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Abstract: The quantum computer has been claimed to show more quantum advantage than the
classical computer in solving some specific problems. Many companies and research institutes try
to develop quantum computers with different physical implementations. Currently, most people
only focus on the number of qubits in a quantum computer and consider it as a standard to evaluate
the performance of the quantum computer intuitively. However, it is quite misleading in most
times, especially for investors or governments. This is because the quantum computer works in a
quite different way than classical computers. Thus, quantum benchmarking is of great importance.
Currently, many quantum benchmarks are proposed from different aspects. In this paper, we review
the existing performance benchmarking protocols, models, and metrics. We classify the benchmarking
techniques into three categories: physical benchmarking, aggregative benchmarking, and application-
level benchmarking. We also discuss the future trend for quantum computer’s benchmarking and
propose setting up the QTOP100.
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1. Introduction

Nowadays, the traditional chip fabrication technique is approaching its limit from
7 nm to even more fine-grained techniques, e.g., 3 nm. When trying to increase the circuit’s
density of processor in a limited space, the chip fabrication technique needs to be progressed.
However, the current chip fabrication technology almost reaches atom scale. Then, the
quantum tunneling effect takes place, leading to the failure of chip fabrication. Thus,
researchers have to find new ways to increase the performance of computers. In recent
years, with the advancement of the quantum computing technology, quantum computing
has become a hot research topic, which causes wide attention. Compared with classical high-
performance computers (HPCs), quantum computers have shown advantage in dealing
with certain problems. In 2019, a group of researchers from Google first demonstrate
quantum advantage, rather than classical HPC, with a Sycamore superconducting processor
of 53 qubits. In December 2020, Pan et al. developed a quantum computer (Jiu Zhang) with
76 photons [1]. By executing the task of Gaussian boson sampling (GBS), Pan et al. proved
that the JiuZhang is 100 trillion times faster than the Taihu Light supercomputers, which
ranked the first of the world’s most powerful computers in 2016 and 2017.

Although quantum computers have great potential in solving certain problems, quan-
tum computers are still in their early stages. When using quantum computers to solve real
world problems, there are several problems to be tackled:

(1) Hardware factors. Nowadays, there are different physical implementations for
quantum computers, such as trapped ion, superconducting, photon, and semiconducting.
Each physical implementation has its own advantages and drawbacks. For instance, the
trapped ion quantum computer is relatively easy to control, but the scaling is difficult. In
addition, operations on an ion-trap computer take a longer time. The superconducting
quantum computer, based on the superconducting Josephson junction, is easy to operate
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and scalable, but the environmental noise has a great impact on quantum gate (can be seen
as quantum instructions) fidelity. Thus, there is currently no perfect physical implemen-
tation of a quantum computer. Generally, the quantum circuits (can be seen as quantum
programs) executed on quantum processors are prone to error, due to the decoherent
quantum property and noise.

(2) Algorithmic factors. The quantum algorithm works in a quite different way from
the classical algorithm. It is difficult for people who have been engaged in classical com-
puter algorithm to propose an effective quantum algorithm to solve real world problems.
Ideally, the quantum algorithm should use fewer qubits, have shallower quantum circuits
and be tolerant of errors. The progress of quantum algorithms was comparatively slow in
recent years. Popular quantum algorithms include the prime factor decomposition algo-
rithm (Shor’s algorithm) [2], data search algorithm (Grover algorithm) [3], and quantum
approximate optimization algorithm (QAOA) [4].

(3) Application factors. Quantum computers have huge computing potential in solv-
ing problems in the areas of finance [5], medicine [6], and artificial intelligence [7]. Many
researchers try to use quantum computers to solve real world problems. Nowadays, the
solutions cannot work efficiently without the assistance of classical computers. Due to
the limitations in hardware and software, most people are pessimistic about quantum
computing. They assume that quantum computers will not perform better than the classi-
cal computers and are not willing to endeavor adapting their classical implementations to
quantum implementations. This limits the wide adoption of quantum computing techniques.

Realizing the problems described above, the number of qubits of a quantum computer
cannot represent its computing power. Rather, we need a standardized benchmark to
evaluate the power of a quantum computer and what we can do with a quantum computer.
In this paper, we review the state of the art of the quantum benchmarking techniques from
different aspects and propose a systematic view of these technologies.

The rest of the paper is organized as follows: Section 2 gives a systematic overview of
the existing quantum benchmarking technology; Section 3 describes the physical metrics
for quantum benchmarking and how these metrics are evaluated; Section 4 reviews the
aggregative metrics and benchmarking algorithms; Section 5 summarizes the application-
level quantum benchmarking techniques; In Section 6 we discuss the criteria and future
trends of quantum benchmarking; Section 7 concludes the paper.

2. Overview of Quantum Benchmarks

In this paper, we classify the benchmarks into three categories: the physical bench-
marks, the aggregated benchmarks, and application-level benchmarks. Most news and
reports place emphasis on the number of qubits in a quantum processor, which is mostly
misleading for those who are not familiar with quantum computing. Definitely, the number
of qubits can directly decide the quantum computing power of a quantum computer. Some
people intuitively think that the quantum computing power of a quantum computer grows
exponentially with the number of qubits. For instance, in 2019, Google first demonstrated
“quantum supremacy” with a Sycamore quantum processor having 53 qubits. However,
apart from the number of qubits, the noise and the quantum property of the qubits can
greatly affect the correctness of the results. Thus, apart from the number of qubits, there
are other physical properties that most people are concerned about.

