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Abstract: We consider measuring the number of clusters (cluster size) in the finite mixture models
for interpreting their structures. Many existing information criteria have been applied for this issue
by regarding it as the same as the number of mixture components (mixture size); however, this may
not be valid in the presence of overlaps or weight biases. In this study, we argue that the cluster size
should be measured as a continuous value and propose a new criterion called mixture complexity
(MC) to formulate it. It is formally defined from the viewpoint of information theory and can be
seen as a natural extension of the cluster size considering overlap and weight bias. Subsequently, we
apply MC to the issue of gradual clustering change detection. Conventionally, clustering changes
have been regarded as abrupt, induced by the changes in the mixture size or cluster size. Meanwhile,
we consider the clustering changes to be gradual in terms of MC; it has the benefits of finding the
changes earlier and discerning the significant and insignificant changes. We further demonstrate that
the MC can be decomposed according to the hierarchical structures of the mixture models; it helps us
to analyze the detail of substructures.

Keywords: finite mixture model; clustering; change detection; gradual change; information theory

1. Introduction
1.1. Motivation

Finite mixture models are widely used for model-based clustering (for overviews and
references see McLachlan and Peel [1] and Fraley and Raftery [2]). In this field, determining
the number of components is a typical issue. It refers to the following two aspects: the
number of elements used to represent the density distribution and the number of clusters
used to group the data (referred to as mixture size and cluster size, respectively). In this
study, we consider the problem of interpreting the cluster size when the mixture size is
given. Many existing information criteria have been applied for this issue by regarding
it as the same as mixture size; however, it may not be valid when the components have
overlaps or weight biases. Therefore, we need to reconsider the definitions and meanings
of the cluster size.

For instance, let us observe three cases of the Gaussian mixture model, as shown in
Figure 1. Although the mixture size is two in any case, the situations are different. In
case (a), the two components are distinct from each other and their weights are not biased;
therefore, it is sound to believe that the cluster size is two as well. Meanwhile, in case (b),
although their weights are not biased, the two components are very close to each other;
then, as proposed in the work of Hennig [3], we may need to regard them as one cluster by
merging them. In case (c), although the two components are distinct from each other, their
weights are biased; as proposed in Jiang et al. [4] and He et al. [5], we may need to regard
the small components as outliers rather than a cluster. Overall, in cases (b) and (c), it may
be more difficult to say that the cluster size is exactly two than in case (a). This observation
gives rise to the problem of formally defining the complexity of clustering structures that
reflects the overlaps and weight biases.
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This paper introduces a novel concept of mixture complexity (MC) to resolve this
problem. It is related to the logarithm of the cluster size. For example, the exponentials of
the MC are 2.00, 1.39, and 1.21 for cases (a), (b), and (c), respectively. In other words, given
the mixture size, MC estimates the cluster size continuously rather than discretely.

exp(MC) = 1.993

(a)

exp(MC) = 1.394

(b)

exp(MC) = 1.213

(c)

Figure 1. Examples of MC with Gaussian mixture models with a mixture size of two.

There are two reasons for the need of MC. First, it theoretically evaluates the cluster size
in the finite mixture model considering the overlap and imbalance between the components.
Although their impacts on the cluster size have been discussed independently, we present
a unified framework to interpret the cluster size with a continuous index. It presents a new
perspective on model-based clustering and can be practically applied to cluster merging
or clustering-based outlier detection. The second is the application of MC to the issue
of gradual clustering change detection. Conventionally, clustering changes have been
considered to be abrupt, induced by changes in the mixture size or cluster size. In reality,
however, there are cases where mechanisms for generating data change gradually (or
incrementally in the context of concept drifts [6]). We thereby present a new methodology
for tracking such changes by observing MC’s changes.

We further show that MC can be used to quantify the cluster size in hierarchical
mixture models. We demonstrate that the MC of a hierarchical mixture model can be
decomposed into the sum of MCs for local mixture models. It enables us to evaluate the
complexity of the substructures as well as the entire structure.

The concept of MC has been applied to the clustering merging problem in [7]. This
study further investigates the theoretical properties of MC and proposes a new application
for the issue of gradual clustering change detection.

1.2. Significance and Novelty

The significance and novelty of this paper are summarized below.

1.2.1. Mixture Complexity for Finite Mixture Models

We introduce a novel concept of MC to continuously measure the cluster size in a
mixture model. It is formally defined from the viewpoint of information theory and can be
interpreted as a natural extension of the cluster size considering the overlaps and weight
biases among the components. We further demonstrate that MC can be decomposed
into a sum of MCs according to the mixture hierarchies; it helps us in analyzing MC in a
decomposed manner.

1.2.2. Applications of MC to Gradual Clustering Change Detection

We apply MC to the issue of monitoring gradual changes in clustering structures. We
propose methods to monitor changes in MC instead of the mixture size or cluster size.
Because MC takes a real value, it is more suitable for observing gradual changes. We
empirically demonstrate that MC elucidates the clustering structures and their changes
more effectively than the mixture size or cluster size.

The remainder of this paper is organized as follows. Section 2 discusses related
work. In Section 3, we introduce the concept of MC and present some examples. The-
oretical properties of MC are shown in Section 4. Section 5 discusses the application of
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MC to clustering change detection problems and Section 6 describes the experimental
results. Finally, Section 7 concludes this paper. Proofs of the propositions and theo-
rems are described in Appendices. Programs for the experiments are available at https:
//github.com/ShunkiKyoya/MixtureComplexity, accessed on 17 August 2022.

2. Related Work

The issue of determining the best mixture size or cluster size (often referred to as model
selection) has extensively been studied. For example, AIC [8], BIC [9], and MDL [10] have
been used to select the mixture size; ICL [11] and MDL-based clustering criteria [12,13] have
been invented to select the cluster size. These methods have conventionally considered the
cluster size as the same as the mixture size by regarding one mixture component as one
independent cluster. See also a recent review by McLachlan and Rathnayake [14] focusing
on the number of components in a Gaussian mixture model.

Differences between the mixture size and cluster size have also been widely discussed.
For example, McLachlan and Peel [1] pointed out that there were cases that Gaussian
mixture models with more than one mixture sizes were needed to describe one skewed
cluster; Biernacki et al. [11] argued that in many situations, the mixture size estimated by
BIC was too large to regard it as the cluster size. The problem of estimating the cluster size
under a given mixture size has also been investigated by Hennig [3]; he proposed methods
to identify the cluster structure by merging heavily overlapped mixture components. MC
differs from his approach in that it interprets the clustering structure by only measuring
the overlap rate rather than deciding whether to merge based on a certain threshold.

The degree of overlap or closeness between components was evaluated using various
measures, such as the classification error rate or the Bhattacharyya distance [15]. Wang
and Sun [16] and Sun and Wang [17] formulated the overlap rate of Gaussian distributions
from the geometric nature of them. All of the works above have been limited to the case
of two components. On the other hand, MC considers the overlap between any number
of components.

Deciding whether a small component is a cluster or a set of outliers is also a significant
matter. For example, clustering algorithms such as DBSCAN [18] and constrained k-
means [19] avoided generating small components to obtain a better clustering structure.
Jiang et al. [4] and He et al. [5] associated the small components with outlier detection
problems. MC evaluates the small components by continuously measuring the impacts on
the cluster size.

Some other notions have been proposed to quantify the clustering structure. Fuzzy
clustering [20] is also a method used to estimate the clustering structures with cluster
overlap; however, MC is more suitable for consistent estimation in that it assumes the
background mixture distributions. Rusch et al. [21] evaluated the crowdedness of the
data under the concept of “clusteredness”. However, its relations to the cluster size are
indirect. Recently, descriptive dimensionality (Ddim) [22] was proposed to define the
model dimensionality continuously. It can be implemented to estimate the clustering
structure under the assumption of model fusion, that is, models with a different number of
components are probabilistically mixed. MC differs from Ddim because it evaluates the
overlap and weight bias in the single model without model fusion.

Clustering under the data stream has been discussed with various objectives [23–25].
We consider the problem of detecting changes in the cluster structure; Dynamic model
selection (DMS) [26–28] addressed this problem by observing the changes in the models
(corresponding to mixture size or cluster size in this paper). Because the models are valued
discretely, the detected changes have been considered to be abrupt. Refer also to the notions
of tracking best experts [29], evolution graph [30], and switching distributions [31], which
are similar to DMS.

Furthermore, the issues of gradual changes have been discussed to investigate the
transition periods for absolute changes. The MDL change statistics [32] and differential
MDL change statistics [33] were proposed to measure the degree of gradual changes. The

https://github.com/ShunkiKyoya/MixtureComplexity
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notions of structural entropy [34] and graph entropy [35] were proposed to measure the
degree of model uncertainty in the changes. This study quantifies the degree of gradual
changes using the fluctuations in MC and presents a new methodology to detect them.

MC is based on the mutual information between the observed and latent variables,
which has been considered in the clustering fields. For example, Still et al. [36] regarded
clustering as data compression and applied mutual information to measure its degree. In
this paper, we present a novel interpretation of mutual information as a continuous number
of clusters. Furthermore, we also present its novel applications for interpreting clusterings
and clustering change detection.

3. Mixture Complexity

In this section, we formally introduce the mixture complexity and describe its proper-
ties using some examples and theories.

3.1. Definitions

Given the data {xn}N
n=1 and the finite mixture model f that have generated them, we

consider interpreting the cluster size of f . The distribution f is written as

f (x) :=
K

∑
k=1

ρkgk(x),

where K denotes the mixture size, {ρk}K
k=1 denote the proportions of each component

summing up to one, and {gk}K
k=1 denotes the probability distributions. The random variable

X following the distribution f is called an observed variable because it can be observed as a
datum. We also define the latent variable Z ∈ {1, . . . , K} as the index of the component from
which the observed variable X originated. The pair (X, Z) is called a complete variable. The
distribution of the latent variable P(Z) and the conditional distribution of the observed
variable P(X|Z) can be given by

P(Z = k) = ρk,

P(X|Z = k) = gk(X).

