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Abstract: Considering both biological and non-biological polygonal shape organizations, in this pa-

per we introduce a quantitative method which is able to determine informational entropy as spatial 

differences between heterogeneity of internal areas from simulation and experimental samples. Ac-

cording to these data (i.e., heterogeneity), we are able to establish levels of informational entropy 

using statistical insights of spatial orders using discrete and continuous values. Given a particular 

state of entropy, we establish levels of information as a novel approach which can unveil general 

principles of biological organization. Thirty-five geometric aggregates are tested (biological, non-

biological, and polygonal simulations) in order to obtain the theoretical and experimental results of 

their spatial heterogeneity. Geometrical aggregates (meshes) include a spectrum of organizations 

ranging from cell meshes to ecological patterns. Experimental results for discrete entropy using a 

bin width of 0.5 show that a particular range of informational entropy (0.08 to 0.27 bits) is intrinsi-

cally associated with low rates of heterogeneity, which indicates a high degree of uncertainty in 

finding non-homogeneous configurations. In contrast, differential entropy (continuous) results re-

flect negative entropy within a particular range (−0.4 to −0.9) for all bin widths. We conclude that 

the differential entropy of geometrical organizations is an important source of neglected infor-

mation in biological systems. 

Keywords: differential entropy; discrete entropy; geometrical information; heterogeneity;  

information theory 

 

1. Introduction 

In the context of shapes and forms in biology, there has been an historical effort to 

find the source of some patterns and the fundamental nature of their seemingly steady 

basic arrangement. Traditionally, the bottom-up logic of biological developed structures 

as dynamical time-space expression processes has been extensively approached either by 

Neo-Darwinism (e.g., genetic blueprint or functional viewpoints) or by biological struc-

turalism (e.g., fractal biologic patterns from chaos theory). In fact, these approaches are 

supported by epistemological conceptions defining traditions of research work, such as 

positioning whole organisms as being made of atomic and separate parts (i.e., systemat-

ics) or the holistic dynamical system approach of the structuralist point of view (e.g., Tu-

ring patterns). In contrast, our perspective employs Shannon entropy to understand bio-

logical organizations as a geometric whole whose configurations defining their steady 
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state result from an inherent and specific level of information. One important example of 

steady states is derived from a prevailing and well stereotyped distribution of cellular 

polygons in metazoans tissues (epithelium). The question concerning whether patterns 

and shapes are an active source of geometrical information, stability, and variability dur-

ing developmental processes and evolution represents an intriguing issue that requires 

further study. Although that “geometrical information” sounds very similar to the inter-

disciplinary field of Information geometry is important to say that they are different ap-

proaches with some important convergences that will be treated briefly at discussion. 

In this work, the geometric properties of individual discrete elements in forms are 

not simple intrinsic features biologically exposed as outcomes. Instead, we understand 

them as both independent spaces in a larger whole and as units defining interacting prop-

erties inside of a larger whole of geometric information. In this line of reasoning, our main 

methodological question about shapes arises: Is there a way to quantify geometrical order 

in biological organizations using levels of information? This question has been tackled 

from other perspectives. There is an important amount of work related to quantifying in-

formation at different complexity levels in biological networks [1–4], ecosystems [5–9], 

molecular entropy [10], and cellular entropy [11], to name a few approaches. Furthermore, 

the characterization of ecological landscape heterogeneity (e.g., urban, sociological, and 

economical properties at multiple scales associated with them) have been approached [12–

14] using spatial entropy and complexity tools. However, in the context of pure biology, 

the underlying informational order behind the geometry of general biological organiza-

tions is still not quite clear. However, there are some intuitions regarding quantitative 

values for biology and architecture [15]. Nevertheless, the limits defining quantitative pa-

rameters of order according to entropy, as a generic value for biological organizations, is 

still an issue which has yet to be solved. We maintain that an important aspect of our 

research is the selection of a set of biological forms to work on. 

The core idea of measuring spatial heterogeneity to determine the geometrical en-

tropy of a particular biological form is derived from a previous analysis of geometrical 

constrictions in five-fold morphologies (polygonal random disc organizations) [16]. In 

that work, it was found that spatial organization of five-fold morphologies is statistically 

lower than all other planar disc organizations (three to ten-fold morphologies) in terms of 

spatial heterogeneity (unequal distribution of space inside polygons). In fact, the authors 

found a statistical basis corresponding to the most frequent morphologies in biological 

disc organizations (three, four, five, and six disk partitions are typically found in flowers, 

fruits, and other biological organizations) [16]. While we found a statistical value to ap-

proach the key idea of low heterogeneity for related morphologies in nature, the authors 

were unable to capture quantitatively the geometrical limits of biological organizations 

within a formal framework of reference. 

Much work has been carried out regarding the larger geometrical context of cells and 

the physical causalities of interactions into cell aggregates using meshes [17–23], which 

notably enforces our background. This work derives from physical parameters and de-

scribes geometrical properties while not strictly determining levels of geometric infor-

mation. The characterization of ‘self-assembled 2D patterns with Voronoi entropy’ repre-

sents a certain approach for achieving geometry as a source of organization, employing 

levels of spatial heterogeneity at different scales [24,25]. However, the main results of this 

kind of work provide some insight about entropy in the context of matter organization 

and ecological dynamics, even stirring research on material sciences and cellular aspects 

(including topics such as the informational limits of generic order in biology). Living sys-

tems show an important reduction of entropy, reaching very low values along self-organ-

ization as an ostensibly consistent rule [1,3,6,10,13,16,24–28]. Such behavior has been as-

sociated with biological and physical constraints [29,30], with some proposals linking it to 

pure geometry [26–28,31,32]. The hypothesis we will try to verify in this work is as fol-

lows: the more self-organized a system, the less entropic is its behavior. Hence, we expect 

that this information is related with the ordering of geometric parts throughout biological 
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structures. Accordingly, Shannon entropy shall indicate the amount of information con-

sidered (besides being a proxy of geometrical heterogeneity). In addition, Shannon en-

tropy is the average of a variable’s uncertainty that reflects how much information is as-

sociated with the probability of a given event. In this paper, we propose that its range [i.e., 

heterogeneity, non-heterogeneity] can be translated into bits of information between 0 and 

1. 

The set of organizations that we choose is based on looking for strictly biological 

samples made of polygons at two size levels (cellular and ecological), simulations of bio-

logical samples, and experimental controls (random simulations and poisson tessella-

tions). The main idea was to generate a proper collection of biological samples to detect 

particular levels of informational entropy using the unique simplicity of polygons as a 

general feature for a data source. Those polygons have levels of heterogeneity which will 

be our source of data used to establish levels of entropy in order to identify biological 

particularities. 