Physical benchmarks include tools, models, and algorithms to reflect the physical
properties of a quantum processor. Typical physical indicators of quantum computers
include T1, T2, single qubit gate fidelity, two qubit gate fidelity, and readout fidelity. The
aggregated benchmarks can help the user to determine the performance of a quantum
processor with only one or several parameters. The aggregated metrics can be calculated
with randomly generated quantum circuits or estimated based on the basic physical prop-
erties of a quantum processor. Typical aggregated benchmarks include quantum volume
(QV) and algorithmic qubits (AQ). The application-level benchmarks refer to the metrics
obtained by running real-world applications on the quantum computer. Many existing
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works propose using real world applications to benchmark the quantum computer’s per-
formance because they assume that random circuits cannot reflect a quantum computer’s
performance accurately. An overview of the existing quantum benchmarks is shown in
Figure 1.
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Figure 1. Overview of the quantum benchmarks.

3. Physical Benchmarks

Different physical implementations are concerned with different aspects of a quantum
computing system. For instance, the trapped ion-based quantum computer focuses more
on the stability of the trap frequency, the duration of a gate operation, and the stability of
the control lasers. The superconducting quantum computers’ performance is affected by
the controllability and scalability of the system. Mostly, they are affected by the precision
of the Josephson junction, anharmonicity, and gate duration [8].

In general, the quantum computation systems are concerned with the quantum cor-
relations and controlling operation precision. In a superconducting quantum computer,
generally researchers from the background of quantum information focus more on physical
properties of quantum computers, such as the T1, T2, number of qubits, connectivity, single
qubit gate fidelity, two qubit gate fidelity, and readout fidelity.

The indicators for quantum computers of IBM’s online quantum cloud (Table 1,
from [9]) is shown in the following table.

Table 1. IBM quantum cloud’s performance metrics. Avg stands for average; N/A means not applicable.

Name Number of Qubits QV Avg.T1 (µs) Avg.T2 (µs) Avg.Readout Fidelity Avg.CNOT Fidelity

brooklyn 65 32 77.1686 74.6345 0.9682 0.9746
manhattan 65 32 110.1959 101.6078 0.9761 0.9543

hanoi 27 64 123.3959 93.4341 0.9837 0.991
sydney 27 32 266.1433 256.6081 0.9833 0.9898

peekskill 27 N/A 97.4474 107.0911 0.9821 0.9896
cairo 27 64 76.01 97.6543 0.9796 0.989

toronto 27 32 180.3614 155.1329 0.9869 0.9814
kolkata 27 128 70.3363 75.2432 0.9698 0.9536
mumbai 27 128 117.2574 92.1067 0.9484 0.9526
montreal 27 128 81.004 104.678 0.938 0.4972

guadalupe 16 32 132.6257 40.5357 0.977 0.9896
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Table 1. Cont.

Name Number of Qubits QV Avg.T1 (µs) Avg.T2 (µs) Avg.Readout Fidelity Avg.CNOT Fidelity

lagos 7 32 158.6 57.702 0.9697 0.9912
jakarta 7 16 74.214 104.008 0.9728 0.9895
perth 7 32 155.0078 92.217 0.9118 0.9894

casablanca 7 32 82.2681 96.0744 0.9696 0.9883
nairobi 7 32 86.5337 107.1733 0.9428 0.9878
quito 5 16 130.2629 100.9629 0.9859 0.9932

santiago 5 32 105.2286 98.9143 0.9633 0.9909
manila 5 32 100.56 101.29 0.9739 0.99

lima 5 8 84.0278 84.4122 0.9829 0.9891
belem 5 16 75.936 94.722 0.9676 0.9828
bogota 5 32 92.454 124.096 0.959 0.9794
armonk 1 1 118.1 149.22 0.967 N/A

3.1. Number of Qubits

In classic computers, “bit” is the basic element for information representation. Each
bit has only two states: “1” and “0”. In quantum computers, the quantum operations can
be conducted on qubits. Each qubit is a superposition of the “0” state and the “1” state,
which can simultaneously represent “0” and “1” with a certain probability. Due to the
entanglement between qubits, with n qubits, the entangled quantum computer’s superpo-
sition state can represent information that needs 2n bits in a classical computer. The more
qubits, the more information a quantum computer can describe. Thus, the performance of
quantum computers is directly reflected by the number of qubits intuitively [10].

In the early days of the development of quantum computers, the bits in classical
computers were relatively stable and simple to operate. However, the quantum properties
of qubits are error prone and difficult to maintain. The operations operated on the qubits are
extremely complicated. Therefore, designing qubits with high stable quantum properties
and operations has become an important problem for quantum processing unit (QPU)
designers to overcome.

3.2. Qubits’ Connectivity

In a superconducting quantum computer, not all the qubits are directly coupled. Based
on the coupling between qubits, we can see the topology of a quantum processor as a graph.
The qubits are represented by the vertices, and the edges represent the coupling between
qubits. Two qubit gate operation (such as CNOT or Toffolli) cannot be directly applied on
two qubits that are not adjacent. This problem can be solved with software solutions by
applying SWAP gates, which may extend the length of quantum circuits. Thus, the better
the quantum connectivity, the better the performance.

3.3. T1 and T2

In quantum mechanics, the energy relaxation time (T1 time) describes the property of
a quantum state decaying from a high energy level state |1> approximately to a ground
state |0>. The qubit will exchange energy with the external environment, which is referred
to as “energy decay” or “energy relaxation”. In a Bloch sphere (each point in the Bloch
sphere represents a qubit’s state), the qubit in the excited state is at the south pole, while
the ground state is at the north pole. Thus, the T1 describes a longitudinal relaxation rate.