To investigate the clustering structures in f , we consider the following quantity:

I(Z; X) := H(Z)− H(Z|X),

where H(Z) and H(Z|X) denote the entropy and conditional entropy, respectively, of the
latent variable Z defined as

H(Z) := −
K

∑
k=1

P(Z = k) log P(Z = k) = −
K

∑
k=1

ρk log ρk,

H(Z|X) := −EX

[
K

∑
k=1

P(Z = k|X) log P(Z = k|X)

]
= −EX

[
K

∑
k=1

γk(X) log γk(X)

]
.

where
γk(X) := P(Z = k|X).

The quantity I(Z; X) is well-known as the mutual information between the observed and
latent variables; it is also known as the (generalized) Jensen–Shannon Divergence [37]. We
can interpret I(Z; X) as the volume of cluster structures as follows. Because I(Z; X) is a
subtraction of the latent variable’s entropy with and without the knowledge of the observed
variable, it represents the amount of information about the latent variable possessed by the
observed data. Thus, its exponent exp(I(X; Z)) denotes the number of the latent variables
distinguished by the observed variable; it can be interpreted as a continuous extension of
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the cluster size. For more information about entropy and mutual information, see the book
written by Cover and Thomas [38].

However, I(Z; X) cannot be calculated analytically even if f is known. Thus, noting
that ρk = EX [γk(X)], we approximate I(Z; X) using the data {xn}N

n=1 as follows:

I(Z; X) ≈ H̃(Z)− H̃(Z|X),

where

H̃(Z) := −
K

∑
k=1

ρ̃k log ρ̃k,

H̃(Z|X) := − 1
N

N

∑
n=1

K

∑
k=1

γk(xn) log γk(xn),

ρ̃k :=
1
N

N

∑
n=1

γk(xn).

We call this the MC of the mixture model f .

Definition 1. Given the posterior probabilities {γk(xn)}k,n, we define the mixture complexity
(MC) as

MC
(
{γk(xn)}k,n

)
:= −

K

∑
k=1

ρ̃k log ρ̃k +
1
N

N

∑
n=1

K

∑
k=1

γk(xn) log γk(xn),

where

ρ̃k :=
1
N

N

∑
n=1

γk(xn).

If the data have weights {wn}n, we define the MC as

MC
(
{γk(xn)}k,n; {wn}n

)
:= −

K

∑
k=1

ρ̃k log ρ̃k +
1

∑n′ wn′

N

∑
n=1

wn

K

∑
k=1

γk(xn) log γk(xn),

where

ρ̃k :=
1

∑n′ wn′

N

∑
n=1

wnγk(xn).

The weighted version of MC is defined for later use.
Note that there are other ways to approximate I(Z; X); we adopt the form of Definition 1

because it has the decomposition property shown in Section 4.2. See also the methods used to
approximate the entropy of the mixture model [39,40] that can also be applied to approximate
I(Z; X).

In practice, only the data {xn}N
n=1 can be obtained without the underlying distribution

f . Then, we estimate the posterior probabilities {γ̂k(xn)}k,n from the data {xn}N
n=1 and

further estimate the MC as

MC
(
{γk(xn)}k,n

)
≈ MC

(
{γ̂k(xn)}k,n

)
.

It can be calculated even if the model f cannot be estimated.

3.2. Examples

In this subsection, we discuss some examples of MC to understand its notions.
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3.2.1. MC with Different Overlaps

First, we set N = 600 and generated the data x1, . . . , x600 ∈ R2 as follows.

xn ∼
{
N
(

xn
∣∣µ = [0, 0]>, Σ = I2

)
(1 ≤ n ≤ 300),

N
(

xn
∣∣µ = [α, 0]>, Σ = I2

)
(301 ≤ n ≤ 600),

where N (x|µ, Σ) denotes a multivariate normal distribution with mean µ and covariance
Σ, Id denotes a d-dimensional identity matrix, and α ∈ R is the parameter that determines
the degree of overlap between two components.

By varying the value of α among 0, 0.6, . . . , 6.0, we generated the data and measured
the MC by setting ρ1, ρ2 = 1/2 and g1, g2 as the actual distributions. The exponential of the
MC for each α is plotted in Figure 2a. It is evident from the figure that the MC smoothly
increases from 1.0 to 2.0 as the two components become isolated.

0 2 4 6
alpha

1.0

1.5

2.0

ex
p(
M
C)

(a) MC with different overlaps

0 150 300
alpha

1.0

1.5

2.0

ex
p(
M
C)

(b) MC with different mixture biases

Figure 2. Relation between the parameter α and the exponential of the MC.

3.2.2. MC with Different Mixture Biases

Next, we set N = 600 and generated the data x1, . . . , x600 ∈ R2 as follows:

xn ∼
{
N
(
xn
∣∣µ = [0, 0]>, Σ = I2

)
(1 ≤ n ≤ 300 + α),

N
(

xn
∣∣µ = [6, 0]>, Σ = I2

)
(301 + α ≤ n ≤ 600),

where α ∈ {0, . . . , 300} is the parameter that determines the degree of bias between the
proportion of two components.

By varying α among 0, 30, . . . , 300, we generated the data and measured the MC by
setting ρ1 = (300 + α)/600, ρ2 = (300− α)/600 and g1, g2 as the actual distributions. The
exponential of the MC for each α is plotted in Figure 2b. It is evident from the figure that
the MC smoothly decreases from 2.0 to 1.0 as the balance becomes biased.

4. Theoretical Properties

In this subsection, we discuss the theoretical properties of MC.

4.1. Basic Properties

We discuss the basic properties of MC. The proofs are described in Appendix A.
First, we discuss the minimum and maximum of MC. We show that MC takes the mini-

mum when the components entirely overlap and maximum when they are entirely separate.
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Proposition 1. If the components entirely overlap, i.e., there exists γ1, . . . , γK such that γk(xn) =
γk for all k and n, then,

MC
(
{γk(xn)}k,n; {wn}n

)
= 0.

Proposition 2. If the components are entirely separate, i.e., for all xn, there is a unique index kn
that satisfies

γl(xn) =

{
1 (l = kn)

0 (l 6= kn)
,

then,
MC

(
{γk(xn)}k,n; {wn}n

)
= H̃(Z).

In particular, if the components are entirely balanced, i.e., ρ̃1 = · · · = ρ̃K = 1/K, then,

MC
(
{γk(xn)}k,n; {wn}n

)
= log K.

Proposition 3. For all {γk(xn)}k,n, MC satisfies

0 ≤ MC
(
{γk(xn)}k,n; {wn}n

)
≤ log K.

Moreover, MC takes 0 only if the components are entirely overlapping as stated in Proposition 1 and
takes log K only if the components are entirely separate as stated in Proposition 2.

Next, we show that the value of MC is invariant with the representation of the mixture
distribution. For example, consider the following three mixture distributions:

f1(x) =
1
2

g1(x) +
1
2

g2(x),

f2(x) =
1
2

g1(x) +
1
4

g2(x) +
1
4

g2(x),

f3(x) =
1
2

g1(x) +
1
4

g2(x) +
1
4

g2(x) + 0 · g3(x).

In f2 and f3, we need to manually remove the redundant components and regard the
mixture size as two [1]. On the other hand, the following property indicates that the
MCs for f1, f2, and f3 are the same; thus, we need not to care about their differences in
evaluating MC.

Proposition 4. If there exists a set I1, . . . , IL, I∞ that partitions {1, . . . , K} and distributions
g0

1, . . . , g0
L such that

k ∈ Il ⇒ gk = g0
l (l = 1, . . . , L),

k ∈ I∞ ⇒ ρk = 0,

then

MC
(
{γk(xn)}k,n; {wn}n

)
= MC

({
γ0

l (xn)
}

l,n
; {wn}n

)
,

where

γ0
l (x) =

(
∑k∈Il

ρk

)
g0

l (x)

f 0(x)
, f 0(x) =

L

∑
l=1

(
∑
k∈Il

ρk

)
g0

l (x).

4.2. Decomposition Property

In this section, we discuss a method to decompose MC along the hierarchies in mixture
models; this can help us in analyzing the structures in more detail.
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Consider that the mixture distribution f has a two-stage hierarchy, as shown in
Figure 3. It has K components {gk}K

k=1 on the lower side and L components {hl}L
l=1 on the

upper side, where {gk}K
k=1 denote the probability distributions and {hl}L

l=1 denote their
mixture distributions, respectively. We construct the hierarchy as follows. First, we estimate
the distribution f = ∑K

k=1 ρkgk. Then, we obtain {hl}L
l=1 by partitioning (or clustering) the

lower components into L groups. Formally, we denote Q(l)
k ∈ R≥0 as the proportion of the

lower component k ∈ {1, . . . , K} that belongs to the upper component l, which satisfies

∑L
l=1 Q(l)

k = 1 for all k. Then, we derive {hl}L
l=1 by rewriting f = ∑K

k=1 ρkgk as

f (x) =
K

∑
k=1

ρkgk(x) =
K

∑
k=1

L

∑
l=1

Q(l)
k ρkgk(x) =

L

∑
l=1

τlhl(x),

where

τl :=
K

∑
k=1

Q(l)
k ρk, hl(x) :=

K

∑
k=1

ρ
(l)
k gk(x), ρ

(l)
k :=

Q(l)
k ρk

∑k′ Q(l)
k′ ρk′

.

g1 g2 gK

h1 hL

Q
(l)
k

Figure 3. Hierarchy in the mixture model.

