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Abstract: We propose a linear separation method of multivariate quantitative data in such a way that
the average of each variable in the positive group is larger than that of the negative group. Here, the
coefficients of the separating hyperplane are restricted to be positive. Our method is derived from the
maximum entropy principle. The composite score obtained as a result is called the quantile general
index. The method is applied to the problem of determining the top 10 countries in the world based
on the 17 scores of the Sustainable Development Goals (SDGs).
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1. Introduction

Consider a data matrix, each row of which corresponds to a case, and each column
represents a variable. Suppose that every variable has the meaning that a larger value
indicates better. For example, ref. [1] investigated the efforts of countries to attain the SDGs
(Sustainable Development Goals) and reported the 17 SDG scores for each country. The
scores ranged from 0 to 100. In the report, a ranking of 163 countries on the basis of the
average of the 17 scores was provided. We call such a procedure of ranking the simple
sum method.

However, we sometimes find a paradoxical phenomenon in the simple sum method,
in that a particular variable of a higher-score group is less than that of the remaining
group. See Table 1 for illustration, where we separate the SDGs data into two groups: the
10 top countries on the basis of the simple sum method and the remaining 153 countries.
The average values of each variable for the two groups are compared. On almost all
the variables, the 10 top countries have larger averages than the remaining countries, as
expected. However, there are reverse relations in the SDGs 12 and 13. The 10 top countries
have an average value lower than the remaining countries on the two goals.

In this paper, we propose a linear weighting method that can avoid the reversal relation
(in a random-decision sense). The higher-score group separated by the linear weight has
average values greater than the remaining group with respect to all the variables. The
idea behind the method is the objective general index (OGI; [2]), which is constructed to
have a positive correlation with all the variables. The purpose of the OGI is the ranking
and not the separation. The OGI is interpreted as a minimization problem of a free energy
functional [3,4], which is the sum of the negative entropy and an internal energy functional.
This interpretation also works in the current setting; see Section 2.

The problem of determining weights is unsupervised in the sense that no one knows
the correct weights and classifications, which has been consistently discussed (e.g., [5,6]).
There are many weighting methods for such purposes. Among them, the principal com-
ponent analysis (PCA) is widely used. The PCA, however, does not always give positive
weights; so, some modifications are necessary. It is known that a nonnegative version of
the principal component analysis is a nonconvex and NP-hard optimization problem [7].
Another approach is the factor analysis, where a factor model refers to a set of multivariate
distributions that have common latent factors (e.g., [8]). Although the factor analysis is
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quite flexible, it needs additional assumptions such as variance–covariance structures and
often does not have a unique solution. In contrast, the quantile general index we propose is
reduced to a convex optimization problem and is essentially unique as we will demonstrate.
The Hirsch index (or h-index) is widely used for the evaluation of scientific research re-
ports [9], and its further application has been recently investigated by [10]. We numerically
compare our method with the h-index in Section 5.

Table 1. The average values of the SDG scores for the 10 top countries (Finland, Denmark, Sweden,
Norway, Austria, Germany, France, Switzerland, Ireland and Estonia) and the remaining 153 countries.
The values with the reversal relations are marked by asterisks.

SDGs Average of the
10 Top Countries

Average of the
Remaining Countries

1 (no poverty) 99.6 73.8
2 (zero hunger) 68.5 58.6
3 (good health and well-being) 94.1 68.0
4 (quality education) 98.2 74.9
5 (gender equality) 84.8 60.1
6 (clean water and sanitation) 89.4 66.2
7 (affordable and clean energy) 83.8 64.8
8 (descent work and economic growth) 85.0 66.3
9 (industry, innovation and infrastructure) 91.8 43.2
10 (reduced inequalities) 92.3 59.7
11 (sustainable cities and communities) 92.8 68.8
12 (responsible consumption and production) 60.3 * 85.6 *
13 (climate action) 54.7 * 81.9 *
14 (life below water) 71.4 64.3
15 (life on land) 80.4 64.8
16 (peace, justice and strong institutions) 87.8 65.2
17 (partnerships for the goals) 71.8 58.5

Source: The Sustainable Development Report 2022 [1].

The name of the quantile general index comes from the quantile regression developed
by [11]. Indeed, the objective function we use is similar to those of the quantile regression;
see the explicit form in Section 3. The essential difference here is that our problem is
unsupervised, whereas the regression problems are supervised.

