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Abstract: What are the mechanisms by which groups with certain opinions gain public voice and
force others holding a different view into silence? Furthermore, how does social media play into this?
Drawing on neuroscientific insights into the processing of social feedback, we develop a theoretical
model that allows us to address these questions. In repeated interactions, individuals learn whether
their opinion meets public approval and refrain from expressing their standpoint if it is socially
sanctioned. In a social network sorted around opinions, an agent forms a distorted impression of
public opinion enforced by the communicative activity of the different camps. Even strong majorities
can be forced into silence if a minority acts as a cohesive whole. On the other hand, the strong
social organisation around opinions enabled by digital platforms favours collective regimes in which
opposing voices are expressed and compete for primacy in public. This paper highlights the role
that the basic mechanisms of social information processing play in massive computer-mediated
interactions on opinions.
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1. Introduction

A better understanding of the collective processes underlying public opinion expres-
sion is crucial for a better understanding of modern society. Sociological models drawing
on network science [1–3] and basic principles of human interaction behaviour [4,5] have al-
ready provided useful insights into collective phenomena related to mass mobilisation [6–8],
societal-level change of behaviour [9–11] and beliefs [12]. However, for a change to happen
and for a movement to gain pace, the alternative must be voiced by a sufficiently large
group [13]. Furthermore, to be voiced, it must be perceived as something that can be said
without “fear of isolation” [14].

The spiral of silence theory [15] is based on the old “law of opinion” ([14] John Locke).
It focuses on the collective perception of what can be publicly voiced and hence impact
the further perception of public opinion. The theory assumes that humans possess a
“quasi-statistical organ” [16] to perceive what can be said without being socially sanctioned
and explains public opinion dynamics as a spiralling process in which silence may lead
to more silence. In this paper, we propose a mathematical model for this process based
on reinforcement learning (RL) by social feedback [17]. In repeated games played over a
network, agents receive signals of approval or disapproval for expressing their opinion to
peers. Agents evolve an expectation about the social reward obtained when expressing
their opinion and remain silent if they expect punishment (negative reward). In this way,
social feedback dynamics naturally capture the assumed “quasi-statistical” perception of
the opinion landscape surrounding an agent.
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Our paper develops a computational model that captures the basic assumptions of the
spiral of silence theory and grounds it in neuroscientific research on social information pro-
cessing. While the spiral of silence theory frequently refers to the “social nature of man” [18],
no attempt of grounding this assumption in social psychology and neuroscience has been
made. On the other hand, the potential for explaining collective behaviour based on mecha-
nisms identified in cognitive and social neuroscience is frequently emphasized [19–21], but
its integration with sociological theories of collective opinion expression [6,7,15] is lacking.
The social feedback theory (SFT) bridges this gap by formulating collective processes of
opinion expression as a multiagent problem in which individual agents adapt according to
a reward- and value-based learning scheme identified in neuroscientific research [22–27].
With these repeated opinion expression games, the SFT provides a coherent framework
for modelling collective opinion processes that integrates basic neuroscientific findings,
adaptive decision-making [28] and a political theory of public opinion [15,16].

Given that the processing of and learning by social feedback is so deeply rooted in the
human brain, it is of the uttermost importance to better understand the collective conse-
quences of these processes. Especially in social media environments, a tremendous number
of quick feedback decisions is made day by day by billions of users. “Like buttons” and
quantitative markers of collective endorsement can be associated with low cognitive costs,
which suggests that a dominant role is played by the fast value-processing mechanisms
accounted for by RL. Recent studies have provided evidence for that [29,30]. While it is
reasonable to assume that the social reward circuit has evolved to facilitate cohesion and
cooperation in small groups [20] with intensive pair-bonding [31], this reasoning may not
apply for societies of increased complexity [32,33]. In complex social networks, the human
ability to coordinate with in-groups may come at the expense of an increasing alienation to
out-groups and therefore drive polarization dynamics [17]. Here, we show that social feed-
back dynamics provide a neurobiologically grounded explanation of collective processes
involved in “spirals of silence” [15] and analyse how structural transformations enabled by
social media give voice to groups that previously went unheard.

Providing a mechanism-based approach [5] to model the phenomena of collective
opinion expression or silence enables a more general application of the assumptions under-
lying the spiral of silence theory. Most importantly, our model allows us to relate structural
variations across different opinion groups to different regimes of collective opinion expres-
sion. In this regard, we show that social feedback mechanisms may lead to spirals of silence
in unstructured random networks, but that the same mechanism generates highly active
echo chambers if social networks become more assortative and homophilous with respect
to opinions.

