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Abstract: Philosophers frequently define knowledge as justified, true belief. We built a mathematical
framework that makes it possible to define learning (increasing number of true beliefs) and knowledge
of an agent in precise ways, by phrasing belief in terms of epistemic probabilities, defined from
Bayes’ rule. The degree of true belief is quantified by means of active information I+: a comparison
between the degree of belief of the agent and a completely ignorant person. Learning has occurred
when either the agent’s strength of belief in a true proposition has increased in comparison with
the ignorant person (I+ > 0), or the strength of belief in a false proposition has decreased (I+ < 0).
Knowledge additionally requires that learning occurs for the right reason, and in this context we
introduce a framework of parallel worlds that correspond to parameters of a statistical model. This
makes it possible to interpret learning as a hypothesis test for such a model, whereas knowledge
acquisition additionally requires estimation of a true world parameter. Our framework of learning
and knowledge acquisition is a hybrid between frequentism and Bayesianism. It can be generalized to
a sequential setting, where information and data are updated over time. The theory is illustrated using
examples of coin tossing, historical and future events, replication of studies, and causal inference. It
can also be used to pinpoint shortcomings of machine learning, where typically learning rather than
knowledge acquisition is in focus.

Keywords: active information; Bayes’ rule; counterfactuals; epistemic probability; learning, justified
true belief; knowledge acquisition; replication studies

1. Introduction
1.1. The Present Article

The process by which cognitive agents acquire knowledge is complicated, and has been
studied from different perspectives within educational science, psychology, neuroscience,
cognitive science, and social science [1]. Philosophers usually distinguish between three
types of knowledge [2]: acquaintance knowledge (to get to know other persons), knowledge
how (to learn certain skills), and knowledge that (to learn about propositions or facts).
Mathematically, acquaintance knowledge has been studied via trees and networks, for
instance, in small-world-type models and rumor-spreading models [3–5]. Knowledge how
has been widely developed in education and psychology, since the middle of the twentieth
century, by means of testing and psychometry, using classical statistics [6–8].

The purpose of this paper is to formulate knowledge that in mathematical terms. Our
starting point is to define knowledge that as justified true belief (JTB), which generally is
agreed to constitute at least a sufficient condition for such knowledge [9,10]. The primary
tools will be the concepts of truth, probabilities, and information theory. Probabilities,
in addition to logic, are used to formulate mechanisms of reasoning in order to define
beliefs [11,12]. More specifically, a Bayesian approach with subjective probabilities will
be used to quantify rational agents’ degrees of beliefs in a proposition. These subjective
probabilities may vary between agents, but since each agent is assumed to be rational,
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its probabilities satisfy basic axioms of probability [13]. This is also referred to as the
personalistic view of probabilities in [14].

The degree of belief in a proposition is associated with some type of randomness or
uncertainty regarding the truth of the proposition. It is helpful in this context to distin-
guish between ontological randomness (genuine randomness regarding the truth of the
proposition) and epistemic randomness (incomplete knowledge about propositions that are
either true or false). Here the focus will be on epistemic randomness, and following [15],
subjective probabilities are referred to as epistemic probabilities. The epistemic randomness
assumption that each proposition has a fixed truth value can be viewed as a frequentist
component of our framework.

To use epistemic probabilities in a wider context of knowledge that (subsequently
simply referred to as knowledge), we incorporate degrees of beliefs within a framework
of parallel worlds in order to define more clearly what JTB means. These parallel worlds
correspond to parameters of a statistical model and a second frequentist notion of one
parameter being true, whereas the others are counterfactuals [16]. An agent’s maximal
possible discernment between worlds is described in terms of the σ-algebra G. The agent’s
degrees of belief are obtained through Bayes’ rule from prior belief and data [17], in such a
way that it is not possible to discern between worlds beyond the limits set by G.

Learning is associated with increased degrees of true belief, although these beliefs need
not necessarily be justified. More specifically, the agent’s degree of belief in a proposition is
compared to that of an ignorant person. This corresponds to an hypothesis test within a
frequentist framework. More specifically, the null hypothesis of a proposition being true
is tested against an alternative hypothesis that the proposition is false. As a test statistic,
we use active information I+ [18–20], which quantifies how much the agent has learned
about the truth value of the proposition compared to an ignorant person. In particular,
learning has occurred when the agent’s degree of belief in a true proposition is larger than
that of an ignorant person (I+ > 0), or if the agent’s degree of belief in a false proposition
is less than that of an ignorant person (I+ < 0). In either case, G sets a limit in terms of the
maximal amount of possible learning. Learning is, however, not sufficient for knowledge
acquisition, since the latter concept also requires that the true belief is justified, or has
been formed for the right reason. Knowledge acquisition is defined as a learning process
where the agent’s degree of belief in the true world is increased, corresponding to a more
accurate estimate of the true world parameter. Thus, knowledge acquisition goes beyond
learning in that it also deals with the "justified" part of the JTB condition. It is related to
consistency of a posterior distribution, a notion that is meaningful only within our hybrid
frequentist/Bayesian approach.

To the best of our knowledge, the hybrid frequentist/Bayesian approach has only
been used in the context of Bayesian asymptotic theory (Section 7.2), but not as a general
tool for modeling the distinction between learning and knowledge acquisition. Although
the concept of a true world (or the true state of affairs) is used in the context of Bayesian
decision theory and its extensions, such as robust Bayesian inference and belief functions
based on the Dempster–Shafer theory [21–24], the goal is then to maximize an expected
utility (or to minimize an expected cost) of the agent that makes the decision. In our context,
the Bayesian approach is only used to formulate beliefs as posterior distributions, whereas
the criteria for learning (probabilities of rejecting a false or true proposition) and knowledge
acquisition (consistency) are frequentist. Given that a model with one unique, true world is
correct, the frequentist error probability and consistency criteria are objective, since they
depend on the true world. No such criteria exist within a purely Bayesian framework.

Illustration 1. In order to illustrate our approach for modeling learning and knowledge acquisition,
we present an example that will be revisited several times later on. A teacher (the agent) wants to
evaluate whether a child has learned addition. The teacher gives the student a home assignment
test with two-choice answers, one right and one wrong, to measure the proposition S: “The child
is expected to score well on the test." In this case, we have a set X = {x1, x2, x3} of three possible
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worlds. An ignorant person who does not ask for help is expected to have half her questions right
and half her questions wrong (x1). A child who knows addition is expected to get a large fraction of
the answers right (x2). However, there is also a third alternative, where an ignorant student asks for
help and is expected to have a high score for that reason (x3). Notice in particular that S is true only
for the two worlds of the set A = {x2, x3}. If the child answers substantially more questions right
than wrong, the active information will be positive and the teacher learns S. However, this learning
that S is true does not represent knowledge of whether the student knows how to add, since the
teacher is not able to distinguish x2 from x3. Now, let us say that the test has only two questions. In
this setting, it is expected that an ignorant person has one question right and one wrong. However,
it is also highly probable that even if the child does not know his sums well, he can answer the two
questions in the right way. In this case, the teacher has not learned substantially about S (nor
attained knowledge of whether the student knows how to add). The reason is that, since the test has
only two questions, the teacher cannot exclude any of x1, x2, and x3. The more questions the test
has, and if the student scores well, the more certain the teacher is that either x2 or x3 is true, that
is, the more he learns about S. If the student is also monitored during the exam, alternative x3 is
excluded and the teacher knows that x2 is true; that is, the teacher not only learns about S, but also
acquires knowledge that the student knows how to add.

Each of the following sections contains remarks and illustrations like the previous one.
At the end of the paper, a whole section with multiple examples will explore deeper how
the model works in practice.

1.2. Related Work

Other contributions have been made to developing a mathematical framework for
learning and knowledge acquisition. Hopkins [25] studied the theoretical properties of
two different models of learning in games, namely, reinforcement learning and stochastic
fictitious play. He developed an equivalence relation between the two under a variety of
different scenarios with increasing degrees of structure. Stoica and Strack [26] introduced
a stochastic model for acquired knowledge and showed that empirical data fit the esti-
mated outcomes of the model well, using data from student performance in university-level
classes. Taylor [27] proposed a model using the notion of concept lattices and the mathemat-
ical theory of closure spaces to describe knowledge acquisition and organization. However,
none of these works has been developed through basic concepts in probability and infor-
mation theory the way we do here. Our approach permits important generalizations which
cover a wide range of real-life scenarios.

2. Possible Worlds, Propositions, and Discernment

Consider a collection X of possible worlds, of which x0 ∈ X is the true world, and
all other worlds x ∈ X \ {x0} are counterfactuals. We will regard x as a statistical param-
eter, and the fact that this parameter has a true but unknown value x0 corresponds to a
frequentist assumption. The set X is the parameter space of interest, and it is assumed to
be either finite or a bounded and open subset of Euclidean space Rq of dimension q. Let
S be a proposition (or statement), and impose a second frequentist assumption that S is
either true or false, although the truth value of S may depend on the world x ∈ X . Define
a binary-valued truth function f : X → {0, 1} by f (x) = 1 or 0, depending on whether S is
true or not in world x. The set A = {x ∈ X ; f (x) = 1} consists of all worlds for which S is
a true proposition. Although there is one-to-one correspondence between f and A, in the
sequel it will be convenient to use both notions. The simplest truth scenario of S is one for
which the truth value of S is unique for the true world, i.e.,

A0 =

{
{x0}, if f (x0) = 1,
X \ {x0}, if f (x0) = 0.

(1)

x0 being unique and f being binary-valued together correspond to a framework of epistemic
randomness, where the actual truth value f (x0) of S is either 0 or 1. S is referred to as
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falsifiable [28] if it is logically possible (in principle) to find a data set D implying that the
truth value of S is 0, or equivalently, that none of the worlds in A is true. It is possible
though to falsify S without knowing x0.

3. Probabilities
3.1. Degrees of Beliefs and Sigma Algebras

Let (X ,F ) be a measurable space. When X is finite, F consists of all subsets of X (i.e.,
F = 2X ); otherwise, F is the class of Borel sets. The Bayesian part of our approach is to
quantify an agent’s belief in which a world is true by means of an epistemic probability
measure P on the measurable space (X ,F ), whereas the beliefs of an ignorant person
follow another probability measure P0. It is often assumed that

P0(B) =
|B|
|X | , ∀B ∈ F , (2)

is the uniform probability measure that maximizes entropy among all probability measures
on (X ,F ), where | · | refers to the cardinality for finite X and to the Lebesgue measure
for continuous X . Then, (2) corresponds to a maximal amount of ignorance about which
possible world is true [29]. Sometimes (as in Example 5 below) some general background
knowledge is assumed also for the ignorant person, so that P0 differs from (2).

The agent’s and the ignorant person’s strength of belief in S are quantified by P(A)
and P0(A), respectively. Following [15], it is helpful to interpret P(A) and P0(A) as the
agent’s and the ignorant person’s predictions of the physical probability f (x0) ∈ {0, 1} of
S. Whereas P and P0 involve epistemic uncertainty, the physical probability is an indicator
for the real (physical) event that S is true or not.

When an agent’s belief P is formed, it is assumed that any information accessible to
him, beyond that of the ignorant person, belongs to a sub-σ-algebra G ⊂ F . This means
that the agent has no more knowledge of how to discern events in G than the ignorant
person, if this discernment requires that he considers events in F that do not belong to G.
Mathematically, this corresponds to a requirement

EP[g | G ′] = EP0 [g | G
′], (3)

for all F -measurable functions g : X → R, and all sigma algebras G ′ such that G ⊆ G ′ ⊆ F .
It is assumed, on the left-hand side of (3), that g is a random variable defined on the
probability space (X ,F , P), whereas g is defined on the probability space (X ,F , P0) on
the right-hand side of (3). It follows from (3) that G sets the limit in terms of the agent’s
possibility to form propositions about which world is true. Therefore, G is referred to as
the agent’s maximal possible discernment about which world is true. It follows from (3) that

P(A) = EP[ f ]

= EP{EP[ f | G]}
= EP{EP0 [ f | G]}.

(4)

The minimal amount of discernment corresponds to the trivial σ-algebra G0 = {∅,X}.
Whenever (3) holds with G = G0, necessarily P = P0. This corresponds to removing the
outer expectation on the right-hand side of (4), so that

P0(A) = EP0 [ f ]

= EP0 [ f | G0].
(5)

Remark 1. Suppose there exists an oracle or omniscient agent O that is able to discern between all
possible worlds and also knows x0. Mathematically, the discernment requirement means that O has
knowledge about all sets in a σ-algebra F that corresponds to a maximal amount of discernment
between possible worlds. We will assume that f is measurable with respect to F , so that A is
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measurable (i.e., A ∈ F ). Knowledge of F is, however, not sufficient for knowing A, since A may
involve x0, as in (1). By this we mean that if the agent knows F , and if A involves x0, then there
are several candidates of A for the agent, and he does not know a priori which one of these candidates
is the actual A. However, since O knows F and x0, he also knows A. It follows that O knows that
S is true for all worlds in (the actual) A, and that S is false for all worlds outside of (the actual) A.
That is, the oracle knows for which possible worlds the proposition S is true.

