
Citation: Cui, M.; Long, S.; Jiang, Y.;

Na, X. Research of Software Defect

Prediction Model Based on Complex

Network and Graph Neural Network.

Entropy 2022, 24, 1373. https://

doi.org/10.3390/e24101373

Academic Editors: Yi-Cheng Zhang

and Shimin Cai

Received: 27 August 2022

Accepted: 19 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Research of Software Defect Prediction Model Based on
Complex Network and Graph Neural Network
Mengtian Cui 1 , Songlin Long 1 , Yue Jiang 1 and Xu Na 2,3,*

1 Key Laboratory of Computer System, State Ethnic Affairs Commission, Southwest Minzu University,
Chengdu 610041, China

2 Swiss Center for Data and Network Sciences, University of Fribourg, 1700 Fribourg, Switzerland
3 Faculty of Business, Economics and Informatics, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
* Correspondence: xu.na@uzh.ch

Abstract: The goal of software defect prediction is to make predictions by mining the historical
data using models. Current software defect prediction models mainly focus on the code features
of software modules. However, they ignore the connection between software modules. This paper
proposed a software defect prediction framework based on graph neural network from a complex
network perspective. Firstly, we consider the software as a graph, where nodes represent the classes,
and edges represent the dependencies between the classes. Then, we divide the graph into multiple
subgraphs using the community detection algorithm. Thirdly, the representation vectors of the nodes
are learned through the improved graph neural network model. Lastly, we use the representation
vector of node to classify the software defects. The proposed model is tested on the PROMISE dataset,
using two graph convolution methods, based on the spectral domain and spatial domain in the graph
neural network. The investigation indicated that both convolution methods showed an improvement
in various metrics, such as accuracy, F-measure, and MCC (Matthews correlation coefficient) by 86.6%,
85.8%, and 73.5%, and 87.5%, 85.9%, and 75.5%, respectively. The average improvement of various
metrics was noted as 9.0%, 10.5%, and 17.5%, and 6.3%, 7.0%, and 12.1%, respectively, compared with
the benchmark models.

Keywords: software defect prediction; graph convolutional neural network; complex network;
community detection

1. Introduction

Software defect prediction is an indispensable part of software development because it
can reduce the time and energy required for software testing during development. Software
defect prediction is divided into two parts: the construction of software metrics [1], which
is to count the features in the software code, and the model design, which is involved in
the design of corresponding algorithms for different learning tasks and software metrics to
achieve software defect prediction.

Traditional machine learning methods directly use software code features (such as
changes in data and previous defects) to classify software defects. For example, Liu et al. [2]
solved the cumulative unbalance problem using the SMOTE (synthetic minority oversam-
pling technique) algorithm and solved the data noise problem using the ENN (extended
nearest neighborhood) algorithm, as well as optimized the four-layer BP (backpropagation)
network using the simulated annealing algorithm, and predicted the classification. Bashir
et al. [3] proposed a feature selection method based on maximum likelihood logistic re-
gression, which was beneficial to the selection of optimal feature subsets and can predict
defect modules more accurately. Goyal [4] proposed a new filtering technique to effectively
predict defects using support vector machines for the imbalanced data classification prob-
lem. The input of the prediction model based on machine learning is dependent on the

Entropy 2022, 24, 1373. https://doi.org/10.3390/e24101373 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24101373
https://doi.org/10.3390/e24101373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8189-8208
https://orcid.org/0000-0002-8301-0794
https://orcid.org/0000-0003-1114-5806
https://doi.org/10.3390/e24101373
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24101373?type=check_update&version=2


Entropy 2022, 24, 1373 2 of 16

software measurement elements; therefore, it needs to be changed continuously with the
development of the software, which can potentially waste substantial time and energy in
the reconstruction of the software measurement element.

With the development of deep learning, success has been achieved in NLP (natural
language processing), image, audio, etc.; scholars used deep learning to learn deeper
semantic features in code. Farid et al. [5] proposed a hybrid model to extract the semantics
from an abstract syntax tree (AST) using a convolution neural network (CNN), and then
used Bi-LSTM (bidirectional long short-term memory) to preserve key features while
ignoring other features to improve the accuracy of software defect prediction. Deng et al. [6]
felt that neural networks in NLP were more capable of learning semantic and contextual
features in source code, firstly by extracting the code’s abstract syntax tree, which was then
fed into the LSTM (long short-term memory) network, and then a prediction was made on
where the file was defective or not. The above methods all took classes or files as research
goals and did not consider the relationship between classes or files.

The software is mapped into a graph/network using the theory in the complex net-
work, and the software defect prediction is carried out by studying the graph structure
of the software. Šubelj and Bajec [7] found these existing community structures by map-
ping software into a dependent class-based network and proposed different applications
of community detection in software engineering. Zhou et al. [8] used two measures of
package cohesion and coupling, based on complex network theory, to verify the impact
of code structure on software quality. Following the success of graph neural networks,
Qu and Yin [9] mapped the software as a dependent class-based network, using different
graph embedding techniques to embed the nodes of the graph into a d-dimensional vector
space, the idea of embedding is to keep connected nodes close to each other in the vector
space. The feature information can be learned from the graph structure of the software, but
the above methods only consider the graph structure and ignore the node level features
in the graph.