To develop this idea, this paper is organized as follows. First, there is an exposition 

of the collecting method and features and categorization of biological images samples and 

non-biological mesh simulations in Section 2. These data will define the material to work 

on besides random polygons with different numbers of sides (Appendix A). The mathe-

matical framework and the statistical motivation to work on these polygons and the main 

background used to define heterogeneity in spatial organization of polygonal shapes and 

meshes are given in the ‘Methods’ section. The procedure used to measure the quantity of 

information in geometrical meshes of biological and non-biological systems using Shan-

non entropy and the associated statistical distributions of internal partitioning in shapes 

is shown in Section 3. Finally, Sections 4 and 5 correspond to discussion and conclusions, 

respectively. 

2. Materials and Methods 

2.1. Materials 

The outline of an area or figure is a shape that can be a determined configuration of 

discrete elements, which sometimes can be understood as a population of geometric parts 

which serve as constitutive elements. Our approach here is to determine levels of geomet-

ric information using Shannon entropy as the main theoretical framework. Therefore, in-

formational entropy would allow for the quantification of order and disorder levels from 

discrete and continuous geometric variables. Continuous approaches which are able to 

characterize chemical, physical, and biological patterns, based on the continuous measure 

of symmetry, were introduced [33–38]. Suitably, the first focus of our research is on extract 

basic discrete and continuous geometric principles of polygons immersed into larger 

whole organizations (called polygonally shaped patterns, or PSP) in order to standardize 

levels of biological information given several amounts of heterogeneity (i.e., unequal dis-

tribution of space inside a given area). Rather than just looking at polygons and their ag-

gregates as mathematical outcomes derived from computing simulations, in this paper 

we developed a statistical process to detect levels of information from them. Our method 

points out to spatial heterogeneity of polygons as a free scale informational substrate that 

can be approached on a wide range of biological size scales (which also can be easily trans-

lated into an informational entropy metric description). Hence, the material of our work 

will be the areas (polygons) and their associated sub-areas (triangles) defining levels of 

heterogeneity. Our procedure satisfies the fact that we may work with sets of polygonal 

shapes as an informational substrate upon we can discern levels of geometrical heteroge-

neity getting a width spectrum of numerical data. This metric was tested into meshes (bi-

ological, non-biological, and random polygonal arrangements) and simulated random 

discs with different number of sides. Finally, we will retrieve the informational limits of 

biological structures whose geometry would potentially be biologically representative in 

terms of their closeness with nature images due to the informational entropy associated. 
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The first step was the establishment of a collection of biological images and sample 

data to work on. Several biological cell organizations have been used as models to define 

geometric parameters. In that sense, an important number of studies have analyzed the 

topological properties of many cell organizations [18–22,26–28,32,39–44]. Also, a lot of ep-

ithelium models have extensively used anatomical parts, developmental stages, and tissue 

variations images. In fact, there is a prevailing and well stereotyped distribution of cellular 

polygons (SDCP) conserved in proliferating metazoans tissues with a polygonal fre-

quency of 29% of 5-sided polygons, 49% of 6-sided polygons, and 20% of 7-sided polygons 

[20,40,41]. In that context, some other images of biological cell organizations are available 

online, such as histological samples derived from different human tissues [20,42]. Cur-

rently, it is widely accepted that although variation in those organizations exists, there is 

just a narrow range of variations of cellular polygonal distributions [20,40]. In this regard, 

samples of polygonal meshes are directly comparable even if some of them are from dif-

ferent origin or scale due to all of them are PSP [45,46], including biological natural im-

ages, biological simulations, non-biological simulations (such as random meshes and 

Poisson-Voronoi tessellations), and random polygons. Therefore, levels of Shannon en-

tropy in polygonal meshes and sets of random polygons turn into a window of universal 

and comparable information if we approach them from a pure geometric perspective. 

Collecting Samples 

We collected samples of images (online) looking for a broad and representative set of 

biological organizations in order to support our main hypothesis (i.e., that geometric in-

formation defined by the Shannon entropy of spatial polygonal heterogeneity is a proper 

parameter able to define the limits of a generic biological organizational value using PSP). 

Thus, the establishment of a measure of spatial organization able to determine the geo-

metrical entropy of order for biological forms must be analyzed measuring biological and 

non-biological organizations (Figure 1). At the tissue level, we used images from prolifer-

ating drosophila prepupal wing discs (dWP) [20,41,43], middle third instar wing discs 

(dWL) [41,43], normal human biceps (BCA) [20], muscular dystrophy from skeletal mus-

cles (MD) [42], and pseudo stratified drosophila wing disk epithelium (PSD) [40]. Also, at 

the ecological level polygonal meshes derived from Namibia fairy circles (ecological pat-

terns associated with SDCP convergences) images were integrated into the analysis (NFC) 

and ecological oak patterns (EOP) [45–48]. The global tag to encompass MD, dWP, dWL, 

BCA, PSD, and NFC is called BIO. The non-biological meshes were different diagrams 

resulting from different vertex model simulations. Those simulations were based on quan-

tified distances from SDCP, which is traditionally used as reference in epithelial studies 

[49–51]. The closeness with SDCP can be defined through an optimal paths approach us-

ing iterations of Lloyd’s algorithm and other cellular biophysical conditions in order to 

investigate the effects of cell divisions on topology [20]. In contrast, other work reached 

equilibrium states by seeking minimal potential energy [50]. Given this, there were epi-

thelium simulations which we defined as control simulations (CS) [20,32], simulation out 

of equilibrium (SOE) [20,32], simulation at equilibrium (SAE) [20,32], atrophy simulation 

(AS) [20], and Poisson–Voronoi tessellation (PT) [20]. We consider CS, SOE, SAE, AS, and 

PT altogether as non-biological meshes (non BIO), since they were derived from algo-

rithms and not from actual biological samples. In addition, in order to have a reference to 

contrast numerical values of nature typical arrangements we also include planar discrete 

areas (PDA; Section 2.2.1). Finally, we incorporated an algorithmic routine [45] to develop 

random arrangements (RA) into the global analysis as a control. Therefore, the analysis 

will include three PSP mesh categories, BIO, non BIO, RA, and data from PDA (Table 1; 

summary of category, abbreviation, name and number of samples). 
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Table 1. Summary of category, abbreviation, particular name, and number of samples. 