As mentioned in Remark 1, the truth function f is measurable with respect to the
maximal σ-algebra F . However, depending on how G is constructed, and whether A
involves x0 or not, the set A may or may not be known to the agent. Therefore, when A
involves x0, the agent may not be able to compute P0(A) and P(A) himself. Although he
is able to compute P0(B) and P(B) for all B ∈ F , since he does not know x0, it follows
that he does not know which of these sets B equals A. Therefore, he does not know P(A)
and P0(A), unless P(B) = P(A) and P0(B) = P0(B), respectively, for all B that are among
the agent’s candidates for the set A. For instance, suppose X = {1, 2, 3}, P(1) = 1/5,
P(2) = P(3) = 2/5, and A = {3}. If the agent’s candidates for A are {1}, {2}, and {3},
then the agent does not know P(A). On the other hand, if the agent’s candidates for A are
{2} and {3}, then he knows P(A), although he does not know A.

As will be seen from the examples of Section 8, it is often helpful (but not necessary)
to construct G as the σ-algebra that is generated by a random variable Y whose domain
is X (i.e., G = σ(Y)). This means that Y determines the collection G of subsets of X for
which the agent is free to form beliefs beyond that of the ignorant person. Typically, Y
highlights the way in which information is lost by going from F to G. For instance, suppose
X = [0, ∞) and Y : [0, ∞)→ {0, 1, 2, . . .} is defined by Y(x) = [x/δ] for some δ > 0; then,
G = σ({[0, δ), [δ, 2δ), . . .}) is the sigma-algebra obtained by from a quantization procedure
with accuracy δ.

3.2. Bayes’ Rule and Posterior Probabilities

A Bayesian approach will be used to define the agent’s degree of belief P. To this end,
we regard x ∈ X as a parameter of a statistical model and that the agent has access to data
d ∈ D. The agent assumes that (x, d) is an observation of a random variable (X, D) : Ω→
X ×D defined on some sample space Ω. The joint distribution of the parameter X and data
D, according to the agent’s beliefs, is dQ(x, D) = dP0(x)L(D|x)dD. This is a probability
measure on subsets of X ×D, with prior distribution P0 of the parameter X, and with a
conditional distribution L(D|x) = dQ(D|x)/dD that corresponds to the likelihood of data
D. A posterior probability

P(A) = Q(A | D) =
∫

A
dQ(x | D) (6)

of A is formed by updating the prior distribution P0 based on data D. It is assumed that
the likelihood x → L(D | x) is measurable with respect to G, so that data conform with the
agent’s maximal possible discernment between possible worlds. The likelihood function
x → L(D | x) includes the agent’s interpretation of D. Although this interpretation may
involve a subjective part, it is still assumed that the agent is not willing to speculate about
possible worlds beyond the limits set by G. That is, whenever the agent discerns events in
G beyond the limits set by G, this discernment is the same as for an ignorant person.

Remark 2. To account for the possibility that the agent still speculates beyond the limits set by
external data, G = σ(Gext,Gint) could be defined as the smallest σ-algebra containing the σ-algebras
Gext and Gint that originate from external data Dext and internal data Dint (the agent’s internal
experiences, such as dreams and revelations, respectively). Note, however, that x → L(D | x) is
subjective, even when internal data are absent, since agents might interpret external data in different
ways, due to the way in which they perceive such data and incorporate previous life experience.
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From Bayes’ rule we find that the posterior distribution satisfies

P(A) = Q(A | D)

=
∫

A
dQ(x | D)

=
L(D | A)P0(A)

L(D)
(7)

=

∫
A L(D | x)dP0(x)∫
X L(D | x)dP0(x)

.

A couple of additional reasons reinforce the subjectivity of P: the prior P0 might
be subjective, and acquisition of data D might vary between agents [30]. Additionally,
acquisition of data D will not necessarily make P more concentrated around the true world
x0, since it is possible that the data themselves are biased or that the agent interprets the
data in a sub-optimal way.

Since the likelihood function is measurable with respect to G, it follows from (4) that
the agent’s belief P, after having observed D, does not lead to a different discernment
between possible worlds beyond G than for an ignorant person. Given G, together with an
unlimited amount of unbiased data that the agent interprets correctly, the G-optimal choice
of P is

P(B) = 1(x0 ∈ B), ∀B ∈ G. (8)

Equations (4) and (8) uniquely define the G-optimal choice of P. Whenever G ⊂ F is a
proper subset of the maximal σ-algebra F , the measure P in (8) is not the same thing as a
point mass δx0 at x0. On the other hand, for an oracle with a maximal amount of knowledge
about which world is true, G = F , (8) reduces to a point mass at the true world—i.e.,

P = δx0 ⇐⇒ P(B) = 1(x0 ∈ B), ∀B ∈ F . (9)

Remark 3. An extreme example of biased beliefs is a true-world-excluding probability measure,
with support that does not include x0:

supp(P) ⊂ X \ {x0}. (10)

Another example is a correct-proposition-excluding probability measure, with support that excludes
all worlds x with a correct value f (x) = f (x0) of S:

supp(P) ⊂
{

Ac = X \ A, x0 ∈ A,
A, x0 /∈ A.

(11)

Illustration 2 (Continuation of Illustration 1). Suppose data D ∈ D = {0, 1, . . . , 10} are
available to the teacher (the agent) in terms of the number of correct answers of a home assignment
test with 10 questions. The prior P0(xi) = 1/3 is uniform on X = {x1, x2, x3}, whereas data
D|xi ∼ Bin(10, πi) have a binomial distribution with probabilities π1 = 0.5 and π2 = π3 = 0.8
of answering each question correctly, for a student that either guesses or has math skills/asks for
help. Let d be the observed value of D. Since data have the same likelihood (L(d|x2) = L(d|x3)) for
a student who scores well, regardless of whether he knows how to add or gets help, it is clear that the
posterior distribution

P(xi) =
L(d|xi)

∑3
j=1 L(d|xj)

=
(10

d )π
d
i (1− πi)

10−d

∑3
j=1 (

10
d )π

d
j (1− πj)10−d

satisfies P(x2) = P(x3). Since the teacher cannot distinguish x2 from x3, his sigma-algebra

G = {∅, {x1}, {x2, x3},X} (12)
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has only four elements, whereas the full sigma-algebra F = 2X consists of all eight subsets of
X . Note that Equation (3) stipulates that the teacher cannot discern between the elements of X ,
beyond the limits set by G, better than the ignorant person. In order to verify (3), since there is no
sigma-algebra between G and F , we only need to check this equation for G ′ = G. To this end, let
g : X → R be a real-valued function. Then, since P(x2) = P(x3), it follows that

EP(g|G)(xi) = EP0(g|G)(xi) =

{
g(x1), i = 1,
(g(x2) + g(x3))/2, i = 2, 3.

in agreement with (3).

Illustration 3. During the Russo-Japanese war, the czar Nicholas II was convinced that Russia
would easily defeat Japan [31]. His own biases (he considered the Japanese weak and the Russians
superior) and the partial information he received from his advisors blinded him to reality. In the end,
Russian forces were heavily beaten by the Japanese. In this scenario, the proposition S is “Russia
will beat Japan", X consists of all possible future scenarios, and f (x) = 1 for those scenarios x ∈ X
in which Russia would win the war. As history reveals, f (x0) = 0. The information he received
from his advisors was D, and we know it was heavily biased. Nicholas II adopted (very subjectively!)
a correct-proposition-excluding probability measure, as in (11), because he did not even consider
the possibility of Russia being defeated. The main reason was a dramatically poor assessment of the
likelihood L(D | x), for x ∈ X , on top of a prior P0 that had a low probability for scenarios x ∈ Ac.
Nicholas II’s verdict was P(A) ≈ 1.

3.3. Expected Posterior Beliefs

Since D is random, so is P. For this reason, the expected posterior distribution

P̄(B) = Ex0 [Q(B | D)] = Ex0 [P(B)], ∀B ∈ F , (13)

will be used occasionally, with an expectation corresponding to averaging over all possible
data sets D according to its distribution L(·|x0) in the true world. Consequently, P̄(A)
represents the agent’s expected belief in S in the true world x0. Note in particular that in
contrast to the posterior P, the expected posterior P̄ is not a purely Bayesian notion, since it
depends on x0.

4. Learning
4.1. Active Information for Quantifying the Amount of Learning

The active information (AIN) of an event B is

I+(B) = log
P(B)
P0(B)

. (14)

In particular, I+(A) quantifies how much an agent has learned about whether S is true or
not compared to an ignorant person. By inserting (7) into (14), we find that the AIN

I+(A) = log
L(D | A)

L(D)
= log

∫
L(D | x)dP0(x | A)∫

L(D | x)dP0(x)
(15)

is the logarithm of the ratio between how likely it is to observe data when S holds, and how
likely data are when no assumption regarding S is made (see also [32]). The corresponding
AIN for expected degrees of beliefs is

Ī+(A) = log
P̄(A)

P0(A)
. (16)

Definition 1 (Learning). Learning about S has occurred (conditionally on observed D) if the
probability measure P either satisfies I+(A) > 0 when x0 ∈ A or I+(A) < 0 when x0 /∈ A. In
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particular, full learning corresponds to I+(A) = − log P0(A) when x0 ∈ A and I+(A) = −∞
when x0 /∈ A. Learning is expected to occur if the probability measure P̄ is such that Ī+(A) > 0
when x0 ∈ A or Ī+(A) < 0 when x0 /∈ A. In particular, full learning is expected to occur if
Ī+(A) = − log P0(A) when x0 ∈ A or Ī+(A) = −∞ when x0 /∈ A.

Remark 4. Two extreme scenarios for the active information, when x0 ∈ A, are

I+(A)
x0∈A
=

{
− log P0(A), if (8) holds and A ∈ G,
−∞, if (11) holds.

(17)

According to Definition 1, the upper part of (17) represents full learning—that is, P(A) = 1;
whereas the lower part corresponds to a maximal amount of false belief about S when x0 ∈ A—that
is, P(A) = 0.

Remark 5. Suppose S is a proposition that a certain entity or machine functions; then,− log P0(A)
is the functional information associated with the event A of observing such functioning en-
tity [33–35]. In our context, functional information corresponds to the maximal amount of learning
about S when the machine works ( f (x0) = 1).

4.2. Learning as Hypothesis Testing

It is possible to view the AIN in (15) as a test statistic for choosing between the two
statistical hypotheses

H0 : S is true ⇐⇒ x0 ∈ A,
H1 : S is false ⇐⇒ x0 /∈ A,

(18)

with the null distribution H0 being rejected (conditionally on observed D) when

I+(A) ≤ I (19)

for some threshold I [36–38]. Typically, this threshold represents a lower bound of what is
considered to be a significant amount of learning when S is true. Note in particular that the
framework of the hypothesis test, (18) and (19), is frequentist, although we use Bayesian
tools (the prior and posterior distributions) to define the test statistic.

In order to introduce performance measures of how much the agent has learnt, let Prx0

refer to a probabilities when data D ∼ L(·|x0) are generated according to what one expects
in the true world. The type I and II errors of the test (18) and (19) are then defined as

α(x0) = Prx0 [I
+(A) ≤ I], x0 ∈ A,

β(x0) = Prx0 [I
+(A) > I], x0 /∈ A,

(20)

respectively. Both these error probabilities are functions of x0, and they quantify how much
the agent has learnt about the truth (cf. Figure 1 for an illustration).
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Figure 1. Illustration of the density function y → fP(A)(y) of P(A) when the data set D ∼ L(·|x0)

varies according to the likelihood of the true world parameter for two scenarios where S is either
false (a) or true (b). The threshold of the hypothesis test (19) is I+ = log[p/P0(A)], so that H0 is
rejected when P(A) ≤ p = 0.5. Note that P̄(A) is the expected value of each density, whereas the
error probabilities of type I and II correspond to the areas under the curves in (b) and (a) to the left
and right of p, respectively.

