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Abstract: In the status forecasting problem, classification models such as logistic regression with input
variables such as physiological, diagnostic, and treatment variables are typical ways of modeling.
However, the parameter value and model performance differ among individuals with different
baseline information. To cope with these difficulties, a subgroup analysis is conducted, in which
models’ ANOVA and rpart are proposed to explore the influence of baseline information on the
parameters and model performance. The results show that the logistic regression model achieves
satisfactory performance, which is generally higher than 0.95 in AUC and around 0.9 in F1 and
balanced accuracy. The subgroup analysis presents the prior parameter values for monitoring
variables including SpO2, milrinone, non-opioid analgesics and dobutamine. The proposed method
can be used to explore variables that are and are not medically related to the baseline variables.

Keywords: status forecasting; subgroup analysis; baseline information; logistic regression

1. Introduction

The intensive care unit, or ICU, is a hospital or medical center department that treats
and manages patients with serious or life-threatening illnesses and injuries. Efficient
real-time monitoring is the current method of patient care. However, such a monitoring
system is not sufficient for status alerts beforehand, especially when danger statuses arrive
suddenly. A status alert method is needed to support medical decisions. One of the effective
methods for status alerting is to build a status forecasting model. The benefits of such a
model are obvious. It can release the clinician from the burden of long-term nervousness.
The clinician then can have more time for emergency preparation. In terms of the financial
burden, such a method can decrease the costs for both patients and government. The saved
costs can then be used for other purposes. The patients can also undergo less pain with the
help of efficient medical care.

Status forecasting methods face many difficulties due to complex medical background.
The response variable to be analyzed in such medical data can be continuous or categorical.
In this research, the response variable that is analyzed is the status of the patient as either
in danger or relatively safe. Compared to survival data, such a categorical variable is not
censored, but the value changes between 0 and 1 until the patient is discharged from the
ICU. Dynamically forecasting patient status is difficult between different patients. The
baseline information of each patient, such as age, gender and weight, differs significantly,
which may cause the model to have different performance and parameter values between
different patients. It is important to analyze whether there is such a difference or not, and
how the difference, if it exists, differs under different baseline information. Compared to a
general model, building a status forecasting model under different baseline information
can increase the accuracy of forecasting for a new patient, especially at the beginning of the
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forecast. The parameters can also be stored as the special character of such patient, thus
reducing the data storage requirement in the context of streaming data.

In this research, a status forecasting method is developed for each patient using logistic
regression, and a subgroup method is proposed for determining the prior parameter values
of the model. The rest of the research is organized as follows. Section 2 presents a literature
review of status forecasting methods, Section 3 introduces the proposed method, Section 4
demonstrates the results using real medical data, and Section 5 summarizes the work with a
conclusion and prospects for further research. All computations were implemented using R [1].

2. Literature Review

Machine learning methods designed for status forecasting include neural networks,
decision trees, support vector machines, and so on. Moor et al. [2] summarizes the machine
learning research for sepsis early prediction. Subudhi et al. [3] compares machine learning
methods for predicting ICU admission and mortality in COVID-19. Moghadam et al. [4]
designs a machine learning algorithm to predict hypotension up to 30 min in advance based
on the data from only 5 min of patient physiological history. Elhazmi et al. [5] uses the decision
tree algorithm to predict mortality in critically ill adult COVID-19 patients admitted to the
ICU. Rayan et al. [6] uses the support vector machine algorithm for sepsis prediction with
good performance. In terms of medical support, such methods can be high in accuracy, but the
interpretability maybe low due to the black box structure in most cases.

In the status forecasting problem, each variable can be regarded as a time series.
Methods to analyze such time series include ARIMA, GARCH, and some deep learning
methods such as LSTM and GAN. These methods can well describe a series’ trend or
variation. Perone [7] compares the performance of ARIMA, ETS, NNAR, TBATS, and
hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy. Wei
and Billings [8] proposes the nonlinear autoregressive moving average with an exogenous
input model (NARMAX model includes the ARMA and ARIMA models as a special
case). NARMAX has been most recently proposed and applied to modeling COVID-
19 pandemic dynamics and understanding how weather conditions affect the spread of
COVID-19 . The model achieved good performance due to its transparent, interpretable,
parsimonious, and simulatable properties. Caicedo-Torres and Gutierrez [9] develops
visually interpretable deep learning for mortality prediction inside an ICU. Zhao et al. [10]
develops an interval forecasting method for monitored variables in an ICU based on
decision trees. The simulation and real data analysis show that the methods perform
better than ARMA and GARCH. Che et al. [11] introduces a simple yet powerful gradient
boosting tree method to learn interpretable models and, at the same time, achieve prediction
performance as strong as deep learning models These models have good performance if
the response variable is numeric, but may not perform as well for categorical variables.