The T1 can be computed with the Rabi experiment. In Rabi oscillation, when the
external driving frequency is equal to the frequency of the qubit, the quantum state can flip
between two energy levels. Thus, it can be used to measure T1 time. The process includes
using a π pulse to excite the quantum state from |0> state to |1> state; when excited to
|1> state, after time t, the probability that the qubit is in |1> state is:

P(|1〉) = e−t/T1 (1)
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Then, we can use the above formula to get the fitting result of T1 time.
T2* time is another important metric used to benchmark the quality of qubits. T1

focuses on the energy decaying time, while T2* focuses on the pure dephasing time. T2*
can be assumed to be a kind of noise that drifts the phase, causing the fluctuations of qubits
frequency. Another parameter T2 is a transverse relaxation parameter, combining both
the energy relaxation and pure dephasing [11]. Generally, the T1, T2, and T2* have the
following relations:

1
T2

=
1

2T1
+

1
T∗2

(2)

Compared with energy relaxation, the pure dephasing is not resonant. Thus, any noise
can affect the qubits’ frequency. Since the dephasing is not related to energy exchange with
external environment, they can be reduced completely with unitary operations, such as
dynamical decoupling pulses [11].

The T2* can be measured with the Ramsey experiment. Ramsey oscillation measures
the phase decoherence time. We can apply two π/2 pulses with an interval of t time for the
qubit, and allow the quantum state to freely rotate around the z axis in the x-y plane within
the interval t. Then, the phase decoherence time is finally fitted and calculated.

3.4. Fidelity

Due to the decoherence of quantum states, a quantum state will change with time.
Reduction of gate fidelity is incurred by noise during gate operations. The gate operations
can be compared to instructions in a classical computer. A sequence of gate operations
applied to a set of qubits can be represented as a quantum circuit (quantum program).
Ideally, we can deduce the final state after applying a X gate operation to a qubit. For
instance, we can consider the initial state of a qubit as |0>. After applying the X gate, we
can obtain the final state of the qubit as |1>. However, due to noise and decoherence, the
final state will diverge with the ideal state. The fidelity is used to measure the extent of
the divergence between the final ideal state and the real state. There are many sources of
uncertain and uncontrollable physical noise in quantum computers. For each quantum
gate operation, some errors may be incurred. These errors can also accumulate during
the execution of quantum circuit, making the final computing result wrong. Therefore,
the quantum computers are error prone during quantum computation. The noise can be
introduced from many aspects. One typical type of noise is introduced by external thermal
noise. To reduce the noise introduced by heat, the superconducting-based computer
should work at an extremely cold temperature, which almost reaches absolute zero. Many
researchers try to propose error-correction mechanisms to reduce the error probability. For
instance, the “Surface Code” technique tries to build logical qubits based on physical qubits
to increase the fidelity and extend the coherence time [12]. Although researchers strive
to reduce the error in quantum computers, errors are believed to be an inevitable factor
in quantum computing for a long period. Thus, Preskill et al. categorized the quantum
computers in different stages, and the quantum computer will remain in the NISQ era in
upcoming years [13].

Quantum state tomography (QST) identifies an unknown state after measurement [14].
Quantum process tomography (QPT) and quantum benchmarking techniques can be used
to characterize the gate fidelity. With the increase of the number of qubits, the parame-
ters involved in QPT increase dramatically. Thus, QPT is quite time consuming. Other
quantum benchmarking technique can be seen as quantum benchmarking protocols, which
are different from the quantum benchmarks in this paper. Most quantum benchmarking
protocols for estimating gate fidelity are taken from the physical area. For instance, cycle
benchmarking protocol is very suitable for large-scale quantum processors [15]. Random-
ized benchmarking (RB) [16] is used to measure the “average performance” of quantum
computer gates. Extended randomized benchmarking (XRB) can be used to estimate the
probability of a stochastic error during a random gate.
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4. Aggregated Benchmarks

Each metric can reflect one aspect of the one or two qubit’s performance. However,
the quantum processor consists of many qubits connected with different topology. To better
evaluate the performance of a quantum computer, people try to propose an aggregated
metric to directly reflect the performance of a quantum processor.

4.1. Quantum Volume

When building a larger-scale quantum computer, its performance is susceptible to
many factors, such as the number of qubits, connectivity of qubits, and error rate when
applying quantum gates. To this end, IBM proposed the quantum volume (QV) [17], a
metric used to represent the performance of a quantum computer. Quantum volume is
calculated as 2k, where k is the largest number of a quantum circuit consisting of k qubits
and k-layer gate operations taken from the Haar-random SU(4) unitaries. The QV considers
both the number of qubits and the quality of gate operations and measurement. After
running the k-layer quantum circuits, the “correct” measured results (heavy output) should
be above a certain threshold [18]. Thus, it means that the higher gate fidelity can lead to
larger QV.

After the first proposal of quantum volume, many researchers address the flaws of
QV. For instance, the quantum circuit used by the quantum volume is a “square”, since
it constrains the minimum circuit depth and number of qubits. For some algorithms, the
quantum circuit is not “square”. In the factorization algorithm (Shor algorithm), the width
of the quantum circuit is n, but the depth is n3 [19]. So, QV may not necessarily be the
widely accepted quantum benchmarking indicator. Moreover, the QV can be very large in
some cases. For instance, the scale of QV reaches almost 4 million for an ion-trap quantum
computer [20]. However, for superconducting computers, the QV generally only reaches
128 maximally. This is mainly because the gate fidelity of superconducting quantum
computers is below the gate fidelity of the trapped-ion quantum computers. Additionally,
the QV is calculated as 2 to the power of the number of high-quality qubits. Thus, the QV
can be quite large in trapped-ion quantum computers. Although QV has drawbacks, it is a
great endeavor to draw people’s attention to the problems in a quantum computer, instead
of only focusing on the number of qubits in a quantum computer [21].