The software defect prediction model based on machine learning and deep learning
treats the software module as a single unit, ignoring the interaction between software
modules. The software defect prediction model based on the complex network only
considers the graph structure of the software, ignoring the properties of the software
module itself. Here, in this research, a software defect prediction model based on the
complex network and graph neural network is presented. Firstly, the software system is
mapped to a graph structure, with the classes as nodes, the dependencies between classes
as edges, and traditional metrics as node attributes. Then, the whole graph is broken down
into several subgraphs. Lastly, the information of the graph is learned through a multilayer
graph neural network. Weights are given to each layer to prevent information loss.

The key contributions of this paper are as follows:

(1) The application of the graph neural network in the complex network to make software
defect prediction, followed by the use of the graph neural network to combine the
structure of the software class graph along with the software’s class-level measurement
element (node-level features, e.g., prior fault and new data) to learn new feature
vectors. This represents an additional consideration in our model, compared with
previous models, which only considered software graph structure or software defect
measurement elements.

(2) Use of the community detection algorithm to decompose the software graph structure
into multiple subgraphs, and use of all the subgraphs as the input of the graph neural
network model. This further simplifies the software graph structure, and the learned
graph structure is a closely related subgraph.

(3) Improvement of the graph convolutional neural network, such that the graph neu-
ral network can learn the graph structure features that are conducive to software
defect prediction.

The remainder of this paper is organized as follows: Section 2 introduces the back-
ground knowledge of software diagram structure, then introduces community detection



Entropy 2022, 24, 1373 3 of 16

algorithms, and finally proposes a framework for software defect prediction. Section 3
presents the experimental environment, evaluation metrics, experimental setup, and exper-
imental procedure. Section 4 discusses the results. Section 5 provides the conclusions and
future work.

2. Materials and Methods
2.1. Software Diagram Structure
2.1.1. Complex Network

The complex network [10] is a method for analyzing complex systems. Complex
networks can abstract complex systems into graphs, and help people understand complex
systems by analyzing some characteristics of graphs. Complex networks have been de-
veloped from the original Seven Bridges of Konigsberg problem [11] of network science.
Telecommunication networks, computer networks, biological networks, cognitive semantic
networks, social networks, etc., are all common complex networks in life, all of which are
treated by different elements in the system as nodes, with connections between elements
as edges.

2.1.2. Software Class Depends on the Network

The software is a complex system; hence, it can be easily abstracted as a network for
analysis. The classes in the software source code are regarded as nodes in the network, while
the dependencies between classes are regarded as the edges of the network [12]. In software
defect prediction, the node itself also has software defect measurement meta-information;
thus, the node information is also regarded as a part of the software graph network.

2.2. Community Detection

By using the network’s structural information, community detection partitions the net-
work into various smaller subnetworks. Nodes inside a community are closely connected,
while nodes between communities are less connected. Depending on the type of network,
community detection can be divided into two categories: static network community de-
tection and dynamic network community detection [10]. The modularized community
partitioning algorithm is a representation of the static network community partitioning
technique. Modularity Q was first presented by Newman and Girvan [13] in 2004 to assess
the effectiveness of community division. Numerous academics have devised analogous
techniques by optimizing the Q-value in response to the modular Q suggestion. Among
them, the Louvain algorithm [14] proposed by Blondel et al. is widely used because of
its ability to quickly discover communities. The Louvain algorithm can be divided into
two stages:

(1) Every node starts off as a community. If a node’s modular gain from its current
community to the community of its neighboring nodes is more than zero, the node
will become affiliated with the community of its adjacent nodes, and its community
affiliation will change. On the other hand, the initial community will be preserved
until any node’s community change does not result in a modular gain that is more
than zero.

(2) A new network is created using the community acquired in the previous step as a
node. The connection weight between nodes is the sum of all nodes in the original
network between the two communities. The weight of the nodes, which have a
self-circulation, is the total number of connections between the initial nodes in the
community. When there is no gain update, step 1 is repeated for the new network.



Entropy 2022, 24, 1373 4 of 16

2.3. Graph Neural Network

The processing object of the graph neural network is the graph which generally
represents non-Euclidean relationships. The concept of a graph neural network (GNN)
was proposed in 2005 [15]; later, in 2009, Dr. Scarselli [16] defined the theoretical basis of
GNN. With the success of convolutional neural networks, scholars have thought about
integrating the ideas of convolutional operators into GNNs, which are also known as graph
convolutional neural networks (GCNs). There are two types of GCNs based on the spectral
domain and spatial domain [17].

(1) GCNs based on the spectral domain include SCNN (spectral CNN) [18], ChebNet
(Chebyshev spectral CNN) [19], and GCN [20]. The spectral domain convolution maps
the graph topology into the spectral domain through discrete Fourier transformation,
and then defines its graph convolution operator. The GCN convolution process can
be represented by the following formula:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
, (1)

where Ã = A + IN is the adjacency matrix of the undirected graph with added self-
connections, IN is the identity matrix, D̃ii = ∑j Ãij, W(l) is a layer-specific trainable
weight matrix, H ∈ RN×D is the activation matrix of layer L, and H(0) = X. σ(·)
denotes an activation function.