Mesh Categories  Abbreviation  Name and Number of Samples 

- PSP  Polygonal shape pattern (total number of samples 38) 

- 𝛤-PDA Planar discrete areas (8) 

Bio  dWP  Drosophila prepupal wing discs (3)  

Bio  dWL  Middle third instar wing discs (4) 

Bio  BCA  Normal human biceps (2) 

Bio  MD  Muscular dystrophy from skeletal muscles (1)  

Bio  PSD  Pseudo stratified Drosophila disk epithelium (4)  

Bio  NFC  Namibia fairy circles (2) 

Bio EOP Ecological Oak Patterns (3) 

Non-Bio  CS  Control simulations (5) 

Non-Bio  SOE  Simulation out of equilibrium (1) 

Non-Bio  SAE  Simulation at equilibrium (2) 

Non-Bio  AS  Atrophy simulation (2) 

Non-Bio  PT  Poisson–Voronoi tessellation (1) 

RA  RA  Random arrangements (50) 

 

Figure 1. Three general types of schematic mosaics were analyzed. Left: random arrangements (RA). 

Center: natural images (BIO, schemes of aggregates of cells and ecological polygonal meshes) ex-

tracted from the web; muscular dystrophy (MD), drosophila prepupal wing discs (dWP), middle 

third instar wing discs (dWL), normal human biceps (BCA), pseudo-stratified drosophila wing disk 

epithelium (PSD), and ecological patterns (NFC and EOP). Right: processed non biological images 

(non BIO) extracted from the web which we named, control simulation (CS), simulation at equilib-

rium (SAE), atrophy simulation (AS), simulation out of equilibrium (SOE), and Poisson–Voronoi 

tessellation (PT). 

2.2. Methods 

2.2.1. Mathematical Description of Shapes 𝛤 and Heterogeneity of Spatial Organization 

The establishment of a measure of heterogeneity able to determine the geometrical 

entropy of biological organizations is derived from a previous analysis of spatial con-

strictions in five-fold morphologies [16]. The algorithm to simulate partitions and shapes 

𝛤-PDA (planar discrete areas inside a disc; Box 1) is extensively supported in Appendix 

A. Here, our main methodology goes beyond, focused on statistical measurements of ge-

ometrical heterogeneity onto biological and non-biological PSP, associating levels of en-

tropy to them using fundamentals features of shapes 𝛤. 

A former statistical analysis is derived from the study of partitions (areas) and their 

sub-localities (sub-areas) arising from computational constructions named 𝛤 shapes. Ge-

nerically, a shape 𝛤 is a set of numerical values able to be analyzed statistically which is 

composed of sub-localities which are areas inside a partition 𝑃𝑖  (Box 1). Therefore, there 

are two particular cases of 𝛤 shapes. Tthe first particular case of shape 𝛤 can be a set of 

sub-areas derived from a partition 𝑃𝑖  being a disc simulation with a given number 𝑁𝑖 of 

sub-localities (𝛤-PDA). The second one is a regular or irregular polygon with any number 

of sides. In that sense, each shape 𝛤 can be achieved as a set of numerical sub-areas that 

can be subject to be statistically analyzed. The main idea used to establish the generic 

name of shape 𝛤 is that it is useful to name either geometric objects (e.g., irregular and 



Entropy 2022, 24, 1390 6 of 23 
 

 

regular polygons or PDA) or areas (numeric values inside discs simulations or 𝛤-PDA) 

associated with either discs or any 2D simulated or not simulated polygonal shape de-

rived from meshes. 

Box 1. Partition number. 

Figure a–c shows the process of partitioning using, as an example, five sub-localities. The 

concentric scheme at figure d shows three levels of variability (shadow zones limited by 

1, 4, and 8) according to the scale given by the first circle radius. These shadow restricted 

zones are areas whose random points define sub-localities according to a particular par-

tition number (figure a–c). This methodology is applied to partition number 𝑃𝑖  using discs 

with 3, 4, 5, 6, 7, 8, 9, and 10 sub-localities. The second concentric circle limits the variation 

of area once that Voronoi algorithm is running in order to limit as much as possible the 

area variability. 

 

Partitions 𝑃𝑖  are sets of areas where each partition is constituted by a subset of a given 

number 𝑁𝑖 of sub-localities, 𝑆𝑖1, 𝑆𝑖2 , … , 𝑆𝑖𝑁𝑖
 such that 𝑃𝑖 =∪𝑗=1

𝑁𝑖 𝑆𝑖𝑗 , where 𝑃𝑖  is a spatial re-

gion which could be either a set of areas as numerical values or any convex polygon in 

ℝ2. In order to start with a statistical description, let 𝐴𝑖𝑗  be the area of each sub-locality. If 

𝐴𝑖𝑗 = 𝐴𝑖𝑘∀ 𝑗, 𝑘, then we said that 𝑃𝑖  is non heterogeneous. In contrast, if exists some 𝑗 ≠ 𝑘 

such that 𝐴𝑖𝑗 ≠ 𝐴𝑖𝑘 then we say that 𝑃𝑖  is heterogeneous. Therefore, let 𝐴𝑖 = ∑ 𝐴𝑖𝑗
𝑁𝑖
𝑗=1  be the 

sum of all of the associated areas of a partition; this set determines a shape 𝛤 = {𝐴𝑖}. We 

consider a polygon as a first example of a particular shape 𝛤 with a set of sub-areas which 
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are considered in numerical terms. In that example, the numerical values correspond to 

triangle areas from a hexagon representing a particular case of a shape 𝛤 (Figure 2). 

 

Figure 2. Schematic properties of two different examples of a particular shape 𝛤. (a) A regular hex-

agon is a partition associated with six sub-areas from six sub-localities 𝑆1, 𝑆2, … , 𝑆6 which are all 

equal. Then it is non heterogeneous. (b) A shape 𝛤 with a six-fold heterogeneous partition such that 

the areas defined by sub-localities 𝑆1 and  𝑆5 are smaller than those of 𝑆2,  𝑆3,  𝑆4, and 𝑆6, then this is 

heterogeneous. 

Therefore, the area average of a partition 𝑃𝑖  is: 

�̅�𝑖 =
1

𝑁𝑖

∑ 𝐴𝑖𝑗

𝑁𝑖

𝑗=1

 (1) 

and 

𝜎𝑖 = √
1

𝑁𝑖 − 1
∑(𝐴𝑖𝑗 − 𝐴�̅�)

2

𝑁𝑖

𝑗=1

 (2) 

is the standard deviation of each partition. Notice that if 𝜎𝑖 = 0 ⇒ 𝐴𝑖𝑗 = 𝐴𝑖𝑘  ∀ 𝑗, 𝑘. There-

fore, that partition is non heterogeneous. 

Equation (3) reflects the amount of heterogeneity in a given shape 𝛤 and is inside a 

scale from 0 to ~1. Generalization for equations defining heterogeneity of polygons is writ-

ten 𝑥𝑖, where sub-index 𝑖 reflects the number of sides of each polygon. 

