
Citation: Zhang, C.; Zhou, Q.; Qiao,

M.; Tang, K.; Xu, L.; Liu, F. Re_Trans:

Combined Retrieval and Transformer

Model for Source Code

Summarization. Entropy 2022, 24,

1372. https://doi.org/10.3390/

e24101372

Academic Editor: Qiang Zhang and

Yifeng Zeng

Received: 25 August 2022

Accepted: 23 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Re_Trans: Combined Retrieval and Transformer Model for
Source Code Summarization
Chunyan Zhang 1 , Qinglei Zhou 2, Meng Qiao 1, Ke Tang 1, Lianqiu Xu 1 and Fudong Liu 1,*

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
2 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
* Correspondence: lwfydy@126.com

Abstract: Source code summarization (SCS) is a natural language description of source code function-
ality. It can help developers understand programs and maintain software efficiently. Retrieval-based
methods generate SCS by reorganizing terms selected from source code or use SCS of similar code
snippets. Generative methods generate SCS via attentional encoder–decoder architecture. However, a
generative method can generate SCS for any code, but sometimes the accuracy is still far from expecta-
tion (due to the lack of numerous high-quality training sets). A retrieval-based method is considered
to have a higher accurac, but usually fails to generate SCS for a source code in the absence of a similar
candidate in the database. In order to effectively combine the advantages of retrieval-based methods
and generative methods, we propose a new method: Re_Trans. For a given code, we first utilize the
retrieval-based method to obtain its most similar code with regard to sematic and corresponding
SCS (S_RM). Then, we input the given code and similar code into the trained discriminator. If the
discriminator outputs onr, we take S_RM as the result; otherwise, we utilize the generate model,
transformer, to generate the given code’ SCS. Particularly, we use AST-augmented (AbstractSyntax
Tree) and code sequence-augmented information to make the source code semantic extraction more
complete . Furthermore, we build a new SCS retrieval library through the public dataset. We evaluate
our method on a dataset of 2.1 million Java code-comment pairs, and experimental results show
improvement over the state-of-the-art (SOTA) benchmarks, which demonstrates the effectiveness
and efficiency of our method.

Keywords: source code summarization; program analysis; information retrieval; deep learning

1. Introduction

Source code summarization (SCS), also named code comment, is a term coined by
Haiduc et al. [1]. It is a natural language description of programming fragments. Program
maintenance is the most expensive and time-consuming stage in the software life cycle [2].
High-quality SCS is essential to program comprehension and maintenance, which can help
developers save time spent on navigating source code and understand programs quickly.
Unfortunately, with the rapid update of software, most SCS is mismatched, outdated, and
missing. Hence, SCS generation has been researched extensively and has made lots of
remarkable achievements [3–13].

SCS generation is a hot field that emerged more than a decade ago. Its methods can
be divided into three categories: manually-crafted template, information retrieval-based
(IR-based), and deep-learning-based (DL-based). The manual template methods usually
extract keywords from source code to generate SCS [4,14,15]. However, they miss a lot
of potential information of the source code. The IR-based methods are widely used in
SCS generation. They usually generate SCS by searching keywords from the given code
or code comments of the code that are most similar to the given code. For example,
Haiduc et al. [1,3] analyzed source code using the vector space model (VSM) and latent
semantic indexing (LSI) methods, producing natural language description of the classes

Entropy 2022, 24, 1372. https://doi.org/10.3390/e24101372 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24101372
https://doi.org/10.3390/e24101372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8871-4272
https://orcid.org/0000-0002-8387-0831
https://doi.org/10.3390/e24101372
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24101372?type=check_update&version=1

Entropy 2022, 24, 1372 2 of 16

or methods. Li et al. [16] used the latent dirichlet allocation (LDA) technology to conduct
topic mining on resources, such as code, documentation, question and answer information,
and automatically generated code topic summarization. Wong et al. [17] utilized code
clone detection technology to find the code snippet with similar syntax from the existing
code bases and applied summarization to other codes with similar syntax. However, IR-
based methods over-rely on identifier naming and the similar amount of source code in
the dataset.

Currently, almost all works use the DL-based method in SCS generation task. The
common DL techniques include recurrent neural network (RNN) [18] and its variant
models, convolution neural network (CNN) [19] and its variant models, transformer
model [20], and large-scale language training model (e.g., BERT [21] and GPT [22]). The
attention mechanism is usually used as a key auxiliary to the above methods. Deep-
Com [8] utilized a seq2seq model to generate SCS of a Java method based on the attention
mechanism, and its SBT method (a tree traversal way) made a major breakthrough in
structure information extraction. Notably, the SBT method has been adopted by many
works. For example, in 2020, the Hybrid-DeepCom [23] extended the work of paper [8]. It
combined the source code sequence and the SBT sequences to generate SCS. Especially, the
camel case naming was used to solve the out-of-vocabulary identifiers problem. LeClair et
al. [24] improved the accuracy of SCS by processing source code AST information on the
basis of ast-attendgru [10]. Wang et al. [12] and Uddin Ahmad et al. [13] utilized transformer
to generate the SCS, and improved the effectiveness and accuracy compared with existing
methods. The quality of code summarization generated by the methods in papers [13,24] is
better than the other methods mentioned above. The main reason is that the paper [24] takes
the whole AST as a graph to represent structure information instead of AST-sequences
or AST-paths, which preserves the structure information more completely. Hence, we
use this AST embedding way in our method. Moreover, the paper [13] proves that the
transformer model performs well in the SCS generation task. However, these methods
use either IR-based or neural machine translation (NMT)-based methods to generate SCS.
NMT-based methods are generative methods. A generative methord can generate SCS for
any code, but the result is still far from expectation due to the absence of a high-quality
training set. A retrieval-based method has high accuracy, but it requires a similar candidate
in the database to the given code.

