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Abstract: Despite the many successes of artificial intelligence in healthcare applications where human–
machine teaming is an intrinsic characteristic of the environment, there is little work that proposes
methods for adapting quantitative health data-features with human expertise insights. A method
for incorporating qualitative expert perspectives in machine learning training data is proposed.
The method implements an entropy-based consensus construct that minimizes the challenges of
qualitative-scale data such that they can be combined with quantitative measures in a critical clinical
event (CCE) vector. Specifically, the CCE vector minimizes the effects where (a) the sample size is too
small, (b) the data may not be normally distributed, or (c) The data are from Likert scales, which are
ordinal, so parametric statistics cannot be used. The incorporation of human perspectives in machine
learning training data provides encoding of human considerations in the subsequent machine learning
model. This encoding provides a basis for increasing explainability, understandability, and ultimately
trust in AI-based clinical decision support system (CDSS), thereby improving human–machine
teaming concerns. A discussion of applying the CCE vector in a CDSS regime and implications for
machine learning are also presented.

Keywords: human autonomous-machine teaming; healthcare; decision support; machine learning;
qualitative data; artificial intelligence

1. Introduction

Like most contemporary business domains, the modern process of providing health-
care is one where there exists a complex system of interdependent human processes
augmented by autonomous systems providing guidance, decision support, and in some
cases even physical automation. The goal of providing ever better healthcare, along with
the continuing increases in operational cost and supply chain complexities, has increased
the pressure on healthcare providers to look for ways to embrace autonomous technologies.
However, autonomous technologies do not necessarily mean only robots. Adopting artifi-
cial intelligence (AI), the underpinning of autonomy, in the healthcare industry has been
going on for many years. Yet, healthcare continues to lag behind most other technologically
driven industrial areas [1]. Using innovative AI technologies for automation has been
proven to meet the increasing demands for efficient work, productivity, and managing
records. Despite this lag, the adoption of autonomy in healthcare is likely inevitable, and
as such, the provisioning of care will intrinsically be an environment for interdependent
human–machine teams.

While there are many advancements in clinical robotic-autonomy [2–5], the broad
application of autonomy as part of the business of healthcare has followed the traditional
pace of the industry’s technological adoption [6]. In a recent life science executives survey,
69% of life science businesses are already piloting or have adopted AI in their solutions
and 22% are evaluating or planning to pilot AI solutions [7]. The annual savings potential
by using AI in healthcare has been $150 billion by 2026 in US alone, and this should be
also one of the factors to speed up the implementation of AI in healthcare sector [8]. Broad
adoption in an industry well-grounded in human interaction, it should not be surprising
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that human machine teaming should be a dominant and priority topic for researchers in
this field. Many of the existing AI-based autonomous health applications have already
demonstrated an imperative to involve the human stakeholders who use these systems and
are the most affected by them [9]. In contrast to the situation where autonomous systems
were mainly automating routine human tasks in the past, machine collaboration implies
that AI systems work jointly with humans like teammates to solve problems.

Clearly, benefits can be gained by improving human machine collaboration, such as
reducing labor and talent shortages through intelligent recruiting [10], lowering organi-
zational workloads through automation [6], and improving decision support for clinical
and financial outcomes [1]. However, limitations in collaborative capabilities often are
codified in the data used to create the machine intelligence [11]. Underneath all AI systems
are fundamental Data Science concerns and these considerations can introduce bias [12],
limit trustworthiness [13], and reduce explainability [14], all critical factors for effective
human–machine teams in healthcare [15]. From the perspective of healthcare professionals,
a fundamental question exists about the professionals’ perception of the machine: when
collaborating with AI, do they perceive AI as a teammate, or do they treat AI as a tool?
For example, it is common for physicians to seek a second opinion from peers. Ideally,
it should not make a difference whether the peer is another human physician or an AI
system [16]. However, it is common when a physician perceives an AI system as a tool,
instead of collaborative decision-making, a demand for agency becomes present when the
physician overrides a system’s recommendations [17].