According to the hierarchy, we can decompose the MC.

Theorem 1. We can decompose the MC as follows:

MC
(
{γk(xn)}k,n; {wn}n

)
=MC

({
K

∑
k=1

Q(l)
k γk(xn)

}
l,n

; {wn}n

)
+

L

∑
l=1

Wl ·MC
({

γ
(l)
k (xn)

}
k,n

;
{

w(l)
n

}
n

)
,

where

Wl =
∑n wn ∑k Q(l)

k γk(xn)

∑n′ wn′
=

K

∑
k=1

Q(l)
k ρ̃k,

w(l)
n = wn

K

∑
k=1

Q(l)
k γk(xn),

γ
(l)
k (xn) =

Q(l)
k γk(xn)

∑k′ Q(l)
k′ γk′(xn)

.

The proof is described in the Appendix B. For notational simplicity, we will use the
following terms:
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MC(total) := MC
(
{γk(xn)}k,n; {wn}

)
,

MC(interaction) := MC

({
∑
k

Q(l)
k γk(xn)

}
l,n

; {wn}n

)
,

Contribution(component l) := Wl ·MC
({

γ
(l)
k (xn)

}
k,n

;
{

w(l)
n

}
n

)
,

W(component l) := Wl ,

MC(component l) := MC
({

γ
(l)
k (xn)

}
k,n

;
{

w(l)
n

}
n

)
.

Then, we can rewrite Theorem 1 as

MC(total) = MC(interaction) +
L

∑
l=1

Contribution(component l),

Contribution(component l) = W(component l) ·MC(component l).

In Theorem 1, the MC of the entire structure (MC(total)) is decomposed into a sum
of the MC among the upper components (MC(interaction)) and their respective contri-
butions (Contribution(component l)). Contribution(component l) is further decomposed
into a product of the weight (W(component l)) and complexity (MC(component l)) of
the component. Because w(l)

n denotes the weight of xn that belongs to component l, its
sum W(component l) represents the total weights of the data contained in it. Addition-
ally, MC(component l) denotes the clustering structures in component l considering the
data weights.

An example of the decomposition is illustrated in Figure 4 and Table 1. In this
example, there are K = 4 lower components generated from a Gaussian mixture model;
additionally, there are L = 2 upper components on the left and right sides. By decomposing
MC(total), we can evaluate the complexities in the local structures as well as those in the
entire structure.

MC (total) = 1.076

(a) MC(total)

MC (interaction) = 0.643

(b) MC(interaction)

MC (component 1) = 0.558

(c) MC(component 1)

MC (component 2) = 0.311

(d) MC(component 2)

Figure 4. Example of the decomposition of MC. The data’s color in (b) and thickness in (c,d)

correspond to the data weights w(l)
n .
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Table 1. Quantities in the example of the decomposition.

Component 1 Component 2

MC (total) 1.076

MC (interaction) 0.643
Contribution (component l) 0.277 0.157

W (component l) 0.496 0.504
MC (component l) 0.558 0.311

4.3. Consistency

In this subsection, we discuss the consistency of the MC: as the estimated distribution
becomes close to the true distribution, the estimated MC also converges to the true value.
Formally, we define the set of K-component mixture models as

FK :=

{
f (x) =

K

∑
k=1

ρkg(x|θk)

∣∣∣∣∣ ρ1, . . . , ρK ≥ 0,
K

∑
k=1

ρk = 1, θ1, . . . , θK ∈ Θ

}
.

We assume that the space FK is weakly identifiable, that is,

K

∑
k=1

ρ0
k g
(
·|θ0

k

)
=

K

∑
k=1

ρ1
k g
(
·|θ1

k

)
⇔

K

∑
k=1

ρ0
kδΘ(· = θ0

k ) =
K

∑
k=1

ρ1
kδΘ(· = θ1

k ),

where δΘ is the Kronecker’s delta function on Θ. This condition states that the same
distributions should have the same mixtures of parameters. See Teicher [41] and Yakiwitz
and Spragins [42] for sufficient conditions on this kind of identifiability; in their work, it
has been shown that this is satisfied in Gaussian or gamma mixtures.

We also assume some true mixture distribution written as

f ?(x) =
K?

∑
k=1

ρ?k g(x|θ?k ), ρ?1 , . . . , ρ?K? > 0, θ?1 , . . . , θ?K? ∈ Θ, θ?i 6= θ?j (i 6= j)

generates the data xN . We consider estimating the true mixture complexity written as
MC({γ?

k (xn)}k,n) by substituting the estimated distribution f ∈ FK into f ?. We restrict our
analysis to the case that K ≥ K? so that FK contains distributions that are equivalent to f ?.
Then, we show that MC({γk(xn)}k,n) converges to MC({γ?

k (xn)}k,n) as f and f ? become
closer.

To analyze the convergence, we re-parametrize the estimated parameters using the
method proposed in Liu and Shao [43]. They note that if f = f ?, there exist integers
0 = i0 < · · · < iK? ≤ K such that the following holds under some permutation of the
components: {

θl = θ?k (l ∈ Ik, k = 1, . . . , K?),
ρk = 0 (k ∈ I∞),

where

Ik := {ik−1 + 1, . . . , ik} (k = 1, . . . , K?),

I∞ := {iK? + 1, . . . , K}.

Then, they parametrize the parameters in f using two kinds of parameters defined as

φ :=
(
{θk}

iK?
k=1, {rl}K?

l=1, {ρk}K
k=iK?+1

)
,

rl := ∑
k∈Il

ρk,

ψ :=
(
{sk}

iK?
k=1, {θk}K

k=iK?+1

)
,

sk :=
ρk
rk

(k ∈ Il)
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and rewrite f as

f (x) =
K

∑
k=1

ρkg(x|θk) =
K?

∑
l=1

rlhl(x) +
K

∑
k=iK?+1

ρkgk(x),

hl(x) = ∑
k∈Il

skgk(x).

In this parametrization, f = f ? is equivalent to

φ = φ? := ({θ?1 , . . . , θ?1 , . . . , θ?K? , . . . , θ?K?}, {ρ?1 , . . . , ρ?K?}, {0, . . . , 0});

the parameter ψ has nothing to do with equivalence. This parametrization represents two
types of convergence in mixture models. First, it overlaps the components to the true
distributions, which is realized by

{θk}
iK?
k=1 → {θ

?
1 , . . . , θ?1 , . . . , θ?K? , . . . , θ?K?},

{rl}K?

l=1 → {ρ
?
1 , . . . , ρ?K?}.

The other is shrinking the weights of the redundant components to zero, which is realized by

{ρk}K
k=iK?+1 → {0, . . . , 0}.

We use the following conditions for our proof:

(C1) g(·|θ) is differentiable once and for every k = 1, . . . , K? and there exists ε > 0 such
that

Eθ?k

 sup
θ:‖θ−θ?k ‖≤ε

∥∥∥∥∇g(·|θ)
g(·|θ)

∥∥∥∥
 < ∞.

(C2) As N → ∞, the estimated parameter φ satisfies

‖φ− φ?‖ = oP(1).

(C3) Let us define the approximations of mixture proportions as

r̃l :=
1
N

N

∑
n=1

∑
k∈Il

γk(xn) (l = 1, . . . , K?),

ρ̃∞ :=
1
N

N

∑
n=1

K

∑
k=iK?+1

γk(xn).

Then, as N → ∞, they satisfy

|r̃l − ρ?l | = oP(1) (l = 1, . . . , K?),

ρ̃∞ = oP(1).

Condition (C1) is a usual differentiability condition, and (C2) and (C3) require consistency of
the parameters. It is known that consistent estimations are possible by penalized maximum
likelihood estimation [44,45] or Bayesian estimation [46], for example. Then, the consistency
of the MC is shown as the following theorem.

Theorem 2. Under assumptions (C1), (C2), and (C3), the following holds as N → ∞:∣∣∣MC
(
{γk(xn)}k,n

)
−MC

(
{γ?

k (xn)}k,n

)∣∣∣
= OP

(
‖φ− φ?‖+

K?

∑
l=1
|r̃l − ρ?l |+ ρ̃∞ log(−ρ̃∞) +

1√
N

)
.
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The proof is described in Appendix C. Theorem 2 shows the convergence rate of the
estimation error of the MC. It is interesting that this even holds when K 6= K?. Therefore, it
can be said that MC is a fundamental quantity to represent the cluster structures in mixture
models by overcoming the differences in mixture size.

We discuss the overview of the proofs below. First, applying Theorem 1 repeatedly,
we decompose the entire MC into the following four terms:

(a) Interaction between ∑K?

l=1 rlhl and ∑K
k=iK?+1 ρl gl .

(b) Contribution from ∑K
k=iK?+1 ρl gl .

(c) Interaction among h1, . . . , hK?

(d) Contributions from h1, . . . , hK? , respectively.

The procedure of the decomposition is also illustrated in Figure 5. Then, we show that

(a) tends to 0 because ρ̃∞ → 0;
(b) tends to 0 because ρ̃∞ → 0;
(c) tends to MC({γ?

k (xn)}k,n) because h1, . . . , hK? tends to g1, . . . , gK? ;
(d) tends to 0 because for all l, all components in hl tends to gl .

The proofs are mainly based on the mean-value theorem. However, differentiation of
log f by ρk (k ∈ I∞) may be infinite; we need additional treatments to avoid it.

Figure 5. Decomposition of the MC to prove Theorem 2.

5. Applications

In this section, we propose methods to apply the MC to clustering change detection
problems. Formally speaking, given the dataset X := {{xn,t}N

n=1 | t ∈ 1, . . . , T}, where
t denotes the time and {xn,t}N

n=1 denote the data generated at each t, we consider the
problem of monitoring the changes in the clustering structures over t = 1, . . . , T.