𝑥𝑖 = 𝜎𝑖/�̅�𝑖 (3) 

The main objective of our research here is the establishment of a measure of spatial 

organization which is able to determine the geometrical entropy for biological and non-

biological organizations. Therefore, we must relate (3) with a proper collection of shapes 

𝛤 reflecting numerical data of spatial heterogeneity in PSP, quantifying indexes of heter-

ogeneity in all of our samples (those from Section 2.2.1). Before defining entropy in mosa-

ics of cells we have to develop a proper methodology to get the coordinates of individual 

polygons. As mentioned in Section 2.2.1, we used biological (natural) and non-biological 

processed images (from web sites and references) to define the coordinates of polygons 

using the centroid of each polygon as the origin of polygonal coordinates. The heteroge-

neity of each polygon in mosaics was derived with (1), (2), and (3), see Figure 3. With this 

data and the statistical description of polygons as 𝛤 shapes, we get frequency distributions 

of heterogeneities for each mesh. 
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Figure 3. Symbology of equations for individual polygons extracted from a mesh. The expression 

given by (3) is used in order to obtain individual polygon heterogeneity. Also, the distribution of 

spatial heterogeneity derived from frequencies levels of heterogeneity in meshes of polygons of BIO, 

Non-BIO, and RA was defined using the values given by their heterogeneity. 

We relate (3) with a proper collection of data reflecting rates of spatial heterogeneity, 

then quantifying indexes of heterogeneity in all of our theoretical samples. Consequently, 

our results will be the standard deviation of heterogeneity derived from levels of varia-

bility in a collection of shapes 𝛤  from a set of PSP samples . In order to define the standard 

deviation of heterogeneity we have to determine first the average of PSP heterogeneity for 

all samples with (4), 

�̅� =
1

𝑁𝑠
∑ 𝑥𝑖𝑠

𝑁𝑠
𝑠=1   (4) 

now, the first subscript i of 𝑥𝑖𝑠 correspond to the number of sub-areas, 𝑠 is the index of a 

shape, and 𝑁𝑠 is the total of shapes 𝛤 in a mesh of polygons. The standard deviation can 

be obtained with (5), 

𝜎 = √
1

𝑁𝑠−1
∑ (𝑥𝑖𝑠 − �̅�)2𝑁𝑠

𝑠=1   (5) 

Equation (5) reflects a global statistical value aiming to determine area variability and 

the informational entropy. 

3. Results 

3.1. Continuous Distribution of Heterogeneity for Shapes 𝛤-PDA 

An important question is whether the variable side number of polygonal shapes in 

the context of heterogeneity might lead to a continual progression in terms of informa-

tional amount or not (that is, entropy as a function of polygonal side number). Since sam-

pled meshes (PSP) are sets of mixed polygons with different number of sides this question 

must be approached using frequency distributions of heterogeneity in the first case of 

shapes 𝛤 using planar discrete areas inside a disc (𝛤-PDA) with a fixed number of sides 

as the independent variable (algorithm and methodology are provided in Appendix A). 

The main aim for all of these data is whether statistical variations of spatial distributions 

in polygons have particular attributes to obtain some clues of biological configurations. 

Initially, we have discrete distributions for heterogeneity data extracted from shapes 𝛤-

PDA, which will be transformed into continuous ones applying the probability density 

function algorithm (Wolfram Mathematica 9.0; Champaign, IL 61820-7237, USA. Figure 

4). 
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Figure 4. Probability density function for distributions of 𝛤-PDA applied to transform histograms 

with discrete values (modified from [16]) into continuous graphics. The horizontal axis shows het-

erogeneity levels derived from Equation (3). 

In order to start with a continuous approach to infer levels of entropy, we decided to 

use a Kolmogorov-Smirnov test between normal distribution of a Gaussian random vari-

able of heterogeneity and the remaining ones to detect distribution differences. For con-

tinuous distributions, the maximum entropy corresponds to normal distribution, since a 

Gaussian random variable has the largest entropy amongst all random variables [52,53]. 

Therefore, we consider that Kolmogorov–Smirnov test will give us a good proxy of close-

ness with normal distribution as a first hint of high entropy. According to Figure 5, the 

Log base 10 of p-values of a Kolmogorov–Smirnov test is applied in Wolfram Mathematica 

9.0, resulting in a proper comparative of entropy in continuous terms. Frequency distri-

butions of three, four, five, and six 𝛤-PDA are the four lowest values which is an indicative 

of low entropy and dissimilarity with normal distribution. In that sense, p-value is posi-

tively related to entropy, low p-values indicate low entropy, high p-values indicate high 

entropy and normality. Kolmogorov–Smirnov test performs the Kolmogorov–Smirnov 

goodness-of-fit test with null hypothesis 𝐻0 that data was drawn from a population with 

a normal distribution and alternative hypothesis 𝐻𝑎 that it was not (Wolfram Mathemat-

ica software 9.0). Also, as an initial experiment one BIO sample (PSD) [40] and one random 

sample are included, showing that BIO sample has an important contrast with random 

sample in terms of Kolmogorov–Smirnov test results. The BIO sample reach a value of 

−38.54 while the random value is −1.23. The two local minima (four-side and BIO samples) 

are indicative of small p-values which reflect that both configurations come from samples 

with low entropy that is hypothetically frequent in biological arrangements [1]. 
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Figure 5. Contrasting continuous distributions of frequencies using heterogeneity data. In order to 

start with a continuous approach to detect levels of entropy we use Kolmogorov–Smirnov test as a 

parameter to detect distribution differences between normal distributions and the remaining ones. 

Heterogeneity values of random sample have the closest value to normal distribution. According to 

the Log base 10 Kolmogorov–Smirnov test values, partition number four has the lowest values of 

entropy in continuous terms. 

3.2. Bin Categorizations for Measuring Discrete and Continuous Entropy Using Polygons 

The Shannon entropy is a parameter indicating a degree of information approaching 

a resolution of uncertainty. Our description model satisfies the fact that we may work 

either with frequencies of numerical variables which are sub-areas of polygonal shapes in 

the context of PSP or with areas using 𝛤-PDA. Shannon elucidates the convenience of the 

use of a logarithmic function in the definition of entropy, mainly due to the fact that it is 

more suitable mathematically since many operations in terms of the logarithm are simpler 

than in terms of the statistical behavior (the number of possibilities or frequency). In fact, 

one of our main source ideas is the finding of a practical procedure to retrieve PSP given 

a geometric informational entropy value. The average surprise of a variable 𝑋, which has 

a distribution 𝑝(𝑋), is called the entropy of 𝑝(𝑋) and is represented as 𝐻(𝑋). For conven-

ience, we often speak of the entropy of the variable 𝑋 even though (strictly speaking) en-

tropy refers to the distribution 𝑝(𝑋) of 𝑋 [53]. Thus, the entropy of the heterogeneity var-

iable 𝑥𝑖 from (3) can be derived from the general formula for discrete values: 

𝐻(𝑋) ≈
1

𝑁𝑗
∑ 𝑙𝑜𝑔

1

𝑝(𝑥𝑖)𝑗

𝑁𝑗

𝑗=1
  (6) 

where the subscript 𝑗 represents the variable number. 