In this paper, for the purpose of combining the advantages of retrieval-based methods
and generative methods, we propose a neural approach to generate SCS, Re_Trans. It
contains one retrieval-based model and one generative model and uses a discriminator to
decide which model’s result is the final SCS for the give code. For a given code, we first
utilize a retrieval-based method to obtain the most similar code with regard to semantics
and its SCS (S_RM). Then, we input the given code and similar code into the trained
discriminator. If the output is one, we take S_RM as the result; otherwise, we utilize the
transformer model to generate the final SCS. Re_Trans adopts a suitable SCS generation
model to the given code.

In particular, we propose a new method that combines the enhanced code sequences
and enhanced code structures to represent the source code semantic, which are imple-
mented as follows: (1) We use AST to represent the structure information and enhance it by
adding data flow and control flow edges to AST. Moreover, we utilize a graph convolutional
network (GCN) [25] to encode the whole AST for preserving the structure information more
completely. (2) We use code sequence to represent the syntax information and enhance it
by adding position information to code. In retrieval model, we adopt a bidirection gate re-
current unit (BiGRU) [26] to encode code sequences and choose a self-attention mechanism
to encode them in a transformer model.Moreover, we use a beam search algorithm [27]
in Re_Trans to ensure that the generated SCS is non-random and closest to the real result.
We conduct experiments on a popular real-word dataset, and the results demonstrate that
our method outperforms the SOTA work (in Section 3.3) with widely-used metrics (BLEU,

Entropy 2022, 24, 1372 3 of 16

METEOR, and ROUGE) in code summarization tasks. Furthermore, we also perform
time-consuming experiments to confirm the efficiency of our method.

The main contributions of this paper are as follows:

• We propose a Re_Trans system by combining retrieval and generative methods and
adopt the suitable SCS generation model for a given source code.

• We use non-leaf nodes of the AST to build a directed graph and enhances the edge
information thought data flow and control flow. To the best of our knowledge, this is
the first time that such an efficient structure representation mode has been used in an
SCS task.

• We perform extensive experiments on a public real-world dataset. All results confirm
that the Re_Trans is effective and outperforms the SOTA methods.

2. Our Approach
2.1. Overview

The workflow of our proposed method (Re_Trans) is shown in Figure 1.

.java
Parse

<summarization>

source code

Method

Declaration

Modifier For

Display
Forma

Parameter

For

Statement

For

Control

Binary

Operation

Public static

int

a
Binary

Type

Literal

1

<

AST

Node set:

(Modifier ...)

Edge set:
((Modifier, Public)...)

(This is a for function...)

Summarization sequence

DecoderEncoder

(self-attention)

BiGRU

GCN

DecoderEncoder

(self-(self(self attention)

Transformer

Retrieval

Database

Euclidean

output

RM

Summarization

A. Data processing B. Model training design

Generative Model

0.public static void forDisplay(int a){

1. for (; 1 < a;) {

2. System.out.print(a);

Code sequence

Retrieval Model

.java Parse

AST (Edge set)

&

Code sequence

Model

Discriminator
summrization

C. Model test design

Retrieval Model

Generative Model

Model

Discriminator

GM

Summarization

Figure 1. Overall framework of Re_Trans (color print).

Re_Trans mainly contains three steps: (1) Data representation (see Section 2.2): Re_Trans
parses the source code into AST and source code sequence and processes code summariza-
tion by a plain text that is composed of tokens (i.e., variables). (2) Model training design
(see Section 2.3); Re_Trans includes a retrieval-based model, a generative model, and a
discriminator (see Section 2.5). (3) Model test design (see Section 2.4).

2.2. Data Processing

In this paper, we use large public dataset <Java code, comment> pairs. Our data
processing method is available in various programing languages. We represent the Java
code as parsed AST and code sequence and process comments into plain text.

For one sample, we show the source code structure information in Figure 2. Initially,
we use the javalang (https://github.com/kangyujian/JavaMethodExactor, accessed on
20 August 2020) toolkit to parse source code into an AST and remove the leaf nodes of
AST. There are two reasons for removing the leaf nodes: (1) To avoid repeated processing
because the leaf nodes correspond to the source code text, which has been processed in code
sequence information. (2) Non-leaf nodes represent the source code structure information
to a certain extent, and this structure saves much traversal time.

https://github.com/kangyujian/JavaMethodExactor

Entropy 2022, 24, 1372 4 of 16

0.public static void forDisplay (int a){

1. for (int i=0; i < a; i++) {

2. System.out.print(a);

3. }

4.}

Parse

MethodDeclaration

Modifier FormaParameter ForStatement

ForControl BlockStatement

BinaryOperation

StatementExpression

MenberReference

MethodInvocation

BinaryType

MenberReferenceMenberReference

(aa)

StatementExpression

BinaryOperation

LiteralMenberReference

UnaryOperation

MenberReference

BinaryType

Figure 2. The parsed AST from source code (color print).

Furthermore, we enhance source code semantic information by adding data flow
and control flow to AST referring to the work of Wang et al. [28]. Considering our AST
without leaf nodes, in data flow information, we connect a node to its next brother node
(from left to right). It solves the problem that graph neural networks do not consider
the order of nodes. For example, the green arrows in the red dotted box (aa) in Figure 2
connect three sibling nodes of “Modifier”, “FormaParameter”, and “ForStatement”. The
added edges are (Modifier, FormaParameter), (FormaParameter, and ForStatement). In
control flow information, we select “IfStatement”, “WhileStatement”, “ForStatement”,
and “BlockStatement” nodes. “BlockStatement” is the root node of the code block when
executing source code sequentially. According to the characteristics of each node, we
connect their child nodes to form new edges.

Finally, we utilize depth-first traversal to obtain the edge set of the directed AST. The
edge set is e = (e1, e2 . . . en), where n is the number of edges. Compared with undirected
AST, directed AST can represent the sequence structure information more accurately. We
take the edge information as an initialization vector and input it into GCN for semantic
extraction of the source code.