First, we briefly summarize the method named sequential dynamic model selection
(SDMS) [28] that addresses this problem. Then, we introduce our ideas and discuss the
differences between SDMS.

Hereafter, we assume that the data points xn,t are d-dimensional vectors and consider
a Gaussian mixture model

ft(x) =
Kt

∑
k=1

ρk,tN (x
∣∣µk,t, Σk,t)

for each t.

5.1. Sequential Dynamic Model Selection

SDMS is an algorithm that is used to sequentially estimate models and find changes.
In clustering change detection problems, it sequentially estimates the mixture sizes K̂t and

parameters ηK̂t
:= {ρ̂k,t, µ̂k,t, Σ̂k,t}K̂t

k=1 and finds model changes as changes in K̂t.
The estimation procedures are explained below. First, depending on the estimated

mixture size at the last time point K̂t−1, we set the candidate for Kt. Then, for each Kt
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in the candidate, we estimate the parameters θKt from the data {xn,t}N
n=1 and calculate a

cost function LSDMS({xn,t}N
n=1; Kt, θKt , K̂t−1). Finally, we select Kt as the mixture size that

minimizes the costs. The candidates of Kt are set as

{1, . . . , Kmax}

at t = 1, and
{Kt−1 − 1, Kt−1, Kt−1 + 1} ∩ {1, . . . , Kmax}

at t ≥ 2, where Kmax is a pre-defined parameter. The cost function denotes the sum of the
code length functions of the model and model changes given by

LSDMS

(
{xn,t}N

n=1; Kt, ηKt , K̂t−1

)
= Lmodel

(
{xn,t}N

n=1; Kt, ηKt

)
+ Lchange

(
Kt
∣∣ K̂t−1

)
.

Code Length of the Model

The score Lmodel({xn}N
n=1; K, ηK) denotes a sum of the logarithm of the likelihood

functions and penalty terms corresponding to the complexity of the model. In this study,
we consider two likelihood functions and four penalty terms. For the (logarithm of) like-
lihood functions, we consider the observed likelihood L({xn}N

n=1; θK) and complete likelihood
L({xn, zn}N

n=1; θK), provided by

L({xn}N
n=1; θK) :=

N

∑
n=1

log P(X = xn) =
N

∑
n=1

log

(
K

∑
k=1

ρkN (xn|µk, Σk)

)
,

L({xn, zn}N
n=1; θK) :=

N

∑
n=1

log P(X = xn, Z = zn) =
N

∑
n=1

log(ρznN (xn|µzn , Σzn)),

where {zn}N
n=1 are the latent variables for the data estimated by

zn := argmax
z∈1,...,K

P(Z = z|X = xn).

They correspond to the likelihood of the observed data and complete data, respectively; the
former is used to determine the mixture size, and the latter is used to determine the cluster
size under the assumption that it is equal to the mixture size. For the penalty terms, we
consider AIC [8], BIC [9], NML [13], and DNML [47,48]. By combining the log-likelihood
and the penalty terms, we consider the following six scores:

• AIC with observed likelihood (AIC):

−L
(
{xn}N

n=1; ηK

)
+ D,

• AIC with complete likelihood (AIC+comp):

−L
(
{xn, zn}N

n=1; ηK

)
+ D,

• BIC with observed likelihood (BIC):

−L
(
{xn}N

n=1; ηK

)
+

D
2

log N,

• BIC with complete likelihood (BIC+comp):

−L
(
{xn, zn}N

n=1; ηK

)
+

D
2

log N,

• NML:
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−L
(
{xn, zn}N

n=1; ηK

)
+ log PCNML(N, K),

• DNML:

−L
(
{xn, zn}N

n=1; θK

)
+ log PCDNML

(
N, {zn}N

n=1, K
)

.

where D := (K− 1) + d(d + 3)/2 denotes the number of the free parameters required to
represent a Gaussian mixture model; PCNML(N, K) and PCDNML(N, {zn}N

n=1, K) denote the
parametric complexities. In our experiments, we estimated the parameter ηK by conducting
the EM algorithm [49] implemented in the Scikit-learn package [50] ten times and selected
the best parameter that minimized each score. Note that in NML and DNML, we only
considered the complete likelihood functions because only the methods to calculate their
parametric complexities are known.

5.2. Track MC

In SDMS, clustering changes are detected as the changes of the mixture size or cluster
size K; because it is discrete, the changes have been considered to be abrupt. Then, we
propose to track MC instead of K while estimating the parameters using SDMS. Because
MC takes a real value, monitoring it is more suitable for observing gradual changes than
monitoring K. The algorithm for tracking MC is explained in Algorithm 1.

Algorithm 1 Tracking MC

Require: A dataset X = {{xn,t}N
n=1 | t ∈ 1, . . . , T}.

1: for t = 1 to t = T do
2: Estimate K̂t and {ĝk,t}K̂t

k=1 from the data {xn,t}N
n=1 using SDMS.

3: Calculate MCt := MC({γ̂k(xn)}k,n).
4: end for
5: return {MCt}T

t=1.

5.3. Track MC with Its Decomposition

In addition to monitoring the MC of the entire structure, we also propose an algorithm
to track its decomposition. To accomplish this, we must estimate the upper L components
and their corresponding partitions Q(l)

k,t for each t.
Here, we assume that the upper L components are common at every t and estimate

the partition Q(l)
k,t after estimating the lower components at each time. Specifically, we

consider µk,t as a point with weights ρk,t for each k and t and cluster them. As the clustering
algorithm, we modified the fuzzy c-means [20] to handle the weighted points. Formally,
we estimated the centers of the upper L components µ̃l and their corresponding partitions
Q(l)

k,t by minimizing the loss function

∑
t,k

ρk,t

L

∑
l=1

(
Q(l)

k,t

)m∥∥µk,t − µ̃l
∥∥2,

where m > 0 is parameter that determines the fuzziness of the partition.
We estimated µ̃l and Q(l)

k,t by minimizing one iteratively while fixing another. We can
formulate the iteration as follows:

µ̃l =
∑k,t ρk,t

(
Q(l)

k,t

)m
µk,t

∑k′ ,t′ ρk′ ,t′
(

Q(l)
k′ ,t′

)m ,

Q(l)
k,t =

∥∥µk,t − µ̃l
∥∥2/(m−1)

∑L
l′=1

∥∥µk,t − µ̃l′
∥∥2/(m−1)

.
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Finally, we present an algorithm to track the MC and its decomposition in Algorithm 2.
We can analyze the structural changes in more detail by evaluating the decomposed values.

Algorithm 2 Tracking MC with its decomposition

Require: A dataset X = {{xn,t}N
n=1 | t ∈ 1, . . . , T}, parameters m and L.

1:
2: # Step 1: Estimate lower components.
3: for t = 1 to t = T do
4: Estimate K̂t and {ĝk,t}K̂t

k=1 from the data {xn,t}N
n=1 using SDMS.

5: Calculate MC(total)t := MC({γ̂k(xn)}k,n).
6: end for
7:
8: # Step 2: Estimate upper components and partition.
9: Estimate the centers µ̃l and the partition Q(l)

k,t using fuzzy c-means.
10:
11: # Step 3: Calculate the decomposition of MC.
12: for t = 1 to t = T do
13: Calculate MC(interaction)t defined in Section 4.2.
14: for l = 1 to l = L do
15: Calculate W(component l)t defined in Section 4.2.
16: Calculate MC(component l)t defined in Section 4.2.
17: end for
18: end for
19: return {MC(total)t}T

t=1, {MC(interaction)t}T
t=1, {{W(component l)t}L

l=1}
T
t=1,

{{MC(component l)t}L
l=1}

T
t=1.

6. Experimental Results

In this section, we present the experimental results that demonstrate the MC’s ability
to monitor the clustering changes. We compare our methods to the monitoring of K.

6.1. Analysis of Artificial Data

To reveal the behaviors of MC, we conducted experiments with two artificial datasets
called move Gaussian dataset and imbalance Gaussian dataset. Their experimental designs are
discussed below. First, we generated artificial datasets X = {{xn,t}N

n=1 | t ∈ 1, . . . , T} by
setting T = 150 and N = 1000. The datasets have one transaction period t = 51, . . . , 100 in
which the data change their clustering structures gradually. Then, we estimated the MC
and K using the methods in Sections 5.1 and 5.2 by setting Kmax = 10. To compare them,
we first created a simple algorithm to detect the changes from the sequence of MC or K.
Then, we compared the abilities of this algorithm in terms of the speed and accuracy of
detecting the change points. Moreover, to evaluate the abilities to find the changes in the
opposite direction, we performed experiments with the same datasets in the reverse order.

Given a sequence of the MC or K written as y1, . . . , y150, we constructed an algorithm
to detect the change points as follows. For t = 10, . . . , 150, we raised a change alert if

|median(yt−9, . . . , yt−5)−median(yt−4, . . . , yt)| > ε

in the case of MC, and

median(yt−9, . . . , yt−5) 6= median(yt−4, . . . , yt)

in the case of K, where ε is the threshold to raise an alert in MC. It should be to some extent
large for avoiding too many false alerts and smaller than 1 to find the changes earlier than
with monitoring K. In this section, we set ε as 0.01 so as not to raise alerts from t = 1 to 10
assuming that we know that there are no changes in this period. We calculated the medians
instead of the means of the subsequences for robustness. However, to avoid redundant
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alerts, we neglected them when the difference between t and the latest alert was less than 5
even if the conditions were satisfied.