The choice of a logarithmic base regards for a proper election of a unit for measuring 

information. In consonance with this last idea, we consider frequency values of heteroge-

neity in a range of bin width. The entropy values using different bin widths (0.1, 0.2, 0.25, 

0.33, and 0.5) show that this variable gives an important difference in terms of the decrease 

of values (Figure 6a from black to green) even in terms of a statistical correlation with raw 

heterogeneity data (Table 1; for discrete and differential entropy). Regarding differential 

entropy as a continuous technique, we can consider a formal approximation using: 

𝐻𝑑𝑖𝑓(𝑋∆) ≈ [∑ 𝑃𝑖𝑙𝑜𝑔
1

𝑃𝑖
𝑖 ] − log

1

∆𝑥
  (7) 

where i is a subscript referring for the ith bin and ∆𝑥 is the bin width. The count of the ith 

bin is ni whose area is 𝑎𝑖 = 𝑛𝑖 × ∆𝑥. The total area is 𝐴 = ∑ 𝑎𝑖𝑖 , and the proportion 𝑃𝑖 =

𝑎𝑖 𝐴⁄ . Equation (7) derives from: 

𝐻𝑑𝑖𝑓(𝑋) = ∫ 𝑝(𝑥)𝑙𝑜𝑔
1

𝑝(𝑥)
𝑑𝑥

∞

𝑥=−∞

 (8) 

which is a measure of entropy called differential entropy (continuous entropy) of a varia-

ble. Equation (8) can be suited to ignore infinity, so (7) can be derived from (8). For com-

pleteness, we measure differential entropy with the data of each sub-areas number con-

sidering the five bin width values for discrete 𝛤-PDA datasets, see Figure 6b (from black 

to green). Even though each value of a continuous variable can, in principle, convey infi-

nite information, the amount of information it conveys in practice depends on the accu-

racy of our measurements. In effect, measurement noise divides up the range of a contin-

uous variable into a finite number of discrete intervals; the number of intervals increases 

as the measurement noise decreases. Therefore, bin width 0.5 represents the noisiest in-

terval of our samples and bin width 0.1 the least of all  [53]. Finally, the total standard 

deviation for discrete entropy values is 0.109905 and for differential entropy is 0.083602. 

In addition, the total range for discrete entropy goes from 0 to 3, in contrast with differen-

tial entropy which reach −1.2 from 0. 
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Figure 6. Entropy for 𝛤-PDA datasets. (a) Partitioning number and their associated entropy can be 

derived from different bin statistical discrete categorization. Graphic shows five bin widths and 

their associated entropy. Bin width 0.5 has the lowest values of entropy for every partitioning num-

ber, meanwhile bin 0.1 statistical categorization has an approximately linear incremental behavior 

in contrast with the remaining categorizations. In addition, this graphic also shows that there is a 

similar pattern between discrete and standard deviation of variability (c) in terms of the distance 

from zero using Bin 0.5. (b) The associated differential entropy of a partitioning number was derived 

from Equation (8). Differential entropy datasets show that negative entropy goes from −0.0181 to 

−1.2309. (c) The graphic shows the standard deviation of raw heterogeneity for 𝛤-PDA using the 

logarithm base 10, using Equations (4) and (5). 

3.3. Statistical Frequency Distributions of Internal Partition in 𝛤-PDA and Binary Localities in 

Bio, Non-Bio, and RA Samples 

In order to start with a proper analysis of entropy, we must consider the correlation 

values of Table 2. Higher correlation values imply a first hint for bin correlation. In spite 

to seem a weak statistical argument to detect both, the closest bin category and the right 

mathematical variable to use (either discrete or continuous); this correlation remains var-

iable considering all bin categories. According to partition number the statistical fre-

quency distribution of heterogeneity of 𝛤-PDA is showed in Figure 7. The bar area deter-

mines levels of heterogeneity conforming the binary categorization 𝑥𝑖𝑙  and 𝑥𝑖ℎ as a first 

pragmatic approach. The green area shows levels of high heterogeneity where 0.5 ≤

𝑥𝑖  ˂ 1 ⟹ 𝑋𝑖 = 𝑥𝑖ℎ . On the other side, low levels of heterogeneity correspond to the grey 

area where 0 ≤ 𝑥𝑖  ˂ 0.5 ⟹ 𝑋𝑖 = 𝑥𝑖𝑙 , with 𝑥𝑖𝑙  values derived from Equation (3). 
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Table 2. Correlation values between discrete and differential entropy with standard deviation of 

heterogeneity raw data. 

Bin Width 
r between 

Dis_E and STD_HRD 

r between 

Dif_E and STD_HRD 

0.1 0.7215 0.7405 

0.2 0.8129 0.8191 

0.25 0.8161 0.8221 

0.333 0.8642 0.8667 

0.5 0.9311 0.9308 

Dif_E = differential entropy; Dis_E = discrete entropy; r = correlation; STD_HRD = standard devia-

tion of heterogeneity raw data. 

In order to link entropy and raw geometrical information, our evidence suggests that 

five-folding organization depicts a sort of spatial organization with low values of infor-

mation (besides three, four, and six folding organizations, which are also frequent in na-

ture). In fact, this sort of arrangement shows the highest correlation with raw low spatial 

heterogeneity data for both, differential and discrete entropy (Table 2). As we were point-

ing out before we consider that binarity must give us some clues in order to understand 

heterogeneity and discrete entropy (Figure 7) from a simple perspective. The fact that five-

fold partitions reflect the most equal distribution of internal space in contrast with other 

partitions, it is a non-trivial result since this is not a function derived from the polygonal 

number of sides (Figure 6a,b). According to Figure 8, such as five-fold arrangement, bio-

logical organizations of cell aggregates that were derived directly from natural images, or 

even biological simulations, have a constant high proportion of low heterogeneity in terms 

of spatial distribution. That implies a clear high degree of homogeneity lying on that pro-

portion of low heterogeneity that is found in all samples derived from biological approx-

imations. 

 

Figure 7. Levels of heterogeneity according to the binary categorization 𝑥𝑖𝑙 and 𝑥𝑖ℎ. Grey zones are 

frequency values associated to 𝑥𝑖𝑙 and the green ones are associated with 𝑥𝑖ℎ. The highest level of 

homogeneity is for partition number five (grey area), even though, three, four, and six have similar 

levels. The highest level of heterogeneity is for partitioning number ten. 