(2) GCNs based on the spatial domain include GraphSAGE (graph sample and ag-
gregate) [21], GAT (graph attention network) [22], and GIN (graph isomorphism
network) [23]. Spatial convolution aggregates the feature vectors of the first-order
adjacent nodes of a node and then combines them with feature vectors of the current
node. The graph convolution formula of GIN is as follows:

h(k)v. = MLP(k)

(1 + εk
)
·h(k−1)

v + ∑
u∈N(v)

h(k−1)
u

 (2)

First, a graph G (V, E) is defined, in which v ∈ V, the feature vector of each node
is Xv. h(k)v denotes the representation vector of node v at the k-th layer, where k denotes
the iteration level; h(0)v = Xv. N(v) represents a group of adjacent nodes of v. MLP is a
multilayer perceptron. ε is a learnable parameter or a fixed parameter.

2.4. Software Defect Prediction Model Based on Complex Network and Graph Neural Network

This model primarily examines software from the perspective of the complex network,
abstracts the software into a graph network, learns the representation vector of nodes using
a graph neural network, and categorizes nodes on the basis of the representation vector.
Figure 1 depicts the overall layout of the framework. Basically, it consists of two steps.
Processing the data is the first phase, followed by using the class as the research granularity,
abstracting the software source code into multiple nodes, and creating a network or graph
using the dependencies among classes. Lastly, community detection techniques are used to
split the graph into various subgraphs. The edge-link relationship is stored in the adjacency
matrix in the second phase, and the adjacency matrix and the node-level features are seen as
the structural information of the graph, which are considered as input to the graph neural
network to obtain the representation vector of the node. Lastly, the multilayer perceptron
(MLP) is used to classify the nodes. Section 2.4.1 analyzes the first part of Figure 1, and
Section 2.4.2 analyzes the second step of Figure 1.



Entropy 2022, 24, 1373 5 of 16

Figure 1. The general framework of this model.

2.4.1. Data Processing

The current software defect prediction models ignore the interdependence of the
complex system in the software code. In order to map software systems into a graph, this
research abstracts software systems from the perspective of complex networks [24]. In
order to obtain the class dependency graph, we use a well-known technique. Additionally,
the software defect measurement components of the class are taken into account as a node-
level feature vector X, and the class dependence is transformed into an adjacency matrix A.
Consequently, G can be used to represent the software graph (A, X). To further simplify
the software graph and to make the learned representation of the graph more effective, we
decided to use the Louvain algorithm to divide the graph into different subgraphs. Specific
steps are as follows:

(1) First, a modularity Q is defined, which is used to judge the quality of the division; its
value is between −1 and 1. The formula is as follows:

Q =
1

2m∑
i,j

[
Aij −

kik j

2m

]
δ
(
ci, cj

)
, (3)

where m is the number of network connections, and i, j represent any two nodes in the
network. When they are connected, Aij is 1; otherwise, it is 0. ki indicates the degree
of node i. ci indicates the community of node I, and δ

(
ci, cj

)
is used to judge whether

nodes i and j are in the same community. If so, it is 1; otherwise, it is 0.
(2) Initially, each node belongs to a community, and there are several communities with

several nodes in the current network; the modularity is calculated at this point.
(3) For each node i, we consider its neighbor j and evaluate the modular gain caused

by deleting it from the original community and affiliating it to the other community.
We divide it into communities with the largest gain and greater than 0. If the gain
of all communities is less than or equal to 0, the node will not carry out community



Entropy 2022, 24, 1373 6 of 16

transfer. This process is applied to all nodes repeatedly and sequentially, until there is
no further improvement, at which point this step ends. The modular gain is calculated
as follows:

∆Q =

[
∑in +ki,in

2m
−
(

∑tot +ki
2m

)2
]
−
[

∑in
2m
−
(

∑tot
2m

)2
−
(

ki
2m

)2
]

, (4)

where ∑in is the number of edges in the community c, ∑tot is the total degree of the
nodes in the community c, ki is the degree of node i, ki,in is the sum of the number of
connections between node i and the nodes in community c, and m is the number of
connections in the network.

(4) The obtained communities in the previous step are taken as nodes, and a new network
is reconstructed. The connection weight between nodes is the sum of all nodes in the
original network between the two communities. The nodes have self-circulation, and
the weight is the sum of connections of the original nodes in the community. Then,
step 3 is repeated for the new network until there are no further gain updates, and the
algorithm ends.

The software graph structure can be divided into multiple subgraphs through the
Louvain algorithm; therefore, the graph can be represented by G = {G1, G2, . . . , Gn}. Ai,
Xi in Gi(Ai, Xi) respectively represent the adjacency matrix of the edges in the subgraph,
and the software defect measurement values of the node.

2.4.2. Learning and Classification of the Node Representation Vector

The explicit feature information of the node and the structural information of the
graph network can both be used by the graph neural network to learn the representation
vector of the node. It solves the issue that the current software defect prediction model
only considers one of the two. The input for the graph neural network model is the
data that were obtained following the data processing in Section 2.4.1. A graph neural
network’s architecture is shown in Figure 2. The entire framework may be divided into
two parts: the node representation vector and the graph convolution process, which learns
the representation vector of nodes on top of the graph. The classifier’s design, which is
covered in the Section 2, primarily utilizes the multilayer perceptron to classify, and the
outcomes of each layer are combined through weights as the final result.