The general indices determine an ordering of the data. The problem of well ordering
multivariate data was discussed by [12], where methods of ordering were classified into
four categories: marginal ordering, reduced ordering, partial ordering, and conditional
ordering. Our method is considered as marginal ordering on the weighted sum.

The paper is organized as follows. In Section 2, we define the quantile general index
for continuous distributions and show that it is characterized by the maximum entropy
principle. In Section 3, a finite-sample counterpart of the quantile general index is derived.
In Section 4, a practical method that avoids the ambiguity of data lying on the separating
hyperplane is proposed. We apply the method to the SDG data in Section 5, and we
conclude in Section 6.

2. Quantile General Index for Continuous Distributions

The quantile general index for continuous probability distributions is defined first. The
assumption of continuity avoids the difficulty caused by the non-smoothness of the objec-
tive function. The sample counterpart of the index is constructed in the subsequent section.

Suppose that we have a random vector x = (x1, . . . , xd)
> following a probability

distribution P on Rd, where > denotes the vector transpose. We assume that P has the
probability density function p(x) so that P(A) =

∫
A p(x)dx for an event A ⊂ Rd. For
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given h : Rd → R, we denote the expectation of a random variable h(x) by E[h(x)] =∫
p(x)h(x)dx and the conditional expectation of h(x) given an event A by

E[h(x)|A] =

∫
A p(x)h(x)dx∫

A p(x)dx
.

We deal with a class of general indices

g(x) = g(x; w, c) =
d

∑
i=1

wixi − c (1)

of x, where w = (w1, . . . , wd)
> ∈ Rd

+ and c ∈ R are called the weight vector and the
threshold, respectively. Here R+ denotes the set of positive numbers. The quantities w and
c may depend on the underlying distribution P but do not depend on x itself.

For a given g of the form (1), the half spaces separated by the hyperplane g(x) = 0 are
denoted by

H+
g = {x | g(x) > 0} and H−g = {x | g(x) < 0}.

The quantile general index is defined as follows.

Definition 1. A general index g(x) = ∑i wixi − c is called the quantile general index of x if it
satisfies the following two equations:

P(H+
g ) = α (2)

and

E[wixi |H+
g ]− E[wixi |H−g ] = 1, i = 1, . . . , d. (3)

The weight w is called the optimal weight.

Let us call H+
g and H−g the positive and negative group, respectively. Equation (2)

means that the fraction of the positive group is α. The threshold c is the upper α-quantile
of the weighted sum w>x because P(w>x > c) = α by (2). We call α the acceptance ratio.
Equation (3) implies that the average of each variable xi on the positive group is greater
than that on the negative group. Therefore, the reversal relation observed in Table 1 does
not occur if we adopt the quantile general index.

We now state the existence and uniqueness theorem of the quantile general index. For
0 < α < 1, we define the “check” loss function `α : R→ R by

`α(u) =
u−

1− α
+

u+

α
, (4)

where u+ = max(u, 0) and u− = max(−u, 0) are the positive and negative parts of
u, respectively. See Figure 1 for the graph of `α. The function `α is used in quantile
regression [13]. The derivative of `α(u) for u 6= 0 is

`′α(u) = −
1

1− α
I{u<0} +

1
α
I{u>0},

where I{u>0} is 1 if u > 0 and 0 otherwise. The subgradient (e.g., [14]) at u = 0 can be also
defined but is not used here.
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Figure 1. The check-loss function for α = 0.3.

We define a convex function F : Rd
+ ×R→ R by

F(w, c) = −
d

∑
i=1

log wi + E

[
`α

(
d

∑
j=1

wjxj − c

)]
. (5)

The main theorem is stated as follows.

Theorem 1. Let x = (x1, . . . , xd)
> be a random vector with a probability density function on

Rd and assume that E[xi] exists for each i. Let 0 < α < 1. Then, the function F in (5) admits a
minimizer (w, c) ∈ Rd

+ ×R. The optimal w is unique, whereas c may not be unique. Furthermore,
the general index g(x) = ∑i wixi − c based on the minimizer (w, c) of F satisfies the conditions (2)
and (3) of the quantile general index.

Proof. The proof of existence and uniqueness is given in Appendix A. We prove that the
stationary condition of F is given by (2) and (3). The partial derivatives of F with respect to
c and wi are

∂F
∂c

= −E[`′α(g(x))]

=
1

1− α
P(H−g )− 1

α
P(H+

g )

and

∂F
∂wi

= − 1
wi

+ E[xil′α(g(x))]

= − 1
wi
− 1

1− α
E[xiI{g(x)<0}] +

1
α

E[xiI{g(x)>0}].