To evaluate the quality of the algorithm, we calculated Delay and False alarm rate (FAR),
defined as

Delay := min(t∗ − 51, 50),

FAR :=
#{t ∈ [10, 150] | t /∈ ACCEPT∧ t ∈ ALERT}

#{t ∈ [10, 150] | t /∈ ACCEPT} ,

where t∗ denotes the first time point in the transaction period when the algorithm generated
an alert, ACCEPT denotes the set of time points when alerts can be defined as {t | ∃t−
9, . . . , t ∈ [51, . . . , 100]} = [51, 109], and ALERT denotes the set of time points when the
algorithm generates alerts.

6.1.1. Move Gaussian Dataset

The move Gaussian dataset is a set of three-dimensional Gaussian distributions, whose
means move gradually in the transaction period. Formally, for each t, we generated the
data {xn,t}1000

n=1 as follows:

xn,t ∼


N
(

x|µ = [0, 0, 0]>, Σ = I3
)

(1 ≤ n ≤ 333),
N
(

x|µ = [10, 0, 0]>, Σ = I3
)

(334 ≤ n ≤ 666),
N
(

x|µ = [10 + α(t), 0, 0]>, Σ = I3
)

(667 ≤ n ≤ 1000),

where

α(t) =


0 (1 ≤ t ≤ 50),
0.12(t− 50) (51 ≤ t ≤ 100),
6 (101 ≤ t ≤ 150).

The first and second dimensions of some data are visualized in Figure 6. In the direction
t = 1→ 150, the number of clusters increases from two to three as the two clusters leave;
in the direction t = 150→ 1, it decreases from three to two as the two clusters merge.

(a) t = 1 (b) t = 75 (c) t = 101

Figure 6. Scatter plots of the first and second dimensions of the data at t = 1, 75, 101 in the move
Gaussian dataset.

The experiments were performed ten times by randomly generating the datasets;
accordingly, the average performance scores were calculated. The differences in the scores
between the MC and K for each criterion are presented in Table 2; the estimated MC and K
in one trial are proposed in Figure 7. This figure illustrates the result of BIC as an example.

Table 2. Difference in the average performance score between MC and K for the move Gaussian dataset.

(Score of MC)− (Score of K)

t = 1→ 150 t = 150→ 1

Criterion Delay FAR Delay Far

AIC 0.0 0.000 −20.6 0.000
AIC+comp 0.0 0.000 −10.9 0.000

BIC 0.0 0.000 −17.5 0.000
BIC+comp 0.0 0.000 −8.9 0.000

NML 0.0 0.000 −7.9 0.000
DNML 0.0 0.000 −7.7 0.000
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(b) t = 150→ 1

Figure 7. Plots of the exponential of MC and K for the move Gaussian dataset. The filled area
represents the transaction period. The markers on the plot represent the alerts in each method.

With respect to the speed to find changes, in every criterion, MC performed as well
as K in the direction t = 1→ 150; however, it performed significantly better than K in the
direction t = 150 → 1. The reason for the differing performances is discussed below. In
the direction t = 1→ 150, the model selection algorithms underestimated the number of
components at the beginning of the transaction period. In such time points, they ignored
the overlapping of the two components and considered them as one cluster. Thus, MC,
based on such model selection methods, was unable to find the changes earlier than K.
However, in the direction t = 150→ 1, the overlap between the components was correctly
estimated at some time points before K changed. In this case, MC changed smoothly
according to the overlap and found changes earlier than K.

With respect to the accuracy of finding changes, MC performed as well as K in terms of
FAR. Additionally, it is evident from Figure 7 that MC stably estimated the clustering structures.

6.1.2. Imbalance Gaussian Dataset

The imbalance Gaussian dataset is a set of three-dimensional Gaussian mixture distri-
butions whose balances change gradually in the transaction period. Formally, for each t,
we generated the data {xn,t}1000

n=1 as follows:

xn,t ∼


N
(

x|µ = [0, 0, 0]>, Σ = I3
)

(1 ≤ n ≤ 250),
N
(

x|µ = [10, 0, 0]>, Σ = I3
)

(251 ≤ n ≤ 500),
N
(

x|µ = [20, 0, 0]>, Σ = I3
)

(501 ≤ n ≤ 750 + α(t)),
N
(

x|µ = [30, 0, 0]>, Σ = I3
)

(751 + α(t) ≤ n ≤ 1000),

where
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α(t) =


0 (1 ≤ t ≤ 50),
5(t− 51) (51 ≤ t ≤ 100),
250 (101 ≤ t ≤ 150).

The first and second dimensions of some data are visualized in Figure 8. In the direction
t = 1 → 150, the number of clusters decreases from four to three as the edge cluster
disappears. In the direction t = 150→ 1, it increases from three to four as the edge cluster
emerges.

(a) t = 1 (b) t = 80 (c) t = 101

Figure 8. Scatter plots of the first and second dimensions of the data at t = 1, 80, 101 in the imbalance
Gaussian dataset.

The experiments were performed ten times by randomly generating datasets; accord-
ingly, the average performance scores were calculated. The difference in the scores between
the MC and K for each criterion are listed in Table 3. The estimated MC and K in one trial
are plotted in Figure 9. This figure illustrates the result of BIC as an example.

Table 3. Differences in the average performance score between MC and K for the imbalance Gaus-
sian dataset.

(Score of MC)− (Score of K)

t = 1→ 150 t = 150→ 1

Criterion Delay FAR Delay Far

AIC −30.2 0.010 −4.6 0.000
AIC+comp −34.0 0.000 0.0 0.000

BIC −34.0 0.000 0.0 0.000
BIC+comp −34.0 0.000 0.0 0.000

NML −34.0 0.000 0.0 0.000
DNML −34.0 0.000 0.0 0.000

In terms of the speed to find changes, in every model selection method, MC performed
significantly better than K in the direction t = 1→ 150; however, MC performed as well as
K in the direction t = 150→ 1. The reason for the differing performances is discussed below.
In the transaction period, all model selection methods counted the minor components as
independent clusters. Then, in the direction t = 1→ 150, MC changed smoothly according
to the imbalance and determined the changes earlier than K. In the direction t = 150→ 1,
K increased significantly early in the transaction period. Then, MC increased along with K
and determined the changes simultaneously.

In terms of the accuracy of finding changes, MC performed as well as K in terms of FAR.
Additionally, it is evident from Figure 9 that MC stably estimated the clustering structures.
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Figure 9. Plots of the exponential of MC and K for the imbalance Gaussian dataset. The filled area
represents the transaction period. The markers on the plot represent the alerts in each method.

6.1.3. Scalability

To discuss the scalability for the large datasets, we explored the increase in the compu-
tation time for the data size. First, we set the mixture distribution f as

f (x) = 0.5×N
(

x
∣∣∣µ = [0, . . . , 0]>, Σ = Id

)
+ 0.5×N

(
x
∣∣∣µ = [1, . . . , 1]>, Σ = Id

)
and sampled N points from f . Then, we recorded the time to calculate {γk,n} from f
and calculated the MC from {γk,n}. We repeatedly measured the computation times by
increasing N and d. For each N and d, we measured them ten times and took their averages.

The increase in the computation times is illustrated in Figure 10. In (a), although
both computation times increased linearly as N grew, calculating MC was faster than
calculating {γk,n}. In (b), although the time to calculate {γk,n} increased as d grew, and the
computation time for MC was almost constant because K and N were not changed. Overall,
the cost of computing MC is much smaller than that of computing or estimating {γk,n}.

104 105 106

N

0.0

0.1

0.2

tim
e 
(s
)

calculate gamma
calculate MC

(a)

102 103 104

d

0.0

0.2

0.4

tim
e 
(s
)

calculate gamma
calculate MC

(b)

Figure 10. Relationships between the computation time and N and d. In (a), we fixed d = 10 and
varied N from 10 to 106. In (b), we fixed N = 10,000 and varied d from 10 to 104.
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6.2. Analysis of Real Data

We analyzed two types of real data named the beer dataset and house dataset, which
are summarized in Table 4. In the following subsections, we discussed the detail of the
datasets and results of the experiments.

Table 4. Summary of the dataset.

Dataset T Nt d Description

beer 92 3185 16 purchase data of beer.

house 96 4326 3 electricity consumption data in a house.

6.2.1. Beer Dataset

We discuss the results of the beer dataset, obtained from Hakuhodo, Inc. and M-CUBE,
Inc. This has also been analyzed in [28,34]. The dataset comprises the records of customer’s
beer purchases from November 1st, 2010 to January 31th, 2011. The dataset X is constructed
as follows. The time unit is a day. For each day t ∈ {τ, . . . , T}, xn,t ∈ Rd denotes the n-th
customer’s consumption of the beer from time t− τ + 1 to t, where we set τ = 14. The
dimension d of the vector is 16, which correspond to the consumptions of the following drink:

• beer (A), . . . , beer (F): beer with brand name A, . . . , F.
• beer (other): beer with other brands.
• beerlike (A), . . . , beerlike (H): beer-like drink with brand name A, . . . , H.
• beerlike (other): beer-like drink with other brands.

First, we compare the plots of the estimated MC and K in Figure 11. The results of BIC
and NML are illustrated as an example. Note that we omit the results of AIC because it
chose Kmax for K̂t at many t. In any method, the score was high at the end and beginning
of the year, reflecting the increased activities in transactions. However, because the critical
changes in the clustering structure and changes due to ineffective components were mixed,
the sequence of K had a lot of change points; as a result, it was difficult to interpret their
meanings. On the other hand, MC identified the clustering structure by discounting the
effects of the ineffective components. As a result, the sequence of MC highlighted the
significant changes at the end and beginning of the year. It is also worthwhile noting that
the differences of the scores between the model selection methods were much smaller in MC
than those in K; this indicates that both BIC and NML estimates similar clustering structures
under the concept of MC even though the number of components differs significantly.