2. Model
2.1. Social Feedback Processing in the Brain

Our modelling choices are well-grounded in neuroscientific insights into human social
nature. Social neuroscience aims to identify neural mechanisms involved into the process-
ing of social cues. fMRI studies have shed light on the interaction and interconnectedness of
different brain regions and their functional role in social cognition. While it has long been
controversial whether human nature evolved a neural circuity specifically for handling
social information or not [20,24,31,34], it is now relatively settled that a basic “reinforce-
ment circuit” [23,35] is strongly involved into value-based decisions and learning from
social feedback [29,30,36–39]. Other brain processes interfere with this circuity [20,23,40],
especially when social situations and tasks involve higher cognitive functions such as
trust [35], morality [41] or representations of self and the other [42,43].

Temporal difference reinforcement learning (TDRL) [44,45] has provided a useful
computational account of the brain mechanisms underlying social reward processing and
learning [24–27]. In TDRL, a new estimate of the expected value Qt+1 associated with an
action is a function of the current estimate Qt and the temporal difference (TD) error δt

between this estimate and the reward that is actually obtained: Qt+1 = Qt + αδt. With
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a rate governed by α (referred to as learning rate), this scheme converges to a stable
equilibrium in which the TD error δt approaches zero such that the expectations and
actual reception of rewards are aligned [45]. The usefulness of TDRL in computational
neuroscience derives from the finding that the activity of dopaminergic neurons in the
midbrain regions is quantitatively related to the “reward–prediction error” [20] between
the experienced reward and its expected value [22,46,47], that is, to δt. Social neuroscience
has provided ample evidence that such a basic reward processing circuit is also highly
involved into peer influence processes [29,38], social conformity [37] and approval [39].

2.2. Opinion Expression Games

We consider the situation that two groups with different standpoints on a controversial
issue have evolved and engage in public discourse. In contrast to most existing opinion
dynamics models, we consider that the opinions of agents are fixed, because we want
to understand the conditions under which agents with a given opinion become silent.
Individuals within both opinion groups have two available actions: they can decide to
express (E) their standpoint or to be silent (S). They receive supportive feedback from their
respective in-group and negative feedback from agents in the out-group when expressing
their opinion. Individual interaction is hence formulated as repeated opinion expression
games with a reward system that captures approval and disapproval by peers:

rt
i =


−c silent neighbour
−c + 1 agreement
−c− 1 disagreement

(1)

The parameter c corresponds to a fixed cost of opinion expression and i refers to the
individual agent. Having received a social reward during an interaction, agents update the
expected value Qi(A) of their current action by TDRL

Qi(A)t+1 = Qi(A)t + α (rt
i −Qi(A)t)︸ ︷︷ ︸

TD error

(2)

with learning rate α. As the reward of silence (S) is zero in the game, we only have to
keep track of the value for the opinion expression and skip action indices in the sequel
(Qi(E) = Qi). Qi hence accounts for the subjective reward that agent i expects when
expressing their opinion, and the agent will remain silent if this value is negative. Given
the current value of opinion expression Qi an agent has learned in previous interactions,
the probability of opinion expression follows a softmax choice model of the form

pi =
1

1 + e−βQi
(3)

in which β governs the rate of exploration. Taken together, the action selection (3) and the
TDRL scheme (2) naturally account for the effect that agents become more (less) willing to
speak out after receiving positive (negative) feedback.

2.3. Group Setting

Assume that we can characterise the two opinion groups G1 and G2 in terms of their
sizes (N1 and N2), their in-group cohesion and intergroup connectivity. The probability of
in-group influence is q11 for group 1 and q22 for group 2. The interaction probability across
groups is denoted by q12, q21, respectively. We assume that these interaction probabilities
are equal for all agents within the same opinion group. Following a mean-field approach,
we derive a dynamical system governing the average behaviour of agents in G1 and G2.
That is, we are interested in the average values of opinion expression Q1 = 1

N1
∑i∈G1

Qi and
Q2 = 1

N2
∑i∈G2

Qi and their evolution. For further details and a mathematical justification
of this group-level description the reader is referred to [48].
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Given the group sizes N1 and N2 and the homogeneous interaction probabilities
q11, q22, q12 and q21, we define the structural strength of G1 and G2 (denoted as γ and δ) as

γ =
(N1 − 1)

N2

q11

q12
and δ =

(N2 − 1)
N1

q22

q21
. (4)