The source code sequence information is shown in Figure 3. Firstly, we treat each
source code as a plain text (as shown in the blue box); each word corresponds to a unique
identifier (token id) by dictionary mapping. Then, we add row and column position
information to the source code. For the row position information, we assign integer values
starting from zero to each row of Java function sequentially (as shown in the red box).
For the column position information, we assign integer values starting from zero in the
word order of each code (as shown in the green box). Hence, each word in the source code
sample has three feathers: token id, column position, and row position. We concatenate
the initialized vectors of these features as the initial vector for each word. In this way, we
complete the vector initialization of the source code and utilize the self-attention mechanism
to obtain the source code sequence sematic vector. We take “static” as an example. From
Figure 3, we can see that its token id is 35, column position is 1, and row position is 0. Firstly,
we perform vector initialization on 35, 0, and 1, respectively, and obtain the corresponding
embeddings Emb1, Emb2, and Emb3. Secondly, we concatenate the three embeddings to
obtain the initial vector of “static”, Emb = cat(Emb1, Emb2, Emb3).At last, we input Emb
into the self-attention mechanism to obtain the final semantic vector of “static”. Let the
word dimension be d, then Emb1, Emb2, Emb3 ∈ R1×d, Emb ∈ R1×3d.

Entropy 2022, 24, 1372 5 of 16

(public, static, void, forDisplay, int, a, for, int, i, =, 0, 1, <, a, i, ++, system, out, print, a)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.public static void forDisplay(int a){

1. for (int i=0; i < a; i++) {

2. System.out.print(a);

3. }

4.}

(public, static, void, forDisplay, int, a, for, int, i, =, 0, 1, <, a, i, ++, system, out, print, a)

 23, 35, 21, 252, 7, 18, 11, 100, 5, 122, 5, 435, 21,18,5,233,65,43, 978,18

0.public static void forDisplay(int a){

1. for (int i=0; i < a; i++) {

2. System.out.print(a);

3. }

4.}

Figure 3. The code sequence information of source code (color print).

Code comment is similar to text in NLP , without complex structure information. We
obtain their semantic vectors through the self-attention mechanism and use it as part of the
decoder input of the transformer model.

2.3. Model Training Design

Re_Trans contains two SCS generation models: retrieval model and transformer. We
show them in Figures 4 and 5.

.java
Parse

0.public static void forDisplay(int a){

1. for (; 1 < a;) {

2. System.out.print(a);
<source code>

AST: Edge sets

((Modifier,Public)...)

Source code sequence

GCN

BiGRU

Retrieval database

Euclidean output
RM

summarization

Figure 4. The retrieval-based model (color print).

.java
Parse

<source code>

DecoderEncoder

(self-attention)

GCN

Transformer
output

GM

summarization
0.public static void forDisplay(int a){

1. for (; 1 < a;) {

2. System.out.print(a);

Source code sequence

AST: Edge sets

((Modifier,Public)...)

Figure 5. The generative model (color print).

In the retrieval model, when comparing the codes’ plain texts, it is difficult to judge
whether they are similar because different programming texts may implement the same
function. For example, both “forstatement” and “whilestatement” can implement the loop
function. The semantic similarity measures the difference between tokens based on the
similarity of their meaning or semantic content rather than the similarity of dictionaries.
It often uses statistical methods, such as vector space models, to associate words and
textual contexts from corpora. Therefore, we compare the code’ semantic similarity in
the retrieval-based model. For a sample, we use GCN to process the enhanced AST and
BiGRU to deal with the enhanced code sequence. The semantic vector of a sample is the
results concatenation of GCN and BiGRU , namely Emb_S. We use the n-dimensional
Euclidean distance formula that is shown as (1) to find the code in the retrieval library that
is most similar to the sample, namely Emb_Simi, and its SCS. The construction process of
the retrieval library will be detailed in Section 3.1.

Entropy 2022, 24, 1372 6 of 16

d(Emb_S,Emb_Simi) =

√
n

∑
i=1

(xi − yi)
2 (1)

where Emb_S = (x1,x2, . . . ,xn), Emb_Simi = (y1,y2, . . . ,yn), and i ∈ [1, n]
The goal of the transformer model is to generate a new SCS for each input function.

For a sample, we also use GCN to extract its structure information. As for the syntactic
information, we directly utilize the transformer’s encoder. The sample semantic vector is the
results concatenation of GCN and the self-attention mechanism. We use the transformer’s
decoder to convert the sample semantic vector to its SCS.

2.4. Model Test Design

In this section, we show the test flow in Figure 6. To make it easier to understand, we
introduce the test flow through a running example that is shown in Figure 7. We first input
the Java code (a) into the retrieval-based model introduced in Section 2.3 and obtain the
semantic vector of Java code (b) and target summarization (b). Even more, (b) is the most
similar Java code to (a). Then, we input the semantic vectors of (a) and (b) into the trained
discriminator, and the sim_label is one, so we obtain the target summarization (b) as the
final summarization result, which means it “generates the most likely state predictions
for the sequence”. Specifically, the trained discriminator’s training process is detailed in
Section 2.5.

 Any Java code

Retrieval-based

model

 sim_label=1 Transformer

S_GMS_RM

Begin

End

Model

Discriminator

S_code S_RM

Figure 6. The test workflow of Re_Trans.

Example

Java code (a)

public Prediction mostLikely(short [] sequence){

 return mostLikely(sequence,null);

}

Target summarization (a): generates the most likely state predictions for the sequence.

Retrieval-based summarization (a): the semantic vector of Java code (b) and Target summarization (b).

Discriminator result : <Java code (a), Java code (b), 1>.

summarization result : Target summarization(b)

Java code (b)

public Prediction mostLikely(short [] sequence,LikelyNotifier notifier){

 short [] result = new short[sequence.length];

 return mostLikely(sequence,result,notifier);

}

Target summarization (b): generates the most likely state predictions for the sequence.