Note that P(H−g ) = 1− P(H+
g ), since P(g(x) = 0) = 0 from the assumption that x has a

continuous distribution. Then, the equations ∂F/∂c = 0 and ∂F/∂wi = 0 (i = 1, . . . , d) are
equivalent to (2) and (3).

Example 1. Let x1 and x2 be independent and identically distributed according to a continuous
distribution. By the uniqueness of the optimal weight and symmetry, we have w1 = w2(=w). We
denote the upper α-quantile of x1 + x2 by yα. Then, we have c/w = yα from (2) and

w =
1

E[x1|x1 + x2 > yα]− E[x1|x1 + x2 < yα]
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from (3). For example, if xi has the standard normal distribution and α = 1/2, then c = 0, and
w =

√
π/2.

The quantile general index is derived from the maximum entropy principle in line
with [4]. The entropy of a density function p is defined by

S(p) = −
∫

p(x) log p(x)dx.

Consider a class of transformations T : Rd → Rd of the form

T(x) = (w1x1 − c1, . . . , wdxd − cd), (wi, ci) ∈ R+ ×R.

The push-forward density of p by T is defined by

(T]p)(x) = p(T−1(x))|(T−1)′(x)|

= p
(

x1 + c1

w1
, . . . ,

xd + cd
wd

)
1

w1 · · ·wd
.

This is the distribution of T(x) when the random variable x follows the distribution P. It is
shown that the entropy of the push-forward density is

S(T]p) = S(p) +
d

∑
i=1

log wi.

We also define an internal energy by

U(p) =
∫

p(x)`α(∑ixi)dx,

where `α is the check loss function in (4). The following theorem characterizes the quantile
general index in terms of entropy. The proof is straightforward.

Theorem 2. The minimization problem of (5) is equivalent to

Minimize U(T]p)− S(T]p)

subject to T(x) = (w1x1 − c1, . . . , wdxd − cd),

(wi, ci), . . . , (wd, cd) ∈ R+ ×R.

The threshold c in (5) is given by c = ∑d
i=1 ci.

3. Quantile General Index for Finite Samples

The quantile general index defined in the preceding section is valid only for continuous
distributions. It is useful to define the index also for finite samples. Let x(1), . . . , x(n) ∈ Rd

be a sample of size n. We denote the i-th coordinate of x(t) by xti. We deal with a class
of general indices gt = ∑d

i=1 wixti − c, where (w, c) ∈ Rd
+ ×R may depend on the whole

sample {x(t)}n
t=1 but does not depend on t.

The empirical counterpart of the objective function (5) is

F(w, c) = −
d

∑
i=1

log wi +
1
n

n

∑
t=1

`α

(
d

∑
j=1

wjxtj − c

)
(6)

for (w, c) ∈ Rd
+ ×R.

Definition 2. A general index gt = ∑i wixti − c of x(t) for t = 1, . . . , n is called the quantile
general index if (w, c) minimizes the function (6).
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Remark 1. As described in Section 1, the objective function (6) is similar to that of the quantile
regression defined by

1
n

n

∑
t=1

`α

(
yt −

d

∑
j=1

wjxtj

)
,

where yt is a response variable and w1, . . . , wd are regression coefficients. See [13] for a comprehen-
sive study of the quantile regression.

The following theorem is proved in a similar way to Theorem 1. See Appendix A.

Theorem 3. Suppose that there is no hyperplane of Rd that contains all x(t). Then, the objective
function F in (6) admits a minimizer (w, c). The weight vector w is unique. The threshold c is
unique if nα is not an integer.

Each case x(t) is classified into positive and negative groups according to gt > 0 and
gt < 0, respectively. If the case gt = 0 does not exist, then the fraction of the positive (resp.
negative) group is α (resp. 1− α), and the conditional expectation of xti on the positive
group is greater than that on the negative group. This is the desired dominance relation.

However, it is not always possible to classify the data into positive and negative
groups, because gt may become 0 in some cases. Furthermore, the minimization of F(w, c)
is not straightforward, since the function is not differentiable. In order to avoid these issues,
we modify the method in Section 4.

For illustration, we calculate the quantile general index for the following examples.

