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Abstract: We systematically study the chaotic signatures in a quantum many-body system consisting
of an ensemble of interacting two-level atoms coupled to a single-mode bosonic field, the so-called
extended Dicke model. The presence of the atom–atom interaction also leads us to explore how
the atomic interaction affects the chaotic characters of the model. By analyzing the energy spectral
statistics and the structure of eigenstates, we reveal the quantum signatures of chaos in the model and
discuss the effect of the atomic interaction. We also investigate the dependence of the boundary of
chaos extracted from both eigenvalue-based and eigenstate-based indicators on the atomic interaction.
We show that the impact of the atomic interaction on the spectral statistics is stronger than on the
structure of eigenstates. Qualitatively, the integrablity-to-chaos transition found in the Dicke model
is amplified when the interatomic interaction in the extended Dicke model is switched on.

Keywords: quantum chaos; extended Dicke model; spectral statistics; eigenstate structure

1. Introduction

In recent years, the study of quantum chaos in many-body systems has attracted much
attention, both theoretically and experimentally in different fields of physics, such as statis-
tical physics [1–5], condensed matter physics [6–13], and high-energy physics [14–19], as
well as quantum information science [20–26]. To some extent, this great interest in quantum
many-body chaos is due to the close connections of chaos to several fundamental questions
that arise in current theoretical and experimental studies. Although a full understanding of
quantum many-body chaos is still lacking, much progress has been achieved. It is known
that chaos in interacting quantum many-body systems can lead to thermalization [1–3], the
fast scrambling of quantum information [14,27–29], and an exponential growth of quantum
complexities [18,30–35], and diffusive transport [36].

The notion of chaos in the classical regime is usually defined by the so-called but-
terfly effect, namely the exponential separation of infinitesimally nearby trajectories for
initial perturbations [37,38]. However, as the concept of trajectory is ill-defined in quan-
tum mechanics, the definition of quantum chaos remains an open question. Therefore,
probing the signatures of chaos in quantum many-body systems becomes a central task
in the studies of quantum many-body chaos. To date, many complementary detectors of
quantum chaos and the limits of their usefulness have been widely investigated in the
literature [28,31–33,39–54]. Important model systems in this context are billiards [40,55].
Another task, which has recently also drawn great interest, is to unveil different factors
that affect the chaotic properties of quantum many-body systems. While the impacts of
the strength of disorder and the choice of initial states on the development of quantum
chaos in various many-body systems have been extensively explored [4,56–61], more works
are required in order to obtain deeper insights into the universal aspects of quantum
many-body chaos.

In the present work, we analyze the emergence of chaos in the extended Dicke model.
There are several different versions of the extended Dicke model [62–65]. Here, we focus
on the one that has been discussed in ref. [63]. Different from the original Dicke model [66],
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which consists of an ensemble of noninteracting two-level atoms interacting with a single
bosonic mode, the atoms in our considered extended Dicke model are permitted to interact.
This allows us to analyze the effects of the atomic interaction on the degree of chaos of the
model. Previously, the role of the atom–field coupling in the Dicke model for the emergence
of quantum chaos has been investigated [67–70], while here we explore how this transition
is affected by additional atomic interaction. By performing a detailed analysis of the energy
spectral statistics and the structure of eigenstates, we systematically study both the chaotic
signatures of the extended Dicke model and examine the effect of the atomic interaction on
the chaotic features in the model. We show how the atomic interaction affects the spectral
statistics and the structure of eigenstates, respectively.

The article is structured as follows. The model is introduced in Section 2. The influences
of the atomic interaction on the energy spectral statistics is discussed in Section 3. A detailed
investigation of the consequence of the atomic interaction on the structure of eigenstates
is presented in Section 4. Finally, we conclude in Section 5 with a brief summary of our
results and outlook.

2. Extended Dicke Model

As an extension of the original Dicke model [66–68], the extended Dicke model studied
here consists of N mutual interacting two-level atoms with energy gap ω0 coupled to a
single cavity mode with frequency ω. By employing the collective spin operators Jx,y,z =

∑N
i=1 σ̂

(i)
x,y,z (σ̂x,y,z are the Pauli matrices), the Hamiltonian of the extended Dicke model can

be written as (hereafter, we set h̄ = 1) [63,71]

H = ωa†a + ω0 Jz +
2λ√

N
Jx(a + a†) +

κ

N
J2
z , (1)

where a(a†) denotes the bosonic annihilation (creation) operator, λ is the coupling strength
between atom and field, and κ represents the strength of the atomic interaction.