4.3. The Bayesian Approach to Learning

Within a Bayesian framework, we think of H0 and H1 as two different models, A and
Ac, that represent a subdivision of the parameter space into two disjoints subsets. The
posterior odds

PostOdds =
1− P(A)

P(A)
=

1− P0(A)

P0(A)
· L(D|Ac)

L(D|A)
=

1− P0(A)

P0(A)
· BF (21)

factor into a product of the prior odds and the Bayes factor. Hypothesis H1 is chosen
whenever

PostOdds ≥ r, (22)

for some threshold r. If the cost of drawing a parameter X ∼ P from A (Ac) is C0 (C1) when
H1 (H0) is chosen, the optimal Bayesian decision rule corresponds to r = C0/C1. A little
algebra reveals that the AIN is a monotone decreasing function

I+ = − log[P0(A)(1 + PostOdds)]

of the posterior odds. From this, it follows that the frequentist test (19), with AIN as test
statistic, is equivalent to the Bayesian test (22), whenever I = − log[P0(A)(1+ r)]. However,
the interpretation of the two tests differ. Whereas the aim of the Bayesian decision rule
is to minimize an expected cost (or maximize an expected reward/utility), the aim of the
frequentist test is to keep the error probabilities of type I and II low.

4.4. Test Statistic When x0 Is Unknown

Recall that the agent may or may not know the set A. In the latter case, the agent
cannot determine the value of the test statistic I+(A), and hence he cannot test between H0
and H1 himself. This happens, for instance, for the truth function (1), with A = {x0}, since
the AIN I+(A) = log[p(x0)/p0(x0)] then involves the unknown x0, with p(x)dx = dP(x)
and p0(x)dx = dP0(x). Although I+(A) is not known for this particular choice of A, the
agent may still use the posterior distribution (7) in order to compute the expected value
(conditionally on observed D)
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EQ[I+({X})|D] = EQ

[
log p(X)

p0(X)
|D
]

= EP

[
log p(X)

p0(X)

]
=

∫
X log p(x)

p0(x) p(x)dx
= DKL(P‖P0)
= H(P, P0)− H(P)

(23)

of the test statistic according to his posterior beliefs. Note that (23) equals the Kullback–
Leibler divergence DKL(P‖P0) between P and P0, or the difference between the cross
entropy H(P, P0) between P and P0, and the entropy H(P) of P. If we also take randomness
of the data set D into account, and make use of (7), it follows that the expected AIN, for the
same choice of A, equals the mutual information

EQ[I+({X})] = EQ

[
EQ

[
log p(X)

p0(X)
|D
]]

=
∫

log L(d|x)
L(d) dQ(x, d)

=
∫

log q(x,d)
p0(x)L(d)dQ(x, d),

(24)

between X and D, when (X, D) ∼ Q vary jointly according to the agent’s Bayesian expecta-
tions, and with q(x, d) = dQ(x, d)/d(x, d).

5. Knowledge Acquisition
5.1. Knowledge Acquisition Goes beyond Learning

As mentioned in the introduction, knowledge acquisition goes beyond learning, since
it also requires that a true belief in S is justified (see Figure 2 for an illustration).

Figure 2. Illustration of the difference between learning and knowledge acquisition for a scenario
with a set of worlds X = [0, 1] and a statement S whose truth function x → f (x) is depicted to the
left (a) and right (b). It is assumed that S is true (x0 ∈ A), and that the degrees of beliefs P0 of an
ignorant person correspond to a uniform distribution on X . The filled histograms correspond to the
density functions p(x)dx = dP(dx) of two agent’s beliefs. The agent to the left (a) has learnt about S
but not acquired knowledge, since x0 does not belong to the support of P. The agent to the right has
not only learnt about S, but also acquired knowledge, since his belief is justified, corresponding to a
distribution P that is more concentrated around the true world x0, compared to the ignorant person.
Hence, the JTB condition is satisfied for the agent to the right, but not for the agent to the left.

It is possible, in principle, for an agent whose probability measure P corresponds to a
smaller belief in x0 compared to that of the ignorant person, to have a value of I+ anywhere
in the range [−∞,− log P0(A)] when S is true (i.e., when x0 ∈ A). One can think of a case in
which the agent will believe in S with certainty (P(A) = 1) if supp(P) ⊂ A; but this belief
in S is for the wrong reason if, for instance, the agent does not believe in the true world,
i.e., if (10) holds, corresponding to the left part of Figure 2. Another less extreme situation
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occurs when the agent has a higher belief in A compared to the ignorant person but has lost
some (but not all) confidence in the true world with respect to that of the ignorant person;
in this case, the agent has not acquired new knowledge about the true world compared to
the ignorant person, although he still has learned about S and has some knowledge about
the true world.

5.2. A Formal Definition of Knowledge Acquisition

Knowledge acquisition is formulated using tools from statistical estimation theory.
Loosely speaking, the agent acquires knowledge, based on data D, if the posterior distri-
bution P gets more concentrated around x0, compared to an ignorant person. By this we
mean that each closed ball centered at x0 has a probability that is at least as large under
P as under P0. Closed balls require, in turn, the concept of a metric or distance; that is, a
function d : X ×X → [0, ∞). Some examples of metric are:

1. If X ⊂ Rq, we use the Euclidean distance d(x1, x2) =
√

∑
q
i=1(x2i − x1i)2 between

x1, x2 ∈ X as metric.
2. If X = {0, 1}q consists of all binary sequences of length q, then d(x1, x2) = ∑

q
i=1 |x2i −

x1i| is the Hamming distance between x1 and x2.
3. If X is a finite categorical space, we put

d(x1, x2) =

{
0, x1 = x2,
1, x1 6= x2.

Equipped with a metric on X , knowledge acquisition is now defined:

Definition 2 (Knowledge acquisition and full knowledge). Let Bε(x0) = {x ∈ X : d(x, x0) ≤
ε} be the closed ball of radius ε that is centered at x0 with respect to some metric d. We say that
an agent has acquired knowledge about S (conditionally on observed D) if learning has occurred
according to Definition 1, and in order for this learning to be justified, the following two properties
are satisfied for all ε > 0:

P(Bε(x0)) > 0, (25)

and
P(Bε(x0)) ≥ P0(Bε(x0)) (26)

with strict inequality for at least one ε > 0. Full knowledge about S requires that (9) holds; i.e., that
the agent with certainty believes that the true world x0 is true. The agent is expected to acquire
knowledge about S if learning is expected to occur, according to Definition 1, and if (25) and (26)
hold with P̄ instead of P. The agent is expected to acquire full knowledge about S if (9) holds with P̄
instead of P.

Several remarks are in order.

Remark 6. Property (25) ensures that x0 is in support of P ([39], p. 20) Kallenberg2021a. When P0
is the uniform distribution (2), (25) follows from (26). Property (26) is equivalent to I+(Bε(x0)) ≥
0, when P0(Bε(x0)) > 0. In this case, the requirement that (26) is satisfied with strict inequality
for some ε = ε∗ > 0 is equivalent to learning the proposition Sε∗ : "The distance of a world to the
true world x0 is less than or equal to ε∗," corresponding to a truth function

fε∗(x) = 1(x ∈ Bε∗(x0)). (27)

Since the agent does not know x0, neither fε∗ nor Aε∗ = {x ∈ X ; fε∗(x) = 1} is known to him,
even if he is able to discern between all possible worlds. If fε∗ differs from the original truth function
f , learning of Sε∗ can be viewed as meta-learning. Note also that A0 = {x0} corresponds to the set
in (1).



Entropy 2022, 24, 1469 12 of 31

Remark 7. Suppose the truth function used to define learning and knowledge acquisition satis-
fies (27), i.e., f = fε for some ε ≥ 0. Then (25) and (26) are sufficient for knowledge acquisition,
since they imply that learning of S = Sε∗ has occurred, according to Definition 1. Although
knowledge acquisition in general requires more than learning, the two concepts are equivalent for a
truth function f = f0, with A = A0 = {x0}, as defined in (1). Indeed, in this case it is not possible
to learn whether S = S0 is true or not for the wrong reason.

Remark 8. Recall from Definition 1 that an agent has fully learnt S when

P(A) = 1(x0 ∈ A) =

{
1, x0 ∈ A,
0, x0 /∈ A.

(28)

For a rational agent, the lower part of (28) should hold when data D falsifies S. In general, (28) is
a necessary but not sufficient condition for full knowledge. Indeed, it follows from (9) that, for a
person to have full knowledge, P(B) = 1(x0 ∈ B) must hold for all B ∈ F , not only for the set A
of worlds for which S is true.

Remark 9. Suppose a distance measure d(P, Q) between probability distributions on (X ,F )
is defined. This gives rise to a different definition of knowledge acquisition, whereby the agent
acquires knowledge if has learnt about S and additionally d(P, δx0) < d(P0, δx0), that is, if his
beliefs are closer than the ignorant person’s beliefs to the Oracle’s beliefs. Possible choices of
distances are the Kullback–Leibler divergence d(P, Q) = DKL(Q||P) and the Wasserstein metric
d(P, Q) = minX1,X2 E|X1 − X2|, where the minimum is taken over all random vectors (X1, X2)
whose marginals have distributions P and Q, respectively. Note in particular that the KL choice
of distance yields d(Q, δx0) = − log Q(x0). The corresponding notion of knowledge acquisition is
weaker than in Definition 2, requiring (25) and (26) to hold only for ε = 0.

Illustration 4 (Continuation of Illustration 1). To check whether learning or knowledge acqui-
sition has occurred, according to Definitions 1 and 2, for the student who takes the math home
assignment, x0 must be known. The reader may think of an instructor with full information—an
F -optimal measure according to (9)—who checks whether a pupil has learned and acquired knowl-
edge or not. However, in Illustration 1 it is the teacher who is the pupil and learns and acquires
knowledge about the skills of a math student. In this context, the instructor is a supervisor of the
teacher who knows whether the math student is able to add (x0 = x2) or not, and in the latter case
whether the student gets help (x0 = x3) or not (x0 = x1). Whereas the instructor’s sigma-algebra
is F , the teacher’s sigma-algebra G in (12) does not make it possible to discern between x2 and x3.
Suppose x0 = x2. No matter how many questions the home exam has, as long as the teacher does
not get information from the instructor on whether the student solved the home exam without help
or not, although the teacher learns that S is true, since the student scores well, he will never acquire
full knowledge that the student knows how to add, since P(x0) = P(x2) = P(x3) ≤ 0.5 < 1.

6. Learning and Knowledge Acquisition Processes

The previous two sections dealt with learning and knowledge acquisition of a static
belief P, corresponding to an agent who is able to discern between worlds according to one
sub-σ-algebra G of F , and who has access to one data set D. The setting is now extended
to consider an agent who is exposed to an increasing amount of information about (or
discernment between) the possible worlds in X , and increasingly larger data sets.

6.1. The Process of Discernment and Data Collection

Mathematically, an increased ability to discern between possible worlds is expressed
as a sequence of σ-algebras

G1 ⊂ . . . ⊂ Gn ⊂ F . (29)

Typically, Gk is generated by a random variable Yk whose domain is in X for k = 1, . . . , n.
The σ-algebras in (29) are associated with increasingly larger data sets D1, . . . , Dn, with
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Dk ∈ Dk. Let dQk(x, Dk) = dP0(x)L(Dk|x)dDk refer to the joint distribution of the param-
eter and data in step k, such that the likelihood x → L(Dk | x) of Dk is Gk-measurable.
This implies that an agent who interprets data Dk according to this likelihood function
has beliefs (represented by the posterior probability measure Pk(·) = Qk( · | Dk)) that
correspond to not being able to discern events outside of Gk better than an ignorant person.
Mathematically, this is phrased as a requirement

EPk

[
g | G ′k

]
= EP0

[
g | G ′k

]
, (30)

for all F -measurable functions g : X → R and sigma algebras G ′k such that Gk ⊂ G ′k ⊂ F ,
for k = 1, . . . , n. The collection of pairs (D1,G1), . . . , (Dn,Gn) is referred to as a discernment
and data collection process. The active information, after k steps of the discernment and
data collection process, is

I+k (A) = log
Pk(A)

P0(A)
. (31)

Let P̄k(·) = Ex0 [Pk( · | Dk)] refer to expected degrees of belief after k steps of the
information and data collection process, if data Dk ∼ L(·|x0) vary according that what one
expects in the true world. The corresponding active information is

Ī+k (A) = log
P̄k(A)

P0(A)
. (32)

In the following sections we will use the sequences I+1 , . . . , I+n and P1, . . . , Pn of AINs
and posterior beliefs in order to define different notions of learning and knowledge
acquisition.