One reason for this is that AI often lacks qualitative context or inputs, which can
moderate their objectivity and analytical functions. While objectivity is one strength
of machine intelligence, it can also be a severe weakness. Particularly in automated or
autonomous healthcare systems that operate as a clinical teammate, it is essential to encode
human considerations as part of the AI training data. One such example of this limitation
is seen in intelligent systems that employ skewed training data or training data with
narrow representativeness (e.g., the under-representation of minorities) [18]. There is
ample work in the literature that focus on sample bias minimization through broader
or more diverse training data and other similar approaches. However, despite many
calls for increased human–machine collaboration research in healthcare (e.g., [1,19,20]),
there is little work in the machine learning (ML) literature that proposes methods for
adapting quantitative health data-features with human expertise insights. Particularly
within the AI model-training phase, approaches that allow a qualitative weighting of clinical
features and that incorporate human consensus as part of training data can allow human
expertise to be encoded within the machine’s intelligence. In this paper, the challenge of
data and human–machine teaming in healthcare environments that adopt AI solutions is
discussed. The remainder of this paper will: provide a review of previous work on human-
AI collaboration in clinical settings; propose a method based on a consensus-and-dissension
measure that captures human expertise as a part of the model features illustrating how
healthcare professionals’ and clinicians’ input can be encoded in training data; and, finally,
conclude with the practical and research considerations of integrating qualitative expertise
in healthcare training data.

2. Background and Related Work

Although the capabilities of modern healthcare AI systems have been improved with
the advancement of the electronic medical record and the development of big-data deep
machine learning (ML) techniques, there are still multiple challenges to achieving the
benefits of seamless human machine teaming in healthcare. The increasing adoption
of intelligent systems in all facets of care provisioning makes human machine teaming
(HMT) an inevitable intrinsic characteristic of the healthcare environment [21]. Thus, it is
critically important to address HMT concerns at multiple levels of an intelligent healthcare
decision support system’s functions. Furthermore, the nature of the AI system is highly
relevant as humans are always a part of the process. Even in cases where a system provides
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fully adaptive autonomous support, there are humans at the end points of the system’s
functions. In such cases, there exists a collaborative hand-off to the human part of the
HMT. Figure 1 shows categories of healthcare AI-augmented automation, illustrating how
machine intelligence is applied to support human teammates.

Entropy 2022, 24, x FOR PEER REVIEW 3 of 15 
 

 

humans are always a part of the process. Even in cases where a system provides fully 
adaptive autonomous support, there are humans at the end points of the system’s func-
tions. In such cases, there exists a collaborative hand-off to the human part of the HMT. 
Figure 1 shows categories of healthcare AI-augmented automation, illustrating how ma-
chine intelligence is applied to support human teammates. 

Examining Error! Reference source not found., even for the cases where there are no 
humans directly involved with the machine intelligence, humans still contend with the 
outcomes of fully autonomous AI-driven processes. Thus, if the machine intelligence in-
corporates methods that create discord in expectations or engender distrust in the ma-
chine, it is detrimental to the overall support provided by the machine to the team. This 
characteristic is consistent with most support systems and decision support systems in 
particular. There is ample work in the literature that deals with HMT concerns that are 
largely representative of a system’s acceptance and adoption. Not surprisingly, the most 
common of these concerns are: validation, robustness, reliability, interpretability, trans-
parency, and explainability [15]. The literature on these facets of system acceptance, inclu-
sion and trust are well studied. Those concerns, represent a constant across all systems 
human machine teams, regardless of the category of an application in healthcare. The em-
phasis of this paper is on impacting the underlying intelligence and adaptive nature of 
systems that bring their intelligence to human–machine teams, which tend to fall in the 
adaptive system category. 

 
Figure 1. Categories of AI applications in healthcare [22]. 

While there is substantial research regarding the technical and engineering aspects 
of such intelligent systems, healthcare professionals often remain hesitant to adopt and 
integrate AI into their practice [23]. The rationales underneath this avoidance are still crit-
ical issues with the adoption of AI technology that implicate human-AI collaboration con-
cerns for healthcare providers. Research has shown that over a third of healthcare profes-
sionals expressed apprehension about adopting AI due to their concerns about the align-
ment of an AI system’s goals with theirs, and the perceived immaturity of the technology 
[24]. Physicians generally avoid relinquishing entrusted patient care to a machine if it is 
not deemed adequately trustworthy as a teammate in clinical settings [15]. However, this 
reluctance is not fully rational as clinicians are surrounded by support systems, such as 
those that manage providers’ AI-enabled medical devices, revenue cycles, hospital oper-
ations, and resource management systems. All of these systems act as machine teammates 
and definitely affect, and in many cases control, critical aspects of care delivery [25]. It is 

Figure 1. Categories of AI applications in healthcare [22].