Example 2. Consider the bivariate data

x(1) =
(

2
2

)
, x(2) =

(
2
1

)
, x(3) =

(
0
2

)
, x(4) =

(
0
0

)
of sample size 4. Let the acceptance ratio be α = 1/2. In this data, any set of three points is not on
a straight line. Therefore, there exists the quantile general index by Theorem 3. We show that the
solution is w1 = 2/3, w2 = 4/3, and c = 8/3. We consider three disjoint subsets of R2

+:

A = {w | w2 < 2w1}, B = {w | w2 > 2w1}, C = {w | w2 = 2w1}.

Let w ∈ A. Then, we have

w>x(1) > w>x(2) > w>x(3) > w>x(4)

Hence, the optimal c is between w>x(2) and w>x(3), since c is the upper 1/2-quantile of {w>x(t)}.
For such c, the objective function (6) becomes

F(w1, w2, c) = − log w1 − log w2 +
1
4

(
w>x(1)

1/2
+

w>x(2)
1/2

−
w>x(3)

1/2
−

w>x(4)
1/2

)
= (− log w1 + 2w1) + (− log w2 + w2/2).

If F is minimized at some w ∈ A, then it must be w1 = 1/2 and w2 = 2 by the stationary
condition, but this point does not belong to A. Hence, the optimal point does not exist in A.

If w ∈ B, then we have

w>x(1) > w>x(3) > w>x(2) > w>x(4)

and the objective function is

F(w1, w2, c) = (− log w1) + (− log w2 + 3w2/2),
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where w>x(2) ≤ c ≤ w>x(3). It is shown again that the optimal point does not exist in B.
Therefore, the optimal point should be located in C, the boundary of A and B. The objective

function is

F(w1, 2w1, c) = − log 2− 2 log w1 + 3w1,

where c = w>x(2) = w>x(3) = 4w1. The optimal solution is w1 = 2/3, w2 = 4/3, and c = 8/3.
The quantile general index is given by

g1
g2
g3
g4

 =


2 2 −1
2 1 −1
0 2 −1
0 0 −1


2/3

4/3
8/3

 =


4/3

0
0
−8/3

.

The index does not provide a separation of the data because g2 = g3 = 0. In this case, however, a
group {x(1), x(2)} dominates {x(3), x(4)} in the sense that the difference of averages

1
2
(x(1) + x(2))−

1
2
(x(3) + x(4)) =

(
2

1/2

)
is a positive vector.

If we set the acceptance ratio to α = 1/4, then it is proved in a similar way that the optimal
w is w1 = 3/4 and w2 = 1. In this case, c is not unique: 5/2 ≤ c ≤ 7/2. The quantile general
index is 

g1
g2
g3
g4

 =


2 2 −1
2 1 −1
0 2 −1
0 0 −1


3/4

1
c

 =


7/2− c
5/2− c

2− c
−c

.

Therefore, g1 > 0 and g2, g3, g4 < 0 as long as 5/2 < c < 7/2. The separation provides a
dominance relation:

x(1) −
1
3
(x(2) + x(3) + x(4)) =

(
4/3

1

)
.

Example 3. Consider the bivariate data

x(1) =
(

4
0

)
, x(2) =

(
2
4

)
, x(3) =

(
1
3

)
, x(4) =

(
0
2

)
of sample size 4. Let α = 1/2. In a similar manner to the preceding example, the optimal parameters
are shown to be w = (1, 1)> and c = 4. The quantile general index is

g1
g2
g3
g4

 =


4 0 −1
2 4 −1
1 3 −1
0 2 −1


1

1
4

 =


0
2
0
−2

.

In this case, no separation of the sample into two groups provides a dominance relation. Indeed, all
the possible combinations are

1
2
(x(1) + x(2))−

1
2
(x(3) + x(4)) =

(
5/2
−1/2

)
,

1
2
(x(1) + x(3))−

1
2
(x(2) + x(4)) =

(
3/2
−3/2

)
,

1
2
(x(1) + x(4))−

1
2
(x(2) + x(3)) =

(
1/2
−5/2

)
,

which are not positive.
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4. Practical Implementation

The quantile general index defined in the preceding section has the following two draw-
backs.

• The minimization is not straightforward since F is not differentiable.
• The cases with gt = 0 are not assigned to positive or negative groups.