Since the response variable is a categorical variable, logistic regression can be used, which
models the probability of one event out of two alternatives. As logistic regression belongs to
the category of generalized linear regression, the parameters can be used for subgroup analysis
and stored to compress information. Ge et al. [12] uses logistic regression and recurrent neural
networks to design an interpretable ICU mortality prediction method. Xu et al. [13] compares
the performance of XGBoost and logistic regression in ICU mortality prediction in rheumatic
heart disease. The results verify that the logistic regression model has convincing prediction.
Vairavan et al. [14] uses logistic regression and a hidden Markov model to predict mortality
in an ICU. Bennis et al. [15] utilizes the physiological cerebral parameters in a multivariable
logistic regression model to improve prediction performance after 6 months for patients
suffering brain injury. Logistic regression shows good performance in these applications.
Therefore, it is proposed in this research.

The highlights of this research are that a subgroup analysis based on logistic regression
is proposed. As an efficient status forecasting method, this analysis can provide valid
parameter prior values for the model, as well as satisfy further purposes such as providing
prior information for dynamical forecasting analysis of diseases. The novelties include that
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(1) a logistic regression model is used for categorical variables. The linear form of the model
can also propose suitable parameter values for further research. (2) Instead of regarding
all the patients as having the same data distribution, a subgroup analysis is conducted.
(3) When new patients are admitted into the ICU, the prior distribution of the parameters
can be given by the subgroup analysis.

3. Methods

For a typical individual n, the data for analysis can be divided into three parts. The
first is multivariate time series Xn,·,·, which are the input-monitored variables such as
cardiac output, The data Xn,·,· can be described as

Xn, ·, · =


Xn,1,1 · · · Xn,K,1
Xn,1,2 · · · Xn,K,2

...
. . .

...
Xn,1,Tn · · · Xn,K,Tn

, (1)

where Xn, ·, · refers to the matrix that contains all monitored variables K at all times Tn. As
the time length for individuals differs, Tn is used to measure the time length for individual
n. The other two parts are (2) the response variable Yn,· and (3) the baseline variables Bn,·,
such as age, sex, and height.

The response variable Yn,. is defined as

Yn,· = [yn,1, yn,2, · · · , yn,Tn ]
T , (2)

where n = 1, 2, . . . , N and t = 1, 2, . . . , Tn. Generally, the yn,t is a categorical random
variable with status values of 0 or 1.

3.1. Logistic Regression Model

In the logistic regression model, instead of referring to Yn,· as the final response variable,
the variable is transformed by the sigmoid function. The final model is expressed as

log
yn,t+1

1− yn,t+1
= [Xn,·,t, yn,t]θn + εn (3)

where θn = (θn,1, θn,2, . . . , θn,K+1)
T are unknown regression coefficients and εn are random

errors with E[εn] = 0 and Var[εn] = σ2. The coefficients θn differ across different individu-
als. The Xn,·,t and yn,t at time t predict the yn,t+1 at time t + 1 with the first observation yn,1
as known. After that, a stepwise method is applied to the model and only variables which
have significant parameters are kept.

The model performance is measured by AUC (area under receiver operating charac-
teristic (ROC)), F1, and balanced accuracy for each individual n. Suppose the confusion
matrix result of a classification problem is that of Table 1.

Table 1. The confusion matrix table of a classification problem.