The structural strength of a group is determined by the relative size of the group and the
relative in-group connectivity or cohesion [49,50]. As γ and δ determine the probability of
in-group versus out-group interaction (γ/(γ + 1) versus 1/(γ + 1) for group 1), they also
govern the expected rewards for opinion expression for the two groups with

E(r1) = p1
γ

γ + 1
− p2

1
γ + 1

− c, (5)

for opinion group G1 and

E(r2) = p2
δ

δ + 1
− p1

1
δ + 1

− c, (6)

for G2. Note that the probabilities for opinion expression p1 and p2 are given by (3)
substituting the agent index i by the respective group index. As an example, consider
an agent in G1 when expressing its opinion (Equation (5)). With a probability of γ

γ+1 , the
agent’s neighbour will be in G1 as well and provide positive feedback with probability p1.
With probability 1

γ+1 , the agent will meet a neighbour in the opposing opinion group G2
and receive negative feedback when agents in G2 are expressive (i.e., with p2).

As visible in Equation (2), in TD learning the change of Q-values from one time step
to the other is given by the TD error times the learning rate α. Similarly, at the group level
the update of the Q-values Q1 and Q2 from one time step to the next can be written as

∆Q1 = Qt+1
1 −Qt

1 = α(E(r1)−Q1)

∆Q2 = Qt+1
2 −Qt

2 = α(E(r2)−Q2) (7)

where we introduce the expected group rewards E(r1) and E(r2) derived above. In the
continuous time limit [51–53], we replace t + 1 by t + δt and α by αδt and take δt→ 0. This
allows us to describe the model dynamics as a system of two differential equations

Q̇1 = E(r1)−Q1

Q̇2 = E(r2)−Q2, (8)

where we can omit the prefactor α by rescaling time. (When performing the continuous
time limit, we have to rescale the learning rate α′ with α′ = α

δt . Thus, the equations would
have the form Q̇g = α′(E(rg)−Qg). Without losing any generality, we can set α′ = 1 by
rescaling time.) As the right hand side is zero when the Q-value estimate is equal to the
expected reward, the fixed points of (8) are possible equilibria of the associated collective
game. (A game-theoretic analysis of the model was presented in [48]).

3. Applications
3.1. Organized Minorities and Silent Majorities

We applied this model to a minority–majority setting in which one third of the pop-
ulation supports opinion 1 and the other two thirds hold the majority view opinion 2.
The group size ratio (N2 − 1)/N1 approached two for a large number of agents. In the
first scenario, the interaction probabilities were homogeneous over the entire population
(q11 = q22 = q12 = q21 = q). This corresponded to the Erdős–Rényi random graph [54,55]
with link probability q and represented a situation without any particular organisation of
social relations within and in between both camps. The structural strength indicators (4)
were then determined by the relative group sizes: γ = 1/2 and δ = 2. For example,
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consider that there are N1 = 100 agents in the minority and N2 = 200 in the majority group,
and let q = 0.05 such that each agent has 15 links on average. In this unstructured case,
agents from the minority are connected to 5 agents of the in-group and to 10 agents of the
out-group, whereas an agent in the majority has an expected number of 10 neighbours in
its own majority group and only 5 out-group connections. In this random graph setting,
the dynamical system (8) has only one stable fixed point at Q1 ≈ −0.66 and Q2 ≈ 0.66.
This situation is shown on the left-hand side in Figure 1, where the respective fixed point is
marked by the blue circle. The associated expression rates are p1 ≈ 0.067 for the minority
and p2 ≈ 0.995 for the majority. That is, the majority is expressive and the minority silent.
The phase plot shows that even if expressive in the beginning (i.e., Q1 > 0), agents in the
minority find less and less support for their opinion and increasingly avoid expressing
their opinion in public.
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Figure 1. Two groups supporting two different opinions struggle for public expression. The majority
group (blue) is twice as big as the minority group (red). The three different situations represent
subsequent increases of internal cohesion of the minority group and their effect on the respective
phase dynamics of the system. The phase portraits show the evolution of Q1 and Q2 towards the fixed
points of Equation (8). The isoclines of the dynamical system are shown and the stable fixed points
at their intersection are coloured according to whether the majority (blue circle), the minority (red
circle), or both (green circle) are expressive. While minority expression is unstable in an unstructured
random graph, the minority can compensate their quantitative inferiority by a stronger internal
organisation. Results for an exploration rate β = 8 and c = 0. Random graph (left): ER graph with
link probability q11 = q22 = q12 = q21 = 0.05. For group sizes N1 = 100 and N2 = 200, each agent
has 15 links on average. The minority is connected to 5 agents of the in-group and to 10 agents of the
out-group and vice versa for the majority leading to structural strength indicators γ = 0.5 and δ = 2.
The resulting system has only one stable fixed point at Q1 ≈ −0.66 and Q2 ≈ 0.66 with associated
expression rates of p1 ≈ 0.067 and p2 ≈ 0.995. That is, only the majority group is expressive and the
minority silent. Cohesive minority (centre): Increasing internal organisation of the minority group by
raising the connection probability within the minority to q11 = 0.2. This increased group cohesion is
reflected in an increased structural strength γ = 2. δ is not affected. The system becomes symmetric
and minority (red circle) or majority group expression (blue circle) are solutions reached depending
on the initial values of expression. An additional fixed point (green circle) emerges in which two
groups are loud. Strongly cohesive minority (right): The in-group cohesion of the minority further
increases (q11 = 0.35) leading to γ = 4 and δ = 2. The case that only the majority is in expression
mode is no longer stable and the minority will always express its opinion. Coexistence is still possible.