To overcome these issues, we approximate F as

Fε(w, c) = −
d

∑
i=1

log wi +
1
n

n

∑
t=1

`α,ε

(
∑

i
xtiwi − c

)
(7)

where ε is a positive constant, and the function `α,ε : R→ R is defined by

`α,ε(u) = min
z∈R

{
`α(z) +

1
2ε
|z− u|2

}

=


u/α− ε/(2α2) if u ≥ ε/α,
u2/(2ε) if − ε/(1− α) < u < ε/α,
−u/(1− α)− ε/(2(1− α)2) if u ≤ −ε/(1− α).

(8)

The function is called the Moreau envelope of `α. See Figure 2 for the graph of `α,ε. It is
shown that lα,ε uniformly converges to `α, as ε→ 0.

The derivative of `α,ε is piecewise linear:

`′α,ε(u) =


1/α if u ≥ ε/α,
u/ε if − ε/(1− α) < u < ε/α,
−1/(1− α) if u ≤ −ε/(1− α).

In particular, `α,ε is continuously differentiable unlike `α.

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

lo
s
s

Figure 2. The Moreau envelope of the check-loss function for α = 0.3 and ε = 0.2. The two vertical
lines are u = ε/α and u = −ε/(1− α), respectively.

Definition 3. A general index gt = ∑i wixti − c is called the quantile general index within
tolerance ε if (w, c) minimizes Fε(w, c).
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The gradient of Fε is

∂Fε

∂c
= − 1

n

n

∑
t=1

(
Jt

α
− 1− Jt

1− α

)
,

∂Fε

∂wi
= − 1

wi
+

1
n

n

∑
t=1

(
Jt

α
− 1− Jt

1− α

)
xti,

where

Jt =


1 if gt ≥ ε/α,
α(1− α)(gt/ε + 1/(1− α)) if − ε/(1− α) < gt < ε/α,
0 if gt ≤ −ε/(1− α).

(9)

These formulas prove the second part of the following theorem. See Appendix A for the
proof of the first part.

Theorem 4. Suppose that there is no hyperplane of Rd that contains all x(t). Then, the objec-
tive function Fε in (8) admits a minimizer (w, c), and the optimal weight vector w is unique.
Furthermore, the optimal (w, c) and Jt ∈ [0, 1] defined in (9) satisfy

1
n

n

∑
t=1

Jt = α (10)

and

1
nα

n

∑
t=1

wixti Jt −
1

n(1− α)

n

∑
t=1

wixti(1− Jt) = 1. (11)

The Equations (10) and (11) correspond to (2) and (3) for continuous distributions. The
quantity Jt is interpreted as the probability of assigning the case x(t) to the positive group.
We call Jt the optimal random decision. If the general index gt is greater than the threshold
ε/α, the case t is definitely assigned to the positive group because Jt = 1. Similarly, if the
general index is less than −ε/(1− α), it is definitely assigned to the negative group.

For numerical computation, we used a general-purpose optimization solver optim in
R [15] with the L-BFGS method.

Example 4 (Continuation of Example 2). Consider four cases

x(1) =
(

2
2

)
, x(2) =

(
2
1

)
, x(3) =

(
0
2

)
, x(4) =

(
0
0

)
.

Let α = 1/2 and ε = 0.001. The optimal w and c are numerically obtained as w = (0.667, 1.332)>

and c = 2.666. The quantile general index is (g1, g2, g3, g4) = (1.333, 0.001,−0.001,−2.666),
and the optimal random decision is (J1, J2, J3, J4) = (1, 0.749, 0.250, 0), so that the optimal separa-
tion will be {x(1), x(2)} and {x(3), x(4)}. This separation happens to satisfy the dominance relation
as we have seen in Example 2.

Example 5 (Continuation of Example 3). Consider four cases

x(1) =
(

4
0

)
, x(2) =

(
2
4

)
, x(3) =

(
1
3

)
, x(4) =

(
0
2

)
.

Let α = 1/2 and ε = 0.001. The optimal w and c are numerically obtained as w = (1, 1)>

and c = 4. The quantile general index is (g1, g2, g3, g4) = (0, 2, 0,−2), and the optimal random
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decision is (J1, J2, J3, J4) = (0.5, 1, 0.5, 0). In this case, we cannot decide which of x(1) and x(3) has
to be assigned to the positive group. This result is consistent with the discussion in Example 3.