4.2. Algorithmic Qubits

The QV metric will become very large because it is exponential to the number of
effective width and length for a given circuit. Since the IonQ’s quantum computer has
comparatively high gate fidelity, the QV numbers will grow quickly. To address the
shortcomings of quantum volume, IonQ introduces a new benchmark—algorithmic qubits.
The number of algorithmic qubits (AQ) determines how big a quantum circuit can be
executed on a quantum computer. AQ considers error correction and is directly related to
the number of qubits. The IonQ’s roadmap for their future quantum computers is based on
the AQ metric [22]. IonQ also publishes an online tool for allowing users to calculate the
AQ value of a quantum computer, given its basic properties [23].

4.3. Mirroring Benchmarks

Proctor et al. concluded that the standard error metrics obtained through random
disordered program behavior cannot accurately reflect the performance for some real-world
problem [24]. To provide direct insight into a processor’s capability, Proctor et al. built
the benchmarks starting from the quantum circuits of varied sizes and structures and
transformed the circuits to the mirror circuits that can be efficiently verifiable. In ref. [24],
the quantum benchmarks include: the volumetric circuit benchmarks (referring to the IBM
quantum volume [19]), the randomized mirror circuits (alternating the layers of randomized
Pauli gates and Clifford gates chosen from a sampling distribution), and the periodic mirror
circuits (consisting of iteratively germ circuits that can amplify the errors). Proctor et al.
assumed that the mirror benchmarks are more efficient, reliable, and scalable for predicting
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the performance of quantum computing in solving real world problems. The randomized
mirror circuit benchmarks are evaluated on twelve processors of IBM quantum computers
and Rigetti quantum computers. Their experimental results show that current quantum
computing hardware suffers from complex errors. The errors in the structured quantum
circuits of real-world applications are quite different from the standard error metrics from
random benchmarking techniques. The capability of a quantum processor can be reflected
by a similar approach, such as quantum volume. The results also imply that whether a
quantum circuit can be successfully run on a quantum processor depends on the circuit’s
shape and the exact arrangement of the quantum gates.

4.4. CLOPS

In [25], Wack et al. identified three key attributes for evaluating the performance of
a quantum computer: quality, speed, and scale. The quality is measured by the quantum
volume deciding the maximum size of quantum circuit that can be executed. The scale
can be represented by the number of qubits. The speed is measured by the circuit layer
operations per second (CLOPS). The CLOPS metric considers the interaction between
classical computing and quantum computing because real-world applications include both
the classical processing and the quantum processing. The CLOPS is defined as the number
of QV layers executed per second. The CLOPS benchmark includes 100 parameterized
templated circuits. It allows the system taking all optimizations during the data transfer of
circuits and results, run-time compilation, latencies in loading control electronics, initial-
ization of control electronics, gate times, measurement times, reset time of qubits, delays
between circuits, parameter updates, and results processing.

Limitations of the benchmark: The CLOPS mostly focuses on the quantum computing
part. The computation accounts only for the runtime compilation and optimization. Thus,
in CLOPS, the classical computation serves as assistance to the quantum computing. Im-
provement in the performance of the classical part can barely contribute to the improvement
of CLOPS. For an extreme case, when all applications are executed in a classical computer,
the CLOPS will be zeroed, since no quantum circuits are executed. Moreover, the CLOPS
only considers the time for executing an application, but the quality of qubits and gate
operations is reflected in other parameters. From the experimental results of [25], we can
see that the quantum circuit execution time only takes quite a small proportion (less than
1%) of the total execution time.

5. Application-Based Benchmarks

The physical properties of a quantum computer can affect its performance. However,
it is difficult to determine whether a quantum computer outperforms another only based
on these properties. For instance, a quantum computer “A” has less qubits, but the qubits’
quality of another quantum computer “B” is higher. If a quantum application needs more
qubits, then “A” is preferred. If a quantum application requires the qubits’ quality to
be higher, then “B” is preferred. Therefore, some researchers propose to evaluate the
performance of a quantum computer with a real-world quantum application.

A summary of the application-based quantum benchmarks is shown in Table 2. In
Table 2, we can see that most quantum benchmarks consider the typical combinational
optimization problems and use variational quantum circuits (VQC) to solve the problem.
This is mainly because the combinational optimization problems can be widely used in
many real-world scenarios, such as traffic engineering and flight scheduling. Moreover, the
variational quantum solutions, such as quantum approximation optimization algorithm
(QAOA) and variational quantum eigensolver (VQE) are popular, due to the possibility to
obtain a useful result on NISQ devices. Thus, most people believe that, in the NISQ era, the
variational quantum solution will remain the most effective solution.
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Table 2. Summary of the application-based quantum benchmarks.

Reference Benchmark Name Problems Solution Metrics

[26] Qpack

Max-Cut, dominating
set, and travelling
salesman problem

(TSP)

VQC

Runtime, best
approximation error,

success probability, and
performance scaling

[27] Q-Score TSP and Max-Cut VQC Q-Score

[28] F-VQE Max-Cut VQC N/A

[29]
Variational quantum
factoring (VQF) and
fermionic simulation

Variational quantum
factoring (VQF) and
fermionic simulation

VQC The effective fermionic
length of the device

[30] Machine learning
application

Approximating an
unknown probability
distribution from data

Data-driven quantum circuit learning
algorithm (DDQCL).

qBAS (bars and
stripes) score

[31]
3

application-motivated
quantum circuit

N/A

The quantum circuits include: the
deep class of the quantum circuit is

taken from the state preparation in the
VQE (variational quantum

eigensolver) algorithm; the shallow
class of quantum circuits refers to the
circuits whose depths increases slowly
with the growth of width (number of

qubits); square is inspired by the
quantum volume benchmark.