6.2. Strong Learning and Knowledge Acquisition

Definition 3 (Strong learning). The probability measures P1, . . . , Pn, obtained from the discern-
ment and data collection process represent a learning process in the strong sense (conditionally on
observed D1, . . . , Dn) if {

0 ≤ I+1 (A) ≤ · · · ≤ I+n (A), if x0 ∈ A,
0 ≥ I+1 (A) ≥ · · · ≥ I+n (A), if x0 /∈ A,

(33)

with at least one strict inequality. Learning is expected to occur, in the strong sense, if (33) holds
with Ī+1 (A), . . . , Ī+n (A), instead of I+1 (A), . . . , I+n (A).

Definition 4 (Strong knowledge acquisition). With Bε(x0) as in Definition 2, the learning
process is knowledge acquiring in the strong sense (conditionally on observed D1, . . . , Dn) if, in
addition to (33), we have that this learning process is justified, so that for all ε > 0, P1(Bε(x0)) >
0 and

P0(Bε(x0)) ≤ P1(Bε(x0)) ≤ · · · ≤ Pn(Bε(x0)), (34)

with strict inequality for at least one step of (34) and for at least one ε > 0. Knowledge acquisition
is expected to occur, in the strong sense, if learning is expected to occur in the strong sense, according
to Definition 3, and additionally (34) holds with P̄1, . . . , P̄n, instead of P1, . . . , Pn.

Illustration 5 (Continuation of Illustration 1). Assume the teacher of the math student has a
discernment and data collection process (G1, D1), (G2, D2), where in the first step, G1 = G and
D1|xi ∼ Bin(10, πi) are obtained from a home assignment with 10 questions (as described in
Section 3.2). Suppose the student knows how to add (x0 = x2). It can be seen that

P1(A) = P1(x2) + P1(x3) > P0(A) = 2/3,
P1(x0) = P1(x2) > P0(x2) = 1/3

(35)
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whenever 7 ≤ d1 ≤ 10. Assume that in a second step the teacher receives information Z2 ∈ {0, 1}
from the instructor on whether the student used external help (Z2 = 1) or not (Z2 = 0) during the
exam. Let d2 = (d1, z2) refer to observed data after step 2. The likelihood, after the second step, then
takes the form

L(d2|xi) =

(
10
d1

)
πd1

i (1− πi)
10−di · L(z2|xi),

where L(1|xi) = 1(xi = x3) and L(0|xi) = 1(xi ∈ {x1, x2}). If the instructor correctly reports
that the student did not use external help (z2 = 0), it follows that

P2(A) = P2(x2) = P1(x2)/(P1(x1) + P1(x2)) < 2P1(x2)/(P1(x1) + 2P1(x2)) = P1(A),
P2(x0) = P2(x2) > P1(x2)/(P1(x1) + 2P1(x2)) = P1(x2) = P1(x0).

(36)

We deduce from (35) and (36) that

P0(x0) < P1(x0) < P2(x0), (37)

which suggests that knowledge acquisition has occurred if the categorical space metric d(xi, xj) =
1(xi 6= xj) is used on X . However, since P2(A) < P1(A), neither learning nor knowledge
acquisition in the strong sense has occurred. The reason is that the information from the instructor
(that the student has not cheated) makes the teacher less certain as to whether the student is able to
score well on the test. On the hand, if we change the proposition to S: "The student knows how to
add," with A = {x2}, then strong learning and knowledge acquisition has occurred because of (37),
since Pk(A) = Pk(x0) for k = 0, 1, 2.

6.3. Weak Learning and Knowledge Acquisition

Learning and knowledge acquisition are often fluctuating processes, and the require-
ments of Definition 3 are sometimes too strict. Accordingly, weaker versions of learning
and knowledge acquisition are thus introduced.

Definition 5 (Weak learning). Learning in the weak sense has occurred at time n (conditionally
on observed Dn), if {

0 < I+n (A), if x0 ∈ A,
0 > I+n (A), if x0 /∈ A.

(38)

Learning is expected to occur in the weak sense if (38) holds with Ī+n instead of I+n .

Definition 6 (Weak knowledge acquisition). Knowledge acquisition in the weak sense occurs
(conditionally on observed Dn) if, in addition to the weak learning condition (38), in order for this
learning to be justified, it holds for all ε > 0 that Pn(Bε(x0)) > 0 and

P0(Bε(x0)) ≤ Pn(Bε(x0)), (39)

with strict inequality for at least one ε > 0. Knowledge acquisition is expected to occur in the weak
sense if weak learning occurs according to Definition 5 and (39) holds with P̄n instead of Pn.

7. Asymptotics

Strong and weak learning (or strong and weak knowledge acquisition) are equivalent
for n = 1. The larger n is, the more restrictive strong learning becomes in comparison
to weak learning. However, for large n, neither strong nor weak learning (knowledge
acquisition) are entirely satisfactory entities. For this reason, in this section we will introduce
asymptotic versions of learning and knowledge acquisition, for an agent whose discernment
between worlds and collected data sets increase over a long period of time.
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7.1. Asymptotic Learning and Knowledge Acquisition

In order to define asymptotic learning and knowledge acquisition, as the number of
steps n of the discernment and data collection process tends to infinity, we first need to
introduce AIN versions of limits. Define

I+lim inf(B) = log
lim inf Pk(B)

P0(B)
, (40)

I+lim sup(B) = log
lim sup Pk(B)

P0(B)
, (41)

and when the two limits of (40) agree, we refer to the common value as I+lim(B). Define also

Ī+lim inf(B) = log
lim inf P̄k(B)

P0(B)
, (42)

Ī+lim sup(B) = log
lim sup P̄k(B)

P0(B)
, (43)

with Ī+lim(B) the common value whenever the two limits of (42) agree. Since I+lim(B) only
exists when I+lim inf(B) = I+lim sup(B), and I+lim inf(B) ≤ I+lim sup(B), the following definitions
of asymptotic learning and knowledge acquisition are natural:

Definition 7 (Asymptotic learning). Learning occurs asymptotically (conditionally on the ob-
served data sequence {Dk}∞

k=1) if{
I+lim inf(A) > 0, for x0 ∈ A,
I+lim sup(A) < 0, for x0 /∈ A.

(44)

Full learning occurs asymptotically (conditionally on {Dk}∞
k=1}) if{

I+lim(A) = − log P0(A), for x0 ∈ A,
I+lim(A) = −∞, for x0 /∈ A.

(45)

Learning is expected to occur asymptotically if (44) holds with Ī+lim sup and Ī+lim inf, instead of I+lim sup

and I+lim inf, respectively. Full learning is expected to occur asymptotically, if (45) holds with Ī+lim
instead of I+lim.

Definition 8 (Asymptotic knowledge acquisition). Knowledge acquisition occurs asymptoti-
cally (conditionally on {Dk}∞

k=1) if, in addition to the asymptotic learning condition (44), in order
for this asymptotic learning to be justified, for every ε > 0, it holds that

lim inf
k→∞

Pk(Bε(x0)) > 0

and
I+lim inf(Bε(x0)) ≥ 0, (46)

with strict inequality for a least one ε > 0. Full knowledge acquisition occurs asymptotically
(conditionally on {Dk}∞

k=1}) if (45) holds and

I+lim(Bε(x0)) = − log P0(Bε(x0)) (47)

is satisfied for all ε > 0. If learning is expected to occur asymptotically according to Definition 7,
and if (46) holds with Ī+lim inf instead of I+lim inf, then knowledge acquisition is expected to occur
asymptotically. Full knowledge acquisition is expected to occur asymptotically if full learning is
expected to occur asymptotically according to Definition 7, and if (47) holds with Ī+lim instead
of I+lim.
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7.2. Bayesian Asymptotic Theory

In this subsection we will use Bayesian asymptotic theory in order to quantify and
give conditions for when asymptotic learning and knowledge acquisition occur. Let Ω be a
large space that incorporates prior beliefs and data for all k = 1, 2, . . .. Define Xk : Ω→ X
as a random variable whose distribution corresponds to the agent’s posterior beliefs, based
on data set Dk, which itself varies according to another random variable Dk : Ω → Dk
with distribution Dk ∼ L(·|x0). Let Prx0 be a probability measure on subsets of Ω that
induces distributions Xk|Dk ∼ Pk and Xk ∼ P̄k, respectively. The following proposition is a
consequence of Definitions 7 and 8:

Proposition 1. Suppose full learning is expected to occur asymptotically, in the sense of (45), with
Ī+lim instead of I+lim. Then,

Prx0(Xk ∈ A) = P̄k(A)→
{

1, x0 ∈ A,
0, x0 /∈ A

(48)

as k→ ∞. In particular, the type I and II errors of the hypothesis test (18) and (19), with threshold
I = log[p/P0(A)] for some 0 < p < 1, satisfy

αk(x0) = Prx0

(
I+k (A) ≤ I

)
= Prx0 [Pr(Xk ∈ A | Dk) ≤ p]

= Prx0(Pk(A) ≤ p)→ 0, x0 ∈ A,
βk(x0) = Prx0

(
I+k (A) > I

)
= Prx0 [Pr(Xk ∈ A | Dk) > p]

= Prx0(Pk(A) > p)→ 0, x0 /∈ A,

(49)

respectively, as k → ∞. If full knowledge acquisition occurs asymptotically, in the sense of (47),
then

Xk | Dk
p−→ x0 conditionally on {Dk}∞

k=1 (50)

as k → ∞, with
p−→ referring to convergence in probability. If full knowledge acquisition is

expected to occur asymptotically, in the sense of Definition 8, then

Xk
p−→ x0 (51)

as k→ ∞.

Remark 10. Full asymptotic knowledge acquisition (50) is closely related to the notion of posterior
consistency [40]. For our model, the latter concept is usually defined as

Prx0

(
Xk | Dk

p−→ x0 as k→ ∞
)
= 1, (52)

where the probability refers to variations in the data sequence {Dk}∞
k=1 when x0 holds. Thus, poste-

rior consistency (52) means that full asymptotic knowledge acquisition (50) holds with probability
1. Let L(X) refer to the distribution of the random variable X. Then, (52) is equivalent to

Pk = L(Xk | Dk)
a.s.−→ δx0 (53)

as k → ∞, with a.s.−→ referring to almost sure weak convergence with respect to variations in the
data sequence {Dk}∞

k=1 when x = x0. On the other hand, it follows from Definition 8 that if full
knowledge acquisition is expected to occur asymptotically, this is equivalent to

Pk = L(Xk | Dk)
p−→ δx0 (54)

as k→ ∞, which is a weaker concept than posterior consistency, since almost sure weak convergence
implies weak convergence in probability. However, sometimes (54), rather than (52) and (53), is
used as a definition of posterior consistency.
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Remark 11. It is sometimes possible to sharpen (54) and obtain the rate at which the posterior
distribution converges to δx0 . The posterior distribution is said to contract at rate εk → 0 to δx0 as
k→ ∞ (see for instance [41]), if for every sequence Mk → ∞ it holds that

Q[Xk | Dk /∈ B(x0, Mkεk)] = Pk[B(x0, Mkεk)
c]

p−→ 0, (55)

when {Dk}∞
k=1 varies according to what one expects in the true world x0. Since convergence in

probability is equivalent to convergence in mean for bounded random variables, it can be seen
that (54) is equivalent to P̄k[B(x0, Mkεk)

c]→ 0, or

(Mkεk)
−1(Xk − x0)

p−→ 0 (56)

as k → ∞ for each sequence Mk → ∞. Comparing (51) with (55) and (56), we found that
a contraction of the posterior towards δx0 at rate εk is equivalent to expecting full knowledge
acquisition asymptotically at rate εk.

It follows from Proposition 1 and Remarks 10 and 11 that Bayesian asymptotic theory
can be used, within our frequentist/Bayesian framework, to give sufficient conditions for
asymptotic learning and knowledge acquisition to occur. Suppose, for instance, that Dk =
(Z1, . . . , Zk) is a sample of k independent and identically distributed random variables Zl
with distribution Zl ∼ F(· | x0) that belongs to the statistical model {F(· | x); x ∈ X}. The
likelihood function is then a product

L(Dk | x) =
k

∏
l=1

Pr(Zl | x) (57)

of the likelihoods of all observations Zl . For such a model, a number of authors [40,42–45]
have provided sufficient conditions for posterior consistency (52) and (53) to occur. It
follows from Remark 10 that these conditions also imply the weaker concept (54) of full,
expected knowledge acquisition to occur asymptotically.