(1) The node representation vector is learned using the graph neural network. Each
subgraph undergoes multilayer graph convolution in order for nodes to gain deep
semantic information, and each layer’s representation vector is described by the
following formula:

Ll = cat
(

Hl
0, . . . , Hl

i

)
, l ∈ [0, num_gcn], i = num_subgraph (5)

Hl+1
i = GNN

(
Ai, Hl

i

)
(6)

where Ll represents the representation vector of all nodes of the L-th layer, Hl
i repre-

sents the representation vector of all nodes of the i-th subgraph after the L-th graph
convolution, H0

i is the initial node information Xi of each subgraph, num_subgraph
represents the number of all subgraphs of a software, num_gcn represents the number
of layers of the convolution layer, the new representation vector Hl+1

i is obtained by
inputting the representation vector Hl

i of the previous layer of the subgraph and its
adjacency matrix Ai into the convolution layer of the graph, the cat function concate-
nates the node representation vectors of all subgraphs into a whole, and GNN is the
graph convolution.

(2) A classifier is created using graph convolution that learns the representation vector,
predicts the output of each layer using MLP, and convolves the output of each layer
using a different depth graph. This model chooses to assign a learnable weight to



Entropy 2022, 24, 1373 7 of 16

each layer’s output. The representation vector can be utilized more efficiently in this
way, and the precise formula is as follows:

out =
n

∑
j=0

wj
(

MLPjLj
)
, n = num_gcn, (7)

where wj is a learnable parameter, the initial value of which is set to (1/n, 1/n), MLP
is a multilayer perceptron, whereby each layer representation vector is set with an
MLP, L is the representation vector of each layer, num_gcn is the number of graph
convolution layers, and out represents the label obtained after the node passes through
the model.

(3) The pseudocode of the method, which is provided below, presents the process of a
thorough Algorithm 1 that demonstrates how each node can learn a representation
vector and generate predictions.

Figure 2. The framework of graph neural network.

Algorithm 1: Graph neural network learning and prediction

Input:
The graph structure G = {G1, G2, . . . , Gn}. Gi = (Ai, Xi), Ai, and Xi represent nodes,
the adjacency matrix of the edges, and the software defect measurement element of
the nodes, respectively.

Output: The prediction result pred of the node
1. for i in num_layer do
2. //num_layer: the number of graph convolutional layers
3. //num_subgraph: the number of subgraphs
4. L = 0;
5. for j in num_subgraph do

6.
Put the subgraph Gi = (Ai, Xi) into the graph convolution layer to learn the
representation vector of the node;

7. end for
8. L = predicted result of MLP;
9. pred + = W × L;
10. end for
11. return pred



Entropy 2022, 24, 1373 8 of 16

The algorithm mentioned above has two improvements, as can be seen. First, the
software source code’s graph structure is initially divided into a number of smaller graphs,
which are then used as inputs for graph neural network models. Second, each layer’s
prediction results are given some weight.

3. Simulation Experiments
3.1. Experimental Environment and Datasets

Experiments were performed on the Windows-based operating system, the language
used was python [25], and the construction of the graph neural network model was
completed through PyTorch [26] and torch-geometric.

The PROMISE dataset [27], a collection of open-source software projects, serves as the
dataset in use. Six projects were picked from this dataset, which contains object-oriented
measurement elements for all of the dataset’s measurement items. The dataset is described
in Table 1.

Table 1. Description of the dataset collected from PROMISE.

Datasets Version Number of
Features

Number
of Nodes

Number
of Edges

Number
of Defects

Defect
Rate

Ant 1.7.0 20 745 3961 166 0.2228
Camel 1.6.0 20 965 4215 188 0.1948
Lucene 2.4 20 340 1559 203 0.5970
Synapse 1.2 20 256 1162 86 0.3359
Velocity 1.6.1 20 229 1292 78 0.3406

Ivy 2 20 352 2063 40 0.1136

It can be found that there is a class imbalance problem existing in the data. To improve
the dataset, we first used the NearMiss algorithm [28], which reduced the amount of data
in the experiment and test. During the experimenting, tenfold cross-validation was used.
Each time, 90% of the data were randomly selected for training, 10% of the data were tested,
and the results are given using an average of 10 times the data.

3.2. Evaluation Measures

To prove the validity of proposed model, the selected evaluation measures such as the
accuracy rate, F-measure, and MCC value were used, which were all obtained through the
confusion matrix. The confusion matrix [29] is shown in Table 2.

Table 2. Confusion matrix.

Actual Label
Predicted Label

Defective Defective-Free

Defective TP (true positive) FN (false negative)
Defective-free FP (false positive) TN (true negative)

Accuracy refers to the proportion of correct classification to the total number, and the
value range is [0, 1]. Higher values indicate better classifier performance. The formula is
as follows:

Acc =
TP + TN

TP + FN + TN + FP
. (8)

The F-measure is the harmonic average of precision rate and recall rate. Precision
rate P refers to the proportion of the number of positive samples correctly classified by the
classifier to the overall number of positive samples classified by the classifier, and recall
rate R refers to the proportion of the number of positive samples correctly classified by the
classifier to the number of desired positive samples. The value range is [0, 1], whereby a
higher value indicates better classification. The formula is as follows:



Entropy 2022, 24, 1373 9 of 16

P =
TP

TP + FP
. (9)

R =
TP

TP + FN
. (10)

F−measure =
2× P× R

P + R
. (11)

MCC is a more appropriate, balanced metric since it takes into account true examples,
true-negative examples, false-positive examples, and false-negative examples. The value
range is [−1, 1]. A prediction with a value of 1 is considered to be perfect; a prediction with
a value of 0 is considered to be only slightly better than a random guess; and a prediction
with a value of −1 is considered to be wholly incongruent with the actual result. The
equation reads as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (12)

3.3. Experimental Setup

In order to reduce the influence of experimental parameters, some training hyperpa-
rameters were set as shown in Table 3.