Heavy output
generation probability,

cross-entropy
difference and

l1-norm distance

[32]
Application-oriented

performance
benchmarks

N/A

The quantum circuits of the
benchmark include: shallow simple
Oracle-based algorithms, quantum
Fourier transform (QFT), Grover’s

search algorithm, phase and
amplitude estimation, Monte Carlo

sampling, variational quantum
eigensolver (VQE), and Shor’s

order finding.

The quality and
execution time

[33] Quantum LINPACK Dense random matrix
in a quantum problem

RAndom Circuit Block-Encoded
Matrix (RACBEM). N/A

[34] Quantum chemistry
benchmark

Electronic structure
calculation instances

reduced unitary coupled cluster
ansatz (UCC, a state preparation

circuit) and hardware-efficient ansatz
(Variational Quantum

Eigensolver, VQE).

Performance and
accuracy

[35] QASMBench N/A

Quantum circuits are taken from
chemistry, simulation, linear algebra,
searching, optimization, arithmetic,

machine learning, fault
tolerance, cryptography.

circuit width, depth,
gate density, retention
lifespan, measurement

density and
entanglement variance

We summarize the existing application-level quantum benchmarks as follows.

5.1. QPack

QPack is a benchmark including three typical combinational optimization problems:
Max-Cut, dominating set, and travelling salesman problem (TSP) [26]. Mesman et al.
propose solutions to these problems with a hybrid implementation on classical and quan-
tum hardware. Mesman et al. mainly evaluated the following metrics: runtime, best
approximation error, success probability, and performance scaling. Since the QAOA-based
implementation cannot be solved without the assistance of classical hardware, the run-
time is evaluated based on different aspects. It includes the overall runtime of a hybrid
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implementation, runtime on classical hardware, connection between classical and quantum
hardware, preprocessing and routing, and runtime on quantum hardware. The best approx-
imation error and success probability refers to the extent that QAOA can approximate an
optimal solution. The performance scaling is determined by whether the success probability
decreases as the problem size grows.

5.2. Q-Score

Q-Score considers the quantum solution to the variational optimization problems [27].
To evaluate an application’s performance on a QPU, Q-Score requires the user to provide
both the QPU hardware and software stack. Q-Score considers two typical combinational
problems, including TSP and Max-Cut. In the open-source implementation of Q-Score,
they only provide implementation on the Max-Cut job. Users can customize a random
Erdos–Renyi graph and use QAOA to solve the problem [27].

5.3. F-VQE

Researchers from Cambridge Quantum proposed a filtering variational quantum
eigensolver (F-VQE) to efficiently solve the combinational optimization problem with less
qubits [28]. The algorithm is tested by solving random weighted Max-Cut problems on
the Honeywell H1 quantum computer. The problem size of Max-Cut reached 23, but the
number of qubits required by quantum circuits is less than 6.

5.4. Variational Quantum Factoring

Zapata tries to investigate what can be done with NISQ devices. Thus, Zapata pro-
posed to benchmark quantum devices with variational quantum factoring (VQF) and
fermionic simulation [29,36]. The VQF solves the integer factoring problem with varia-
tional quantum solutions, such as VQE and QAOA. The fermionic simulation includes
the 1D Fermi–Hubbard model, which is representative of chemistry and materials science
problems. Its analytical solution is known and can be easily extended into a 2D structure,
which can be converted to a difficult quantum problem. The metrics for the application
benchmark is the effective fermionic length of the device, which can reflect the performance
of the entire device [37].

5.5. Data-Driven Quantum Circuit Learning Algorithm (DDQCL)

Benedetti et al. perceived that NISQ devices can be used for practical applications with
hybrid quantum-classical algorithms (e.g., VQE, QAOA) [30]. Thus, Marcello et al. tried to
evaluate the performance of NISQ devices with machine learning application and propose
a data-driven quantum circuit learning algorithm (DDQCL) to train shallow circuits for
generative modeling, approximating an unknown probability distribution from the data.
The problem tries to minimize the Kullback–Leibler (KL) divergence between the quantum
circuit probability distribution to the target probability distribution. Benedetti et al. used
the particle swarm optimization (PSO) to minimize the cost functions. They used the 2N

amplitudes of the wave function and built a Born machine in a quantum computer to
find the correlations in a dataset. The generative modeling task in the paper considers the
quantum circuit depth, gate fidelities, and connectivity of qubits. To characterize the hybrid
quantum-classical hardware’s capability, Benedetti et al. proposed the qBAS (bars and
stripes) score. The DDQCL can learn a quantum circuit that encodes all the BAS patterns in
the wave function of a quantum state. The qBAS is an instantiation of the F1 score that is
widely used in the area of information retrieval, considering both the precision (denoted
as p) and recall (denoted as r). The BAS is a synthetic data set of images for generative
learning models. The qBAS (n,m) is defined as 2pr/(p + r). The precision is defined as the
percentage of measurements belonging to the BAS (n,m) dataset. The recall represents
the capability to reconstruct the patterns. This metric has been evaluated on an ion-trap
quantum computer with GHZ (Greenberger–Horne–Zeilinger) states and coherent thermal
states preparation.
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5.6. 3 Application-Motivated Benchmarks

Daniel et al. assumed that quantum computers should be evaluated on practical
tasks [31]. They proposed three application-motivated quantum circuits:

• The deep class of the quantum circuit is taken from the state preparation in the VQE
(variational quantum eigensolver) algorithm;

• The shallow class of quantum circuits refer to the quantum circuits whose depth
increase slowly with the growth of the width (number of qubits). Shallow is inspired
by the IQP (instantaneous quantum polytime)-type quantum circuit, which can be
used in quantum machine learning in NISQ. The idea of the shallow circuit is to apply
Hadamard gate to all the qubits. Then, a random binomial graph is generated with all
the qubits as vertices. The CZ gate acts on all the edges in the graph. After this stage,
the Hadamard gate is applied to all the qubits. Finally, the qubits are measured on a
computational basis.