Suppose (57) holds with a parameter space X ⊂ Rq that is a subset of Euclidean space
of dimension q. It is possible then to obtain the rate (56) at which knowledge acquisition
is expected to occur. The first step is to use the Bernstein–von Mises theorem, which
under appropriate conditions (see for instance [46]) approximates the posterior distribution
Pk = L(Xk | Dk) by a normal distribution centered around the maximum likelihood (ML)
estimator

x̂0k = x̂0k(Dk) = argmaxx∈X L(Dk | x) (58)

of x0. More specifically, this theorem provides weak convergence

√
k(Xk − x̂0k)|Dk

L−→ N
(

0, J(x0)
−1
)

(59)

as k→ ∞, of a re-scaled version of the distribution of Xk|Dk when {Dk}∞
k=1 varies according

what one expects when x = x0. The limiting distribution is a q-dimensional normal distribu-
tion with mean 0 and a covariance matrix that equals the inverse of the Fisher information
matrix J(x0), evaluated at the true world parameter x0. On the other hand, the standard
asymptotic theory of maximum likelihood estimation (see for instance [47]) implies

√
k(x̂0k − x0)

L−→ N
(

0, J(x0)
−1
)

(60)

as k → ∞, with weak convergence referring to variations in the data sequence {Dk}∞
k=1

when x = x0. Combining equations (59) and (60), we arrive at the following result:

Theorem 1. Assume data {Dk = (Z1, . . . , Zk)}∞
k=1 consists of independent and identically dis-

tributed random variables {Zl}∞
l=1, and that the Bernstein–von Mises theorem (59) and asymptotic
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normality (60) of the ML-estimator hold. Then, Xk converges weakly towards x0 at rate 1/
√

k, in
the sense that √

k(Xk − x0)
L−→ N

(
0, 2J(x0)

−1
)

(61)

as k → ∞. In particular, full knowledge acquisition is expected to occur asymptotically at rate
1/
√

k.

Proof. Let s → Fk(s) = F√k(x̂k0−x0)
(s) refer to the distribution function of

√
k(x̂k0(Dk)−

x0), defined for all q-dimensional vectors s = (s1, . . . , sq) ∈ Rq. Let also t = (t1, . . . , tq) ∈ Rq

and denote the distribution function of N
(
0, 2J(x0)

−1) by G. Combining (59) and (60), and
making use of the fact that the convolution of two independent N

(
0, J(x0)

−1)-variables is
distributed as N

(
0, 2J(x0)

−1), we can find that

Prx0

(√
k(Xk − x0) ≤ t

)
=

∫
Prx0

(√
k(Xk − x̂0k) ≤ t− s|

√
k(x̂0k − x0) = s

)
dFk(s)

→
∫

s≤t dG(s)
(62)

as k → ∞, with s ≤ t referring to sj ≤ tj for j = 1, . . . , q. Since (62) holds for any t ∈ Rq,
Equation (61) follows. Moreover, in view of (56), Equation (61) implies that full knowledge
acquisition is expected to occur asymptotically at rate 1/

√
k.

In general, the conditions of Theorem 1 typically require that data, and the agent’s
interpretation of data, are unbiased. When these conditions fail (cf. Remark 2), there is no
guarantee that knowledge acquisition is expected to occur asymptotically as k→ ∞.

8. Examples

Example 1 (Coin tossing). Let x0 ∈ X = [0, 1] be the probability of heads when a certain coin is
tossed. An agent wants to find out whether the proposition

S : the coin is symmetric with margin ε > 0

is true or not. This corresponds to a truth function f (x) = 1(x ∈ A), with A = [0.5− ε, 0.5 + ε],
that is known to the agent. Suppose the coin is tossed a large number of times (n = ∞), and let
Dk = (Z1, . . . , Zk) ∈ Dk = {0, 1}k be a binary sequence of length k that represents the first k
tosses, with tails and heads corresponding to 0 (Zk = 0) and 1 (Zk = 1), respectively. The number
of heads Mk = ∑k

l=1 Zl ∼ Bin(k, x0) after k tosses is then a sufficient statistic for estimating x0
based on data Dk. Even though {Dk} is an increasing sequence of data sets, we put Yk(x) = x and
Gk = F = B([0, 1]), the Borel σ-algebra on [0, 1], for k = 1, 2, . . .. Let P0 be the uniform prior
distribution on [0, 1]. Since the uniform distribution is a beta distribution, and beta distributions
are conjugate priors to binomial distributions, it is well known [17] that the posterior distribution

Pk ∼ Beta(1 + Mk, 1 + k−Mk)

belongs to the beta family as well. Consequently, if Xk is a random variable that reflects the agent’s
degree of belief in the probability of heads after k tosses, it follows that his belief in a symmetric coin,
if Mk = m, is

Pk(A) = Pr(Xk ∈ A | Dk) = Pr(Xk ∈ A | Mk = m)

=
∫ 0.5+ε

0.5−ε
pk(x | m)dx,
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where

pk(x | m) =
(1− x)k−mxm

B(1 + m, 1 + k−m)

= (k + 1)
(

k
m

)
(1− x)k−mxm

= (k + 1)L(m | x) (63)

is the posterior density function of the parameter x, whereas B(a, b) is the beta function and
x → L(m | x) the likelihood function. From this, it follows that the AIN after k coin tosses with m
heads and k−m tails equals

I+k (A) = log[(2ε)−1Pk(A)]

= log
[
(2ε)−1(k + 1)( k

m)
∫ 0.5+ε

0.5−ε (1− x)k−mxmdx
]
.

Since data are random, Pk(A) (and hence also I+k (A)) will fluctuate randomly up and down
with probability one (see Figure 3); for this reason, {Pk}∞

k=1 does not represent a learning process in
the strong sense of Definition 3. On the other hand, it follows by the strong law of large numbers
that Mk/k a.s.−→ x0 as k → ∞, and from properties of the beta distribution, this implies that full
learning and knowledge acquisition occur asymptotically according to Definitions 7 and 8, with
probability 1. In view of Remark 10, we also have posterior consistency (52) and (53).
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Figure 3. Degree of belief is represented as a function of coin tosses. There is no strong learning because
the belief oscillates. However, there is weak learning after a few coin tosses. In particular, when the
number of coin tosses is 1000, there is weak learning since P1000(A) > P0(A) and I+1000(A) > 0.

By analyzing P̄k instead of Pk, we may also assess whether learning and knowledge acquisition
are expected to occur. The expected degree of belief in a symmetric coin, after k tosses, is

P̄k(A) =
∫ 0.5+ε

0.5−ε
p̄k(x)dx,
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where

p̄k(x) = Ex0 [pk(x | Mk)]

=
k

∑
m=0

L(m | x0)pk(x | m)

= (k + 1)
k

∑
m=0

L(m | x0)L(m | x)

is the expected posterior density function of x, after k tosses of the coin. Note in particular that∫ 1

0
p̄k(x)dx = 1.

It can be shown that (63) and the weak law of large numbers (Mk/k
p−→ x0 as k→ ∞, where

p−→ refers to convergence in probability) lead to uniform convergence

sup
x:|x−x0|≥ε

p̄k(x)→ 0

as k → ∞ for any ε > 0. The last four displayed equations imply P̄k(A) → 1(x0 ∈ A) and
P̄k

p−→ x0 as k → ∞. This and Definitions 7 and 8 imply that full learning and knowledge
acquisition are expected to occur asymptotically. This result is also a consequence of posterior
consistency, or of Theorem 1. Notice, however, that a purely Bayesian analysis does not allow us to
conclude that knowledge acquisition occurs, or is expected to occur, asymptotically.

Example 2 (Historical events). Let X = (0, 1] represent a time interval of the past. A person
wants to find out whether his ancestor died or not during a famine that occurred in the province
where the ancestor lived. Formally, this corresponds to a proposition

S : the ancestor died during the time of the famine.

Let f (x) = 1 if the famine occurred at time x, and f (x) = 0 if not. Assume that the ancestor
died at an unknown time point x0 and that the time period during which the famine lasted is
A = [a, b], where 0 ≤ a < b ≤ 1 are known. If X corresponds to a fairly short time interval of the
past, it is reasonable to assume that P0 has a uniform distribution on (0, 1].

In the first step of the learning process, suppose radiometric dating D1 = Z1 of a burial
find from the ancestor appears. If δ = 1/N represents the precision of this dating method, the
corresponding σ-algebra is

G1 = σ((0, 1/δ], (1/δ, 2/δ], . . . , [(N − 1)/δ, 1])

= σ(Y1), (64)

where Y1 : X → {1, . . . , N} is defined through Y1(x) = [x/δ] + 1, and where [x/δ] is the integer
part of x/δ. Due to (3), it follows that P1 has a density function

p1(x) = N
N

∑
i=1

p1i1(x ∈ ((i− 1)δ, iδ]), (65)

for some non-negative probability weights p1i ≥ 0 that sum to 1. Since p1i = p1i(D1), this
measure is constructed from the radiometric dating data D1 of the burial find from the ancestor. The
G1-optimal probability measure is obtained from (8) as

p1i =

{
1, i = i0 = [x0/δ] + 1,
0, i 6= i0 = [x0/δ] + 1.
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It corresponds to dating the time of death of the ancestor correctly, given the accuracy of this dating
method. On the other hand, if the radiometric dating equipment has a systematic error of −δ, a
truth-excluding probability measure (10) is obtained with

p1i =

{
1, i = i0 − 1 = [x0/δ],
0, i 6= i0 − 1 = [x0/δ].

(66)

In the second step of the learning process, suppose data D2 = (Z1, Z2) is extended to include
a piece of text Z2 from a book where the time of death of the ancestor can be found. This extra source
of information increases the σ-algebra to G2 = F = B([0, 1]), and if the contents of the book are
reliable, P2 = δx0 is F -optimal. It follows from Definition 3 that strong learning has occurred if
Na = ia and Nb = ib are integers and

0 < I+1 = log[∑ib
i=ia+1 p1i/(b− a)] < I+2 = log[1/(b− a)], if x0 ∈ (a, b),

0 > I+1 = log[∑ib
i=ia+1 p1i/(b− a)] > I+2 = −∞, if x0 /∈ (a, b).

(67)

Figure 4 illustrates another scenario where not only strong learning but also strong knowledge
acquisition occurs. Suppose now that (66) holds, with ia + 1 ≤ i0 − 1 ≤ ib. If P2 = δx0 , the
strong learning condition (67) is satisfied, and the weak knowledge acquisition requirement of
Definition 6 holds as well. Strong knowledge acquisition has not occurred though, since p1i0 = 0
means that Equation (34) of Definition 4 (with n = 2) is violated for sufficiently small ε > 0. Note
in particular that these conclusions about knowledge acquisition cannot be drawn from a purely
Bayesian analysis.

Figure 4. Posterior densities p1(x) and p2(x) after one and two steps of the discerment and data
collection process of Example 2 when S is true (x0 ∈ [a, b]). Since p1 is measurable with respect to G1, it
is piecewise-constant with step length δ. Note that strong learning and knowledge acquisition occurs.

Assume now that the contents of the book are not reliable. A probability measure P2 on [0, 1]
may be chosen so that it incorporates data Z1 from the radiometric dating and data Z2 from the book.
This probability measure will also include information about the way the text of the book is believed
to be unreliable. If the agent trusts Z2 too much, it may happen that strong learning does not occur.

Example 3 (Future events). A youth camp with certain outdoor activities is planned for a weekend.
Let X = (0, 1]2 denote the set of possible temperatures x = (x1, x2) of the two days for which
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the camp is planned, each normalized within a range 0 ≤ xi ≤ 1. The outdoor activities are only
possible within a certain sub-range 0 < a ≤ x1, x2 ≤ b < 1 of temperatures. The proposition

S : it is possible to have the outdoor activities

corresponds to a truth function f (x) = 1
(
x ∈ [a, b]2

)
and A = [a, b]2. The leaders have to travel

to the camp five days before it starts and then make a decision on whether to bring equipment for the
outdoor activities or for some other indoor activities. In the first step they consult weather forecast
data D1 = Z1, with a σ-algebra G1 given by

σ{((i− 1)δ1, iδ1]× ((j− 1)δ2, jδ2]; 1 ≤ i ≤ N1, 1 ≤ j ≤ N2},

which is σ(Y1), the σ-algebra generated by Y1, where δ1 and δ2 > δ1 represent the maximal
possible accuracy of weather forecasts five and six days ahead, respectively, Ni = 1/δi and Y1(x) =
([x1/δ1] + 1, [x2/δ2] + 1). Let P0 be the uniform distribution on [0, 1]2. Due to (3), P1 has a
density function

p1(x) = N1N2

N1

∑
i=1

N2

∑
j=1

p1ij1
(
(x1, x2) ∈ Rij

)
, (68)

for some non-negative probability weights p1ij = p1i(D1) ≥ 0 that sum to 1, with

Rij = ((i− 1)δ1, iδ1]× ((j− 1)δ2, jδ2],

a rectangular region that corresponds to the ith temperature interval the first day of the camp and
the jth temperature interval the second day. Consequently, the accuracy G1 of weather forecast data
forces p1 to be constant over each Rij. A G1-optimal measure assigns full weight 1 to the rectangle
Rij with i = [x01/δ1] + 1 and j = [x02/δ2] + 1, where x0 = (x01, x02) represents the actual
temperature the two days. Observe then that the G1-optimal measure is restricted to measurements
that are accurate up to δ1 and δ2; therefore, it cannot do better than assigning the temperature to the
intervals with sizes δ1 and δ2 to which the actual temperatures belong; however, it cannot say what
the exact temperature is. The exact prediction requires an F -optimal measure.