However, the minority can gain public impact if the internal organization of the group
becomes more cohesive. The effect of this structural transition towards a stronger minority’s
organisation is shown in Figures 1 and 2. Figure 1 shows the phase portraits of Equation (8)
for three different values of γ = 1/2, 2, 4 that result from an increasing connectivity in the
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minority group (q11). It also shows the respective isoclines of the dynamical system and
the stable fixed points at their intersection. As the probability q11 of in-group connections
increases, the system undergoes a series of saddle-node bifurcations. First, a small increase
of q11 (and hence γ) gives rise to an additional stable fixed point in which only the minority
is expressive (not shown in Figure 1, yellow regime of competition in Figure 2). The
minority and majority compete for public voice. As the internal connectivity of the minority
group increases to q11 = 4q, the situation becomes symmetric with γ = δ = 2. In
other words, the minority can compensate its quantitative inferiority by a more cohesive
internal organisation. Both groups can readily express their opinion if the other group is
silent (competition, Figure 1, centre). However, an additional stable fixed point in which
both opinions coexist also appears through another saddle-node bifurcation (coexistence).
Finally, if the internal cohesion of the minority group becomes very large (q11 = 7q), the
fixed point associated to a loud majority and silent minority disappears. That is, the
minority always voices their view in public while the majority may become silent (see
Figure 1, r.h.s.).

0 1/2 1
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Figure 2. Bifurcation plot of the scenario in which a minority (N1/N2 = 1/2) gains public voice
through stronger internal organisation (see also Figure 1). On the right-hand side, the expression
rate (3) is shown as a function of Q for β = 8. The strength δ of the second group is kept constant
(δ = 2) and the costs of expression are zero (c = 0). As the internal cohesion of the minority group
increases, for instance, due to strategic linking or tying group symbols, the system undergoes a series
of saddle-node bifurcations. The minority’s expression becomes more and more likely. Solid lines
show the Q-values at the stable fixed points. For equilibria in which only one group is loud, the blue
lines represent the majority group Q2, the red lines the minority Q1. The green lines correspond to
the coexistence equilibrium in which both groups are expressive. While an unorganised minority is
forced into silence (blue regime), a slight increase in group cohesion makes the minority’s expression
a stable outcome if the majority is silent (competition, yellow). At a certain point (q11 = 4q and
γ = δ = 2), the minority’s organisation can compensate numerical inferiority and a stable coexistence
of two expressive groups is possible. By further increasing the minority group’s strength, it is always
visible in public while the majority may enter a spiral of silence.

3.2. “Spirals of Silence” as a Particular Regime of a More General Process

In the model, agents observe and react to their social environment in a way that is
strongly reminiscent of Noelle-Neumann’s theory of the spiral of silence [15,16,18]. In
repeated interaction within their local neighbourhood, agents form a “quasi-statistical”
impression of the current opinion climate in terms of an internalized expectation (Q-values)
of which opinion is prevalent in their public spheres and whether their opinion can be
articulated without being sanctioned. If their opinion corresponds to the perceived majority
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view, they become more willing to speak out. If they perceive themselves to hold the
minority view, they become less willing to do so. If all agents adapt to the current opinion
landscape in this way, minorities are forced into a spiralling process in which silence leads
to more silence. However, this happens only if the minority is perceived as minority in
both groups. A bifurcation analysis of our model shows (see Figure 2) that majorities can
also be forced into silence if a minority acts as a cohesive whole. Even a slight increase
of homophily with respect to minority interaction can lead to a situation where a loud
minority dominates public discourse because the majority is silent. Individuals with the
actual majority opinion learn that voicing their view in public is rarely answered by support
and is more often challenged by an expressive minority. The silence of the majority group
is then collectively reinforced because each individual member is worse off by expressing
their opinion.