• The square class is inspired by the quantum volume benchmark. The circuit’s depth
grows linearly with the number of qubits. The quantum circuit is generated by
applying quantum gates randomly chosen from SU(4) for polynomial times of the
circuit width.

The above benchmarks can help to quantify the performance of a quantum computing
system after executing the above circuits. Daniel et al. chose three metrics that can be
computed with classical computers: heavy output generation probability, cross-entropy
difference, and l1-norm distance. The HOG (heavy output generation) evaluates the
produced bitstrings, after executing a quantum circuit with the highest probability, that
are the most likely in the ideal distribution. The cross-entropy benchmarking is related to
the average probability between an ideal distribution and real distribution. The l1-norm
distance measures the total divergence of the probability distributions to the sample space.
In [31], Daniel et al. assumed that the comprehensive benchmark of the computational
capability of a quantum computing system should consider all the aspects that affect the
performance: qubits, compilation strategy, and classical control hardware.

5.7. Application-Oriented Performance Benchmarks

Due to the complex errors in quantum hardware, a single metric cannot accurately
show the performance of the hardware on all applications. For the wide and shallow
quantum circuits or deep and narrow circuits, the quantum volume cannot precisely reflect
the performance. The component-level performance metrics (physical metrics, such as T1
and T2) are difficult for non-specialists to understand. Thus, Thomas et al. proposed an
open-source suite of quantum application-oriented performance benchmarks, including
various algorithms and small applications [32]. With their benchmarks, the hardware
developers can quantify their progress in quantum hardware. The users can predict the
performance of a meaningful computational application on the hardware. The benchmark
can benchmark the quality and execution time of a quantum processor.

The selected algorithms and applications include: shallow simple Oracle-based algo-
rithms, quantum Fourier transform (QFT), Grover’s search algorithm, phase and amplitude
estimation, Monte Carlo sampling, variational quantum eigensolver (VQE), and Shor’s
order finding. Thomas et al. categorized the benchmarks into three classes: tutorial, sub-
routine, and functional. The “tutorial” class refers to the basic and simple algorithms,
e.g., Deutsch–Jozsa, Bernstein–Vazirani, and hidden shift. The “subroutine” class includes
the commonly used quantum circuits that work as a critical part of an application. The
“functional” class consists of several almost complete applications. In [32], Thomas et al.
mainly focused on the quantum computing part. For each benchmark, they generated a set
of quantum circuits for different problem sizes. The fidelity for each quantum circuit should
be above 1/2, which corresponds to the heavy output probability of 2/3 in quantum volume.
After executing the quantum circuits, Thomas et al. applied the volumetric benchmarking
mechanism in quantum volume and evaluated the quality of each benchmark on different
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problem size and circuit’s depth. The fidelity of an output of a benchmarking case is based
on the classical Hellinger distance.

These benchmarks are evaluated on several real quantum computing devices, in-
cluding Rigetti computing delivered by Amazon Braket Service, IBM Quantum Services,
Honeywell System Model H1, and IonQ via Amazon Braket. The benchmark now is open-
source and publicly available at [38]. To allow users easily execute on different quantum
hardware, the benchmark is implemented with different programming languages, includ-
ing Qiskit, Cirq, Braket, and Q#. In [32], Thomas et al. improved the quantum volume by
introducing three types of benchmarks. However, the benchmark needs many manually
pre-set parameters, such as the range of the problem size. The parameters depend on user’s
experience. For iterating a wide range of benchmarks, it can be quite slow. Moreover, after
benchmarking, although the visualization of the results follows a similar approach as quan-
tum volume, it is still difficult for the users to interpret the visualized results and predict the
performance of the hardware on their own quantum hardware. Another important issue
has been mentioned in the paper. The proposed benchmark mainly focuses on the quantum
computing part. Although Thomas et al. measured the compilation time, the classical
computation time, and the quantum execution time, they could not accurately predict
the performance of a hybrid quantum application because the capability of a quantum
computer is related to the how the quantum system is used in a hybrid application.

5.8. Quantum LINPACK

To evaluate the performance of an HPC, Jack Dongard proposed the LINPACK (Linear
system package). LINPACK benchmark is used to measure the peak performance of an
HPC and appended to the Linpack User’s Guide as an appendix. The benchmark reports
the performance for solving a general dense matrix problem (Ax = b) [39]. The program size
includes the 100 × 100 problem (can use inner loop optimization), 1000 × 1000 problem
(three loop optimization), and a scalable parallel problem (manufacturer can choose the al-
gorithm based on their available memory on their computers). It is based on a mathematical
library called the BLAS (basic linear algebra subgprograms).

Inspired by the LINPACK benchmark in classical HPC, Dong et al. proposed a
quantum LINPACK benchmark and proposed a random circuit block-encoded matrix
(RACBEM), which generalizes a dense random matrix in a quantum problem [33]. The
benchmark can be difficult for a classical computer to solve, but the quantum computer
can solve it effectively. Thus, it can be used to demonstrate quantum advantage. Dong et al.
implemented RACBEM to solve various numerical quantum linear algebra tasks on IBM
Q quantum devices and QVMs configured with noise. However, to achieve quantum
advantage, the RACBEM requires the high quality of NISQ devices and QRAMs.

5.9. Quantum Chemistry

Ref. [34] proposes a quantum chemistry benchmark with a series of electronic structure
calculation instances. The quantum algorithmic primitive includes the reduced unitary
coupled cluster ansatz (UCC, a state preparation circuit) and hardware-efficient ansatz
(variational quantum eigensolver, VQE). The variation of UCC is used to measure the
performance and accuracy of quantum computations. The accuracy of VQE is evaluated by
recovering the ground state energy for a set of molecules (alkali metal hydrides, NaH, KH,
and RbH). The circuit depth of UCC is larger than the HWE ansatz. They evaluated the
benchmark on IBM Tokyo and Rigetti Aspen. The benchmark now is open source [40].