Figure 7. The running example.

Entropy 2022, 24, 1372 7 of 16

2.5. Discriminator

In particular, it is stated that the role of discriminator in this paper is different from
that of the discriminator in the adversarial generative network. The purpose of our pro-
posed discriminator is to judge whether the Java code summarization produced by the
retrieval model is optimal, which is used in both training and test phases. Furthermore, the
discriminator’s working approach is detailed in its training and test process.

In order to train the discriminator, we randomly sample 200,000 samples from the
dataset in Section 3.1 and divide them into training and testing sets in a ratio of 8:2. The
training process is shown in Figure 8.

sample

Retrieval-based model

D_RM > D_GM

Transformer model

S_GMS_RM

Begin

End
Y

N

Target summrization

(Emb_C)

Cosine Distance

D_GMD_RM

<S, S_code, 1>

S_code

<S, S_code, 0>

Figure 8. The training workflow of Re_Trans.

First, we assign the label to all samples. For a sample: (1) We use the retrieval model in
Section 2.3 to obtain its S_code and S_RM and use the transformer model to generate its SCS
(S_GM). 2) When analyzing the similarity between two feature vectors, the cosine similarity
can avoid the large distance caused by different sequence lengths and only consider
the angle between two vectors. Therefore, we utilize the cosine distance to calculate
the similarity between S_RM, S_GM, and the target SCS (T_SCS), respectively, which
are shown in Formulas (2) and (3), where S_RM = (s_rm1, s_rm2, ..., s_rmm), T_SCS =
(c1, c2, . . . , cm), S_GM = (s_gm1, s_gm2, ..., s_gmm), and m represents the dimension of
code summarization. If S_RM is better, we set the sample as <code, S_code, 1>. Otherwise,
the sample is <code, S_code, 0>. We repeat these two steps, and we set all discriminator
data in the form of <code, S_code, label>, where the label represents zero or one.

cos_ simir =
∑m

i=1 s_rmi · ci√
∑m

i=1 s_rm2
i ·
√

∑m
i=1 c2

i

, i ∈ [1, m] (2)

cos_ simig =
∑m

i=1 s_gmi · ci√
∑m

i=1 s_gm2
i ·
√

∑m
i=1 c2

i

, i ∈ [1, m] (3)

Second, we train the discriminator with 160,000 samples, and the parameters are
shown in Section 3.2. Especially, we utilize Multilayer Perceptron (MLP) to calculate the
semantic similarity between SCSs. Finally, we use the remaining 40,000 samples to test the
trained discriminator.

3. Experiments Setup
3.1. Dataset Analysis

The dataset contains around 2.1 million <Java code, comment> pairs [29], which are
widely used in lots of SCS generation tasks [10,20,30]. We analyzed the dataset from two

Entropy 2022, 24, 1372 8 of 16

aspects: (1) statistical length distribution of source codes and their comments (see Figure 9);
and (2) a count of the scale of Java code numbers with the same comment (see Figure 10).

4 6 8 10 12
Comment length

50,000

100,000

150,000

200,000

250,000

Co
un

t

(a) Comment Length distribution

0 20 40 60 80 100
Java code length

20,000

40,000

60,000

80,000

100,000

Co
un

t

(b) Java code Length distribution

Figure 9. Length distribution of dataset (color print).

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
The number of code function with the same summarization:(2-20)

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Co
un
t

(a)

50 100 150 200 250
The number of function with same summarization:(20-200)

0

20

40

60

80

100

120

140

160

Co
un

t

(b)

Figure 10. Java code scale distribution of the same code comment (color print).

From Table 1 and Figure 9, we can see that the comment length distribution is relatively
uniform, ranging from 3 to 13. A short comment helps people understand the code function
quickly. The code lengths are distributed between 1 and 100, which is approximately
normal distribution. When code length is larger than 70, the number is almost unchanged,
so we set 70 as the optimal input length parameter.

Table 1. The length statistics of the dataset (numbers in the table represent the number of code’ words).

Function lengths
shortest longest average <60 <70 <80

1 100 29.7 87% 91% 95%

Comment lengths
shortest longest average <9 <10 <11

3 13 7.6 72% 81% 90%

In order to train a retrieval library, we remove invalid data whose comment corre-
sponds to only one function. In Figure 10a, the function of scale two is close to 160,000,
far exceeding the number of other scales. We denoise these functions and use them as a
retrieval library. From Figure 10b, we find that the number of scales over 80 is almost 1.

3.2. Parameter Settings

In this section, we introduce the main parameter settings in all experiments as shown in
Table A1. In the transformer model, we use the Adam optimizer and set epsilon to 1× 10−9

and (β1, β2) to (0.9, 0.98). The parameters of thetransformer model are N = 4, h = 4, and
dim = 256), where N is the number of encoder layers, h is the number of multi-head-
attention, and dim is the embedding dimension. Particularly, we use the NoamOpt to
obtain the learning rate dynamically, where the warmup is 200 and the factor is 1. The

Entropy 2022, 24, 1372 9 of 16

batch_size is set to 256, and the epoch is 40. In the retrieval model, we also use the Adam
optimizer, and set the GCN and BiGRU layer to two. Moreover, we set the leaning rate to
1× 10−4, and the epoch to 30.

We conduct all the experiments on a workstation with two Intel(R) Xeon(R) Gold 6154
CPU@3.00 GHz, 128 gb RAM, and two Titan XP GPUs. It is necessary to train on GPUs
with 64gb VRAM due to the large size of our model and dataset.

3.3. Baselines

To demonstrate the effectiveness of our method, we compare it with the SOTA methods
from recent years. The baselines are described as follows:

LeClair et al. [10] (2019) proposed a method called ast-attendgru that was an attentional
encoder–decoder architecture to generate SCS. Ast-attendgru enhanced the SBT and AST
flattening procedure proposed by Hu et al. [7,23] and showed a higher performance. Hence,
we only compare against this approach.