The conservation of total spin operator J2 = J2
x + J2

y + J2
z for the Hamiltonian (1) leads

to the Hamiltonian matrix being block diagonal in J2 representation. In this work, we focus
on the maximum spin sector j = N/2, which involves the experimental realizations and
includes the ground state. Moreover, the commutation between Hamiltonian (1) and the
parity operator Π = eiπ(j+Jz+a†a) enables us to further separate the Hamiltonian matrix into
even- and odd-parity subspaces. Here, we restrict our study to the even-parity subspace.

To numerically diagonalize the Hamiltonian (1), we work in the usual Fock–Dicke
basis {|n, m〉} = {|n〉 ⊗ |j, m〉}. Here, |n〉 are the Fock states of bosonic mode with
n = 0, 1, 2, . . . , ∞, and |j, m〉 represent the so-called Dicke states with m = −j,−j + 1, . . . , j.
Then, the elements of the Hamiltonian matrix are given by

〈n′, m′|H|n, m〉 =(nω + mω0)δn′ ,nδm′ ,m +
κ

N
m2δm′ ,m +

λ√
N

[√
nδn′ ,n−1 +

√
n + 1δn′ ,n+1

]
×
[√

j(j + 1)−m(m + 1)δm′ ,m+1 +
√

j(j + 1)−m(m− 1)δm′ ,m−1

]
. (2)

We remark that the value of n is unbounded from above, the actual dimension of the Hilbert
space is infinite, regardless of the value of j. In practice, we need to cut off the bosonic
number states at a larger but finite value Nc. Moreover, the dependence of the chaoticity
in the Dicke model on the energy [63,72,73] further implies that it is also necessary to cut
off the energy in order to obtain the finite number of considered states. In our numerical
simulations, we set Nc = 320 and restrict our analysis to the eigenstates with energies
E/N ∈ [0.4, 4]; the convergence of our results is carefully examined. For our selected
energy interval, we checked that our main results still hold for other choices of Nc, as long
as N ≥ 16 and the convergence of the Fock–Dicke basis is fulfilled.

The extended Dicke model exhibits both ground-state and excited-state quantum phase
transitions and displays a transition from integrable to chaotic behavior with increasing
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system energy, such as in the original Dicke model. The features of these transitions have
been extensively investigated in the semiclassical regime [63]. It is worth mentioning that
several possible experimental realizations of the extended Dicke model have been pointed
out in [63,71,74].

3. Energy Spectrum Statistics

In this section, we explore the transition from integrability to chaos in the extended
Dicke model by analyzing its energy-level spacing distribution. In our study, we focus on
the energy levels with energies changing from E/N = 0.4 to E/N = 4. We compare our
results to the level distributions of fully integrable and chaotic cases, respectively. We are
aiming to characterize the quantum signatures of chaos in the model and unveil the impact
of the atomic interaction on its chaotic properties.

3.1. Level Spacing Statistics

As the most frequently used probe of quantum chaos, the distribution P(s) of the
spacings s of the consecutive unfolded energy levels quantifies the degree of correlations
between levels. For integrable systems, where the energy levels are allowed to cross, the
distribution P(s) is given by the Poissonian distribution [75],

PP(s) = exp(−s). (3)

On the other hand, the energy levels in chaotic systems exhibit level repulsion, and the
distribution P(s) follows the Wigner–Dyson distribution [39–41]. For the systems with
symmetric and real Hamiltonian matrices, as in the extended Dicke model, the Wigner–
Dyson distribution has the following expression:

PWD(s) =
πs
2

exp
(
−π

4
s2
)

. (4)

In Figure 1, we show P(s) of the extended Dicke model with ω = ω0 = 1 and
j = N/2 = 16 for different values of λ and κ. Here, the level spacings s are obtained
from the unfolded eigenlevels Ẽµ = Eµ/∆E, with 1/∆E being the local density of states.
One can clearly see that P(s) undergoes a transition to Wigner–Dyson distribution as λ
increases, regardless of the value of κ. The case κ = 0 is the original Dicke model as in our
previous work [68]. However, we find that, with increasing κ, the Poissonian distribution
at λ = 0.1, and κ = 0 in Figure 1a turns into an intermediate case, as observed in Figure 1g.
This suggests that the degree of chaos in the extended Dicke model can be tuned by the
atomic interaction.