5.10. QASMBenchmark

QASMBench is a low-level benchmark based on the quantum assembly language
OpenQASM [35]. The quantum circuits in the benchmarks are taken from a wide range
of applications: chemistry, simulation, linear algebra, searching, optimization, arithmetic,
machine learning, fault tolerance, and cryptography. Based on these quantum routines
and kernels, Li et al. evaluated the quantum circuit width, depth, gate density, retention
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lifespan, measurement density, and entanglement variance. The circuit width is directly
defined by the number of qubits used in a quantum circuit. The circuit depth is computed
as the total time-steps for conducting all the gate operations in a quantum circuit. The gate
density considers a quantum circuit as a rectangle, which is denoted as the occupancy of
gate operations in the rectangle. The retention lifespan measures the maximum lifespan
of qubits, which is closely related to the T1 and T2 coherence time of all qubits. The
measurement density evaluates the importance of the measurements. Since the 2-qubit
gate heavily affects the error of a quantum circuit, the entanglement variance assesses the
balance of entanglement of the qubits in a quantum circuit.

The QASMBench is now open source and available through: [41].
The QASMBench is categorized into three classes, according to the number of qubits

used: small scale, with qubits from 2 to 5; medium scale, from 6 to 15; large scale, with
more than 15 qubits.

The QASMBench can be converted to other representations, such as Q#, PyQuil, and
Cirq, with a q-convert tool [42].

5.11. Quantum Supremacy Benchmarking

In recent years, the quantum supremacy or quantum advantage attracts wide attention.
The concept of quantum supremacy was first proposed by Preskill in 2012 [43]. The
evaluation of quantum supremacy requires the completion of the following four aspects
of work:

(1) Define a specific computing problem;
(2) Propose an appropriate quantum algorithm for problem;
(3) Compare the quantum solution with the best result, given by the optimal classical

algorithm;
(4) By analyzing the complexity of the quantum algorithm, it is verified that the

quantum algorithm can achieve speedup, compared to the classical algorithms.
In [44], Torels et al. defined five different types of quantum speedup. The provable

quantum speedup refers to the theoretical proof that no classical algorithm can have
better performance than a given quantum algorithm. A strong quantum speedup means
the optimal classical algorithm has been found and cannot compete with the quantum
algorithm in solving the same problem. The potential quantum speedup refers to comparing
with a specific classical algorithm or a set of classical algorithms. The limited quantum
speedup refers to comparing the classical algorithm implemented in a same algorithmic
approach. A typical example of limited quantum speedup is quantum annealing vs.
classical simulated annealing. Usually, the quantum speed-up refers to comparing the best
available classical algorithm, but not the best possible classical algorithm [44].

At present, there are several widely used quantum benchmarks to demonstrate quan-
tum advantage, including Shor’s algorithm, random quantum circuit sampling, and boson
sampling problem. We briefly introduce the benchmarks and discuss their advantages
and limitations.

Shor’s algorithm: The Shor’s algorithm is a polynomial-time quantum algorithm
to solve the problem of prime factor decomposition. The prime factor decomposition
is one of the most important problems that forms the basis of the modern encryption
system. Moreover, the problem is difficult to solve, even with a classical high-performance
computer. In [45], Peter Shor first proposed the Shor’s algorithm, which can help to solve
the prime factor decomposition problem effectively with a quantum computer. Since then,
increasing interest has been attracted by quantum computing. Many companies (e.g., IBM
and Google) and research institutes pay a lot of effort to designing and implementing
their quantum computers. Intuitively Shor’s algorithm can help demonstrate quantum
supremacy. However, to execute Shor’s algorithm in a real quantum computer requires
a lot of effort. Craig and Martin combined several techniques together and made a set
of plausible assumptions: a quantum processor of a planar grid topology with nearest-
neighbor connectivity, a physical gate error rate of 10−3, a surface code cycle time of
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1 microsecond, and a reaction time of 10 microseconds. Gidney et al. estimated that
factoring 2048-bit RSA integers may need 20 million qubits [46]. The above analysis is
based on many underlying assumptions, and Jinyong et al. further analyzed the required
quantum resources of implementing Shor’s algorithm under different conditions. Their
work is also based on some assumptions that quantum error correction (rotated surface
code) and all-to-all connectivity of logical qubits are used. Shor’s algorithm depends
on the modular exponentiation. Beauregard algorithm uses a smaller number of logical
qubits. Pavlidis algorithm may require less depth when logical qubits are used. In a
quantum computer with 2048 qubits and error rate of gate operation of 10−3, the Beauregard
algorithm requires 12 million physical qubits for data and almost 1 million physical qubits
for magic-state factories [47]. The Pavlidis algorithm requires almost 50 million physical
qubits for data and almost 600 million physical qubits for magic-state factories [48,49].

From the above description, we can see that, although Shor’s algorithm can accelerate
the factoring of integers theoretically, running the Shor’s algorithm in a real quantum
computer is non-trivial. Thus, the current quantum computers are far from demonstrating
the Shor’s algorithm and show quantum advantage.

Random circuit sampling: Random circuit sampling (RCS) [50] refers to sampling
from the probability distribution of randomly selected quantum circuits. In June 2021,
a team from the University of Science and Technology of China developed a 66-qubit
superconducting processor “Zuchongzhi” and run random line sampling [51], which
is expected to be 2–3 orders of magnitude higher than Google’s 53-qubit “Sycamore”
quantum processor.