Xu et al. [31] (2018) proposed an approach called graph2seq which was a general neural
encoder–decoder architecture that solved the graph-to-sequence problem. It achieved SOTA
results on an SQL-natural language task using BLEU-4 metric. The open-source code of
graph2seq is convenient to conduct comparative experiments.

LeClair et al. [24] (2020) adopted code+gnn+BiLSTM to generate SCS. Different from
the flattened AST, they took the AST as a graph, and it performed well, which was closer to
our method in terms of code structure information extraction.

Ahmad et al. [13] (2020) proposed the transformer-based method that was the first to
apply the transformer model to source code comments. They incorporated relative posi-
tional encoding and copied an attention mechanism into the transformer model to improve
the SCS quality. We also use the transformer model as the Re_Trans’ generative model.

Zhang et al. [11] (2020) proposed a novel retrieval-based neural approach called
Rencos. Rencos retrieved the two most similar code snippets in a given code from aspects
of semantic and syntax, respectively. Rencos enhanced the accuracy of the SCS by fusing
the retrieved results into the generative model.

Wei et al. [32] (2020) proposed an approach to enhance the SCS’ accuracy, namely
Re2Com. Similar to Rencos, Re2Com also used a retrieval-based method to enhance the
SCS’ accuracy. For a given code, Re2Com retrieved its most similar code and the SCS pair.
Then it took the given code (its code text and AST sequence), the most similar code, and
SCS as input to the encoder. Experiments demonstrated the effectiveness of this method.

4. Results and Analysis

Our research objective was to determine that the Re_Trans outperforms current base-
lines. We also wanted to demonstrate the efficiency of RGSGS and the effectiveness of the
retrieval library built by us. Notably, all methods were trained on the dataset described
in Section 3.1 and evaluated by the widely-used metrics BLEU [33], METEOR [34], and
ROUGE [35], detailed in the Appendix A.2. The metrics’ scores were in the range [0, 1] and
reported in percentages in this paper. We answer the following research questions (RQs) to
explore these situations:

RQ1: What is the performance of Re_Trans compared to the baselines? RQ2: Why
does the Re_Trans approach perform well? RQ3: Where is the high efficiency of Re_Trans
reflected? RQ4: What is the quality of the SCS retrieval library we built?

4.1. Re_Trans vs. Baselines

Among baselines, ast-attendgru, graph2seq, code+gnn+BiLSTM, and transformer-
based belong to GM. Rencos and Re2Com are methods that combine retrieval and genera-
tive techniques. According to the parameter settings in Table A1, we show the experimental
results of Re_Trans and baselines in Table 2.

Entropy 2022, 24, 1372 10 of 16

Table 2. The comparison results of Re_Trans and Baselines (B-n represents BLEU-n).

Methods B-1 B-2 B-3 B-4 ROUGE-L METEOR

ast-attendgru [10] 37.24 22.14 14.32 11.06 39.68 19.31
graph2seq [31] 37.66 22.32 14.28 10.96 39.71 19.40
code+gnn+BiLSTM [24] 39.21 22.50 15.73 11.97 40.25 20.12
transformer-based [13] 39.67 24.96 16.21 13.77 40.87 21.05
Rencos [11] 36.63 21.61 15.11 12.30 39.70 19.17
Re2Com [32] 38.96 23.08 17.49 15.67 40.01 20.04
Re_Trans(ours) 42.97 25.85 18.58 16.83 42.64 22.15

From Table 2, we find that the effect of the Rencos method is relatively poor. The
reason may be that it does not matter whether the retrieved similar code is actually similar
to the input one or not. When taking them as input of the encoder, Rencos may produce
biased SCS. Although ast-attendgru, Rencos, and Re2Com use flatted AST to represent
code structural information, the AST sequence is a linear problem in nature. The effect of
code+gnn+BiLSTM, transformer-based and Re2Com are close to Re_Trans. The Re_Trans
and code+gnn+BiLSTM use a similar source code semantic extraction method, AST graph,
and source code sequence, but the Re_Trans performs better. One reason is that our
method enhances the AST and code sequence, which can extract the source code semantic
information more fully (explained in Section 4.2). LeClair et al. [30] mentioned that the
decoder with an attention mechanism is less effective than a transformer. We also find
that the BLEU-N of the transformer-based method is on average about 7% higher than
code+gnn+BiLSTM. The poor performance of graph2seq is because it only considers the
structural information of source code but ignores the syntactic information in the SCS task.

In Table 2, the Re_Trans performs best; the main reasons are the following: (1) We
combine the code sequence-augmented and AST-augmented to characterize source code.
(2) The generative model is the transformer model. Transformer is generally better than
the seq2seq architecture in all tasks. In addition, the BLEU-N gradually decreases as the N
increases. It shows that there is still a lot of room for improvement in the long sequence
matching between the generated SCS and the target. Furthermore, it also indicates that the
current SCS generation model still needs to be further studied and improved.

4.2. Ablation Study

An ablation study is often used to reduce some improved features on the model
proposed in the paper in order to verify the necessity of corresponding improved features.
Ablation is a very labor-saving way to study cause and effect. In this section, we will
illustrate why the Re_Trans method works well through source code representation ablation
experiments. The source code semantic representation methods mainly include source
code sequence information (Seq), AST-augmented (ast_aug) combined with Seq, and AST-
augmented combined with code sequence-augmented information (Seq_aug). However, we
also test the SCS effect of preserving leaf nodes of AST-augmented (ast_leaf_aug) combined
with Seq_aug. For these different semantic extraction methods of source code, we use
Re_Trans to generate SCS and show the ablation experiments results in Table 3.

Table 3. The ablation experiment results (B-n represents BLEU-n).