In a second step, in order to get some additional information, the leaders of the camp consult a
prophet. Let P2 refer to the probability measure based on the weather forecast Z1 and the message
Z2 of the prophet, so that D2 = (Z1, Z2) and G2 = F . If the prophet always speaks the truth,
and if the leaders of the camp rely on his message, they will make use of the F -optimal measure
P2 = δx0 , corresponding weak (and full) learning, and a full amount of knowledge. In general, the
camp leaders’ prediction in step k is correct with

probability =

{
Pk
(
[a, b]2

)
, if x0 ∈ [a, b]2,

1− Pk
(
[a, b]2

)
, if x0 /∈ [a, b]2.

If this probability is less than 1 for k = 2, the reason is either that the prophet does not always speak
the truth or that the leaders do not rely solely on the message of the prophet. In particular, it follows
from Definition 3 that strong learning has occurred if

0 < I+1 = log[P1
(
[a, b]2

)
/(b− a)2] < I+2 = log[P2

(
[a, b]2

)
/(b− a)2], if x0 ∈ [a, b]2,

0 > I+1 = log[P1
(
[a, b]2

)
/(b− a)2] > I+2 = log[P2

(
[a, b]2

)
/(b− a)2], if x0 /∈ [a, b]2.

(69)

Suppose the weather forecast and the message of the prophet are biased, but they still correctly predict
whether outdoor activities are possible or not. Then, neither weak nor strong knowledge acquisition
occurs, in spite of the fact that the strong learning condition (69) holds. Note in particular that
such a conclusion is not possible with a purely Bayesian analysis. Another scenario wherein neither
(weak or strong) learning nor knowledge acquisition takes place is depicted in Figure 5.
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Figure 5. Posterior densities p1(x1, x2) and p2(x1, x2) after one and two steps of data collection for
Example 3. Since x01 < a, it is not possible to have outdoor activities the first day of the camp. The
weather forecast density p1 is supported and piecewise-constant on the four rectangles with width δ1

and height δ2, corresponding to σ-algebra G1. The true temperatures (x01, x02) are within the support
of p1. On the other hand, the prophet incorrectly predicts that outdoor activities are possible both
days; p2 is supported on the ellipse. In this case, neither (weak or strong) learning nor knowledge
acquisition takes place.

Example 4 (Replication of studies). Some researchers want to find the prevalence of the physical
symptoms of a certain disease. Let X = [0, 1]2 refer to the possible set of values x = (x1, x2) for the
prevalence of the symptoms, obtained from two different laboratories. The first value corresponds to
the prevalence obtained in Laboratory 1, whereas the second value x2 is obtained when Laboratory
2 tries to replicate the study of Laboratory 1. The board members of the company to which the
two laboratories belong want to find out whether the two estimates are consistent, within some
tolerance level 0 < ε < 1. In that case, the second study is regarded as replication of the first one.
The proposition

S : the second study replicates the first one

corresponds to a truth function f (x) = 1(|x2 − x1| ≤ ε) and

A = {(x1, x2); |x2 − x1| ≤ ε}. (70)

The true value x0 = (x01, x02) represents the actual prevalences of the symptoms, obtained
from the two laboratories under ideal conditions. Importantly, it may still be the case that x01 6= x02,
if either the prevalence of the symptoms changes between the two studies and/or the two laboratories
estimate the prevalences within two different subpopulations.

Let D2 be a data set by which Laboratory 2 receives all needed data from Laboratory 1 in order
to set up its study properly (so that, for instance, affection status is defined in the same way in the
two laboratories ). We will assume Y2(x1, x2) = (x1, x2), so that the corresponding σ-algebra

G2 = F = B(X ) = B0 ×B0,
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corresponds to full discernment, with B(X ) being the Borel σ-algebra onX , whereas B0 = B((0, 1])
is the Borel σ-algebra on the unit interval (see Remark 1). If P2 is the probability measure obtained
from D2, the probability of concluding that the second study replicated the first is

P2(A) =
∫

A
dP2(x1, x2). (71)

In particular, when each laboratory makes use of data from all individuals in its subpopulation
(which is either the same or not for the two laboratories), the F -optimal probability measure (9)
corresponds to

P2 = δx0 =⇒ P2(A) = 1(|x02 − x01| ≤ ε). (72)

Now consider another scenario where Laboratory 2 only gets partial information from Lab-
oratory 1. This corresponds to a data set D1 with the same sampled individuals as in D2, but
Laboratory 2 has incomplete information from Laboratory 1 regarding the details of how the first
study was set up. For this reason, they make use of a coarser σ-algebra, by which it is only possible
to quantify prevalence with precision δ. If this σ-algebra is referred to as Bδ ⊂ B0, it follows that
Y1(x1, x2) = (x1, [x2/δ] + 1) and

G1 = B0 ×Bδ.

The corresponding loss of information is measured through a probability P1 that has the same
marginal distribution as P2 for all events B that are discernible from G1, i.e.,

P1(B) = P2(B), ∀B ∈ G1. (73)

Hence, it follows from (30) and (73) that

dP1(x1, x2) = N
N

∑
j=1

p1j(x1)1
(
x2 ∈ Rj

)
dP2(x1),

where N = 1/δ, p1j(x1) = P2
(
X2 ∈ Rj | X1 = x1

)
, and Rj = ((j− 1)δ, jδ] is the j-th possible

region for the prevalence estimate of Laboratory 2. In particular, the probability that the second
study replicates the first one is

P1(A) = N
∫ 1

0

N

∑
j=1

p1j(x1)|Rj ∩ [x1 − ε, x1 + ε]|dP2(x1). (74)

If both laboratories perform a screening and collect data from all individuals in their regions,
so that (72) holds, then P1 is a G1-optimal measure according to (8), with

P1(A) = N|Rj0 ∩ [x01 − ε, x01 + ε]|, (75)

and j0 = [x02/δ] + 1. Making use of Definition 3, we notice that a sufficient condition for strong
learning to occur is that P0 has a uniform distribution on X (so that P0([a, b]2) = 2ε− ε2), such
that (72) and (75) hold, and

0 < I+1 = log[N|Rj0 ∩ [x01 − ε, x01 + ε]|/(2ε− ε2)] < I+2 = 1, if |x02 − x01| < ε,
0 > I+1 = log[N|Rj0 ∩ [x01 − ε, x01 + ε]|/(2ε− ε2)] > I+2 = −∞, if |x02 − x01| > ε.

With full information transfer between the two laboratories, the replication probabilities (71) and
(72) based on data D2 only depend on ε, whereas the corresponding replication probabilities (74) and
(75) under incomplete information transfer between the laboratories and data D1, also depending
on δ. In particular, P1(A) will always be less than 1 when 2ε < δ, even when (75) holds and
x01 = x02. Moreover, δ sets the limit in terms of how much knowledge can be obtained from the two
studies under incomplete information transfer, since

P1(Bε(x0)) < 1, for all 0 < ε < δ.
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Note that this last conclusion cannot be obtained from a Bayesian analysis, since a true pair x0 of
prevalences does not belong to a purely Bayesian framework.

Example 5 (Unmeasured confounding and causal inference). This example illustrates unmea-
sured confounding and causal inference. Let q = n and X = {0, 1}n. An individual is assigned
a binary vector x = (x1, . . . , xn) of length n, where xn ∈ {0, 1} codes for whether that person
will have symptoms within five years (xn = 1) or not (xn = 0) that are associated with a certain
mental disorder. The first component x1 ∈ {0, 1} refers to the individual’s binary exposure, whereas
the other variables xk ∈ {0, 1}, k = 2, . . . , n − 1 are binary confounders. The truth function
f (x) = xn corresponds to symptom status, whereas

A = {x ∈ X ; xn = 1}

represents the vectors x of all individuals in the population with symptoms. Consider the proposition

S : Adam will have the symptoms within five years,

and let x0 = (x01, . . . , x0n) be the vector associated with Adam. We will introduce a sequence of
probability measures P0, P1, . . . , Pn, where P0 represents the distribution of X = (X1, . . . , Xn) in
the whole population, whereas Pk corresponds to the conditional distribution of X ∼ P0, given that
its first k covariates Dk = (Z1, . . . , Zk) = (x01, . . . , x0k) ∈ Dk = {0, 1}k have been observed,
with values equal to those of Adam’s first k covariates. Since the conditional distribution Dk|x0 is
non-random, it follows that

P̄k = Pk =
k

∏
l=1

δx0l × P0

(
· | {Xl = x0l}k

l=1

)
(76)

for k = 0, 1, . . . , n− 1, whereas P̄n = Pn = δx0 for k = n. According to Definition 5, this implies
that weak learning occurs with probability 1, and in particular that weak learning is expected to
occur. If Yk(x1, . . . , xn) = (x1, . . . , xk), we have that

Gk = 2{0,1}k × {0, 1}n−k (77)

for k = 0, . . . , n. Note, in particular, that Pk is Gk-optimal, corresponding to error-free measurement
of Adam’s first k covariates.

In order to specify the null distribution P0, we assume that a logistic regression model [48]

P0(Xn = 1 | x1, . . . , xn−1) =
exp

(
β0 + ∑n−1

k=1 βkxk

)
1 + exp

(
β0 + ∑n−1

k=1 βkxk

)
= g(x1, . . . , xn−1) (78)

holds for the probability of having the symptoms within five years, conditionally on the n − 1
covariates (one exposure and n− 2 confounders). It is also assumed that the regression parameters
β0, . . . , βn−1 are known, so that g is known as well. It follows from Equations (76) and (78) that

Pk(A) = P0

(
Xn = 1 | {Xl = x0l}k

l=1

)
= EP0

[
g(X1, . . . , Xn−1) | {Xl = x0l}k

l=1

]
=: gk(x01, . . . , x0k)

(79)

can be interpreted as increasingly better predictions of Adam’s symptom status five years ahead, for
k = 0, 1, . . . , n− 1, whereas Pn(A) = f (x0) = x0n represents full knowledge of S. In particular,
P0(A) is the prevalence of the symptoms in the whole population, whereas P1(A) = g1(x01) is
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Adam’s predicted probability of having the symptoms when his exposure x01 is known, whereas none
of his confounders are measured.

Suppose x2, . . . , xn−1 are sufficient for confounding control, and that the exposure and the
confounders (in principle) can be assigned. Let x0 = (x01, . . . , x0n) represent a hypothetical
individual for which all covariates are assigned. Under a so called conditional exchangeability
condition [16], it is possible to use a slightly different definition

P̃k =
k

∏
l=1

δx0l × EP0

[
P0

(
· | {Xl}k

l=1

)]
of the probability measures in order to compute the counterfactual probability

hk(x01, . . . , x0k) = P̃k(A)

= EP0 [g(x01, . . . , x0k, Xk+1, . . . , Xn−1)]

of the potential outcome Xn = 1, under the scenario that the first k covariates were set to x01, . . . , x0k.
In particular, it is of interest to know how much the unknown causal risk ratio effect h1(1)/h1(0) of
the exposure maximally differs from the known risk ratio g1(1)/g0(0) [49–52]. Note in particular
that the corresponding logged quantities

log[g1(1)/g1(0)] = I+1 (A; 1)− I+1 (A; 0),
log[h1(1)/h1(0)] = Ĩ+1 (A; 1)− Ĩ+1 (A; 0),

can be expressed in terms of the active information

I+1 (A; x01) = log[P1(A)/P0(A)]
= log[P0(Xn = 1 | x01)/P0(Xn = 1)],

Ĩ+1 (A; x01) = log[P̃1(A)/P0(A)]
= log[EP0(P0(Xn = 1 | x01, X2, . . . , Xn−1))/P0(Xn = 1)].

9. Discussion

In this paper, we studied an agent’s learning and knowledge acquisition within a
mathematical framework of possible worlds. Learning is interpreted as an increased
degree of true belief, whereas knowledge acquisition additionally requires that the belief
is justified, corresponding to an increased belief in the correct world. The theory is put
into a framework that involves elements of frequentism and Bayesianism, with possible
worlds corresponding to the parameters of a statistical model, where only one parameter
value is true, whereas the agent’s beliefs are obtained from a posterior distribution. We
formulated learning as a hypothesis test within this framework, whereas knowledge
acquisition corresponds to consistency of posterior distributions. Importantly, we argue
that a hybrid frequentist/Bayesian approach is needed in order to model mathematically
the way in which philosophers distinguish learning from knowledge acquisition.