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

The AUC value is the area under the receiver operating characteristic curve (ROC),
which changes from 0 to 1. Generally, a model with an AUC of 0.5 has the same performance
as random guessing, while a model with an AUC greater than 0.5 is suggested. The higher
the AUC value, the better performance the model has.
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The F1 score is defined as

F1 =
2Precision ∗ Recall
Precision + Recall

(4)

where Precision and Recall are
Precision =

TP
TP + FP

(5)

Recall =
TP

TP + FN
. (6)

The balanced accuracy is defined as

BalancedAccuracy =
TPR + TNR

2
(7)

where TPR and TNR are the true positive rate and true negative rate

TPR =
TP

TP + FN
(8)

TNR =
TN

FP + TN
. (9)

The model performance is measured by these three metrics.

3.2. Subgroup Analysis

In order to test whether the model performance is influenced by the baseline infor-
mation or not, ANOVA is selected to test the differences of means using variance. The
response variable is

[AUC, F1, BalancedAccuracy] (10)

and the input baseline variables are
B1,1 B1,2 · · · B1,NB
B2,1 B2,2 · · · B2,NB

· · · · · · . . . · · ·
BN,1 BN,2 · · · BN,NB

. (11)

In addition to the single variables, the interactive terms {Bi : Bk} are also included in
the ANOVA modeling, where {i, k} ∈ {1, 2, · · · , NB} and i 6= k.

[AUC, F1, BalancedAccuracy] = f k
ANOVA{B1, B2, · · · , BNB , {Bi : Bk}}. (12)

The ANOVA model can show whether the baseline variables and their interactive
terms have significant influence on the model performance or not.

After, in order to calculate the prior values for the significant variables in Equation (3),
a recursive partitioning and regression trees (rpart) model is proposed to predict θn with
the baseline variables. Instead of using all the observations across individuals 1 to N for θk,
only the observations across individuals 1 to Ns (rearranged in order) whose parameters are
significant for θk in the regression model (Equation (3)) are selected for modeling, with

[θ1,k, θ2,k, · · · , θNs ,k]
T (13)
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as the response variable. The input variables are
B1,1 B1,2 · · · B1,NB
B2,1 B2,2 · · · B2,NB

· · · · · · . . . · · ·
BNs ,1 BNs ,2 · · · BNs ,NB

. (14)

These are observations are from the individuals whose θk is significant. The equation is

θk = f k(B.,1, B.,2, · · · , B.,KB), (15)

where KB is the number of baseline variables and k = 1, 2, · · · , K + 1.
The model rpart works by iteratively choosing the most significant variable and its

best split by using the criterion Gini gain. The stopping criterion is when the complexity
parameter (cp) value reaches 0.005. The resulting decision rules can be used to propose the
prior values. From this subgroup analysis, the most likely parameter values can be given
based on the baseline information, which can offer valid prior information for the status
forecasting model, thus improving the model robustness, especially at the beginning of
the forecasting.

4. Real Data Analysis

This dataset [16] was collected during routine care at the Department of Intensive
Care Medicine of the Bern University Hospital, Switzerland (ICU), an interdisciplinary
60-bed unit admitting more than 6500 patients per year. It was designed to study the early
prediction of circulatory failure in the intensive care unit. The dataset in this research has
been preprocessed by Hyland et al. [17], with outliers excluded and missing values imputed.
The number of variables is 18, which include physiological variables, diagnostic test results,
and treatment information, as shown in Table 2. For each patient, the observations range
from hundreds to thousands; thus, a robust model can be built. To solve the problem that
the statuses of some patients are all 0 or 1, and for some patients, none of the parameters
are significant in Equation (3), the observations of those patients are deleted, including the
patients whose status rarely changes, with standard deviation smaller than 0.1, and those
with zero significant parameters. After, the number of patients in the analysis is 17,955.

Table 2. The information of the 18 most predictive variables.