Examining Figure 1, even for the cases where there are no humans directly involved
with the machine intelligence, humans still contend with the outcomes of fully autonomous
AI-driven processes. Thus, if the machine intelligence incorporates methods that create
discord in expectations or engender distrust in the machine, it is detrimental to the overall
support provided by the machine to the team. This characteristic is consistent with most
support systems and decision support systems in particular. There is ample work in
the literature that deals with HMT concerns that are largely representative of a system’s
acceptance and adoption. Not surprisingly, the most common of these concerns are:
validation, robustness, reliability, interpretability, transparency, and explainability [15].
The literature on these facets of system acceptance, inclusion and trust are well studied.
Those concerns, represent a constant across all systems human machine teams, regardless
of the category of an application in healthcare. The emphasis of this paper is on impacting
the underlying intelligence and adaptive nature of systems that bring their intelligence to
human–machine teams, which tend to fall in the adaptive system category.

While there is substantial research regarding the technical and engineering aspects of
such intelligent systems, healthcare professionals often remain hesitant to adopt and inte-
grate AI into their practice [23]. The rationales underneath this avoidance are still critical
issues with the adoption of AI technology that implicate human-AI collaboration concerns
for healthcare providers. Research has shown that over a third of healthcare professionals
expressed apprehension about adopting AI due to their concerns about the alignment of
an AI system’s goals with theirs, and the perceived immaturity of the technology [24].
Physicians generally avoid relinquishing entrusted patient care to a machine if it is not
deemed adequately trustworthy as a teammate in clinical settings [15]. However, this reluc-
tance is not fully rational as clinicians are surrounded by support systems, such as those
that manage providers’ AI-enabled medical devices, revenue cycles, hospital operations,
and resource management systems. All of these systems act as machine teammates and
definitely affect, and in many cases control, critical aspects of care delivery [25]. It is these
machine teammates that may present the low-hanging-fruit of opportunity for improving
HMT in healthcare, but they get minimal focus in the research literature compared to
clinical AI systems.
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2.1. Artificial Intelligence, Explainability, and HMT

Of high relevance to this opportunity for improving HMT in healthcare is the prior
work that has focused on AI methods and training data used to improve explainability. Re-
searchers have pointed out many issues in using biased AI systems, e.g., diagnostic systems
using datasets that are imbalanced with respect to race or other demographics [9]. Biased
AI systems can diminish rather than augment human intelligence in collaborative decision
teaming. Further, many ML methods, especially deep learning models, lack interpretability
and transparency to their human users. They are typically “black box” models that are
unable to give a rationale or an explanation for their outputs, assistance, or guidance, let
alone their goals or objectives. The non-(directly) clinical systems also inherently lower
many of the perceived risks typically attributed to the clinical AI teammates. Although as
noted already, this lowered risk may only be perceived risks. What is definitely noteworthy
is that these non-clinical AI teammates suffer from many of the underlying limitations that
exist with the creation of clinical AI intelligence and training data.

The promise of explainable AI as “the answer” for HMT in healthcare has been a
goal of extensive pursuits in the research literature. Interestingly, much of the literature
on explainability echo the same system acceptance characteristics, validation, robustness,
reliability, interpretability, transparency, etc., as are typical of any decision support system,
but now aligned to ML algorithms [26]. Similarly, much of the literature also emphasizes
model pairing—a interpretable “side” model that operates in conjunction with the predic-
tive model [27] to support explainations. Another general research orientation is toward the
increased use of interpretable models such as with linear regressions, logistic regressions
and decision trees [28–30]. These ML approaches typically do not convey the power of
contemporary deep learning methods (e.g., deep neural networks, deep reinforcement
learning, etc.). In short, most methods that make tradeoffs in predictive and learning power
are made to ensure that interpretability and explainability are maintained [30].

The approaches to achieving explainability generally do not focus on the training
data in addition to trying to employ representative training data. Several prior works
document explainability as essential for confidence and trust, which are critical to effective
teaming and pointedly critical in healthcare [18]. There is also research that tries to achieve
the necessary integration of human characteristics and machine objectivity separately
or through interactive development loops, where the intelligence is iteratively refined,
developed, and tested [11,30,31]. Though there is ample research, such as those noted
here that target improving HMT in healthcare, few studies employ qualitative data in an
integrated fashion with quantitative data to improve HMT through enriching machine
intelligence training data. Research has shown that without qualitative health data, trusted
healthcare AI will be imprecise, and, thus, scholars and practitioners will be missing a
key component of knowledge translation efforts essential for effective HMT in healthcare
applications [32]. By incorporating qualitative data into quantitative training data, human
considerations can be embedded in machine intelligence, not only providing a means of
explainability, but also potentially improving trustworthiness of the intelligent-machine
teammate. The use of technology in a patient setting demands a complementary personal
touch from clinicians. This touch is required to make certain the patient’s experience is not
too clinical, rational, distant, hard-edged, cold, or impersonal [33].