To quantitatively characterize the effect of the atomic interaction on the degree of chaos,
we consider the proximity of P(s) to Wigner–Dyson or to Poissonian distributions. There
are several ways to measure the distance between two distributions, here, the difference
between P(s) and PWD(s)[PP(s)] is quantified by the chaos indicators η and β. The indicator
η is defined as [7,67,76]

η =

∣∣∣∣∣
∫ s0

0 [P(s)− PWD(s)]ds∫ s0
0 [PP(s)− PWD(s)]ds

∣∣∣∣∣, (5)

where s0 = 0.4729 . . . is the first intersection point of PWD(s) and PP(s). For P(s) = PWD,
we have η = 0, while P(s) = PP(s) leads to η = 1. The indicator β is the level repulsion
exponent and can be obtained by fitting P(s) to the Brody distribution [77]

PB(s) = bβ(β + 1)sβ exp[−bβsβ+1], (6)

where the factor bβ is given by

bβ =

[
Γ
(

β + 2
β + 1

)]β+1
, (7)
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with Γ(x) being the gamma function. The value of β varies in the interval β ∈ [0, 1]. When
β = 0, it means the level spacing distribution P(s) is Poisson. On the other hand, for chaotic
systems, we would expect P(s) = PWD(s), and therefore β = 1.

Figure 1. Level spacing distribution of the extended Dicke model for several combinations of λ

and κ, see the legends in panels (a–i). The considered energy levels are the ones that have energies
E/N ∈ [0.4, 4]. The total atom number is N = 2j = 32, and the cut off in bosinic Hilbert space is
Nc = 320. The Poissonian (blue solid lines) and Wigner–Dyson distributions (red dashed lines) are,
respectively, plotted in each panel for comparison. Other parameters are: ω = ω0 = 1. All quantities
are dimensionless.

In Figure 2a, we plot η as a function of λ for various values κ. It can be seen that
irrespective of the strength of the atomic interaction, the extended Dicke model undergoes a
transition from integrability to chaos as the coupling strength λ increases. However, as the
strength of the atomic interaction increases, the onset of chaos happens for smaller values
of coupling strength λ. This is more evident from Figure 2b, where we show how η evolves
as a function κ and λ. Clearly, the width of the region with larger values of η decreases with
increasing κ, suggesting that the location of the crossover to quantum chaos moves towards
the lower values of λ with increasing κ. The statement above is further confirmed by the
boundary of chaotic region, which is plotted as the black curve in Figure 2b. Here, we
determine the boundary of chaos by the condition η ≤ ηd = 0.3 [76]. We set the threshold
ηd = 0.3 as it implies that the model has already departed from the integrablity and is
tending to the chaotic regime.

Figure 2c shows β as a function of λ with increasing κ. As observed in Figure 2a, while
the chaotic behavior at higher values λ is independent of κ, the coupling strength λ that
needs to be for the transition to chaos decreases with increasing κ. Figure 2d illustrates β as
a function of κ and λ. One can see that with increasing κ, the region with β ≈ 1 extends
to smaller values of λ. By identifying the chaotic region as β ≥ 0.7, we show that the
boundary of chaos strongly depends on the strength of the atomic interaction, see the black
curve in Figure 2d. Notice that the boundary extracted from η behaves in a similar way to
the one extracted from β.

3.2. Level Spacing Ratio

The study of level spacing distribution requires the so-called unfolding procedure [78].
It proceeds by rescaling the original eigenlevels to ensure that the local density of states
of the resulting spectrum is 1. It is usually a nontrivial task, in particular for quantum
many-body systems. To circumvent this disadvantage, one can resort to another chaotic
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probe based on the ratio of adjacent level spacings [79], which is free from the unfold-
ing procedure.