Variable Unit

Heart rate /min
Systolic BP (invasive) mmHg
Diastolic BP (invasive) mmHg
MAP mmHg
Cardiac output l/min
SpO2 %
RASS 10-point scale
Peak inspiratory pressure (ventilator) cmH2O
Lactate arterial mmol/L
Lactate venous mmol/L
INR ratio
Serum glucose mmol/L
C-reactive protein mg/L
Dobutamine flow [mg/min]
Milrinone flow [mg/min]
Levosimendan flow [mg/min]
Theophyllin flow [mg/min]
Non-opioid analgesics binary indication of drug presence [yes/no]
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From Figure 1, it is clear that the ratio of 0 to 1 differs across each baseline variable. In
the subfigure of age, the value of age changes from 20 to 90, and the ratio of state 1 overall
generally increases from 0.18 to 0.38 as age increases, which means individuals with higher
age have a higher chance of being in a danger state. In the subfigure of height, the ratio
differs little from around 0.3 when height is between 155 and 185, with some high and low
values observed at high or low height. In the subfigure of sex, males have a higher ratio of
0.31 than the 0.27 of females, which means males are more likely to be in danger. In the
subfigure of weight, individuals tend to have higher ratio of status 1 when weight increases
from 60 kg to around 120kg, while this varies significantly afterwards.
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Figure 1. The baseline information under status 0 (safe) and 1 (danger), including age, height, sex,
and weight. The ratio is the percentage of status 1 over all the observations across all the patients.

In the subgroup analysis, the influence of baseline information on the model perfor-
mance based on ANOVA was conducted, with the results shown in Figure 2. It can be
seen that the relationships that are significant include those between sex and AUC, F1, and
Accuracy; age and AUC; age and Accuracy; height and AUC; and age, weight, and AUC.
Generally, most of the patients have good performance with AUC above 0.95, F1 above 0.9,
and Accuracy around 0.9. It can be seen that observations belonging to males generally
have better performance. In terms of age, the main black dots are around 40 to 80. In terms
of weight and height, the main black dots are around 40 to 120 and 160 to 180.
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Figure 2. The results of ANOVA regression: the performance difference under different baseline
information of sex, age, weight, and height measured by AUC, F1, and accuracy. The black dots
are the results for each individual. Whether the difference is significant or not can be seen from the
significant level, with * and *** representing significant levels of 0.1 and 0.01.

Table 3 proposes the prior values for the variables, which play a significant role in
individual status forecasting. The results are achieved using the model rpart by selecting
the variables whose cp value is higher than 0.005. For SpO2, patients with higher weight
tend to have higher parameter values. For milrinone, patients with higher age and higher
weight tend to have parameters with higher values. For dobutamine, individuals with
higher age have higher parameter values. For non-opioid analgesics, individuals who are
males tend to have higher parameter values.
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Table 3. Prior parameter values of each variable if they have significant a relationship with the
baseline information of age, sex, height, and weight.

Variable (Significant) Unit Decision Rules Prior Parameter
Value

SpO2 % weight < 145 0.011
weight ≥ 145 0.095

Milrinone mg/kg/min
age ≥ 23 173
age < 23

weight ≥ 145 83

age < 23
weight < 145 1.8

Non-opioid analgesics drug presence or not sex = female 2
sex = male 3.6

Dobutamine mg/kg/min
age < 28 1.7

28 ≤ age < 78 2.6
age ≥ 78 5.4

5. Conclusions

In this research, a logistic regression model is built to forecast the patient status and
a subgroup analysis based on ANOVA and rpart is given to summarize the model infor-
mation for individuals who share similar baseline information. The developed subgroup
analysis generates the parameter results for each individual, which can be used as prior
information for the logistic regression model and also compress massive streaming data
into a few values. When the patients are admitted into the ICU, by referring to the baseline
information, the logistic regression model can have better prior parameter values than the
random suggested values. In that case, the model with the prior information can have
better accuracy and stability than random guessing.

From the logistic regression results, the model performance differs among different
baseline information according to the ANOVA results. For individuals with different
characters, different suitable parameters should be suggested. The variables that are
significant ro4 the model performance, measured by AUC, balanced accuracy, and F1,
include sex, age, height, and some mutual effect such as the weight and age mutual effect
on AUC. In the subgroup analysis, the prior parameter values are given according to the
decision rules based on the baseline variables.

In future work, the subgroup analysis can take into account more variables such
as patient history, medical images, and other pharmacy descriptions, in addition to the
baseline information. A dynamic-streaming forecasting method can also be developed
based on this prior parameter method. The logistic regression model in this research is
linear regression, which can be easily modified compared to complex models such as
machine-learning or deep-learning methods. However, it may have difficulty extracting
the parameter information to propose the parameter prior distribution. In the ANOVA,
mutual effect analysis based on two variables can be developed as three or more variables.
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