Table 3. Training parameters.

Parameter Setting

Number of iterations 10,000
Learning rate 0.0001
Weight_decay 5 × 10−4

Loss function CrossEntropyLoss
Optimizer Adam

Activation function Relu

The parameters used in the traditional method of SVM (support vector machine) were
set as default. The network structure of other models are described below. The network
structures of the BP neural network comprised four layers. Without using a classifier,
GCN was constructed in accordance with the model described in [20], which directly
derived the result via a graph convolution operation. The GIN structure was developed
in accordance with [23]. The difference is that there was no community division and no
final weighted summation. According to the graph neural network framework proposed
in this paper, CBGCN (community-based GCN) and CBGIN (community-based GIN) were
built. The difference was the graph convolution operation, with the former based on the
spectral domain, and the latter based on the spatial domain. The classifier, MLP (multilayer
perceptron), and BP neural network were all connected. The specific parameters are shown
in Table 4.

Table 4. Network parameters.

Algorithm Number of Graph
Convolution Layers

Change of
Vector

Dimension

Number of
Layers of
Classifier

Change of
Vector

Dimension

BP 0 None 4 20, 10, 10, 2
GCN 2 20, 16, 2 0 None

CBGCN 4 20, 20, 20, 20, 20 4 20, 10, 10, 2
GIN 4 20, 20, 20, 20, 20 2 20, 2

CBGIN 4 20, 20, 20, 20, 20 2 20, 2



Entropy 2022, 24, 1373 10 of 16

3.4. Experimental Procedure

This section presents some assumptions and limitations during the experiment, and
then describes the specific steps of the experiment. The assumptions in this paper are
as follows:

(1) We focus on software defect prediction within a project, and the training and testing
data are derived from one dataset. For example, when experimenting with ant dataset,
the training set is selected and the test set is derived from the remainder of the dataset.

(2) During the experiments, a small number of defective classes cause the trained model
to favor the non-defective classes. Therefore, class imbalance is applied to the entire
dataset before training the model.

(3) To better estimate the algorithm performance, a tenfold cross-validation is used.

Under the above assumptions, the validity of the software defect prediction framework
proposed in this paper can be verified. The specific experimental procedure is as follows:

Step 1: Using the code analysis tool, the software’s class dependence is extracted, and
a CSV file is then generated.

Step 2: The labeled nodes and feature metrics are obtained for the nodes from the
PROMISE dataset.

Step 3: NetworkX, a third-party package in python, is used to store the graph struc-
ture. Then, the python-louvain package in python is used to divide the graph structure
into subgraphs.

Step 4: The NearMiss algorithm is applied to deal with data class imbalance. Then,
90% of the processed dataset is chosen at random for the graph neural network model’s
training, and 10% is chosen for its testing.

Step 5: The graph structure from step 3 is used as the input to the graph neural network
model. The training set labels are picked in step 4 to train the network parameters.

Step 6: Then, 10% of the data in Step 4 are used for testing, before calculating the
performance on various evaluation metrices.

Step 7: The process is repeated 10 times from Step 4 onward.

4. Results and Discussion

The spectral domain-based graph convolutional neural network GCN and the spatial
domain-based graph convolutional neural network GIN were chosen for studies to show
that this model can increase the performance of software defect detection. The models were
consequently divided into two groups, the first of which consisted of SVM, BP, GCN, and
CBGCN, and the second of which consisted of SVM, BP, GIN, and CBGIN. SVM and BP, the
two most fundamental machine learning algorithms, directly use the original feature vector
to forecast software problems. Graph convolution is employed by both model frameworks
used in the original paper—GCN and GIN—to obtain the characteristics of the graph
structure. Two distinct graph convolution techniques were merged by CBGCN and CBGIN
to create this model.

4.1. Experimental Analysis of Graph Convolutional Neural Network Based on Spectral Domain

In this section, the graph convolution method based on the spectral domain is used as
the convolution layer of this model. In order to verify that the graph convolution method
can improve the performance of software defect prediction, in this work, in addition to the
traditional method, the graph convolutional neural network [20] model was selected as a
benchmark model. The results are shown in Table 5.

It can be seen from Table 5 that the proposed model has achieved good experimental
results in terms of accuracy, F-measure, and MCC in most datasets. In terms of accuracy,
it was 7.6% higher than SVM, 5.8% higher than BP, and 13.6% higher than GCN. The
F-measure was 10.7% higher than SVM, 7.8% higher than BP, and 13.1% higher than GCN.
The MCC index was 12.5% higher than SVM, 12.7% higher than BP, and 27.4% higher than
GCN. The data were analyzed from two aspects:



Entropy 2022, 24, 1373 11 of 16

(1) Comparing CBGCN with SVM and BP, it was found that our model was better than
the BP neural network and SVM according to the evaluation of all metrics from other
datasets except for the Ant dataset. It was found that, in the Ant dataset, the result of
the BP neural network was also lower than that of the SVM. In individual datasets,
the parameters of BP need to be specially set to obtain the best performance, and the
structure of the CBGCN classifier is the same as the BP neural network. Therefore,
individual datasets need to adjust the parameter settings of the network. However,
in terms of average, CBGCN was greatly improved; thus, it can be concluded that
useful feature vectors can be learned by incorporating the spectral domain-based
graph convolution method into this model.