Figure 2. (a) Chaos indicator η as a function of λ for several values of κ. (b) η as a function of κ

and λ. (c) Chaos indicator β as a function of λ for different values of κ. (d) β as a function of κ and
λ. These results are obtained from the energy levels with energies E/N ∈ [0.4, 4]. In panels (b,d),
the boundaries of the chaotic region are marked by the black curves, which are defined as η ≤ 0.3
and β ≥ 0.7, respectively. Other parameters are: ω = ω0 = 1 and N = 2j = 32. All quantities
are dimensionless.

For a given set of level spacings {sµ = Eµ+1 − Eµ}, the ratio of adjacent level spacings
is defined as [79,80]

rµ = min
(

δµ,
1
δµ

)
, (8)

where δµ = sµ+1/sµ is the ratio between two adjacent level spacings. Obviously, rµ is
defined in the interval rµ ∈ [0, 1]. The distribution of rµ for both integrable and chaotic
systems has been analytically investigated [80–82]. It is known that for the chaotic systems
with Hamitonian from the Gaussian orthogonal ensemble (GOE), the level spacing ratio
distribution is given by

PGOE(r) =
1

Z1

2(r + r2)

(1 + r + r2)5/2 , (9)

where Z1 = 8/27 is the normalization constant. On the other hand, as the eigenlevels in
the integrable systems are uncorrelated (independent Poisson levels), one can simply find
that the ratio distribution is

PPoi(r) =
2

(r + 1)2 . (10)

Due to rµ ∈ [0, 1], the ratio distribution PGOE/Poi(r) vanishes outside the range [0, 1].
Figure 3a–f show how the level spacing ratio distribution P(r) evolves for different

combinations of atomic interaction strength κ and coupling strength λ. Similarly to what
we observe for the level spacing distribution P(s) in Figure 1, the spacing ratio distribution
P(r) tends to PGOE with increasing coupling strength λ, independent of κ value. However,
as evident from Figure 3a,d, increasing κ leads to the enhancement in degree of chaos of
the model at smaller values of λ. Therefore, as mentioned above, the atomic interaction
can be used to tune the level of chaoticity in the model. By switching on the interatomic
interaction κ > 0, the regularity-to-chaos transition of the original Dicke model [68,70]
is amplified.
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Figure 3. Level spacing ratio distributions P(r) for various combinations of κ and λ: (a) κ = 0, λ = 0,
(b) κ = 0, λ = 0.5, (c) κ = 0, λ = 1, (d) κ = 0.7, λ = 0, (e) κ = 0.7, λ = 0.5, and (f) κ = 0.7, λ = 1. In
each panel, the Poisson distribution PPoi(r) is plotted as a blue solid curve, while the red dashed
line denotes PGOE(r). (g) Averaged level spacing ratio 〈r〉 as a function of λ for several values of κ.
(h) 〈r〉 as a function of κ and λ. The green line indicates the chaotic boundary, which is determined by
〈r〉 ≥ 0.48. The energy levels used in our numerical calculation have energies E/N ∈ [0.4, 4]. Other
parameters: ω = ω0 = 1 and N = 2j = 40. All quantities are dimensionless.

A more stringent analysis of the effect of the atomic interaction is made with the
average level spacing ratio, defined as

〈r〉 =
∫ 1

0
rP(r)dr. (11)

It takes the value 〈r〉Poi = 2 ln 2− 1 ≈ 0.386 for integrable systems with P(r) = PPoi(r),
while for chaotic systems with P(r) = PGOE(r), one has 〈r〉GOE = 4− 2

√
3 ≈ 0.536. Hence,

〈r〉 acts as a detector to diagnose whether the studied system is in the integrable or chaotic
regime and has been widely used to track the crossover from integrability to chaos.

Figure 3g demonstrates 〈r〉 as a function of λ for three different values κ. We see that,
regardless of the value of κ, the transition from integrability to chaos is well captured by the
behavior of 〈r〉, which varies from 〈r〉Poi to 〈r〉GOE with increasing λ. We further observe
that the chaotic phase is robust with respect to the variation of κ, but the integrable phase
exhibits a strong dependence on κ. For the integrable phase with smaller values of λ, we
find that increasing κ gives rise to an increase in 〈r〉. As a consequence, the location of
transition to chaos can be varied by the atomic intraction. This effect is more clearly observed
in Figure 3h, where the evolution of 〈r〉 as a function of κ and λ is illustrated. Again, we
define the boundary of chaotic region by the condition 〈r〉 ≥ 〈r〉c = 0.48, meaning that
the region with value 〈r〉 ≥ 0.48 is considered as chaos. We checked that our main result
still holds for other choices of 〈r〉c, as long as 〈r〉c ∈ (0.45, 0.5). The green line in Figure 3h
denotes the obtained boundary of chaos. As expected, the behavior of the boundary line
confirms the extension of the chaotic region to lower values of λ as κ increases.