This last result shows the simplicity of approaching the geometry of biological or-

ganizations focusing on the binarization data in order to (may) see the main facts of the 

organizational nature of biological geometries that are often found. In addition, Figure 8 

indicates that binarizations works well as an indicator to realize heterogeneity levels in 
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complex meshes of polygonal arrangements since we can see the statistical behavior of 

data, a high degree of low heterogeneity (homogeneity) and a very low degree of hetero-

geneity. Random samples are used as a control experiment to visualize contrast in terms 

of those distributions in Figure 9. 

 

Figure 8. Twenty-eight samples of biological and non-biological simulations of organizations of cells 

aggregates have a constant high proportion of homogeneity in terms of spatial distribution of inner 

areas (for name samples and nomenclature of BIO and non-BIO see Table 1). Data from columns 

BioNFC (Namibia fairy circles), EOP wild (non-disturbed ecological oak pattern) and EOPdist (dis-

turbed ecological oak pattern) shows that at ecological level a wild zone has less heterogeneity pol-

ygons that a disturbed zone. The last four samples are biological simulations [20]. The first three 

simulations result with an entropy of 0. All of these samples result from a dynamical configuration 

derived from a fine tuning of biophysical parameter variation (line tension and tension values). 

Even this is happening just when the impairment of the cell division when tension value threshold 

reaches a 40 percentage with cell proliferation and heterogeneous reduction of line tension among 

the tissue cells the informational entropy increases up to 0.132065 (BIO CS sample). The first column 

represents a Poisson–Voronoi tessellation which was used as control. 
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Figure 9. Random arrangements of cells and their heterogeneity frequency. Data shows that random 

aggregates have an average of an almost half proportion of low heterogeneity (blue) of spatial dis-

tribution on internal areas in polygons, and a half of spatial high heterogeneity (grey). 

3.4. Discrete Entropy for Shapes 𝛤 from Bio, Non-Bio, and RA Samples Using Binarization 

In terms of discrete entropy, there are an important number of simulations extracted 

from the open access figures that are excluded from the BIO zone despite of being consid-

ered as simulations of biological samples (Figure 10). All of those collected simulations 

were based on quantified distances from SDCP conserved in proliferating metazoans tis-

sues with a polygonal frequency of 49% six-sided polygons, 29% five-sided polygons, and 

20% seven-sided polygons, which is traditionally used as reference in epithelial studies. 

Control simulation (CS), simulation at equilibrium (SAE), atrophy simulation (AS), and 

simulation out of equilibrium (SOE) were computational simulations of cells aggregates 

assuming variations as metric distances from Lewis’s Law values or holders of another 

kind of biological or physical properties. The Shannon entropy associated with biological 

simulations, such as CS reaches levels of zero entropy, which implies null information 

which is not the case for either 𝛤-PDA associated with hypothetical biological morpholo-

gies or samples constricted to the BIO zone. However, there was a sample that increase 

their entropy according to some simulation conditions (Figure 10). Certainly, Poisson–

Voronoi tessellation (PT) was used as control since we assumed that its arrangement 

would be far away from the order zone. Hence, the geometry between BIO and non-BIO 

arrangements of internal space are underlying important differences whose consequences 

and effects would define particular behavior in actual biological organizations. 

As we can see at Figure 10 the BIO zone includes images that are not being simulated, 

such as dWP, dWL, and BCA (Table 1). However, simulations that have some kind of 

manipulation can increase their heterogeneity resulting in highest entropy than control 

simulations without parameter variation. One interesting point comes from the ecological 

oak patterns which are disturbed and non disturbed oak zones [48]. The level of entropy 

increases whether the zone is a perturbed ecosystem or not. 
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Figure 10. The entropy of cell aggregates groups: biological collected images (BIO; descriptions in 

Table 1) and processed images which we named non BIO extracted directly from online open access 

figures; control simulation (CS), simulation at equilibrium (1 and 2) following four interactions of 

Lloyd’s algorithm (SAE), atrophy simulation (AS), simulation out of equilibrium (SOE), muscular 

dystrophy (BioMD), and Poisson–Voronoi tessellation (PT). The most abundant area (ellipse) in-

cludes BIO data, which is close in terms of entropy with AS, SAE, and SOE. BioNFC (Namibia fairy 

circles) and EOPwild (ecological oak pattern wild) are also defined by a low degree of entropy. That 

is not the case for EOPdist (ecological oak pattern disturbed). Control simulation of biological or-

ganizations reaches a 0 entropy value. That value can change when biophysical manipulation of 

parameters is included [20]. 

The Shannon entropy associated with RA frequency distribution (Figure 9) is an ex-

pected result, whose discrete entropy values are around 1 (Figure 11). 

 

Figure 11. The discrete entropy of random samples (dataset derived from Figure 9). The entropy 

values are almost constantly in line with maximum entropy. 

3.5. Continuous Entropy for Shapes 𝛤 from Bio, Non-Bio, and RA Samples 

To estimate the entropy of any variable, it is necessary to know the probability asso-

ciated with each of its possible values [53]. As we point out (Section 3.1) probability den-

sity function is a well-accepted starting reference to estimate a continuous distribution 

from discrete possible values. In fact, it has been an important mathematical trouble that 
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has been solved arriving to Equation (8). In addition, Equation (8) can be useful even with 

discrete values using bin areas 𝑎𝑖. In order to establish a panoramic view of continuous 

entropy values we consider getting the values from Bio, non-Bio (SOE, AS, and SAE) and 

RA samples. According to Figure 12 there are two negative intervals for all bin categories. 

 

Figure 12. Differential entropy for total datasets. The continuous approach reflects that entropy val-

ues are negative in 21 Bio samples and the results are related Bio, non-Bio (SOE, SAE, and AS) and 

RA samples. 

Despite being working with the same data we have an important gap among discrete 

entropy and differential entropy (Figure 6a,b) given that the first results are positive and 

the second negative. Regarding this last point, we will develop some more hypotheses at 

a later time.  

4. Discussion 

We may see that three, four, five, and six-fold 𝛤 shapes as planar discrete areas (𝛤-

PDA) behave as almost egalitarians in terms of raw spatial inner heterogeneity (Figure 6c) 

which we consider as a first reference of geometrical constraint in biological organizations. 

Beside this last fact, we consider as an important issue to be the differential entropy de-

rived from the geometry of polygonal shape patterns (PSP) samples whose values remain 

close to those of 𝛤-PDA (Figure 6b). In addition, both partitioning number of shapes 𝛤-

PDA and their associated entropy and the differential entropy derived from the geometry 

of PSP can be derived from different bin statistical discrete categorization. Figure 6a,b 

show five bin categorizations and their associated entropy (bin width 0.1, 0.2, 0.25, 0.33, 

and 0.5) for discrete and continuous values. Given that bin width 0.5 has the highest cor-

relation with raw spatial heterogeneity for both values of entropy (Table 1), we decided 

to use it as the main dataset to observe discrete entropy at Section 3.3. On the other side, 

bin width 0.1 statistical categorization has a linear incremental behavior in contrast with 

the remaining categorizations. According to the elected binary system, where low hetero-

geneity is in the range 0 < =𝑋𝑖𝑙< 0.5 and high heterogeneity is in the range of 0.5 < = 𝑋𝑖ℎ< = 

1, biotypical arrangements distributes internal space in a very egalitarian statistical way. 