(2) Comparing CBGCN with GCN, we found that, except for the Lucene dataset, the ex-
perimental results were very similar. Other datasets greatly improved the model, and
the average of the evaluation measures was higher; therefore, it can be concluded that
the model framework of this paper was more suitable for software defect prediction.

Table 5. Comparison between CBGCN and other prediction methods.

Dataset Evaluation
Measures SVM BP GCN CBGCN

Ant
Accuracy 0.9091 0.8794 0.7000 0.8735
F-measure 0.8942 0.8656 0.7178 0.8629

MCC 0.8208 0.7614 0.4218 0.7553

Camel
Accuracy 0.8081 0.8658 0.7263 0.8974
F-measure 0.7546 0.8655 0.7440 0.8965

MCC 0.6682 0.7309 0.4589 0.7985

Lucene
Accuracy 0.5704 0.6519 0.7370 0.7296
F-measure 0.6054 0.6431 0.7301 0.7214

MCC 0.1496 0.2955 0.4751 0.4598

Synapse
Accuracy 0.7529 0.7667 0.7833 0.8833
F-measure 0.6727 0.7550 0.7971 0.8849

MCC 0.5526 0.5564 0.5681 0.7748

Velocity
Accuracy 0.8000 0.8812 0.6562 0.9000
F-measure 0.7290 0.8784 0.6651 0.9007

MCC 0.6610 0.7631 0.3003 0.7973

Ivy
Accuracy 0.9000 0.8000 0.7750 0.9125
F-measure 0.8489 0.6705 0.7094 0.8820

MCC 0.8030 0.5393 0.5429 0.8224

In order to visually observe the performance of the CBGCN algorithm, various eval-
uation measures were determined as box plots [30]. The y-axis represents the evaluation
metric score, while the prediction method is on x-axis in Figure 3. The mean and median
values are designated as particular values in the figures to aid in analysis.

Figure 3 shows that the model suggested in this paper had each average evaluation
index at its highest point, and that the GCN model’s framework was insufficient for
predicting software defects. However, according to the experimental results of CBGCN, the
graph convolution method based on the spectral domain could enhance each evaluation
index of software defect prediction.



Entropy 2022, 24, 1373 12 of 16

Figure 3. Dataset-wise boxplots of the first group: (a) accuracy; (b) F-measure; (c) MCC.

4.2. Experimental Analysis of Graph Convolutional Neural Network Based on Spectral Domain

In the experiments in this section, the spatial domain-based graph convolution method
is used as the convolution layer of this model. In order to verify that the graph convolution
method could still improve the performance of software defect prediction in this work,
in addition to the traditional method, the spatial domain-based graph neural network
model [23] was selected as a benchmark model. The results are shown in Table 6.

Table 6. Comparison between CBGIN and other prediction methods.

Dataset Evaluation
Measures SVM BP GIN CBGIN

Ant
Accuracy 0.9091 0.8794 0.8912 0.8853
F-measure 0.8942 0.8656 0.8833 0.8712

MCC 0.8208 0.7614 0.7869 0.7790

Camel
Accuracy 0.8081 0.8658 0.8842 0.8921
F-measure 0.7546 0.8655 0.8877 0.8858

MCC 0.6682 0.7309 0.7754 0.7954

Lucene
Accuracy 0.5704 0.6519 0.7074 0.7519
F-measure 0.6054 0.6431 0.7075 0.7295

MCC 0.1496 0.2955 0.4124 0.5121

Synapse
Accuracy 0.7529 0.7667 0.7889 0.8722
F-measure 0.6727 0.7550 0.7838 0.8715

MCC 0.5526 0.5564 0.5890 0.7554

Velocity
Accuracy 0.8000 0.8812 0.8812 0.9250
F-measure 0.7290 0.8784 0.8925 0.9218

MCC 0.6610 0.7631 0.7640 0.8514

Ivy
Accuracy 0.9000 0.8000 0.8875 0.9250
F-measure 0.8489 0.6705 0.8559 0.8737

MCC 0.8030 0.5393 0.7821 0.8378

Table 6 shows that, in most datasets, the model proposed in this paper achieved good
experimental results in terms of accuracy, F-measure, and MCC. On average, the accuracy
was 8.5% higher than SVM, 6.8% higher than BP, and 3.5% higher than GIN. The F-measure



Entropy 2022, 24, 1373 13 of 16

was 10.8% higher than SVM, 7.9% higher than BP, and 2.4% higher than GIN. The MCC
was 14.6% higher than SVM, 14.7% higher than BP, and 7.0% higher than GIN. The results
were analyzed from two aspects:

(1) Compared with BP, CBGIN was improved on all datasets. It was still lower than
SVM in the Ant project, but higher than CBGCN, demonstrating that the classifier
network structure and graph convolution method settings could impact the outcomes.
Individual datasets require adjusting the network hyperparameters. Overall, there
was a substantial improvement in CBGIN. Thus, it can be inferred that this model may
acquire valuable feature vectors by incorporating the spatial domain-based graph
convolution method.