The spiral of silence theory emerged as an attempt to explain a series of “last-minute
swings” during German elections in the sixties and seventies [16]. (Termed “bandwagon
effect”, this phenomenon had already been observed by Lazarsfeld and colleagues in the
1940 US presidential elections [56]). While surveyed voting intentions where head-to-head
between the two major parties until the very last days of the campaigning period, the
evolution of expectations about who would win the election showed a clear trend towards
the final winner during the month before the election day. Developing a series of refined
survey instruments, Noelle-Neumann showed that differences in the willingness to publicly
support a party were one source of these trends. Our model captures this dynamical
feedback between the internalized expectations of the majority and the willingness to
actively speak out for one’s party and suggests that the situation of election campaigns at
that time is characterised by the competitive regime in Figures 2 and 3.
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Figure 3. Bifurcation plot of the scenario in which two groups of equal size become more structured
around the opinion they support. An increase of homophily for both opinion groups is captured
by increasing γ and δ at the same time. The situation is symmetric and only Q1 is shown. After a
phase of competition, if homophily is low (yellow), coexistence emerges as a fixed point (violet) and
becomes the only solution after a further slight increase of homophily (green). Both groups express
their opinion within their own niches. (Results for β = 8 and c = 0.1).

Our research shows that the assumptions underlying the spiral of silence theory are
well-grounded in neuroscientific research on the processing of social feedback. However,
our model shows that the collective process described by Noelle-Neumann—that is, the
spiral of silence—is only one possible outcome of the individual-level assumptions on
which the theory builds. The bifurcation analysis of the dynamical system (8) reveals
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that the structural transformations of group interaction may lead to qualitatively different
regimes of collective opinion expression, including echo chambers.

3.3. Social Feedback and Echo Chambers

Today, social media are rapidly transforming the landscape of public opinion expres-
sion providing niches for virtually every opinion. Social network services have flexibilized
options to connect with like-minded others no matter the topic or political stance—may
that be on social media under hashtags such as #MeToo, on Telegram channels [57] or on
imageboards with extremist content [58]. These fragmented online spheres hence provide
previously unseen opportunities to escape the “fear of isolation” and to learn that there are
others who share a similar view.

In the model, group interaction that is more and more structured around shared
opinions is captured by a simultaneous increase of γ and δ meaning that social interaction
with like-minded agents becomes more probable for both opinion groups. The qualitative
effects of this structural transition towards more assortative networks is shown in Figure 3.
As in-group ties become more prevalent in both groups, the system undergoes two saddle-
node bifurcations from a competitive regime where only one group is aloud to a regime
where coexistence is the only stable outcome. Private or semipublic rooms for expressing
opinion online act as “echo chambers” and enable opinions previously marginalized or
placed under taboo to resist the spiral of silence and become salient in the more general
public discourse.

Our model entails that the perception of public support for an opinion is biased
not only by the local connectivity of individuals [59], but also by the willingness of the
supporters of different opinions to engage in the media. If opinions are shaped in social
circles sorted around opinion, opposing opinion groups find their own views backed with
social support and, in turn, become convinced of their primacy. The effect of ideological
asymmetries [60,61] in opinion expression might overcome local homophily biases in the
social network structure, since neutral observers and lurkers also get confronted with this
distorted impression of public opinion. Democratic societies currently struggle with this
transformed multifaceted climate of opinions because the foundational idea of government
built on the common ground of public opinion [62,63] is fundamentally challenged.

4. Discussion

The SFT aims to contribute to a better understanding of societal-level implications
of human social nature in modern information society. It provides a link between recent
research on the neurological basis of social behaviour and the sociological theory of public
opinion formation and expression. The model presented in this paper involved abstractions
and assumptions at three different analytical levels (see Figure 4) each being subject to
intensive research from different disciplinary angles. Providing a coherent theoretical
account that integrates sociological modes of structural explanation [3,5], adaptive decision
theory [28,44] and its underlying neurological mechanisms [64,65], the SFT offers a unique
framework for guiding future interdisciplinary research on how social and cognitive
mechanisms involved in platform-mediated communication on opinions play out at the
scale of larger collectives.