4. Structure of Eigenstates

The onset of chaos also bears a remarkable change in the structure of eigenstates.
In this section, we explore the impact of atomic interaction on the transition to chaos by
investigating the variation in the structure of eigenstates.

It is known that the eigenstates of chaotic systems are uncorrelated and are well de-
scribed by random matrix theory (RMT) [3,83–85]. For the model studied in this work,
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one can expect that in the chaotic phase the eigenstates of the model will have the same
structure as those of random GOE matrices. The GOE eigenstates are fully delocalized ran-
dom vectors with real components consisting of independent Gaussian random numbers.
Hence, the deviation of the eigenvector structure from Gaussian behavior is an alternative
benchmark to certify quantum chaos [42,86–89].

The analysis of the structure of eigenstates requires expansion of the eigenstates in
a chosen basis. The choice of basis is usually decided by the physical problem and the
system under consideration. Here, we use the Fock–Dicke bases, {|n, m〉}, which are the
eigenstates of a†a and Jz, as mentioned in Section 2. The decomposition of the kth eigenstate,
|k〉, of the Hamiltonian (1) in the selected basis is given by

|k〉 =
D
∑
ν=1

cν
k |ν〉, (12)

where |ν〉 = |n, m〉,D is the dimension of the Hilbert space, and cν
k = 〈ν|k〉 are the kth eigen-

state components in the basis {|ν〉}, satisfying the normalization condition ∑ν |cν
k |

2 = 1.
The characterizations of the eigenstate structure are provided by the statistical properties
of eigenstate coefficients {cν

k}.
To analyze the fingerprint of chaos in the properties of the eigenstates of H in

Equation (1), as well as to examine whether the atomic interaction has an effect on the
eigenstate structure, we explore the coefficients’ distribution in comparison with the corre-
sponding GOE result. As mentioned above, the eigenstates for the chaotic systems with real
and symmetric D-dimensional Hamiltonian matrices are consistent with the GOE eigen-
states. The components of a GOE eigenstate, {cν}, are random numbers that are uniformly
distributed on a unit sphere with dimension D − 1. In the limit D � 1, the dependence
between components vanishes, and the distribution of components can be well described
by a Gaussian distribution with zero mean and variance 1/D [77,90–92],

PGOE(c) =

√
D
2π

e−Dc2/2. (13)

In the chaotic systems, it has been known that the coefficients of the mid-spectrum eigen-
states are distributed as a near-Gaussian distribution [77,78,93–95], while the coefficients’
distribution for the eigenstates of nonchaotic systems and the edge eigenstates of chaotic
systems is significantly different from Gaussian distribution [95–97]. As increasing λ leads
to the onset of chaos in the model; one would expect that the distribution of mid-spectrum
eigenstates coefficients should be turned from non-Gaussian into near-Gaussian.

Figure 4a–f show the evolution of the eigenstate coefficient distributions, denoted by
P(c), for several (κ, λ) combinations in comparsion with the Gaussian distribution provided
by Equation (13). We see that, regardless of the value of κ, the eigenstate coefficients’
distribution tends to Gaussian as λ increases. The larger the value of λ is, the higher the
degree of chaos in the model, and, therefore, the closer the coefficients’ distribution to
Gaussian, as expected. Another prominent feature, that is also independent of κ, observed
in the behaviors of P(c) is the larger peak around cν

k ∼ 0. Even in the most chaotic regime,
P(c) still exhibits a high peak near zero, as shown in Figure 4c,f. This excessive number of
zero coefficients is mainly due to the mixed feature of the model. This means the regular
and chaotic behavior coexist in the model for the considered parameters. Detailed analysis
of the mixture of regular and chaotic behaviors in the extended Dicke model is beyond the
scope of the present work; we leave this investigation for a future work.