(2) When CBGIN and GIN were compared, it was discovered that the model was im-
proved across all datasets. We can draw the conclusion that the model presented in
this paper is more suited for predicting software defects.

Similarly, in order to visually observe the performance of the CBGIN algorithm,
various evaluation metrics were determined as box plots. The y-axis shows the evaluation
metric score, while the prediction method is on x-axis in Figure 4. For better analysis, the
mean and median in the figure are marked.

Figure 4. Dataset-wise boxplots of the second group: (a) accuracy; (b) F-measure; (c) MCC.

Figure 4 shows that the CBGIN was improved with strong performance across all
evaluation metrics, suggesting that the GIN model can use the learned representation
vector more effectively and that the enhanced GIN model is more suited for software
fault prediction.

The experimental results demonstrated that both the GCN and the GIN graph con-
volution methods can produce beneficial representation vectors to enhance the accuracy
of software defect prediction. This model was improved compared to GIN and GCN,
showing that the model suggested in this research can increase the accuracy of software
defect prediction.



Entropy 2022, 24, 1373 14 of 16

5. Conclusions and Future Work

In this paper, we mapped the software to the graph structure and simplified the
software graph with the community structure according to the complex network theories.
Furthermore, we used the convolutional layer in the graph neural network to obtain the
graph information of the software. In this way, the software was regarded in its entirety, and
independent classes were linked through class dependencies for software defect prediction.
The graph convolution layer selected the graph convolution method as GCN and GIN for
experiments and used the PROMISE dataset for verification. The experimental results show
that the graph neural network could obtain better representation vectors of nodes, thereby
improving the performance of software defect prediction.

This research highlights the importance of a software defect prediction framework
based on multiple factors, by modeling the software into a more complex network, which
considers the connections between the software modules and the attributes of modules.
The following suggestions for future work can be derived from this experiment:

(1) A more complex network can be constructed, for example, considering developer
information, and semantic information of software code can be incorporated into
the network.

(2) For the improvement of the graph neural network, it can be combined with a commu-
nity discovery algorithm.

(3) The experiments in this paper considered within-project software defect prediction;
thus, in the future, cross-project software defect prediction can be considered.

Author Contributions: Conceptualization, M.C., S.L. and X.N.; Methodology, M.C. and S.L.; Visual-
ization, M.C. and S.L.; Writing—original draft, M.C.; Writing—review & editing, Y.J. and X.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities,
Southwest Minzu University (Grant No. ZYN2022006), Sichuan Science and Technology Program
(Grant No. 2022JDGD0011, 23GJHZ0149), Research Fund for International Young Scientists of
Ministry of Science and Technology of China (Grant No. QN2021186001L) and Foreign Talents
Program of Ministry of Science and Technology of China (Grant No. G2021186002L, G2022186003L).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would also like to thank Robert Andrew James and all the anony-
mous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SMOTE Synthetic minority oversampling technique
ENN Extended nearest neighborhood algorithm
BP Backpropagation
NLP Natural language processing
AST Abstract syntax tree
CNN Convolution neural network
GNN Graph neural network
GCN Graph convolutional neural network
SCNN Spectral CNN
ChebNet Chebyshev spectral CNN
GraphSAGE Graph sample and aggregate
GAT Graph attention networks



Entropy 2022, 24, 1373 15 of 16

GIN Graph isomorphism network
MLP Multilayer perceptron
SVM Support vector machine
CBGCN Community-based GCN
CBGIN Community-based GIN
MCC Matthews correlation coefficient

References
1. Gonzalez-Barahona, J.M.; Izquierdo-Cortazar, D.; Robles, G. Software Development Metrics with a Purpose. Computer 2022, 55,

66–73. [CrossRef]
2. Liu, Y.; Sun, F.; Yang, J.; Zhou, D. Software Defect Prediction Model Based on Improved BP Neural Network. In Proceedings of

the 2019 6th International Conference on Dependable Systems and Their Applications (DSA), Harbin, China, 3–6 January 2020;
pp. 521–522.

3. Bashir, K.; Li, T.; Yahaya, M. A Novel Feature Selection Method Based on Maximum Likelihood Logistic Regression for Imbalanced
Learning in Software Defect Prediction. Int. Arab J. Inf. Technol. 2020, 17, 721–730. [CrossRef]

4. Goyal, S. Effective software defect prediction using support vector machines (SVMs). Int. J. Syst. Assur. Eng. Manag. 2022, 13,
681–696. [CrossRef]

5. Farid, A.B.; Fathy, E.M.; Eldin, A.S.; Abd-Elmegid, L.A. Software defect prediction using hybrid model (CBIL) of convolutional
neural network (CNN) and bidirectional long short-term memory (Bi-LSTM). PeerJ Comput. Sci. 2021, 7, e739. [CrossRef]
[PubMed]

6. Deng, J.; Lu, L.; Qiu, S. Software defect prediction via LSTM. IET Softw. 2020, 14, 443–450. [CrossRef]
7. Šubelj, L.; Bajec, M. Community structure of complex software systems: Analysis and applications. Phys. A Stat. Mech. Its Appl.