11/14 12/1 1/1 1/31
Date

4

6

8

10

12

14

sc
or
e

NML: K
BIC: K
NML: exp(MC)
BIC: exp(MC)

Figure 11. Plots of the sequences of the MC and K in the beer dataset.

Next, we discuss the results of the decomposition of MC. We present the results of
BIC and NML with L = 4 and m = 1.5. The centers of the upper components are listed
in Tables 5 and 6, respectively, and the plots of each decomposed value are illustrated
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in Figures 12 and 13, respectively. The indices of the upper components are manually
rearranged so that they correspond with each other; then, it can be observed that the results
were also similar to each other. The structures can be extensively evaluated by analyzing
the decomposed values. For instance, let us analyze the decomposed values at the end and
beginning of the year. As evident from the tables, they had different characteristics. It can
be observed from the figures that the contributions increased in all components, indicating
that they were related to the increase in MC(total). The weight of the component decreased
in cluster 1 and increased in component 2 and 3, indicating that the customers moved
from component 1 to component 2 and 3. Additionally, MC(component l) increased in all
components, indicating that the complexity or diversity increased within them.

Table 5. Centers of the upper components estimated by BIC in the beer dataset. For each dimension,
the maximum value is denoted in boldface.

Component 1 Component 2 Component 3 Component 4

beer(A) 0.09 0.44 1.93 0.16
beer(B) 0.07 0.23 0.96 0.06
beer(C) 0.07 0.20 0.83 0.07
beer(D) 0.05 0.20 0.58 0.05
beer(E) 0.03 0.06 0.35 0.03
beer(F) 0.03 0.06 0.35 0.02

beer(other) 0.04 0.12 0.69 0.10
beerlike(A) 0.02 5.85 0.23 0.07
beerlike(B) 0.09 0.57 0.80 0.21
beerlike(C) 0.10 0.63 0.83 0.22
beerlike(D) 0.07 0.40 0.57 0.18
beerlike(E) 0.04 0.12 0.51 0.06
beerlike(F) 0.04 0.20 0.34 0.13
beerlike(G) 0.05 0.10 0.40 0.06
beerlike(H) 0.03 0.09 0.26 0.04

beerlike(other) 0.09 1.27 1.11 6.78

Table 6. Centers of the upper components estimated by NML in the beer dataset. For each dimension,
the maximum value is denoted in boldface.

Component 1 Component 2 Component 3 Component 4

beer(A) 0.08 0.48 1.90 0.12
beer(B) 0.04 0.30 1.04 0.07
beer(C) 0.05 0.20 0.95 0.04
beer(D) 0.04 0.19 0.64 0.09
beer(E) 0.02 0.06 0.38 0.02
beer(F) 0.02 0.07 0.40 0.01

beer(other) 0.03 0.11 0.68 0.19
beerlike(A) 0.02 5.79 0.21 0.07
beerlike(B) 0.10 0.52 0.73 0.18
beerlike(C) 0.11 0.61 0.70 0.21
beerlike(D) 0.06 0.49 0.52 0.24
beerlike(E) 0.04 0.12 0.47 0.07
beerlike(F) 0.04 0.18 0.30 0.24
beerlike(G) 0.04 0.11 0.44 0.07
beerlike(H) 0.02 0.10 0.23 0.09

beerlike(other) 0.08 1.42 1.08 6.54
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Figure 12. Plots of the decomposition of MC with BIC in the beer Dataset.
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Figure 13. Plots of the decomposition of MC with NML in the beer Dataset.

6.2.2. House Dataset

We discuss the results of the house dataset, obtained from the UCI Machine Learning
Repository [51]. The dataset comprises the records of electricity consumption in a house
every five minutes from 16 December 2006 to 26t November 2010. The dataset X is
constructed as follows. The time unit is 15 min from 00:00–00:15 to 23:45–24:00. For each t,
the data {xn,t}N

n=1 denotes the set of the records on the various days included in the t-th
time unit. The dimension d of the vector is 3, which corresponds to the metering of the
following three points:
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• metering(A): a kitchen.
• metering(B): a laundry room.
• metering(C): a water-heater and an air-conditioner.

First, we compare the plots of the estimated K and the corresponding MC in Figure 14.
The results of BIC and NML are illustrated as an example. Note that we omit the results
of AIC because it chose Kmax for K̂t at many t. It can be observed from the figure that
the MC smoothly connected the discrete changes in K; therefore, MC expressed gradual
changes in the dataset more effectively than K. Additionally, the MCs in BIC and NML
were more similar to each other than K as well as in the beer dataset. The values of MC
started increasing from around 7:00 a.m.; after slight fluctuations, the value reached its peak
around 21:00. Therefore, MC seemed to represent the amount of activities in this house.

00:00 06:00 12:00 18:00 24:00
Time

4

8

12

16

20

sc
or
e

NML: K
BIC: K
NML: exp(MC)
BIC: exp(MC)

Figure 14. Plots of the sequences of the MC and K in the house dataset.

Next, we discuss the results of the decomposition of MC. We present the results of
BIC and NML with L = 4 and m = 1.5. The centers of the upper components are listed
in Tables 7 and 8, respectively, and the plots of each decomposed value are illustrated
in Figures 15 and 16, respectively. The indices of the upper components are manually
rearranged so that they correspond with each other; then, it can be observed that the results
were also similar to each other. The structures can be extensively evaluated by analyzing
the decomposed values. For instance, let us analyze the decomposed values in component
3. It can be observed from the tables that the value in metering(C) was specifically high in
this component. Looking at the contribution (component 3), there were two peaks around
9:00 and 21:00; it represented the increased activities in this component. However, the
proportions of the weight and MC were different. W(component 3) was specifically high at
9:00, indicating that the first half of the peaks was due to the increase in the weight of the
component; whereas, MC(component 3) was specifically high at 21:00, indicating that the
second half of the peaks was due to the increase in the complexity within the component.

Table 7. Centers of the upper components estimated by BIC in the house dataset. For each dimension,
the maximum value is denoted in boldface.

Component 1 Component 2 Component 3 Component 4

metering(A) 0.04 4.47 0.13 0.41
metering(B) 0.53 0.89 0.56 4.40
metering(C) 0.75 3.34 4.37 2.96
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Table 8. Centers of the upper components estimated by NML in the house dataset. For each
dimension, the maximum value is denoted in boldface.

Component 1 Component 2 Component 3 Component 4

metering(A) 0.04 4.24 0.11 0.35
metering(B) 0.53 1.00 0.57 4.48
metering(C) 0.76 3.37 4.38 2.93
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(g) W(component 1)

00:00 06:00 12:00 18:00 24:00
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Figure 15. Plots of the decomposition of MC with BIC in the house Dataset.
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Figure 16. Plots of the decomposition of MC with NML in the house Dataset.

7. Conclusions

We proposed the concept of MC to measure the cluster size continuously in the mixture
model. We first pointed out that the cluster size might not be equal to the mixture size when
the mixture model had overlap or weight bias; then, we introduced MC as an extended
concept of the cluster size considering the effects of them. We also presented methods to
decompose the MC according to the mixture hierarchies, which helped us in extensively
analyzing the substructures. Subsequently, we implemented the MC and its decomposition
to the gradual clustering change detection problems. We conducted experiments to verify
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that the MC effectively elucidates the clustering changes. In the artificial data experiments,
MC found the clustering changes significantly earlier in the case where the overlap or weight
bias was correctly estimated. In the real data experiments, MC expressed the gradual changes
better than K because it discerned the significant and insignificant changes and smoothly
connected the discrete changes in K. We also found that the MC took similar values for each
model selection method; it indicates that the estimated clustering structures are alike under the
concept of MC. Moreover, its decomposition enabled us to evaluate the contents of changes.

Issues of the MC will be tackled in future study. For example, it does not capture the
clustering structure well when the number of the components is underestimated; thus,
we need to explore the model selection methods that are more compatible with MC. Also,
we further need to study its theoretical aspects, such as convergence and methods for
approximating the mutual information. Furthremore, we need to consider extending the
concept of MC into other clustering approaches, e.g., considering co-clustering by relating
non-diagonal blocks in co-clustering and cluster overlaps in finite mixture models.
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Appendix A. Proof of the Basic Properties

We present a proof of Propositions 1–4.

Appendix A.1. Proof of Proposition 1

We can directly calculate as follows:

MC
(
{γk(xn)}k,n; {wn}n

)
= −

K

∑
k=1

(
∑n wnγk

∑n′ wn′

)
log
(

∑n wnγk

∑n′ wn′

)
+

1
∑n′ wn′

N

∑
n=1

wn

K

∑
k=1

γk log γk

= −
K

∑
k=1

γk log γk +
K

∑
k=1

γk log γk

= 0.

Appendix A.2. Proof of Proposition 2

Because x log x = 0 when x = 0 or 1, H̃(Z|X) becomes 0 when the components are
entirely separate. Thus, the proposition hols.

Appendix A.3. Proof of Proposition 3

It is immediate that

MC
(
{γk(xn)}k,n; {wn}n

)
= H̃(Z)− H̃(Z|X)

(a)
≤ H̃(Z)

(b)
≤ log K.

The equality of (a) holds only if the components are entirely separate and the equality of (b)
holds only if the components are balanced. Thus, MC equals log K only if the components
are entirely separate and balanced.
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Also, by applying the Jensen’s inequality to x 7→ −x log x, we obtain that

−
K

∑
k=1

(
∑n wnγk(xn)

∑n′ wn′

)
log
(

∑n wnγk(xn)

∑n′ wn′

)
≥ −

K

∑
k=1

1
∑n′ wn′

N

∑
n=1

wnγk(xn) log γk(xn),

which is equivalent to that MC({γk(xn)}k,n, {wn}n) ≥ 0. The equality holds only if the
components entirely overlap.

