simulated systems
showed that the DPMIMEpt scores lower than the PMIME, as expected, but converges to
the performance level of the PMIME with an increasing n, except for the VAR system where
the accuracy of the DPMIMEpt in detecting the true causal effects is better when n = 1024
and similar to the PMIME when n ≥ 2048. The difference to the PMIME is larger for a
small n and larger M (going from 2 to 4 symbols), which is anticipated as the discretization
smooths out information in the time series about the evolution of the underlying system.
However, the convergence of the DPMIME to the PMIME for a data size of n ≥ 2048
indicates that the proposed measure can be used in applications with a moderate length of
the discrete-valued time series that can have an even high dimension (we tested here for
five subsystems).

The finding that the DPMIMEpt and DPMIMErt perform similarly has high practical
relevance. The DPMIME is based on multiple computations of the CMI on progressively
higher dimensions that are computationally intensive. If we had to rely on the DPMIMErt,
the computation time at each iteration of the algorithm would be multiplied with the
number of the resampled data used for the resampling significance test. In applications on
long sequences of many symbols, the computation time may be prohibitively long using the
DPMIMErt with, say, 100 resampling sequences for each test, but it would be approximately
100 times less when using the DPMIMEpt. Thus, the DPMIMEpt is an appropriate measure
to estimate the direct causality in many symbol sequences.

The DPMIME was further applied and compared to other causality measures (PMIME,
CGCI, and PTE) in one real-world application. We used data from the Morgan Stanley
Capital International market capitalization weighted index of five national markets to
examine the causality structure of the system of the five markets before and after the start of
the global financial crisis. The proposed measure DPMIME detects the crucial role of the US
market before and after the start of the global financial crisis without being as conservative
as the PTE and without giving full networks as the CGCI.
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