Some applications of our theory were provided in the examples of Section 8. Apart
from those, we argue that our framework has quite general implications for machine
learning, in particular, supervised learning. A typical task of machine learning is to obtain
a predictor of a binary outcome variable Y = f (x0), when only incomplete information
X of x0 is obtained from training data. The performance of a machine learning algorithm
is typically assessed in terms of prediction accuracy, that is, how well f (X) approximates
Y, with less focus on the closeness between X and x0. In our terminology, the purpose
of machine learning is learning rather than knowledge acquisition. This can often be a
disadvantage, since knowledge acquisition often provides deeper insights than learning.
For instance, full knowledge acquisition may fail asymptotically when k→ ∞, even when
data are unbiased and interpreted correctly by the agent, if there is lacking discernment
between the set of possible worlds X , even in the limit k→ ∞.
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On the other hand, it makes no sense to go beyond learning for game theory, where
the purpose is to find the optimal strategy (an instance of knowledge-how). In more detail,
let x ∈ X = {0, . . . , M − 1} refer to the strategy x of a player among a finite set of M
possible strategies. The optimal strategy x0 is the one that maximizes an expected reward
function R(x) for the actions taken with strategy x, D refers to data from previous games
that a player makes use of to estimate R(·), and G represents the player’s maximal possible
discernment between strategies. Since the objective is to find the optimal strategy, it is
natural to use a truth function

f (x) = 1(x = x0), (80)

with the associated set A = A0 = {x0} of true worlds corresponding to the upper row of
(1). It follows from Remark 7 that learning and knowledge acquisition are equivalent for
game theory whenever (80) is used. Various algorithms, such as reinforcement learning [53]
and sequential sampling models [54,55], could be used by a player in order to generate his
beliefs P about which strategy is the best.

Many extensions of our work are possible. A first extension would be to generalize the
framework of Theorem 1 and Example 1, where data {Dk = (Z1, . . . , Zk)}n

k=1 are collected
sequentially according to a Markov process with increasing state space, without requiring
that {Zl}n

l=1 are independent and identically distributed. We will mention two related
models for which this framework applies. For both of these models a student’s mastery of
q skills (which represent knowledge how rather than knowledge that) is of interest. More
specifically, x = (x1, . . . , xq) is a binary sequence of length q, with xi = 1 or 0 depending on
whether the student has acquired skill i or not, whereas Dk corresponds to exercises that
are given to a student up to time k, and the student’s answers to these exercises. It is also
known which skills are required to solve each type of exercise. The first model is Bayesian
knowledge tracing (BKT) [56], which has recently been analyzed using recurrent neural
networks [1]. In BKT, a tutor trains the student to learn the q skills, so that the student’s
learning profile changes over time. At each time point, the tutor is free to choose the last
exercises at time k based on previous exercises and what the student learnt up to time k− 1.
The goal of the tutoring is to reach a state x0 = (1, . . . , 1) where the student has learned all
skills. The most restrictive truth function (80) monitors whether the student has learned all
skills or not, so that Pk(A) is the probability that the student has learnt all skills at time k.
In view of Remark 7, there is no distinction between learning and knowledge acquisition
for such a truth function. A less restrictive truth function f (x) = xi focuses on whether the
student has learnt skill i or not, so that Pk(A) is the probability that the student learnt skill
i at time k. The second model—the Bayesian version of Diagnostic Classification Models
(DCMs) [57]—can be viewed as an extension of Illustration 1. The purpose of DCMs is
not to train the student (as for knowledge tracing), but rather to diagnose the student’s
(or respondent’s) current vector x0 = (x01, . . . , x0q), where x0i = 1 or 0 if this particular
student masters skill (or attribute) i or not. The exercises of DCM are usually referred to
as items. Assume a truth function (80); Pk(A) is the probability that the diagnostic test by
time k has learnt which attributes the student masters. Note in particular that the student’s
attribute mastery profile x0 is fixed, and it is rather the instructor that learns about x0 when
the student is being tested on new items.

A second extension would be to consider opinion making and consensus forma-
tion [58] for a whole group of N agents that are connected according to some social net-
work. In this context, Gk represents the maximal amount of discernibility between possible
worlds that is possible to achieve after k time steps based on external data (available to
all agents) and information from other agents (which varies between agents and depends
on properties of the social network). It is of interest in this context to study the dynamics
of {Pki(A)}N

i=1 over time, where Pki(A) represents the belief of agent (or individual) i in
proposition S after k time steps. This can be accomplished using a dynamical Bayesian
network [59] with N nodes i = 1, . . . , N that represent individuals, associating each node i
with a distribution Pki over the set of possible worlds X , corresponding to the beliefs of
agent i at time k. A particularly interesting example in this vein would be to explore the
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degree to which social media and social networks can influence learning and knowledge
acquisition.

The third possible extension is related to consensus formation, but with a more explicit
focus on how N decentralized agents make a collective decision. In order to illustrate this,
we first describe a related model of cognition in bacterial populations. Marshall [60] has
concluded that “the direction of causation in biology is cognition→ code→ chemicals”.
Cognition is observed when there is a discernment and data collection process that either
optimizes code or improves the probability of a given chemical outcome. Accordingly,
the strong learning process of Definition 3 can be used to model how biological cognition
is attained (or at least is expected to be attained). For instance, in quorum sensing, once
bacteria reach a critical density, they emit a chemical signal to ascertain the number of
neighboring bacteria [61]; when a critical density is reached, the population performs
certain functions as a unit (Table 1 of [62] presents several examples of bacterial functions
partially controlled by quorum sensing). The proposition under consideration here is
S: “the function is performed by at least a fraction ε of bacteria”, where ε represents a
critical density above which the bacteria act as a unit. The parameter x = (x1, . . . , xN) is a
binary sequence reflecting the way in which a population of N = q bacteria acts, so that
xi = 1 if bacterium i performs the function, whereas f (x) = 1(x ∈ A) = 1(∑i xi ≥ εN).
For collective decisions, xi rather represents a local decision of agent i, whereas f (x)
corresponds to the global decision of all agents. Learning about S at time k = 1, 2, . . . is
described by Pk(A), the probability that the population acts as a unit at time k. There is a
phase transition at time k if the probabilities P1(A), . . . , Pk−1(A) of the population acting as
a unit are essentially null, whereas Pk(A) becomes positive (and hence I+k (A) gets large)
when discernment ability and data are extended from (Gk−1, Dk−1) to (Gk, Dk). This is
closely related to the fine-tuning of biological systems [33,35] with f being a specificity
function and A set of highly specified states, and fine-tuning after k steps of an algorithm
that models the evolution of the system corresponding to I+k (A) being large. As for the
direction of causation from cognition to code, Kolmogorov’s complexity, which measures
the complexity of an outcome as the shortest code that produces it, can be used in place of
or jointly with active information to measure learning [63].

A fourth theoretical extension is to consider the case |X | = ∞. In this case, instead
of the (discrete or continuous) uniform distribution given by (2), it will be necessary to
consider more general maximum entropy distributions P0, subject to some restrictions, in
order to measure learning and knowledge acquisition [20,64–66].

A fifth extension is to consider models where the data sets Dk are not nested. This is
of interest, for instance, in Example 5, when non-nested subsets of confounders are used to
predict Adam’s disease status. For such scenarios, it might be preferable to use information-
based model selection criteria (such as maximizing AIN) in order to quantify learning [67],
rather than sequentially testing various pairs of nested hypotheses by means of

∆I+k = I+k − I+k−1 = log
Pk(A)

Pk−1(A)
,

in order to assess whether learning has occurred in each step k (corresponding to strong
learning of Definition 3).

A sixth extension would be to compare the proposed Bayesian/frequentist notions
of learning and knowledge acquisition, with purely frequentist counterparts. Since learn-
ing corresponds to choosing between the two hypotheses in (18), we may consider a test
that rejects the null hypothesis when the log likelihood ratio is small enough, or equiva-
lently, when

Λ = −2 log
maxx∈A L(D|x)
maxx∈X L(D|x) ≥ t (81)

for some appropriately chosen threshold t. The frequentist notion of learning is then
formulated in terms of error probabilities of type I and II, analogously to (20), but for
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the LR-test (81) rather than the Bayesian/frequentist test (19) with test statistic AIN, or
the purely Bayesian approach that relies on posterior odds (21). A frequentist version of
knowledge acquisition corresponds to using data D in order to produce a one-dimensional
class of confidence regions CR for x0, with a nominal coverage probability of CR that varies.
In order to quantify how much knowledge that is acquired, it is possible to use the steepness
of a curve that plots the actual coverage probability P(x0 ∈ CR) as a function of the volume
|CR|. However, a disadvantage of the frequentist versions of learning and knowledge
acquisition is that they do not involve degrees of beliefs, the philosophical starting point of
this article. This is related to the critique of frequentist hypothesis testing offered in [68].
Since no prior probabilities are allowed, within a frequentist setting, important notions such
as the false report probability (FRP) and true report probability (TRP) are not computable,
leading to many non-replicated findings.

A seventh extension is to consider multiple propositions S1, . . . , Sm, as in [69,70].
For each possible world x ∈ X , we let f : X → {0, 1}m be a truth function such that
f (x) = ( f1(x), . . . , fm(x)), with fi(x) = 1 (0) if Si is true (false) in world x. It is then of
interest to develop a theory of learning and knowledge acquisition of these m propositions.
To this end, for each y = (y1, . . . , ym) ∈ {0, 1}m, let Ay = {x ∈ X ; f (x) = y} refer to
the set of worlds for which the truth value of Si is yi for i = 1, . . . , m. Learning is then a
matter of determining which Ay is true (the one for which x0 ∈ Ay), whereas justified true
beliefs in S1, . . . , Sm amount to finding x0 as well. Learning of statements such as Si ∨ Sj
and Si ∧ Si can be addressed using the m = 1 theory of this paper, since they correspond
to binary-valued truth functions f̃ (x) = fi(x) + f j(x)− fi(x) f j(x) and f̃ (x) = fi(x) f j(x),
respectively.

Author Contributions: Conceptualization and methodology: O.H., D.A.D.-P., J.S.R.; writing—
original draft preparation: O.H.; writing—review and editing: D.A.D.-P., J.S.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors wish to thank Glauco Amigo at Baylor University for his help with
producing Figure 3. We also appreciate the comments of three anonymous reviewers that made it
possible to considerably improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.; Guibas, L.J.; Sohl-Dickstein, J. Deep Knowledge Tracing. In Proceedings

of the Neural Information Processing Systems (NIPS) 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 505–513.
2. Pavese, C. Knowledge How. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford

University: Stanford, CA, USA, 2021.
3. Agliari, E.; Pachón, A.; Rodríguez, P.M.; Tavani, F. Phase transition for the Maki-Thompson rumour model on a small-world

network. J. Stat. Phys. 2017, 169, 846–875. [CrossRef]
4. Lyons, R.; Peres, Y. Probability on Trees and Networks; Cambridge University Press: Cambridge, UK, 2016.
5. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [CrossRef]
6. Embreston, S.E.; Reise, S.P. Item Response Theory for Psychologists; Psychology Press: New York, NY, USA, 2000.
7. Stevens, S.S. On the Theory of Scales of Measurement. Science 1946, 103, 677–680. [CrossRef] [PubMed]
8. Thompson, B. Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications; American Psychological

Association: Washington, DC, USA, 2004.
9. Gettier, E.L. Is Justified True Belief Knowledge? Analysis 1963, 23, 121–123. [CrossRef]
10. Ichikawa, J.J.; Steup, M. The Analysis of Knowledge. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics

Research Lab, Stanford University: Stanford, CA, USA, 2018.
11. Hájek, A. Probability, Logic, and Probability Logic. In The Blackwell Guide to Philosophical Logic; Goble, L., Ed.; Blackwell: Hoboken,

NJ, USA, 2001; Chapter 16, pp. 362–384.
12. Demey, L.; Kooi, B.; Sack, J. Logic and Probability. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research

Lab, Stanford University: Stanford, CA, USA, 2019.
13. Hájek, A. Interpretations of Probability. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab,

Stanford University: Stanford, CA, USA, 2019.

http://doi.org/10.1007/s10955-017-1892-x
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.103.2684.677
http://www.ncbi.nlm.nih.gov/pubmed/20984256
http://dx.doi.org/10.1093/analys/23.6.121


Entropy 2022, 24, 1469 30 of 31

14. Savage, L. The Foundations of Statistics; Wiley: Hoboken, NJ, USA, 1954.
15. Swinburne, R. Epistemic Justification; Oxford University Press: Oxford, UK, 2001.
16. Pearl, J. Causality: Models, Reasoning and Inference, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009.
17. Berger, J. Statistical Decision Theory and Bayesian Analysis, 2nd ed.; Springer: New York, NY, USA, 2010.
18. Dembski, W.A.; Marks, R.J., II. Bernoulli’s Principle of Insufficient Reason and Conservation of Information in Computer Search.

In Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA, 11–14
October 2009; pp. 2647–2652. [CrossRef]

19. Dembski, W.A.; Marks, R.J., II. Conservation of Information in Search: Measuring the Cost of Success. IEEE Trans. Syst. Man
Cybern.-Part A Syst. Hum. 2009, 5, 1051–1061. [CrossRef]

20. Díaz-Pachón, D.A.; Marks, R.J., II. Generalized active information: Extensions to unbounded domains. BIO-Complexity 2020,
2020, 1–6. [CrossRef]

21. Shafer, G. Belief functions and parametric models. J. R. Stat. Soc. Ser. B 1982, 44, 322–352. [CrossRef]
22. Wasserman, L. Prior envelopes based on belief functions. Ann. Stat. 1990, 18, 454–464. [CrossRef]
23. Dubois, D.; Prade, H. Belief functions and parametric models. Int. J. Approx. Reason. 1992, 6, 295–319. [CrossRef]
24. Denoeux, T. Decision-making with belief functions: A review. Int. J. Approx. Reason. 2019, 109, 87–110.
25. Hopkins, E. Two competing models of how people learn in games. Econometrica 2002, 70, 2141–2166. [CrossRef]
26. Stoica, G.; Strack, B. Acquired knowledge as a stochastic process. Surv. Math. Appl. 2017, 12, 65–70.
27. Taylor, C.M. A Mathematical Model for Knowledge Acquisition. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA,

2002.
28. Popper, K. The Logic of Scientific Discovery; Hutchinson: London, UK, 1968.
29. Jaynes, E.T. Prior Probabilities. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 227–241. [CrossRef]
30. Hössjer, O. Modeling decision in a temporal context: Analysis of a famous example suggested by Blaise Pascal. In The Metaphysics

of Time, Themes from Prior. Logic and Philosophy of Time; Hasle, P., Jakobsen, D., Øhrstrøm, P., Eds.; Aalborg University Press:
Aalborg, Denmark, 2020; Volume 4, pp. 427–453.

31. Kowner, R. Nicholas II and the Japanese body: Images and decision-making on the eve of the Russo-Japanese War. Psychohist.
Rev. 1998, 26, 211–252.

32. Hössjer, O.; Díaz-Pachón, D.A.; Chen, Z.; Rao, J.S. Active information, missing data, and prevalence estimation. arXiv 2022,
arXiv:2206.05120.

33. Díaz-Pachón, D.A.; Hössjer, O. Assessing, testing and estimating the amount of fine-tuning by means of active information.
Entropy 2022, 24, 1323. [CrossRef]

34. Szostak, J.W. Functional information: Molecular messages. Nature 2003, 423, 689. [CrossRef] [PubMed]
35. Thorvaldsen, S.; Hössjer, O. Using statistical methods to model the fine-tuning of molecular machines and systems. J. Theor. Biol.

2020, 501, 110352. [CrossRef] [PubMed]
36. Díaz-Pachón, D.A.; Sáenz, J.P.; Rao, J.S. Hypothesis testing with active information. Stat. Probab. Lett. 2020, 161, 108742.

[CrossRef]
37. Montañez, G.D. A Unified Model of Complex Specified Information. BIO-Complexity 2018, 2018, 1–26. [CrossRef]
38. Yik, W.; Serafini, L.; Lindsey, T.; Montañez, G.D. Identifying Bias in Data Using Two-Distribution Hypothesis Tests. In Proceedings

of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, Oxford, UK, 19–21 May 2021; ACM: New York, NY, USA, 2022;
pp. 831–844. [CrossRef]

39. Kallenberg, O. Foundations of Modern Probability, 3rd ed.; Springer: New York, NY, USA, 2021; Volume 1.
40. Ghosal, S.; van der Vaart, A. Fundamentals of Nonparametric Bayesian Inference; Cambridge University Press: Cambridge, UK, 2017.
41. Shen, W.; Tokdar, S.T.; Ghosal, S. Adaptive Bayesian multivariate density estimation with Dirichlet mixtures. Biometrika 2013,

100, 623–640. [CrossRef]
42. Barron, A.R. Uniformly Powerful Goodness of Fit Tests. Ann. Stat. 1989, 17, 107–124. [CrossRef]
43. Freedman, D.A. On the Asymptotic Behavior of Bayes’ Estimates in the Discrete Case. Ann. Math. Stat. 1963, 34, 1386–1403.

[CrossRef]
44. Cam, L.L. Convergence of Estimates Under Dimensionality Restrictions. Ann. Stat. 1973, 1, 38–53. [CrossRef]
45. Schwartz, L. On Bayes procedures. Z. Wahrscheinlichkeitstheorie Verw Geb. 1965, 4, 10–26. [CrossRef]
46. Cam, L.L. Asymptotic Methods in Statistical Decision Theory; Springer: New York, NY, USA, 1986.
47. Lehmann, E.L.; Casella, G. Theory of Point Estimation, 2nd ed.; Springer: New York, NY, USA, 1998.
48. Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013.
49. Robins, J.M. The analysis of Randomized and Nonrandomized AIDS Treatment Trials Using A New Approach to Causal Inference

in Longitudinal Studies. In Health Service Research Methodology: A Focus on AIDS; Sechrest, L., Freeman, H., Mulley, A., Eds.; U.S.
Public Health Service, National Center for Health Services Research: Washington, DC, USA, 1989; pp. 113–159.

50. Manski, C.F. Nonparametric Bounds on Treatment Effects. Am. Econ. Rev. 1990, 80, 319–323.
51. Ding, P.; VanderWeele, T.J. Sensitivity Analysis Without Assumptions. Epidemilogy 2016, 27, 368–377. [CrossRef]
52. Sjölander, A.; Hössjer, O. Novel bounds for causal effects based on sensitivity parameters on the risk difference scale. J. Causal

Inference 2021, 9, 190–210. [CrossRef]
53. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.

http://dx.doi.org/10.1109/ICSMC.2009.5346119
http://dx.doi.org/10.1109/TSMCA.2009.2025027
http://dx.doi.org/10.5048/BIO-C.2020.3
http://dx.doi.org/10.1111/j.2517-6161.1982.tb01211.x
http://dx.doi.org/10.1214/aos/1176347511
http://dx.doi.org/10.1016/0888-613X(92)90027-W
http://dx.doi.org/10.1111/1468-0262.00372
http://dx.doi.org/10.1109/TSSC.1968.300117
http://dx.doi.org/10.3390/e24101323
http://dx.doi.org/10.1038/423689a
http://www.ncbi.nlm.nih.gov/pubmed/12802312
http://dx.doi.org/10.1016/j.jtbi.2020.110352
http://www.ncbi.nlm.nih.gov/pubmed/32505827
http://dx.doi.org/10.1016/j.spl.2020.108742
http://dx.doi.org/10.5048/BIO-C.2018.4
http://dx.doi.org/10.1145/3514094.3534169
http://dx.doi.org/10.1093/biomet/ast015
http://dx.doi.org/10.1214/aos/1176347005
http://dx.doi.org/10.1214/aoms/1177703871
http://dx.doi.org/10.1214/aos/ 1193342380
http://dx.doi.org/10.1007/BF00535479
http://dx.doi.org/10.1097/EDE.0000000000000457
http://dx.doi.org/10.1515/jci-2021-0024


Entropy 2022, 24, 1469 31 of 31

54. Ratcliff, R.; Smith, P.L. A Comparison of Sequential Sampling Models for Two-Choice Reaction Time. Psychol. Rev. 2004,
111, 333–367. [CrossRef]

55. Chen, W.J.; Krajbich, I. Computational modeling of epiphany learning. Proc. Natl. Acad. Sci. USA 2017, 114, 4637–4642. [CrossRef]
[PubMed]

56. Corbett, A.T.; Anderson, J.R. Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge. User Model. User-Adapt.
Interact. 1995, 4, 253–278. [CrossRef]

57. Oka, M.; Okada, K. Assessing the Performance of Diagnostic Classification Models in Small Sample Contexts with Different
Estimation Methods. arXiv 2022, arXiv:2104.10975.

58. Hirscher, T. Consensus Formation in the Deffuant Model. Ph.D. Thesis, Division of Mathematics, Department of Mathematical
Sciences, Chalmers University of Technology, Gothenburg, Sweden, 2014.

59. Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Thesis, University of California,
Berkeley, CA, USA, 2002.

60. Marshall, P. Biology transcends the limits of computation. Prog. Biophys. Mol. Biol. 2021, 165, 88–101. [CrossRef] [PubMed]
61. Atkinson, S.; Williams, P. Quorum sensing and social networking in the microbial world. J. R. Soc. Interface 2009, 6, 959–978.

[CrossRef] [PubMed]
62. Shapiro, J.A. All living cells are cognitive. Biochem. Biophys. Res. Commun. 2020, 564, 134–149. [CrossRef]
63. Ewert, W.; Dembski, W.; Marks, R.J., II. Algorithmic Specified Complexity in the Game of Life. IEEE Trans. Syst. Man Cybern.

Syst. 2015, 45, 584–594. [CrossRef]
64. Díaz-Pachón, D.A.; Hössjer, O.; Marks, R.J., II. Is Cosmological Tuning Fine or Coarse? J. Cosmol. Astropart. Phys. 2021, 2021, 020.

[CrossRef]
65. Díaz-Pachón, D.A.; Hössjer, O.; Marks, R.J., II. Sometimes size does not matter. arXiv 2022, arXiv:2204.11780.
66. Zhao, X.; Plata, G.; Dixit, P.D. SiGMoiD: A super-statistical generative model for binary dataP. PLoS Comput. Biol. 2021,

17, e1009275. [CrossRef]
67. Stephens, P.A.; Buskirk, S.W.; Hayward, G.D.; del Río, C.M. Information theory and hypothesis testing: A call for pluralism. J.

Appl. Ecol. 2005, 42, 4–12. [CrossRef]
68. Szucs, D.; Ioannidis, J.P.A. When Null Hypothesis Significance Testing Is Unsuitable for Research: A Reassessment. Front. Hum.

Neurosci. 2017, 11, 390. [CrossRef] [PubMed]
69. Cox, R.T. The Algebra of Probable Inference; Johns Hopkins University Press: Baltimore, MD, USA, 1961.
70. Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [CrossRef]

http://dx.doi.org/10.1037/0033-295X.111.2.333
http://dx.doi.org/10.1073/pnas.1618161114
http://www.ncbi.nlm.nih.gov/pubmed/28416682
http://dx.doi.org/10.1007/BF01099821
http://dx.doi.org/10.1016/j.pbiomolbio.2021.04.006
http://www.ncbi.nlm.nih.gov/pubmed/33961842
http://dx.doi.org/10.1098/rsif.2009.0203
http://www.ncbi.nlm.nih.gov/pubmed/19674996
http://dx.doi.org/10.1016/j.bbrc.2020.08.120
http://dx.doi.org/10.1109/TSMC.2014.2331917
http://dx.doi.org/10.1088/1475-7516/2021/07/020
http://dx.doi.org/10.1371/journal.pcbi.1009275
http://dx.doi.org/10.1111/j.1365-2664.2005.01002.x
http://dx.doi.org/10.3389/fnhum.2017.00390
http://www.ncbi.nlm.nih.gov/pubmed/28824397
http://dx.doi.org/10.1017/ CBO9780511790423

	Introduction
	The Present Article
	Related Work

	Possible Worlds, Propositions, and Discernment
	Probabilities
	Degrees of Beliefs and Sigma Algebras
	Bayes' Rule and Posterior Probabilities
	Expected Posterior Beliefs

	Learning
	Active Information for Quantifying the Amount of Learning
	Learning as Hypothesis Testing
	The Bayesian Approach to Learning
	Test Statistic When x0 Is Unknown

	Knowledge Acquisition
	Knowledge Acquisition Goes beyond Learning
	A Formal Definition of Knowledge Acquisition

	Learning and Knowledge Acquisition Processes
	The Process of Discernment and Data Collection
	Strong Learning and Knowledge Acquisition
	Weak Learning and Knowledge Acquisition

	Asymptotics
	Asymptotic Learning and Knowledge Acquisition
	Bayesian Asymptotic Theory

	Examples
	Discussion
	References