2011, 390, 2968–2975. [CrossRef]
8. Zhou, Y.; Zhu, Y.; Chen, L. Software Defect-Proneness Prediction with Package Cohesion and Coupling Metrics Based on Complex

Network Theory. In Proceedings of the International Symposium on Dependable Software Engineering: Theories, Tools, and
Applications, Guangzhou, China, 24–27 November 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 186–201. [CrossRef]

9. Qu, Y.; Yin, H. Evaluating network embedding techniques’ performances in software bug prediction. Empir. Softw. Eng. 2021,
26, 60. [CrossRef]

10. Al-Andoli, M.N.; Tan, S.C.; Cheah, W.P.; Tan, S.Y. A Review on Community Detection in Large Complex Networks from
Conventional to Deep Learning Methods: A Call for the Use of Parallel Meta-Heuristic Algorithms. IEEE Access 2021, 9,
96501–96527. [CrossRef]

11. Euler, L. Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Petropolitanae 1741, 8, 128–140.
12. Wheeldon, R.; Counsell, S. Power law distributions in class relationships. In Proceedings of the Third IEEE International

Workshop on Source Code Analysis and Manipulation, Amsterdam, The Netherlands, 26–27 September 2003; pp. 45–54.
13. Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]

[PubMed]
14. Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]
15. Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the 2005 IEEE International

Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; pp. 729–734. [CrossRef]
16. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw.

2008, 20, 61–80. [CrossRef] [PubMed]
17. Asif, N.A.; Sarker, Y.; Chakrabortty, R.K.; Ryan, M.J.; Ahamed, H.; Saha, D.K.; Badal, F.R.; Das, S.K.; Ali, F.; Moyeen, S.I.; et al.

Graph Neural Network: A Comprehensive Review on Non-Euclidean Space. IEEE Access 2021, 9, 60588–60606. [CrossRef]
18. Estrach, J.B.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and deep locally connected networks on graphs. In Proceedings

of the 2nd International Conference on Learning Representations, ICLR, Banff, AB, Canada, 14–16 April 2014.
19. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering.

arXiv 2016, arXiv:1606.09375.
20. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th In-

ternational Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. Available online: https:
//openreview.net/forum?id=SJU4ayYgl (accessed on 18 August 2022).

21. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. arXiv 2017, arXiv:1706.02216.
22. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the 6th

International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. Available
online: https://openreview.net/forum?id=rJXMpikCZ (accessed on 18 August 2022).

23. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. Available online: https://openreview.
net/forum?id=ryGs6iA5Km (accessed on 18 August 2022).

http://doi.org/10.1109/MC.2022.3145680
http://doi.org/10.34028/iajit/17/5/5
http://doi.org/10.1007/s13198-021-01326-1
http://doi.org/10.7717/peerj-cs.739
http://www.ncbi.nlm.nih.gov/pubmed/34901421
http://doi.org/10.1049/iet-sen.2019.0149
http://doi.org/10.1016/j.physa.2011.03.036
http://doi.org/10.1007/978-3-030-62822-2_12
http://doi.org/10.1007/s10664-021-09965-5
http://doi.org/10.1109/ACCESS.2021.3095335
http://doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://doi.org/10.1088/1742-5468/2008/10/P10008
http://doi.org/10.1109/ijcnn.2005.1555942
http://doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://doi.org/10.1109/ACCESS.2021.3071274
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km


Entropy 2022, 24, 1373 16 of 16

24. Yang, S.; Gou, X.; Yang, M.; Shao, Q.; Bian, C.; Jiang, M.; Qiao, Y. Software Bug Number Prediction Based on Complex Network
Theory and Panel Data Model. IEEE Trans. Reliab. 2022, 71, 162–177. [CrossRef]

25. Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
26. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. Available online: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf (accessed on 18 August 2022).

27. Jureczko, M.; Madeyski, L. Towards identifying software project clusters with regard to defect prediction. In Proceedings of the
6th International Conference on Predictive Models in Software Engineering, Timisoara, Romania, 12–13 September 2010; pp. 1–10.

28. Mani, I.; Zhang, I. kNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings
of the Workshop on Learning from Imbalanced Datasets, ICML, Washington, DC, USA, 21–24 August 2003; pp. 1–7.

29. Zhang, Q.; Ren, J. Software-defect prediction within and across projects based on improved self-organizing data mining.
J. Supercomput. 2022, 78, 6147–6173. [CrossRef]

30. Goyal, S. Handling Class-Imbalance with KNN (Neighbourhood) Under-Sampling for Software Defect Prediction. Artif. Intell.
Rev. 2022, 55, 2023–2064. [CrossRef]

http://doi.org/10.1109/TR.2022.3149658
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://doi.org/10.1007/s11227-021-04113-8
http://doi.org/10.1007/s10462-021-10044-w

	Introduction 
	Materials and Methods 
	Software Diagram Structure 
	Complex Network 
	Software Class Depends on the Network 

	Community Detection 
	Graph Neural Network 
	Software Defect Prediction Model Based on Complex Network and Graph Neural Network 
	Data Processing 
	Learning and Classification of the Node Representation Vector 


	Simulation Experiments 
	Experimental Environment and Datasets 
	Evaluation Measures 
	Experimental Setup 
	Experimental Procedure 

	Results and Discussion 
	Experimental Analysis of Graph Convolutional Neural Network Based on Spectral Domain 
	Experimental Analysis of Graph Convolutional Neural Network Based on Spectral Domain 

	Conclusions and Future Work 
	References