At the collective level (top row), the SFT relates structural transformations in how we
interact with one another to different regimes of collective opinion expression. The main
modelling assumption made at this level is to map complex networks of social interaction
to the relations within and across groups. Network science has brought about a portfolio
of graph models to more realistically capture social interaction patterns [1,49,59,66], to
which the model but not necessarily its formulation as a 2D system of differential equations
can be applied. On the other hand, our theory suggests that empirical networks inferred
on the basis of digital trace data [67] may be inherently biased by the activity of users
who learnt that interaction on the media is rewarding. In fact, our model suggests that
retrieved interaction patterns such as retweet networks [68–70] may render a situation
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more polarized than it actually is, because public expression is less rewarding for actors
who maintain relations across different opinion camps. Research on Twitter has also shown
that retweets and replies give rise to very different global patterns of group interaction [61]
suggesting that they serve rather different communicative functions. By bridging from
individual decisions to express opinions to emergent collective activity patterns, the SFT
provides a useful theoretical framework to analyse how those different communicative
functions play out at large.
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Figure 4. Schematic summary of social feedback theory of opinion expression. The theory involves
three analytical levels from the level of neurocognitive processes to the level of social interaction, to
the macro level of collective dynamics. The SFT bridges these levels through the notion of opinion
games: first, by assuming that agent behaviour and the associated expected rewards adapt according
to a reinforcement learning scheme that accurately models the reward processing system in the
brain; and second, by bridging from individual decisions to express opinions to emergent patterns of
collective opinion expression.

In the model, the micro level of social interaction (second row) is conceived as repeated
opinion expression games in which agents respond to one another with signals of approval
or disapproval. This entails simplifications such as dyadic interaction and a reward system
that is homogeneous across individuals and groups. However, by drawing on games for
modelling individual interaction, the SFT is well-equipped to take into account individual
differences in reward perception as well as characteristics of the incentive structure of
different social media platforms. In contrast to most previous models of social learning
and opinion dynamics, the SFT takes into account that users have to express their opinions
within the technical constraints of a platform in question. Conceiving social interaction as
communication games that account for the incentives to engage online shifts the explanatory
focus from forms of social influence to the rewards and incentives of opinion expression
in different online settings. Of note, opinion games are also flexible enough to include
cognitive costs associated to, for instance, preference falsification [7,71] and other sources
of cognitive dissonance [72].

The social feedback framework draws on a neurocognitive foundation of TDRL (bot-
tom row). In order to demonstrate that biologically rooted mechanisms of reward and
value processing capture collective processes described in, for instance, the spiral of silence
theory, we relied on the most simple TDRL scheme in the model. Social neuroscience is
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quickly advancing towards a better understanding of how brain areas related to cognitive
control interfere with this basic reward circuit. Recent work has revealed, for instance,
that neural responses to social feedback are influenced by the social relation with the
interaction partner [73] and that the reward valuation circuit is highly involved in shaping
these relations [74]. Experimental designs that mimic interaction on social media [29,30]
could clarify the role of different incentive systems for online engagement on opinion. This
would contribute to a more systematic understanding of the types of games that are played
in social media environments.

5. Conclusions

Massive social interaction in modern information society favours fast and largely
unconscious modes of information processing. The model developed in this paper showed
that the basal brain processes governing our reactions to social approval and disapproval
could have a tremendous impact on collective processes of opinion expression. Simple
feedback mechanisms may be at the root of phenomena such as silent majorities and
enable well-organized minority groups to gain public voice or even dominate a discourse.
Social media that facilitate massive and strategic social organisation around opinions can
fundamentally alter the perception of public opinion in a society.

Social feedback theory has been proposed as a modelling framework that more explic-
itly takes into account the decision processes involved in expressing opinions online [17]. It
extends previous work in opinion dynamics by allowing agents to refrain from participat-
ing in opinion exchange processes under certain circumstances and in certain environments.
This has practical implications for computational social science methods aiming to measure
opinions on online data where only users that actively engage in opinion exchanges become
visible. However, for the sake of mathematical tractability, the current model was limited
in terms of social interaction networks and did not account for different means of commu-
nication that online platforms may provide. Future models have to more realistically map
the distinctive features and affordances of real social media platforms to become a practical
tool for exploring digital communication devices that better serve deliberative modes of
online opinion exchange.
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