Methods B-1 B-2 B-3 B-4 ROUGE-L METEOR

Seq 35.58 22.36 15.22 10.86 37.63 18.97
ast_aug+Seq 38.99 23.74 16.76 15.32 40.01 20.26
ast_aug+Seq_aug 42.97 25.85 18.58 16.83 42.64 22.15
ast_leaf_aug+Seq_aug 43.01 26.30 19.22 16.30 42.68 22.01

In Table 3, we find that the SCS quality has been improved after the Seq combining
with the ast_aug information. It is because pure sequence information ignores the potential

Entropy 2022, 24, 1372 11 of 16

and complex structural information of source code, and ast_aug preserves the structural
information of source code. As we all know, the self-attention mechanism ignores position
information when encoding sequence information. Therefore, we add position information
to source code sequences to solve this problem. As shown in Table 3, the effect is signifi-
cantly improved when we use “ast_aug+Seq_aug” to represent source code. The BLEU-1
is improved by 10.2%, and BLEU-4 is improved by 9.9%. Moreover, we also find that the
effect of “ast_leaf_aug+Seq_aug” is better than “ast_aug+Seq_aug”, but the gap is slight. In
Section 4.3, we demonstrate that the time efficiency of the latter is much higher than that
of the former. Therefore, we choose the AST without leaf nodes to characterize the source
code structure information.

4.3. High Efficiency

High efficiency is an important advantage of Re_Trans compared to other SCS methods.
It is mainly reflected in two aspects: the efficiency of source code semantic extraction and
the efficiency of Re_Trans’ generation model.

(1) Efficiency of source code semantic extraction:

The AST contains a large number of leaf nodes with irregular user-defined identifiers,
which makes the data processing time-consuming. From Table 3, we know that the SCS’
result of AST with leaf nodes (ast_with_leaf) is close to that without leaf nodes (ast_no_leaf)
in our method. In order to demonstrate the efficiency of source code semantic extraction, we
randomly select 100,000 samples from the dataset and construct AST structure information
with and without leaf nodes, respectively. We calculate the accumulated time (the time unit
is seconds) for each 10,000 samples,and show the results in Figure 11a. Furthermore, we
randomly select 1000 samples from these 100,000 samples, and test their SCS time through
Re_Trans for these two source code structure representations, respectively. We calculate the
accumulated time (the time unit is seconds) for each 100 samples processed and show the
results in Figure 11b.

20,000 40,000 60,000 80,000 100,000
dateset scale

0

10

20

30

40

50

Ti
m
e

with_leaf_datapro
no_leaf_datapro

(a) Data processing time of AST with no leaf nodes.

200 400 600 800 1,000
dateset scale

4

6

8

10

12

14

16

Ti
m
e

t1_ReTrans_leaf_generative
t2_ReTrans_generative

(b) SCS time of Re_Trans’ generative model

Figure 11. The efficiency of source code semantic extraction (color print).

In Figure 11a, the ast_no_leaf extraction method we proposed (the green line) takes
significantly less time, and the growth rate is slow, which reflects the efficiency of AST
without leaf nodes in data processing. In Figure 11b, our proposed AST structure (the purple
line) is more efficient than the ast_with_leaf extraction method in the SCS task. Therefore,
we use the AST that removes leaf nodes, which not only saves the time of graph traversal,
but also avoids the repeated operation of source code sequence information processing.

(2) Efficiency of the Re_Trans generation model:

We randomly selected 1000 samples from the dataset. We test the SCS generation time
of Re_Tran’ generation model (Re_Trans_generative) on these data, Re_Trans, Re_Trans gen-
erative model with leaf nodes (Re_Trans_leaf_generative), Rencos and Rencos generative
model (Rencos_only_NMT). The time statistic results are shown in Figure 12.

Entropy 2022, 24, 1372 12 of 16

200 400 600 800 1,000
dateset scale

4

6

8

10

12

14

16

18

Ti
m
e

t1_ReTrans_leaf_generative
t2_ReTrans_generative
t3_ReTrans
t4_Rencos
t5_Rencos_only_NMT

Figure 12. The time statistic of different models (color print).

From Figure 12, we can see that Re_Trans_generative (the purple line) takes the
shortest time and is more efficient than Rencos_only_NMT (the cyan line). Moreover, the
Rencos method (the blue line) takes the longest time, and the efficiency of our method (the
green line) is higher than Rencos. The main reason is that Rencos requires both IR-based
and NMT-based methods for each test. However, Re_Trans only uses the IR-based method,
or the IR-based and generative methods for each test. The abovementioned generation
model of Re_Trans is more efficient than Rencos. Furthermore, in our test, the Rencos
retrieval database has 6648 samples and Re_Trans has 10,000 samples, but their average
retrieval time of one test data is about 0.104 s. Obviously, the Re_Trans’ retrieval efficiency
is higher. In practice, with the continuous expansion of the retrieval database, the average
retrieval time will increase accordingly. Because the test data needs to match each item in
the retrieval database to find the sample with the highest similarity score.

4.4. SCS Library

From the dataset analysis in Section 3.1, we find that the public dataset has a large num-
ber of similar functions, which are suitable for building an SCS retrieval library. In order to
demonstrate the effectiveness of the retrieval library, we conduct the following experiments:

(1) In order to test the effectiveness of our retrieval library, we randomly select samples
from the code retrieval library after data processing and use the t-SNE data dimensionality
reduction and visualization technology. The final result is shown in Figure 13.

(a) (b)

Figure 13. Distribution plot of 100/200 random samples (color print).

In view of the fact that too many samples lead to a large number of repeated points
in the picture, which affects the visualization effect, we select two groups of 100 and 200
random samples corresponding to (a) and (b) in Figure 13. From Figure 12, we can see that

Entropy 2022, 24, 1372 13 of 16

almost all the two points with the same color overlap or are very close. It indicates that
functions with the same summarization still retain the same semantic information after
data processing. Furthermore, it also shows the effectiveness of a retrieval library built
by us.