Boson Sampling [52] refers to sampling the probability distribution of sent bosons
through a linear optical network. It is a computational problem that quantum computers
can solve more effectively than classical computers. Thus, it can be one of the candidates
for evaluating quantum supremacy. It is mentioned in the introduction that 76 photon
quantum computing prototypes “Jiuzhang” have realized the calculation of “Gaussian Bo-
son Sampling (GBS)”, and its calculation speed is 100 trillion times that of supercomputers.
However, the random quantum circuit sampling problem cannot be directly used for solv-
ing real world problems. Moreover, as the scale of the problem increases, the depth of the
quantum circuit will increase dramatically. Many experts from the high-performance com-
puting area improves the performance of quantum simulators by optimizing the quantum
simulation algorithm with the HPC architecture, which can also accelerates the execution
of RCS and Boson sampling problems in a high-performance computer [53,54].

Moreover, the sampling problem cannot be applied in real-world scenarios directly.
Thus, most researchers argue with sampling problems, and the quantum computer remains
to be a physical device that is not effective in solving real world problems.

6. Discussion

In recent years, many countries have elevated the development of quantum comput-
ers to a national strategic level. More and more quantum computers are designed and
implemented. To allow users to easily identify the computation capabilities of the quantum
computers, instead of only focusing on the number of qubits, the quantum benchmarking
becomes increasingly important. Apart from the metrics mentioned above, there are other
aspects we need to consider:

(1) Stability of quantum computers.
Although we can calculate the average gate fidelity through benchmarking protocol

such as RB, the gate fidelity can vary with time. When executing quantum programs, the
gate fidelity is not always trustworthy. For experimental researchers working on quantum
computing, they are putting a lot of effort into improving the optimal gate fidelity and
coherence time. The stability is mainly affected by the hardware sources of noise (e.g., flux
noise and oscillator drift) and how frequently and accurately calibrations are repeated.

Based on our observation, the QV is also not stable, due to the variance of gate fidelity
and coherence time. Usually, the claimed QV is measured at the best performance. However,
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when a user uses a quantum computer, the QV may not reach the claimed number. The
TOP500 is also concerned with the peak performance of the HPCs. However, the quantum
computer works in a quite different way. Although the peak performance of an HPC can
vary, the variance of the performance of a quantum computer is quite large.

To the best of our knowledge, there is no benchmarking criteria considering the
stability of the quantum computer’s performance directly.

(2) Criteria for building a quantum benchmark.
Although there is no universal quantum benchmark for quantum computers, we

summarize the criteria for benchmarking a quantum computer:

• The benchmark should be representative of real-world problems. In the early stages of
SPEC, people mostly use HPC to solve linear equations. Nowadays, AI is becoming a
hot topic. Thus, the benchmarking approach of SPEC includes more AI solutions.

• The benchmark should demonstrate quantum advantage. Nowadays, theoretic quan-
tum researchers try to find effective quantum solutions to real world problems and
problems that can help to demonstrate quantum advantage. For instance, Rooya Ron-
agh proposed a quantum algorithm for solving finite-horizon dynamic programming
problems [55]. Some sampling problems can be easily solved in a quantum computer,
but for a classical computer, the problem is not so easy. Some people may argue
the quantum computer is a physical instrument that cannot be used for computing.
Therefore, we highlight using quantum computer to solve real world problems.

• The benchmark should be easily customizable. For instance, the test set should not
only require the number of qubits to exceed a certain threshold. For a quantum
computer with high gate fidelity, but less qubits, the test set should also work.

Although the benchmark for classical supercomputers has been set up for almost
30 years, the benchmark evolves gradually with the development of human needs and
HPCs. In recent years, people focus on the power consumption of an HPC. Thus, Green
500 is used to measure the energy efficiency of an HPC. It is evaluated as the perfor-
mance per watt [56]. GRAPH500 is a benchmark proposed to evaluate the performance of
supercomputers in solving the large graph problems [57].

(3) Benchmarking in a heterogeneous systems
With the development of quantum computing technology, more and more quantum

processors are produced. Due to the different physical implementations of quantum
computers (superconducting, trapped ion, photon, nuclear magnetic resonance (NMR),
quantum dots) and different properties of quantum processors (e.g., processor topology,
T1, T2, and gate fidelity), the quantum processors can be connected as a distributed
heterogenous system, similar to how a hybrid classical computing cluster consisted of
heterogenous computing nodes. A hybrid classical computing cluster consists of nodes
with different number of CPUs, GPUs, and FPGAs. The CPU computing nodes may also
be heterogenous of different number of CPU cores and memories. The quantum processors
can facilitate the distributed quantum computing.

In the future, it is essential to take advantage of different quantum processors. For a
real-world application, it may include modules that need quantum processors with shallow
depth, but more qubits, as well as quantum processors with deeper depth, but less qubits.

(4) Set up the QTOP100 list of quantum computers.
The TOP500 list was created in 1993 to rank the 500 world’s fastest computer [56].

Twice every year, the committee of TOP500 updates the TOP500, based on the running
performance of HPL N*N on these computers. We can refer to the success of TOP500, and
set up the QTOP100 in the quantum computing area.

7. Conclusions

By comparing the benchmark technology of high-performance computers, this paper
addresses the importance of quantum benchmarks and summarizes the existing technolo-
gies on how to benchmark the performance of a quantum computer. We classify the existing
technologies into three categories: physical level benchmark, aggregated level benchmark,
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and application-level benchmark. We can see that a perfect quantum benchmark does
not exist.

We also discuss the future trends of quantum benchmarking. The quantum bench-
marking techniques will change with time, similar to the benchmarks in the HPC area.
In the future, we believe that the quantum benchmarks will be more concerned with
the real-world problems. The stability and robustness of a quantum computer will be
heavily addressed.
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