2.2. Integrating Qualitative Human Perspective in Machine Learning Training-Data

Qualitative scales, such as n-point Likert scales (e.g., 5-point, 7-point, 10-point, etc.), are
a commonly used means to capture human attitudes, feelings, and perspectives–essentially
the degree to which a respondent reflects on an eliciting question. These scales are often
given statistical treatment as if they were interval measures, inappropriately calculating
means and standard deviations, and then using such distorted data in quantitative tracking
and prediction models. Nonetheless, qualitative scales are simple to implement and
effective in capturing human perspectives. Thus, survey scales have wide adoption in
a broad variety of analytical settings Solving the underlying problems with the use, (or
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abuse), of qualitative scales, such as ambiguous rank-scale, improper elicitation techniques,
and distributional assumptions is beyond the scope of this paper. Instead, we approach
the problem from the perspective of exploiting the ability of qualitative scales to capture
human perspectives, minimizing the negative effects intrinsic in their use, and applying
their benefits to inform ML with human perspectives, thereby improving HMT. With that
intent, some background on Likert scales, their benefits and limitations are presented here.

It is not uncommon to score “how strongly” a qualitative-factor measures on a class-
based Likert or similar scale; Likert scales are widely used and accepted [34]. However,
problems arise when the analysis of ordinal, categorical data is misdirected and the most
frequent problem is when these measures, which are frequently numerical in nature (e.g.,
1–5, 1–7, 1–10), are treated as continuous or interval data. The validity of treating scale-
data as continuous or interval, parametric data, or even ratio data is uncertain. Moreover,
incorrect analysis can reduce clarity and conciseness [35]. The problems caused by the initial
aggregation of ordinal/categorical data are exacerbated because the results are typically
used as part of further analyses (trending, classification, prediction). There is another
impeding factor when these problems are taken in a ML context: the ordinal categorical
data is difficult to properly integrate with other continuous and interval measures, and
there is the lack of a reference, implying reference-scores to be perfection. The implied
perfection reference, when combined with the issues caused by aggregation, worsens the
precision problem in the non-extreme (most frequent) cases.

Solutions have been previously proposed to address these issues, but many have sig-
nificant limitations for applied ML uses. Some solutions include the use of non-parametric
statistical procedures such as frequencies, tabulation, chi-squared statistics, and Kruskall-
Wallis (one-way ANOVA). While effective for statistical purposes, these approaches focus
on the rank or ordinal nature of the data, rather than its value. Because applying qualitative
data to training data to improve HMT requires accounting for both value and distribution,
this limitation makes such statistical aggregation techniques inappropriate. Additionally,
the sparseness or unequal quantities of values can present significant challenges to many
statistical methods. Other solutions emphasize changing the questions used to elicit qualita-
tive values, i.e., re-wording survey questions. These solutions include the two-stage Likert
scale [36] and phrase completion [37]. The methods adopted in these approaches require
changes in the presentation and interpretation of the qualitative assessment. For example,
Likert-scaled measures are typically treated as unidimensional measures of "something,"
while the items comprising the scale often reflect multiple dimensions. Likert-scaled elicita-
tions are also generally worded vaguely, which results in the same item being understood
differently by different respondents. These problems and others are fundamentally rooted
in the format, language and technique of Likert scaling. While changing the fundamen-
tals of Likert-scale methods would be an ideal solution, the likelihood of doing so, given
Likert’s simplicity and popularity, is unlikely [38]. Rather, we accept that the use of Likert
or similar measures will continue and instead, propose a method that can minimize the
negative effects of their use in mixed and multi-dimensional analysis, specifically for ML
methods, where they can be integrated with decision support systems and therein impact
HMT concerns.

2.3. Clinical Decision Support Systems, a Target for Improving HMT by Incorporating
Qualitative Scales

As noted above, prior research has shown the importance of integrating human consid-
erations in healthcare human machine teams. Qualitative data may be one way to augment
training data, yet it remains infrequently used in healthcare applications beyond the be-
havioral and social care, and the capture of patient experiential insights [32]. By taking an
approach where quantitative metrics can incorporate a qualitative and ideally, a consensus-
based weight, human perspectives and explainability can be embedded in ML training
data, utilized by subsequent AI systems, and ultimately improve HMT. If the underlying
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training data is parameterized by clinical experts, then guidance and recommendations
made by such a system would likely be more palatable to their human teammates.