For discrete values an interval of entropy values emerges, clustering arrangements from 

biological samples (around 0.08 and 0.27 bits of entropy; Figure 10). Section 3.3 shows the 

methodology to analyze discrete entropy using three types of mosaics (PSP): Random ar-

rangements (RA), natural images extracted from the web (BIO), and processed images 

also extracted from the web (Non-BIO): which we named control simulation (CS), simu-

lation at equilibrium (SAE), atrophy simulation (AS), simulation out of equilibrium (SOE), 

and Poisson-Voronoi tessellation (PT). Spatial heterogeneity in mosaics of polygons was 

derived using (3) for each polygon and discrete entropy using (6). Random arrangements 

of cells and their heterogeneity frequency shows that random polygonal aggregates rep-

resenting cell aggregates have an average of an almost half proportion of heterogeneity of 
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spatial distribution on internal areas in polygons with a nearby equal half of spatial ho-

mogeneity (Figure 9). In fact, this result explains by itself how is that highly heterogeneous 

partitions gives a highly entropic result. 

Biological simulations (which we have included both as part of non BIO samples) of 

organizations of cells aggregates have a constant high proportion of homogeneity in terms 

of spatial distribution of inner areas. Some other approaches have found similar results, 

such as that analyzing avian photoreceptor patterns representing a disordered hyperuni-

form solution to a multiscale packing problem [54]. In fact, the penultimate three samples 

(CS) areas in biological simulations assuming Lewis’s Law have a 100% degree of homo-

geneity (Figure 8). Then, a high degree of homogeneity in a computational simulation 

following some algorithmic instructions could derive in a beautiful representation follow-

ing the SDCP of a real biological sample but a considerable lack of substantive geometric 

information. Thus, levels of intrinsic disorder (heterogeneity) emerging from the actual 

biological forms are necessary to have a proper simulation. A typical statistical approach 

using just statistical differences between different polygonal organizations shall not inte-

grate this last key issue. Despite found statistical variations between BIO and Non-BIO 

organizations for PSP in terms of discrete entropy, differential entropy shows a better res-

olution (with an 𝜎 of 0.115982 in contrast with 𝜎 of 0.187632 for discrete values) resulting 

in an interesting gap for all bin categorizations (�̅� = −0.61872). To finish with the discus-

sion about the continuous subject, we shall remark that this research is not inside the in-

terdisciplinary field of information geometry. Despite this, there are some interesting 

methodological convergences that can be visited at [55,56]. In addition, we considered that 

the main convergence lay on a very interesting epistemological subject, geometry as a 

source of information. On the other hand, regarding discrete entropy, BIO group is be-

tween 0.08 and 0.27 bits which is a range for entropy values including three, four, five, 

and six folding partitions which are very common in nature. Also, in Figures 8 and 10 the 

first value represents a Poisson–Voronoi tessellation (PT) which was used as a control 

since this mesh is derived from a well know non-ordered organization of points. Even this 

sort of organization is not biological it seems not be inside the gap of random organiza-

tions for discrete entropy. The most abundant grey area of Figure 10 is considered as the 

BIO zone, which also include AS (that is a non-Bio sample). Hence, the atrophy of some 

simulations increases their heterogeneity degree which finally derives in a biological-like 

outcome. Regarding the differential entropy the Bio zone is a clear interval showed at 

Figure 12 which remains with a notable distance from random differential entropy. In that 

sense, considering the continuous approach where the inclusion of Non-Bio into BIO 

group seems clear is not an unexpected result since computational simulations represent-

ing algorithmic instructions are perturbed in a way that could easily derive in a biological 

entropy position. It does not happen with control simulations since heterogeneity does 

not appear at all. Hence, the algorithmic constructions showed on this paper are following 

hidden mathematical prescriptions reveling high levels of homogeneity beside another 

fundamental nature of the BIO group, a lightly bias disruption of order. In fact, five con-

trol simulation group whose main feature has been the closeness with SDCP (CS right 

side) have values of zero entropy (Figures 8 and 10). 

On the other hand, MD seems to be a close object to BIO realm. However, it is not 

inside the limits. We consider that it is an important find since our parametric measure of 

geometric information can give us some clues about pathological routes in a very simple 

way, that important finding agrees with [43]. At the level of ecological scales, we include 

just two image samples that were very representative. Namibia fairy circles are one of the 

most interesting results since we confirmed some previous hypothesis about the potential 

of free scale approaches to understand biological organizations [46]. 

5. Conclusions 

The main goal of this research lies on the intriguing question whether geometry is an 

actual source of information defining biological arrangements. The Shannon information 
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of an outcome is also called surprisal since it reflects the amount of surprise when that 

outcome is observed [53]. In the context of information theory, the fact of being surprised 

requires knowing which outcomes are more surprising and which are less surprising. Ac-

cording to this last idea, we have specific statistical distribution of spatial heterogeneity 

frequencies for Bio, Non-Bio, RA, and 𝛤-PDA using collections of individual polygons 

and disc simulations. All of these outcome frequencies are treated as outcome probabili-

ties that are giving us particular levels of discrete and differential entropy for biological 

organizations using pure geometry. High levels of heterogeneity imply an intrinsic 

amount of surprise in contrast with a high degree of heterogeneity using the binarization 

approach. Therefore, our results reflect that there is a potential informational limit for bi-

ological organizations in terms of discrete and differential entropy. Despite of the value 

of this result there is still a broad distance to conclude that the differential entropy interval 

represents a unique range since it is not the same for discrete entropy. A deep mathemat-

ical and computational research is still lacking in order to define the limits of biological 

geometric information of polygonal aggregates. However, biological organizations are 

complex spatial systems which should be constrained into a narrow window of variability 

depending on levels of heterogeneity that can be translated into informational entropy. 