5. Application to the SDGs Index

We finally compute the quantile general indices of the SDGs data provided by [1],
as introduced in Section 1. According to [1], countries with a fraction of missing values
greater than 20% were removed from the data and then the missing values were imputed
by regional averages. We applied the quantile general index with the acceptance ratio
α = 10/163 and tolerance ε = 0.001. The result is summarized in Table 2. The optimal
weight w is shown in the second column of the table. The threshold was c = 178.2. The
other columns of Table 2 show the average of each variable in the 10 top countries and the
remaining countries, respectively. In contrast to Table 1, we do not observe the reversal
relation. Table 3 shows the general index gt and the optimal random decision Jt of the
10 top countries.

Table 2. For the SDGs data, the optimal weight wi, the average x+i of each score in the 10 top countries
determined from the quantile general index (Cuba, Romania, Finland, Kyrgyz Republic, Ukraine,
Chile, Poland, Georgia, Vietnam, Hungary), the average x−i on the remaining 153 countries, and the
scaled differences wi(x+i − x−i ) are shown.

SDGs Weights Average of the 10 Top Countries Average of the Remaining Countries Scaled Difference
i wi x+i x−i wi(x+i − x−i )

1 0.049 94.9 74.1 1.02
2 0.136 65.8 58.8 0.95
3 0.079 81.3 68.8 0.99
4 0.061 91.4 75.3 0.98
5 0.122 69.2 61.1 0.99
6 0.071 81.3 66.8 1.03
7 0.091 76.0 65.3 0.97
8 0.098 77.4 66.8 1.04
9 0.082 58.4 45.4 1.07
10 0.070 75.5 60.8 1.03
11 0.088 82.0 69.5 1.10
12 0.490 85.9 83.9 0.98
13 0.412 82.4 80.1 0.95
14 0.126 71.5 64.3 0.91
15 0.138 72.6 65.3 1.01
16 0.106 75.4 66.0 1.00
17 0.079 71.2 58.5 1.00

Table 3. The 10 top countries based on the quantile general index. The last column shows the original
rank based on the SDG scores.

Rank Country gt Jt Original Rank

1 Cuba 5.09 1.00 40
2 Romania 3.82 1.00 30
3 Finland 3.33 1.00 1
4 Kyrgyz Republic 3.06 1.00 48
5 Ukraine 1.92 1.00 37
6 Chile 1.11 1.00 28
7 Poland 1.03 1.00 12
8 Georgia 0.24 1.00 51
9 Vietnam 0.01 0.68 55
10 Hungary 0.01 0.64 21

We must be careful with interpretating the result. In particular, the optimal weights
had high variation: the ratio of the largest weight (SDG 12) to the smallest weight (SDG 1)
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was about 0.49/0.049 = 10.0, which means that the SDG 1 had only 10% of the impact of
the SDG 12 under the quantile general index. This may discourage people or governments
contributing to the SDG 1. Our main message in this paper is that there were reversal
relations in the SDGs 12 and 13 under the simple sum method, as observed in Table 1, and
such a phenomenon can be avoided by the proposed method. Further discussion should
be needed for the use of the quantile general index.

As a reviewer suggested, we also computed the Hirsch index [9] (or h-index) of the
countries based on the original SDG scores. In the current setting, the h-index is defined
as the fixed point of the graph {(i, si)}17

i=1, where si’s are the 17 SDG scores in descending
order (normalized into the range [0, 17]). The 10 top countries based on the h-index are
shown in Table 4. The top three were not changed from the original SDG ranking. We also
observed the reversal relations in the SDGs 12 and 13 when we adopted the h-index for
separation. See [10] for a study of the scaling behavior of the h-index.

Table 4. The 10 top countries based on the h-index. The last column shows the original rank based
on the SDG scores.

Rank Country h-Index Original Rank

1 Finland 13.47 1
2 Denmark 13.35 2
3 Sweden 13.19 3
4 Germany 13.01 6
5 Romania 12.91 30
6 Norway 12.84 4
7 Estonia 12.77 10
8 Croatia 12.77 23
9 Ireland 12.76 9
10 Portugal 12.64 20

6. Discussion

We proposed a quantile general index that avoids reversal relations in the separated
groups. The weight was defined by the solution of the convex optimization problem (6)
or (7) for given data. In Section 5, we applied the proposed method to the SDG data
and obtained the 10 top countries based on it. The result actually satisfies the desired
properties (10) and (11). A side effect is that the obtained weights sometimes had large
variation, which may be controversial.