(2) In order to test the effectiveness of the Re_Trans retrieval model, we randomly
select 1000 samples and calculate the probabilities of Top k (p@k) between test function
and each sample by Euclidean distance, where k is 1, 3, 5, and 10. The Top k is to find the
top k numbers from the retrieval library. The higher p@k, the better matching effect. The
test is carried out in 10 groups, and we use the boxplot for visual display. We show the
result in Figure 14.

Figure 14. The time statistic of different models (color print).

From Figure 14, we can see that the p@k increases gradually with the increase of k. In
10 rounds of testing experiments, when k = 3, the minimum value is 80%, the maximum
value is 96%, and the average value is 92%. For any test code snippet, it indicates that
the same semantics’ code snippets searched from the retrieval library are the similar code
snippets with higher accuracy. It also indicates the feasibility of using the SCS of similar
code as the SCS of the test code.

5. Conclusions and Discussion

In this paper, we combine AST-augmented and code sequence-augmented to represent
source code semantic information. We propose an efficient and accurate SCS generation
system, Re_Trans. It first utilizes a retrieval-based model to obtain the most similar code
with regard to semantics and its SCS (S_RM). Then, it feeds the given code and its similar
code to the trained discriminator. Finally, it decides to use the S_RM as a result or utilize
the transformer model to obtain the new result according to the discriminator’ output.
Moreover, we conducted a series of contrast and ablation experiments to demonstrate that
the Re_Trans outperforms existing SOTA methods. Combined with the recent work and
the research of this paper, we suggest some valuable research points for the future:

In the future, we plan to expand the SCS retrieval library and pay special attention
to the quality of the expansion data. Furthermore, we also plan to further investigate the
usefulness of our approach, using it to generate SCS for other program languages without
code comments. Moreover, a large-scale language training model will be an inevitable
requirement with the increasing daily data. Therefore, it is a meaningful research direc-
tion that includes extracting effective semantic information without occupying too many
computing resources.

Author Contributions: Conceptualization and methodology design: C.Z.; data curation, original
draft preparation, C.Z., M.Q. and K.T.; review and editing, Q.Z. and F.L.; visualization and investiga-
tion, C.Z. and L.X. All authors have read and agreed to the published version of the manuscript.

Entropy 2022, 24, 1372 14 of 16

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors have no competing interests to declare that are relevant to the
content of this article.

Appendix A

Appendix A.1. Parameter Settings

In this section, we list our experimental parameter settings in Table A1 and metrics
introduction in Appendix A.2.

Table A1. The main parameter settings of Re_Trans.

Re_Tans Parameters Values

Generative model

Embedding dimension 256
GCN layer 2
transformer N = 4, h = 4, dim = 256
Dropout rate 0.5
Beam_size 3
Batch_size 256
Learning rate NoamOpt
epoch 40
Optimizer Adam

Retrieval model
Embedding dimension 128
Hidden_size 256
GCN layer 2
GCN dropout 0.1
BiGRU layer 2
BiGRU dropout 0.1
epoch 30
Leaning rate 1× 10−4

Appendix A.2. Metrics

For one Java function x, suppose that the generated SCS by Re_Trans is y, namely
candidate sentences. The ground-truth SCS of x is s, namely reference sentences.

BLEU measures the n− gram precision of candidate sentences that appear in reference
sentences. The higher score of BLEU-N (N = 1, 2, 3, 4), the higher quality of y. The formula
to calculate BLEU-N is as follows:

BLEU − N(y,s) = BP · exp

(
N

∑
n=1

wn · log pn

)
, BP=

{
1

exp(1− lr/ly)
ly > lr
ly ≤ lr

where BP is the brevity penalty, used to punish the short candidate sentences. pnis the
precision score of the n− gram matches between y and s. wn is usually the uniform weight
of n− gram, wn = 1/N. ly is the length of y, and lr is the length of s.

ROUGE-L utilizes the Longest Common Subsequence (LCS) between y and s. The
formula to calculate ROUGE-L is as follows:

Rlcs =
LCS(y, s)

len(y)
, Plcs =

LCS(y, s)
len(s)

, ROUGE− L =
(1 + β2) · Rlcs · Plcs

Rlcs + β2 · Plcs

where Rlcs is the recall rate and Plcs is the precision rate,β = Plcs/Rlcs.
METEOR considers the precision and recall rate based on the entire corpus. It uses

WordNet to expand the synonym set, which has a high correlation with human judgment.

Entropy 2022, 24, 1372 15 of 16

However, this metric only used in Java programming language. The formula to calculate
METEOR is as follows:

P =
mapped
totaly

, R =
mapped

totals
, Fmean =

10P · R
R + 9P

, Penalty = 0.5 · (blocks
unigrams

)3

METROR = Fmean · (1− Penalty)

where totals, totaly are the total number of words in s and y, respectively. mapped represents
the mapping result of words in y on s, and only retains words that appear at most once
in s. unigrams represents a single word, blocks represents how well a phrase is matched.
Penalty is used to avoid the case where only word matching is considered.

References
1. Haiduc, S.; Aponte, J.; Moreno, L.; Marcus, A. On the use of automated text summarization techniques for summarizing source

code. In Proceedings of the 2010 17th Working Conference on Re Learning to Represent Programs with Graphs Erse Engineering
(WCRE), Beverly, MA, USA, 13–16 October 2010; pp. 35–44.

2. Yau, S.S.; Collofello, J.S. Some stability measures for software maintenance. IEEE Trans. Softw. Eng. 1980, SE-6, 545–552.
3. Haiduc, S.; Aponte, J.; Marcus, A. Supporting program comprehension with source code summarization. In Proceedings of the

2010 ACM/IEEE 32nd International Conference on Software Engineering, Cape Town, South Africa, 2–8 May 2010; Volume 2,
pp. 223–226.