Paradoxically, we can see a myriad of morphological variations in nature. We conclude 

that the statistical properties of biological architectures can be manifested into an over-

whelming number of morphologies since all of them are singular possibilities in a realm 

of pure organization with particular geometrical attributes (such as heterogeneity). In that 

sense, shape is a constant dynamical composition of arrangements and an opening infinite 

possibility of configurations with spatial confined attributes as a consequence of its essen-

tial organization which depends on their own informational limits. According to our re-

sults, we consider that homogeneity with very low levels of heterogeneity in biological 

systems is a fundamental factor for biological organizations (e.g., network theory calls it 

sparsity). Hypothetically, in the context of complex adaptive systems spatial heterogene-

ity could be associated with a source of variation (or noise) and degrees of freedom, which 

is notably a different perspective from the pure blueprint genetic approach, whose infor-

mation lies exclusively onto molecular and ontogenetical basis. With this in mind, we con-

sider that the value and limits of informational entropy for geometrical systems in biology 

is a novelty approach with a potentially width domain of impact. 
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Appendix A. A Numerical Approach Using Partitions of Shapes 𝜞-PDA (Planar Dis-

crete Areas) 

A complete view of a wide spectrum of planar discrete areas (PDA) is obtained if we 

design a numerical model. Our geometrical design has as a first condition, namely the fact 

that shapes 𝛤-PDA with different number of sub-localities remains with a constant area 
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during the experiment in preparation for obtaining normalized data. In order to establish 

variability inside a constant area, we consider two conditions for shapes 𝛤-PDA: (a) they 

must remain with an almost constant area during the experiment where partition 𝑃𝑖  range 

from 3 to 10 sub-localities (eight categories); and (b) also each partition 𝑃𝑖  must include 10 

levels of variability. Therefore, each partition 𝑃𝑖  with a particular constant area has 10 lev-

els of variability during the experiment. We must be aware that shapes 𝛤-PDA is a partic-

ular case of a partition 𝑃𝑖 . 

For this purpose, we use Voronoi diagrams to model space of shapes 𝛤-PDA with 

different number of parts (from 3 to 10) where two variables are studied, namely parti-

tioning number (pn) and partition variability (pv), which are defined as follows: 

a. The partitioning number (pn) defines the number of partitions inside a disc (ranging 

from 3 to 10): Each partition 𝑃𝑖  is constituted by a subset of a given number 𝑁𝑖 of sub-

localities, 𝑆𝑖1, 𝑆𝑖2, … , 𝑆𝑖𝑁𝑖
 such that 𝑃𝑖 =∪𝑗=1

𝑁𝑖 𝑆𝑖𝑗 , where 𝑃𝑖  is a spatial region which 

could be any 𝛤-PDA in ℝ2. 

b. Partition variability (pv) determines multiple levels of variability (10) inside each pn 

by using random points, which in turn will define the Voronoi diagrams. 

The algorithm to build pn and pv is described in the next seven steps as follows: 

1. Features of the external disc: the boundaries of the external limit are defined by 24 

fixed points generated as follows: The radius of the external disk is set to r = 1 and 

consecutive points are separated by an angle θ/24 (where θ corresponds to 2π). Point 

1 is aligned with axis y (Figure A1). 

2. Features of the internal disc: the boundaries of the internal limit are defined by 24 

fixed points generated as follows: The radius of the internal disk is initially set to r = 

0.53 ± 0.4 with 24 points consecutively separated by an angle θ/24. Point 1 is aligned 

with axis y. (Figure A1). 

3. Partitioning number (pn): once the number of partitions is defined, say n (where 3 ≤ 

n ≤ 10 and 𝑛 ∈ ℤ), points are located in the disk at angles 2π/n ± 0.069 radians but at 

different radius. These radius values will define the pv, as described in the next item. 

4. Partition variability (pv). For each angular region defined above, 10 points are located 

at radius (between r = 0 and r = 10) at different positions to define different degrees 

of variability (diagonal points of internal disc at Figure A1). The first point (first level 

of variability) is at r = 1. After the second point, all of them are located at random 

radius between 1 to 10. Hence, each level of variability (10) is given by radii ranges 

except 1 which is fixed at 1 (diagonal points of internal disc); (a) 0 to 1, (b) 0 to 2, (c) 

0 to 3, (d) 0 to 4, (e) 0 to 5, (f) 0 to 6, (g) 0 to 7, (h) 0 to 8, (i) 0 to 9 and (j) 0 to 10. 

5. Voronoi tessellations: the partition variability will define the broad spectrum of pos-

sibilities for area distribution inside discs without losing partitioning number using 

Voronoi tessellations. 

6. Area average: according to Equation (1), the average of areas requires a summation 

of sub-localities areas (𝐴𝑖𝑗) which were derived from pn with a changing variability 

pv. 

7. Data mining: once the partition areas (𝐴𝑖𝑗) inside discs were obtained and (1) was 

solved, (2) is used to obtain standard deviations (𝜎𝑖) of variability for each disc. In 

order to normalize the level of variability for each pn, an index dividing the standard 

deviation of partitions and the particular area average of each partition was obtained 

(variability average; Figure A2). There are eight particular area averages of partitions 

since we have a sample of 8 discs with different pn (from 3 to 10). These particular 

area averages are derived from a value n/(≈108.5 ± 1.5) which are n values obtained 

from the first level of variability (pv) at r = 1. It is important to say that the radius of 

the external disc (1) and the radius of the internal disc (r = 0.53 ± 0.4) was modified in 

order to get the particular area averages. However, despite the modification, the in-

dex between external discs and the internal ones remains constant. A sample of 20 

discs to get 20 standard deviations was generated for each pn, and for each level of 
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pv (10) giving a sample of 200 discs for each pn. An average of standard deviations 

(𝜎𝑖; variability average) was derived for each level of variability. 

8. Standard deviation. Finally, a standard deviation of all variability averages is ob-

tained for each pn. 

 

Figure A1. Defining partitioning number and partition variability. A disc is constructed to get Vo-

ronoi diagrams with constant area despite variability. The magnitude of the radius defines ten levels 

of partition variability: (a) 1, (b) 1-2, (c) 1-3, (d) 1-4, (e) 1-5, (f) 1-6, (g) 1-7, (h) 1-8, (i) 1-9, and (j) 1-10. 

Each level of variability is given by radii ranges except (a) which is fixed at 1. 

 

Figure A2. Partitioning number and partition variation of planar discs. A sample of 40 planar discs 

shows how partitioning number (vertical left side) determines segmentation of an almost constant 

area (≈108.5 ± 1.5) into a particular number of sub-localities. Partition variability (bottom horizontal 

numbers) installs levels of variability giving 10 constant and subtle increases of area to generate 

random segmentations using Voronoi tessellations. 
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Table A1 shows the area at internal disc, and the area average, for particular partition 

numbers. 

Table A1. Level of variability and area average according to the partition number. 

Partition Number 
Area at Internal Disc (Level of 

Variability Pv1) 
Particular Area Average 

3 107.2 35.7354 

4 108.7 27.1963 

5 109.5 21.9155 

6 109.9 18.3248 

7 110.1 15.74 

8 110.32 13.7959 

9 110.51 12.2794 

10 110.605 11.0605 
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