Appendix A.4. Proof of Proposition 4

By applying Theorem 1 to partition I1 ∪ · · · ∪ IL into each set, we can calculate that

MC
(
{γk(xn)}k,n; {wn}n

)
=MC
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)
(∵ Proposition 1).

Appendix B. Proof of the Decomposition Property

We present a proof of Theorem 1. Let

ρ̃
(l)
k =

∑n w(l)
n γ

(l)
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(l)
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=
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.

Then, we can calculate as
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Appendix C. Proof of the Consistency

We present a proof of Theorem 2. We use the following notations for convenience:

[γ1(xn)| . . . |γK(xn)] := {γk(xn)}k,n,

I0 := I1 ∪ · · · ∪ IK? .

First, applying Theorem 1 repeatedly, we decompose the entire MC as follows:
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The terms in (A1) correspond to the four quantities (a), . . . , (d) referred to in Section 4.3.
Then, it is sufficient to show that
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∣∣∣∣∣ ∑k∈I∞ ρkgk(xn)

f (xn)

])
→ 0,

ρ̃∞MC

({
ρk(xn)

∑k′∈I∞ ρk′(xn)

}
k∈I∞

;

{
∑

k∈I∞

γk(xn)

})
→ 0,

(1− ρ̃∞)MC

({
rlhl(xn)

∑K?

l′=1 rl′hl′(xn)

}
l=1,...,K?

;

{
∑

k∈I0

γk(xn)

})
→ MC

(
{γ?

k (xn)}k,n

)
,

K?

∑
l=1

(
∑
k∈Il

ρ̃k

)
MC

({
skgk(xn)

hl(xn)

}
k∈Il

;

{
∑
k∈Il

γk(xn)

})
→ 0.
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Step 1

First, we show that

MC

([
∑K?

l=1 rlhl(xn)

f (xn)

∣∣∣∣∣ ∑k∈I∞ ρkgk(xn)

f (xn)

])
= OP(ρ̃∞(− log ρ̃∞)).

Using Proposition 3, it is easily shown as follows:

MC

([
∑K?

l=1 rlhl(xn)

f (xn)

∣∣∣∣∣ ∑k∈I∞ ρkgk(xn)

f (xn)

])
≤ −ρ̃∞ log ρ̃∞ − (1− ρ̃∞) log(1− ρ̃∞)

= OP(ρ̃∞(− log ρ̃∞)).

Step 2

Second, we show that

ρ̃∞MC

({
ρk(xn)

∑k′∈I∞ ρk′(xn)

}
k∈I∞

;

{
∑

k∈I∞

γk(xn)

})
= OP(ρ̃∞).

It is also evident from Proposition 3:

ρ̃∞MC

({
ρk(xn)

∑k′∈I∞ ρk′(xn)

}
k∈I∞

;

{
∑

k∈I∞

γk(xn)

})
≤ ρ̃∞ log(K− iK?)

= OP(ρ̃∞).

Step 3

Third, we show that

(1− ρ̃∞)MC

({
rlhl(xn)

∑K?

l′=1 rl′hl′(xn)

}
l=1,...,K?

;

{
∑

k∈I0

γk(xn)

})

=MC
(
{γ?

k (xn)}k,n

)
+ OP

(
‖φ− φ?‖+

K?

∑
l=1
|r̃l − ρ?l |+ ρ̃∞

)
.

To this end, we further decompose the left hand as

(1− ρ̃∞)MC

({
rlhl(xn)

∑K?

l′=1 rl′hl′(xn)

}
l=1,...,K?

;

{
∑

k∈I0

γk(xn)

})

= − (1− ρ̃∞)
K?

∑
l=1

r̃l
1− ρ̃∞

log
(

r̃l
1− ρ̃∞

)

+
1
N

N

∑
n=1

K?

∑
l=1

(
∑

k∈I0

γk(xn)

)
rlhl(xn)

∑K?

l′=1 rl′hl′(xn)
log

(
rlhl(xn)

∑K?

l′=1 rl′hl′(xn)

)
;

they correspond to the unconditional and conditional entropy of the latent variables,
respectively. On the other hand, the true MC is defined as

−
K?

∑
l=1

ρ̃?l log ρ̃?l +
1
N

N

∑
n=1

K?

∑
l=1

γ?
l (xn) log γ?

l (xn).

Then, it is sufficient to show that
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−(1− ρ̃∞)
K?

∑
l=1

r̃l
1− ρ̃∞

log
(

r̃l
1− ρ̃∞

)
→ −

K?

∑
l=1

ρ̃?l log ρ̃?l ,

1
N

N

∑
n=1

K?

∑
l=1

(
∑

k∈I0

γk(xn)

)
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)
log

(
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)

)

→ 1
N

N

∑
n=1

K?

∑
l=1

γ?
l (xn) log γ?

l (xn).

First, we show that

− (1− ρ̃∞)
K?

∑
l=1

r̃l
1− ρ̃∞

log
(

r̃l
1− ρ̃∞

)

= −
K?

∑
l=1

ρ̃?l log ρ̃?l + OP

(
K?

∑
l=1
|r̃l − ρ?l |+ ρ̃∞ +

1√
N

)
.

Indeed, by the mean-value theorem, there exist rm
1 , . . . , rm

K? between r̃1, . . . , r̃K? and ρ?1 , . . . , ρ?K? and
ρm

∞ between 0 and ρ̃∞ such that
K?

∑
l=1

r̃l log r̃l =
K?

∑
l=1

ρ?l log ρ?l +
K?

∑
l=1

(1 + log rm
l )(r̃l − ρ?l ) (l = 1, . . . , K?), (A2)

(1− ρ̃∞) log(1− ρ̃∞) = (1− log(1− ρm
∞))ρ̃∞. (A3)

Also, from assumption (C3), if N is sufficiently large, log rm
l and log(1− ρm

∞) are finite because rm
l and

ρm
∞ become arbitrarily close to ρ?l (> 0) and 0, respectively. Similarly, there exist ρm

1 , . . . , ρm
K? between

ρ̃?1 , . . . , ρ̃?K? and ρ?1 , . . . , ρ?K? such that

K?

∑
l=1

ρ̃?l log ρ̃?l =
K?

∑
l=1

ρ?l log ρ?l +
K?

∑
l=1

(1 + log ρm
l )(ρ̃?l − ρ?l ) (l = 1, . . . , K?). (A4)

Also, from the central limit theorem, ρ̃?l converges to ρ?k at the speed of OP(1/
√

N).
Using (A2)–(A4), we can calculate as

− (1− ρ̃∞)
K?

∑
l=1

r̃l
1− ρ̃∞

log
(

r̃l
1− ρ̃∞

)

= −
K?

∑
l=1

r̃l log r̃l + K?(1− ρ̃∞) log(1− ρ̃∞)

= −
K?

∑
l=1

ρ?l log ρ?l + OP

(
K?

∑
l=1
|r̃l − ρ?l |+ ρ̃∞

)

= −
K?

∑
l=1

ρ̃?l log ρ̃?l + OP

(
K?

∑
l=1
|r̃l − ρ?l |+ ρ̃∞ +

1√
N

)
.

Next, we show that

1
N

N

∑
n=1

K?

∑
l=1

(
∑

k∈I0

γk(xn)

)
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)
log

(
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)

)

=
1
N

N

∑
n=1

K?

∑
l=1

γ?
l (xn) log γ?

l (xn) + OP(‖φ− φ?‖+ ρ̃∞).

We first define the following functions for l = 1, . . . , K?:

Fl(φ, ψ, x) :=
rlhl(x)

∑K?

l′=1 rl′hl′ (x)
log

(
rlhl(x)

∑K?

l′=1 rl′hl′ (x)

)
.

When φ = φ?, Fl(φ
?, ψ, x) is calculated as γ?

l (x) log γ?
l (x); it is independent of ψ. In this case, we

omit ψ and write Fl(φ
?, ψ, x) as Fl(φ

?, x). Applying the mean-value theorem to this function, there
exists a function 0 < τ(x) < 1 such that

Fl(φ, ψ, x) = Fl(φ
?, x) +

(
∂Fl(φ

? + t(x)(φ− φ?), ψ, x)
∂φ

)>
(φ− φ?). (A5)
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Moreover, it can be shown that ∂Fl(φ
? + t(x)(φ− φ?), ψ, x)/∂φ = OP(1) uniformly with x, τ(x), and

ψ. Indeed, letting

φm :=
(
{θm

k }
iK?

k=1, {rm
l }

K?

l=1, {ρm
k }

K
k=iK?+1

)
:= φ? + t(x)(φ− φ?),

hm
l (x) := ∑

k∈Il

skgk(x|θm
k ),

γm
l (x) :=

rm
l hm

l (x)

∑K?

l′=1 rm
l′ hm

l′ (x)
,

derivative of each parameter in φ is bounded as follows:∣∣∣∣ ∂Fl(φ
m, ψ, x)
∂rl

∣∣∣∣
=

∣∣∣∣∣∣∣
 hm

l (x)

∑K?

l′=1 rm
l′ hm

l′ (x)
−

rm
l
(
hm

l (x)
)2(

∑K?

l′=1 rm
l′ hm

l′ (x)
)2

(1 + log

(
rm

l hm
l (x)

∑K?

l′=1 rm
l′ hm

l′ (x)

))∣∣∣∣∣∣∣
≤

γm
l (x)
rm

l
+

(
γm

l (x)
)2

rm
l

+
1

rm
l
|γm

l (x) log γm
l (x)|+ 1

rm
l

∣∣∣(γm
l (x))2 log γm

l (x)
∣∣∣

≤ 4
rm

l
,∣∣∣∣ ∂Fl(φ

m, ψ, x)
∂rm

∣∣∣∣ (m 6= l)