Let us now turn to discuss how the atomic interaction κ affects the eigenstate co-
efficients’ distribution. As evident from Figure 4a–f, the presence of atomic interaction
has almost no effect on the behavior of the eigenstate coefficients’ distribution, but just a
reduction in the height of peak in the regular phase [compare Figure 4a to Figure 4d]. This
implies that the impact of the atomic interaction on the structure of eigenstates is not as
strong as on the eigenlevels.
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Figure 4. Panels (a–f): Histogramas of the coefficients cν
k of eigenstates with energy Ek/N ∈ [1.75, 2.25],

in the Fock–Dicke basis. Each panel corresponds to different (κ, λ) combinations: (a) κ = 0, λ = 0,
(b) κ = 0, λ = 0.5, (c) κ = 0, λ = 1, (d) κ = 0.7, λ = 0, (e) κ = 0.7, λ = 0.5, and (f) κ = 0.7, λ = 1.
The red solid line in each panel denotes the Gaussian distribution in Equation (13). Panels (g–i):
Kullback–Leibler divergence DKL [cf. Equation (14)] as a function of rescaled energy Ek/N and λ for
κ = 0 (g), κ = 0.5 (h), and κ = 1 (i). Other parameters: ω = ω0 = 1 and N = 2j = 40. All quantities
are dimensionless.

To measure the difference between P(c) and Gaussian distribution (13), we consider
Kullback–Leibler (KL) divergence [98], which is commonly used to measure how close
an observed distribution is to a predicted distribution. In our study, P(c) and PGOE(c)
are, respectively, identified as the observed and predicted distributions. Then, the KL
divergence between them is given by

DKL =
∫ cmax

cmin

P(c) ln
[

P(c)
PGOE(c)

]
dc, (14)

where cmin and cmax denote, respectively, the minimum and maximum values in {cν
k}. The

KL divergence is non-negative, so that DKL ≥ 0, and it vanishes only when P(c) = PGOE(c).
Qualitatively, a larger DKL value indicates a larger difference between P(c) and PGOE(c).

In Figure 4g–i, we plot the KL divergence for the extended Dicke model as a function
of Ek/N and λ with κ = {0, 0.5, 1}. We see that the behaviors of DKL versus Ek/N and
λ for different κ values are very similar. As expected, the eigenstates in the non-chaotic
phase (λ . 0.45) and the eigenstates at the spectrum edge in the chaotic phase (λ & 0.5)
have larger values of DKL, suggesting that the corresponding coefficients’ distributions
strongly deviate from Gaussian, as illustrated in Figure 4a,d for the integrable case. Here,
it is worth pointing out that the infinite dimension of the Hilbert space for the extended
Dicke model leads to its spectrum has only one edge, namely the ground state. On the
other hand, the lower values of DKL for mid-spectrum eigenstates in the chaotic phase
imply that their coefficients’ distributions are closer to Gaussian, as shown in Figure 4c,f.
The similarity between behaviors of DKL observed in the bottom row of Figure 4 prompts
a more detailed investigation of the impact of the atomic interaction on the eigenstate
coefficient distribution.

To determine whether the eigenstate coefficients’ distribution is robust with respect to
the variation of the atomic interaction κ, we calculate DKL for the mid-spectrum eigenstates
with energies Ek/N ∈ [1.75, 2.25]. The final result for various cases is shown in Figure 5.
The evolution of DKL as a function of λ for different values of κ is plotted in Figure 5a.
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One can see that the behavior of DKL for different κ is very similar. The KL divergence
varies slowly for smaller λ until λ ≈ 0.25, after which it rapidly decreases to small values
as the coupling strength is increased beyond λc ≈ 0.5. The change in DKL behavior
is a manifestation of the transition to chaos resulting from the reduction in eigenstates
correlation with increasing λ. We also observe that the dependence of DKL on κ in the
integrable phase is very different from that of the chaotic phase. The explicit dependence of
DKL on κ for several values of λ is shown in Figure 5b. As expected from Figure 5a, in the
chaotic regime with λ & 0.5, DKL is independent of κ, whereas the KL divergence strongly
depends on the atomic interaction for the cases of smaller λ. Overall, the KL divergence
decreases with increasing κ in the integrable regime. This indicates that the proximity of
the eigenstate coefficients’ distribution to the Gaussian distribution can be improved by the
atomic interaction. Therefore, the atomic interaction can vary the degree of chaos in the
extended Dicke model, in agreement with the results obtained from eigenvalue statistics.
An overall evolution of DKL as a function of κ and λ is depicted in Figure 5c. We see that
the chaotic region remains almost unchanged as κ increases, in contrast to the extension
behavior revealed by the eigenvalue-based detectors of quantum chaos [see Figure 2b,d,h].
This suggests that the level repulsion is more sensitive to the effect of atomic interaction
than the structure of eigenstates.