4. Moreno, L.; Aponte, J.; Sridhara, G.; Marcus, A.; Pollock, L.; Vijay-Shanker, K. Automatic generation of natural language
summaries for Java classes. In Proceedings of the 2013 21st International Conference on Program Comprehension (ICPC), San
Francisco, CA, USA, 20–21 May 2013.

5. Allamanis, M.; Peng, H.; Sutton, C. A convolutional Attention network for extreme summarization of source code. In Proceedings
of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2091–2100.

6. Wang, X.; Pollock, L.; Vijay-Shanker, K. Automatically generating natural language descriptions for object-related statement
sequences. In Proceedings of the 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), Klagenfurt, Austria, 20–24 February 2017; pp. 205–216.

7. Hu, X.; Li, G.; Xia, X.; Lo, D.; Lu, S.; Jin, Z. Summarizing source code with transferred api knowledge. In Proceedings of
the TwentySeventh International Joint Conference on Artificial Intelligence, IJCAI-18, Stockholm, Sweden, 13–19 July 2018;
pp. 2269–2275.

8. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation. In Proceedings of the 26th Conference on Program
Comprehension, Gothenburg, Sweden, 27 May 2018–3 June 2018; pp. 200–210.

9. Wan, Y.; Zhao, Z.; Yang, M.; Xu, G.; Ying, H.; Wu, J.; Yu, P.S. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
Montpellier, France, 3–7 September 2018; pp. 397–407.

10. LeClair, A.; Jiang, S.; McMillan, C. A neural model for generating natural language summaries of program subroutines. In
Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31
May 2019; pp. 795–806.

11. Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Liu, X. Retrieval-based neural source code summarization. In Proceedings of the 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, Korea, 5–11 October 2020; pp.1385–1397.

12. Wang, R.; Zhang, H.; Lu, G.; Lyu, L.; Lyu, C. Fret: Functional Reinforced transformer with BERT for Code Summarization. IEEE
Access 2020, 8, 135591–135604.

13. Uddin Ahmad, W.; Chakraborty, S.; Ray B.; Chang, K.W. A transformer-based Approach for Source Code Summarization. arXiv
2020, arXiv:2005.00653.

14. Sridhara, G.; Hill, E.; Muppaneni, D.; Pollock, L.; Vijay-Shanker, K. Towards automatically generating summary comments for
Java methods. In Proceedings of the ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering,
Antwerp, Belgium, 20–24 September 2010.

15. Sridhara, G.; Pollock, L.L.; Vijay-Shanker, K. Automatically detecting and describing high level actions within methods. In
Proceedings of the International Conference on Software Engineering, Honolulu, HI, USA, 21–28 May 2011.

16. Li, W.P.; Zhao, J.F.; Xie, B. Summary Extraction Method for Code Topic Based on LDA. Comput. Sci. 2017, 44, 35–38. (In Chinese
with English abstract)

17. Wong, E.; Liu, T.; Tan, L. Clocom: Mining existing source code for automatic comment generation. In Proceedings of the 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER). Montreal, QC, Canada, 2–6
March 2015; pp. 380–389.

18. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.

Entropy 2022, 24, 1372 16 of 16

19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst., 2012, 25, 84-90.

20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All you Need. In
Neural Information Processing Systems; MIT Press: Long Beach, CA, USA; 2017; pp. 5998–6008.

21. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

22. Hu, Z.; Dong, Y.; Wang, K.; Chang, K.W.; Sun, Y. Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July
2020; pp. 1857–1867.

23. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation with hybrid lexical and syntactical information. Empir. Softw.
Eng. 2020, 25, 2179–2217.

24. LeClair, A.; Haque, S.; Wu, L.; McMillan, C. Improved code summarization via a graph neural network. In Proceedings of the
28th International Conference on Program Comprehension, Seoul, Korea, 13–15 July 2020; pp. 184–195.

25. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
26. Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th

International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600.
27. Steinbiss V, Tran B H, Ney H. Improvements in beam search. In Proceedings of the Third International Conference on Spoken

Language Processing, Yokohama, Japan, 18–22 September 1994.
28. Wang, W.; Li, G.; Ma, B.; Xia, X.; Jin, Z. Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract

Syntax Tree. In Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), London, ON, Canada, 18–21 February 2020 .

29. LeClair, A.; McMillan, C. Recommendations for Datasets for Source Code Summarization. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers); Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 3931–3937.

30. Yuchao, H.; Moshi, W.; Song, W.; Junjie, W.; Qing, W. Yet Another Combination of IR-and Neural-based Comment Generation.
arXiv 2021, arXiv:2107.12938.

31. Xu, K.; Wu, L.; Wang, Z.; Feng, Y.; Witbrock, M.; Sheinin, V. Graph2seq: Graph to sequence learning with attention-based neural
networks. arXiv 2018, arXiv:1804.00823.

32. Wei, B.; Li, Y.; Li, G.; Xia, X.; Jin, Z. Retrieve and refine: exemplar-based neural comment generation. In Proceedings of the
2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne, VIC, Australia, 21–25
September 2020; pp. 349–360.

33. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.-J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, PA, USA, 7–2 July 2002; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2002; pp. 311–318.

34. Banerjee, S.;, Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In
Proceedings of the Acl Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
Ann Arbor, MI, USA, June 2005; pp. 65–72.

35. Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Text Summarization Branches Out; Association for
Computational Linguistics: Barcelona, Spain, 2004; pp. 74–81.

	Introduction
	Our Approach
	Overview
	Data Processing
	Model Training Design
	Model Test Design
	Discriminator

	Experiments Setup
	Dataset Analysis
	Parameter Settings
	Baselines

	Results and Analysis
	Re_Trans vs. Baselines
	Ablation Study
	High Efficiency
	SCS Library

	Conclusions and Discussion
	
	Parameter Settings
	Metrics

	References