=

∣∣∣∣∣∣∣
rm

l hm
l (x)hm

m (x)(
∑K?

l′=1 rm
l′ hm

l′ (x)
)2

(
1 + log

(
rm

l hm
l (x)

∑K?

l′=1 rm
l′ hm

l′ (x)

))∣∣∣∣∣∣∣
≤ γm

m (x)
rm

m
|γm

l (x) log γm
l (x)|

≤ 1
rm

m
,∥∥∥∥ ∂Fl(φ

m, ψ, x)
∂θk

∥∥∥∥ (k ∈ Il)

=

∥∥∥∥∥∥∥
 rm

l

∑K?

l′=1 rm
l′ hm

l′ (x)

∂hm
l (x)
∂θk

−
(
rm

l
)2hm

l (x)(
∑K?

l′=1 rm
l′ hm

l′ (x)
)2

∂hm
l (x)
∂θk


×
(

1 + log

(
rm

l hm
l (x)

∑K?

l′=1 rm
l′ hm

l′ (x)

))∥∥∥∥∥
≤
(

γm
l (x) + (γm

l (x))2 + |γm
l (x) log γm

l (x)|+
∣∣∣(γm

l (x))2 log γm
l (x)

∣∣∣)∥∥∥∥ 1
hm

l (x)
∂hm

l (x)
∂θk

∥∥∥∥
≤ 4

∥∥∥∥∥ sup
θ∈Θε

(
1

g(x|θ)
∂g(x|θ)

∂θk

)∥∥∥∥∥,∥∥∥∥ ∂Fl(φ
m, ψ, x)

∂θk

∥∥∥∥ (k ∈ Im, m 6= l)

=

∥∥∥∥∥∥∥
rm

l rm
m hm

l (x)(
∑K?

l′=1 rm
l′ hm

l′ (x)
)2

∂hm
m (x)
∂θk

(
1 + log

(
rm

l hm
l (x)

∑K?

l′=1 rm
l′ hm

l′ (x)

))∥∥∥∥∥∥∥
≤ (γm

m (x)γm
l (x) + γm

m (x)|γm
l (x) log γm

l (x)|)
∥∥∥∥ ∂hm

m (x)
∂θk

∥∥∥∥
≤ 2

∥∥∥∥∥ sup
θ∈Θε

(
1

g(x|θ)
∂g(x|θ)

∂θk

)∥∥∥∥∥,∣∣∣∣ ∂Fl(φ
m, ψ, x)
∂ρk

∣∣∣∣ = 0 (k ∈ I∞),
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where
Θε :=

{
θ
∣∣∣ ∃l ∈ {1, . . . , K?}, ‖θ − θ?l ‖ < ‖φ− φ?‖

}
.

They are all finite because rm
l become arbitrarily close to ρ?l and Θε become arbitrarily smaller as

N → ∞; condition (C1) is also employed.
Using (A5), we can calculate as

1
N

N

∑
n=1

K?

∑
l=1

(
∑
k∈Il

γk(xn)

)
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)
log

(
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)

)

=
1
N

N

∑
n=1

K?

∑
l=1

(
1− ∑

k∈I∞

γk(xn)

)(
Fl(φ

?, xn) +

(
∂Fl(φ

m, ψ, xn)

∂φ

)>
(φ− φ?)

)

=
1
N

N

∑
n=1

K?

∑
l=1

(
1− ∑

k∈I∞

γk(xn)

)(
γ?

l (x) log γ?
l (x) +

(
∂Fl(φ

m, ψ, xn)

∂φ

)>
(φ− φ?)

)
.

Therefore, ∣∣∣∣∣ 1
N

N

∑
n=1

K?

∑
l=1

(
∑

k∈I0

γk(xn)

)
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)
log

(
rlhl(xn)

∑K?

l′=1 rl′hl′ (xn)

)

− 1
N

N

∑
n=1

K?

∑
l=1

γ?
l (xn) log γ?

l (xn)

∣∣∣∣∣
≤ 1

N

N

∑
n=1

K?

∑
l=1

∣∣∣∣∣
(

∂Fl(φ
m, ψ, xn)

∂φ

)>
(φ− φ?)

∣∣∣∣∣
+

1
N

N

∑
n=1

K?

∑
l=1

(
∑

k∈I∞

γk(xn)

)
|γ?

l (xn) log γ?
l (xn)|

≤
K?

∑
l=1

sup
xn ,ψ

(∥∥∥∥ ∂Fl(φ
m, ψ, xn)

∂φ

∥∥∥∥‖φ− φ?‖
)
+ 3K? ρ̃∞

=OP(‖φ− φ?‖+ ρ̃∞).

Step 4

Finally, we show that

K?

∑
l=1

(
∑
k∈Il

ρ̃k

)
MC

({
skgk(xn)

hl(xn)

}
k∈Il

;

{
∑
k∈Il

γk(xn)

})
= OP(‖φ− φ?‖)

for every l = 1, . . . , K?.
To this end, we write the left hand as G({θk}k∈Il

) and consider it as a function of {θk}k∈Il
. Then,

for all other parameters, G({θ?k }k∈Il
) = 0. Also, the derivative of G by θl is OP(1) as N → ∞. Indeed,

it can be rewritten as

G
(
{θk}k∈Il

)
=

1
N

N

∑
n=1

∑
k∈Il

rlskgk(xn)

f (xn)
log
(

skgk(xn)

hl(xn)

)

− 1
N ∑

k∈Il

(
N

∑
n=1

rlskgk(xn)

f (xn)

)
log

(
N

∑
n′=1

rlskgk(xn′ )

f (xn′ )

)

+
1
N ∑

k∈Il

(
N

∑
n=1

rlskgk(xn)

f (xn)

)
log

(
N

∑
n′=1

rlhl(xn′ )

f (xn′ )

)
.

Also, we define the posterior probabilities within hl as

γ
(l)
k (x) :=

skgk(x)
hl(x)

(k ∈ Il).

Then, the derivatives are bounded as
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∥∥∥∥∥∥
∂G
(
{θk}k∈Il

)
∂θm

∥∥∥∥∥∥ (m ∈ Il)

=

∥∥∥∥∥ 1
N

N

∑
n=1

∑
k∈Il

(
rlsk

f (xn)

∂gk(xn)

∂θm
−

r2
l sksmgk(xn)

( f (xn))
2

∂gm(xn)

∂θm

)

×
(

log
(

skgk(xn)

hl(xn)

)
− log

(
N

∑
n′=1

rlskgk(xn′ )

f (xn′ )

)
+ log

(
N

∑
n′′=1

rlhl(xn′′ )

f (xn′′ )

))

+
1
N

N

∑
n=1

∑
k∈Il

(
rlsk

f (xn)

∂gk(xn)

∂θm
− rlsksmgk(xn)

f (xn)hl(xn)

∂gm(xn)

∂θm

)

− 1
N ∑

k∈Il

N

∑
n=1

(
rlsk

f (xn)

∂gk(xn)

∂θm
−

r2
l sksmgk(xn)

( f (xn))
2

∂gm(xn)

∂θm

)

+
1
N ∑

k∈Il

∑N
n′=1

rlskgk(xn′ )

f (xn′ )

∑N
n′′=1

hl(xn′′ )

f (xn′′ )

N

∑
n=1

(
rlsm

f (xn)

∂gk(xn)

∂θm
− rlsmh(xn)

( f (xn))
2

∂gm(xn)

∂θm

)∥∥∥∥∥∥∥∥
≤ 1

N

N

∑
n=1

∑
k∈Il

∣∣∣γ(l)
k (xn) log γ

(l)
k (xn)

∣∣∣∥∥∥∥ 1
gk(xn)

∂gk(xn)

∂θm

∥∥∥∥
+

1
N

N

∑
n=1

∑
k∈Il

∣∣∣γ(l)
k (xn)γ

(l)
m (xn) log γ

(l)
k (xn)

∣∣∣∥∥∥∥ 1
gm(xn)

∂gm(xn)

∂θm

∥∥∥∥
+ ∑

k∈Il

[
2
N

N

∑
n=1

rlhl(xn)

f (xn)
sup
θ∈Θε

∥∥∥∥ 1
g(xn|θ)

∂g(xn|θ)
∂θ

∥∥∥∥
×

∣∣∣∣∣∣∣∣
∑N

n′=1
rlskgk(xn′ )

f (xn′ )

∑N
n′=1

rlhl(xn′ )

f (xn′ )

log

∑N
n′=1

rlskgk(xn′ )

f (xn′ )

∑N
n′=1

rlhl(xn′ )

f (xn′ )


∣∣∣∣∣∣∣∣


+
2
N

N

∑
n=1

∑
k∈Il

∣∣∣γ(l)
k (xn)

∣∣∣∥∥∥∥ 1
gk(xn)

∂gk(xn)

∂θm

∥∥∥∥
+

2
N

N

∑
n=1

∑
k∈Il

∣∣∣γ(l)
k (xn)γ

(l)
m (xn)

∣∣∣∥∥∥∥ 1
gm(xn)

∂gm(xn)

∂θm

∥∥∥∥
≤ 8K sup

θ∈Θε

∥∥∥∥ 1
g(xn|θ)

∂g(xn|θ)
∂θ

∥∥∥∥
=OP(1),

where, it is assumed that {θk}k∈Il
are sufficiently close to θ?k , which holds if N is sufficiently large

because of condition (C2).
Therefore, by the mean-value theorem, there exist {θm

k }k∈Il
such that

G({θk}k∈Il
) = ∑

k∈Il

 ∂G
({

θm
k
}

k∈Il

)
∂θk

>(θm
k − θ?k )

= OP(‖φ− φ?‖),

which concludes the proof.
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