Figure 5. (a) KL divergence DKL (14) as a function of λ for several κ values. (b) DKL as a function
of κ for several coupling strengths λ. (c) Color-scaled plot of DKL in the κ − λ plane. In all panels,
the coefficients distribution P(c) is obtained from the eigenstates with energies Ek/N ∈ [1.75, 2.25].
Other parameters: ω = ω0 = 1 and N = 2j = 40. All quantities are dimensionless.

5. Conclusions

In this article, we performed a detailed analysis of quantum chaotic characters of the
extended Dicke model through the statistical properties of eigenvalues and eigenstates.
The presence of interaction between atoms in the model further allows us to explore the
dependence of chaotic properties of the model on the atomic interaction. It was shown
that the integrability-to-chaos transition of the original Dicke model as a function of the
atom–field coupling is amplified by the interatomic interaction.

We demonstrated that as the model moves from regular phase to chaotic phase, both
the level spacing and level spacing ratio distributions undergo a crossover from Poisson to
Wigner distribution, regardless of the strength of atomic interaction. However, the presence
of atomic interaction can lead to a notable deviation of level spacing and spacing ratio
distributions from Poisson distribution. To quantify this deviation and to measure the
degree of chaos in the model, we consider three different chaos indictors to probe the
transition from integrablity to chaos. All of these indicators are complementary to each



Entropy 2022, 24, 1415 10 of 13

other and are able to capture the crossover from Poisson to Wigner for both level spacing
and level spacing ratio distributions. We have also shown that the behaviors of these
indicators as a function of control parameters are very similar. In particular, we found
that the degree of chaos of the model can be controlled by tuning the strength of atomic
interaction. This result highlights the role of interaction in the development of chaos in
quantum many-body systems and opens up the possibility to tune the degree of chaos in
the extended Dicke model.

Additional quantum chaotic signatures showing how the atomic interaction affects the
degree of chaos in the extended Dicke model are unveiled in the structure of the eigenstates.
To analyze the eigenstate structure, we expand each eigenstate in the Fock–Dicke basis
and focus on the expansion coefficients’ distribution for mid-spectrum eigenstates. For
fully chaotic systems with Hamitonian from GOE, such distribution is well described by
Gaussian distribution. We showed that the transition to chaos can be detected by the
deviation of coefficients’ distribution from Gaussian distribution. However, we note that
even within the chaotic phase, the coefficients’ distribution is still different from Gaussian,
indicating the existence of correlations between them. By using the KL divergence to
measure the distance between the coefficients’ distribution and Gaussian distribution, we
illustrated that the onset of chaos corresponds to the rapid decrease in the behavior of KL
divergence as a function of coupling strength. Although the atomic interaction leads to
the decrease in KL divergence in the regular phase, the transition to chaos revealed by KL
divergence is almost independent of atomic interaction. This is different from the results
obtained by the eigenvalue-based chaos indicators and implies that unlike the eigenlevels,
the eigenstate structure is robust with respect to the change in atomic interaction.

A natural extension of the present work is to investigate the dynamical role played
by the atomic interaction in the development of chaos. It would also be interesting to
analyze the effect of atomic interaction on the level of chaoticity through long-range
spectral correlations, which can be detected by the spectral form factor [41]. In addition,
understanding the emergence of chaos and the impact of atomic interaction from the
dynamics of the classical counterpart of the model would be another interesting topic.
Very recently, the critical phenomena in the extended Dicke model have been thoroughly
analyzed in this direction [65]. Finally, we would like to mention that a direct demonstration
of level spacing distribution in an ultracold-atom system has been realized in a recent
experiment [99]. Hence, we expect that the spectral statistics of our studied extended Dicke
model can be verified by state-of-the-art experimental platforms.
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