Various applications of our method are expected. For example, one could construct a
regional competitive index (e.g., [16]) based on the quantile general index if it is necessary
to select a given number of top regions. The method is also applicable to admission
decisions based on entrance examinations in schools or companies, where a fixed fraction
of candidates are supposed to pass. Further case studies are needed to support the validity
of our approach.

The quantile general index (without approximation) introduced in Section 3 was re-
duced to a minimization problem of a nondifferentiable objective function. It is theoretically
of interest to develop an exact algorithm and also to estimate the accuracy of the practical
method developed in Section 4. Another problem is to find an algorithm that decides the
separability of the data into two groups without the reversal relations. In Example 3, we
enumerated all possible combinations to prove that the data was not separable. However,
this algorithm requires a large amount computational time when the sample size is large.
Faster algorithms would be welcomed. Finally, the relation between the quantile general
index and the h-index is also completely unknown.
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Appendix A. Proofs

We give a key lemma for the proof of Theorems 1, 3, and 4. In general, we define

F`(w, c) =
d

∑
i=1

(− log wi) + E

[
`

(
d

∑
i=1

wixi − c

)]
(A1)

for (w, c) ∈ Rd
+ ×R. Here, ` : R→ R≥0 is a convex function with properties `(0) = 0 and

`(u) > 0 for u 6= 0. The check loss function `α in Section 2 satisfies these conditions. Under
the conditions, we have coercivity

lim
u→±∞

`(u) = ∞

and subadditivity
`(u + v) ≤ `(u) + `(v)

for any real u and v.
We consider the following condition on the nondegeneracy of the distribution P of x.

We denote the set of nonnegative numbers by R≥0.

(C1) P(∑i wixi = c) < 1 for any (w, c) ∈ Rd
≥0 ×R with w 6= 0,

This condition holds if P is absolutely continuous with respect to the Lebesgue measure
on Rd, as assumed in Section 2.

Theorem 1 is immediate from the following lemma.

Lemma A1. Suppose that E[`(wixi)] < ∞ for all i = 1, . . . , d and wi > 0. If the condition (C1) is
satisfied, then the function F` in (A1) admits a minimizer, and the optimal w is unique. Conversely,
if (C1) does not hold, then F` is not bounded from below.

Proof. We first show that F` is finite everywhere. Indeed, by the subadditivity of `, we have

E
[
`
(
∑

i
wixi − c

)]
≤∑

i
E[`(wixi)] + `(−c) < ∞. (A2)

To prove the uniqueness, let (w1, c1) and (w2, c2) be two minimizers of F`. From the
strict convexity of z 7→ (− log z) and the convexity of `, we have

F`((1− λ)(w1, c1) + λ(w2, c2)) < (1− λ)F`(w1, c1) + λF`(w2, c2)

if w1 6= w2. Thus, we have w1 = w2, and the uniqueness follows.
To prove the existence, we show that the sublevel set

{(w, c) ∈ Rd
+ ×R | F`(w, c) ≤ a}

is compact for each a ∈ R. We define a function R : Rd
≥0 ×R→ R≥0 by

R(w, c) = E[`(w>x− c)].

Then, R is continuous and strictly positive unless (w, c) = (0, 0). Indeed, the continuity of
R is a consequence of Lebesgue’s dominated convergence theorem, and the strict positivity
follows from the condition (C1). Let
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γ := inf
∑i wi+|c|=1

R(w, c) > 0.

Since R is convex, and R(0, 0) = 0, we have

R(w, c) ≥ γ
(
∑

i
wi + |c|

)
whenever ∑i wi + |c| ≥ 1. For any (w, c) ∈ Rd

+ ×R, we have

F`(w, c) = ∑
i
(− log wi) + R(w, c)

≥∑
i
(− log wi) + γ

(
∑

i
wi + |c| − 1

)
= ∑

i
{(− log wi) + γwi}+ γ|c| − γ.

Since the functions wi 7→ (− log wi) + γwi and c 7→ |c| have compact sublevel sets, the
sublevel set of F` is also compact.

In order to prove Theorems 3 and 4, it is enough to replace the distribution P by the
empirical distribution Pn = n−1 ∑n

t=1 δx(t) , where δa is the Dirac measure at a point a ∈ Rd.
In Theorem 3, the uniqueness of c when nα is not an integer follows from the observation
that the optimal c for a fixed w must be w>x(t) for some t.
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