The teaming of human healthcare providers with intelligent decision support systems
is already pervasive in healthcare applications [39]. Clinical decision support systems
(CDSS) are software that analyze data within electronic health records (EHRs) to provide
prompts and reminders that assist healthcare providers in implementing evidence-based
clinical guidelines at the point of care. While many think of clinical diagnosis functions as
the primary domain of clinical decision support, CDSS also trigger and prioritize needs for
documentation; identify and alert potential ordering conflicts and incompatibilities; and
aid in provider resource utilization management. CDSS were initially designed to be used
by clinicians at the point of care, but they are now being implemented for a broader range
of users, essentially becoming critical team mates for all facets of care delivery [40]. Because
CDSS that target clinical diagnoses have to address the elevated concerns and complexities
of life and death risk, the following technical approach is focused on a CDSS that supports
revenue cycle, hospital operations, and resource management.

3. Technical Approach

Human teaming with intelligent machines has become a fundamental characteristic
of a successful CDSS. Acceptance of a CDSS for basic functions is more achievable for
systems that provide simple support [22]. For more complex capabilities, including au-
tonomous ones, adding qualitative human perspectives to machine intelligence will be
important. To illustrate how qualitative factors can be incorporated in the ML training
data for a CDSS, consider the following example of a documentation CDSS application.
Clinical documentation is critical to the success of evidence-based care and macro-outcomes
where the patient is successfully treated, administrative and operational procedures are
followed, and payment is received. Because of the importance of documentation, many
providers employ teams of specialized documenters who ensure that documentation is
complete, accurate, and timely. These documenters have to often conduct multiple reviews,
interventions, and follow-ups with clinicians as part of a patient’s treatment. From this
description, it is evident that, for any provider with more than a few treatment beds, CDSS
functions that provide alerting and prioritization of documenters’ work-lists are essential
teaming functions.

Documentation needs to follow and support the actions and events that happen as a
patient’s treatment proceeds to completion. In this paper, the treatment process hereafter
will be referred to as an encounter. During the encounter there are many clinical events
that occur, which signal a need for review or intervention, such as an admission without
authorization; an increase in clinical consultations; surgical procedures; and other changes
in treatment thresholds. In isolation, these clinical events can indicate a documentation-
need but in combination with other measures, e.g., the patient is in intensive care, has
co-morbidities, etc., the importance of a single measure can decline and may not warrant
attention. The list of clinical events/measures/triggers may vary, but the combination of
them require weighting on relative importance. It is this weight where a qualitative human
perspective can be incorporated. While outside the scope of a documentation-centric CDSS,
for example, there is little debate about a healthy blood pressure systolic and diastolic
values, but when combined with time of day or taken as an average of n-measurements
there exists a range of perspectives on the significance of the aggregate [41]. Similarly, in the
context of a documentation CDSS, the significance of an increase in the number of consults,
given an intensive care encounter, might also be weighted by a human-expert perspective.
The weighting of such binary or quantitative variables is where there exists an opportunity
to improve HMT concerns.

To improve a CDSS teammate, we propose a method where qualitative measures and
consensuses can be incorporated to weight the quantitative ML training-data. However,
such an integrated approach requires that a proper treatment be given to qualitative
measures. Information theory and entropy determination can provide indications useful
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in quantifying the information that is contained in a sample. In this regard, entropy (a
measure of the uncertainty associated with a random variable) can be useful in assessing
an expected value or the average information content that is missing when a sample’s
value is unknown. The approach originally proposed by Wierman and Tastle [42] adapts
Shannon’s entropy (a measure of average information content) to deal with ordinal data
analysis through assessing a consensus around the rank scales; thus providing a method
for transforming the ordinal data into interval values, allowing them to be combined with
quantitative values. This consensus approach also takes into account the data distribution,
which has previously been shown to be effective in analyzing qualitative data. In this way,
the use of Wierman’s and Tastle’s transformation can capture the value and variability of
qualitative human inputs, conditionalize quantitative values with human perspective, and
ground subsequent analyses with human-informed data.

3.1. Integrating Qualitative Weights as Part of a Critical Clinical Events Vector

Returning to the documentation CDSS example, quantitative critical clinical events
(CCEs), such as the number of consults, the existence of surgical procedures, payer denial
ratios, etc., can be constructed as a n-dimensional vector that represents the status of an
encounter at any point in time. In a simple fashion, each dimension of the vector can
be given a weight. However, the assignment of weights would need to be elicited. This
elicitation can be achieved using a survey of expert opinions on the importance of the
CCE variables, in context and relative to each other; e.g., given all the CCE variables, rate
the importance of each variable using a Likert-scale. This rating would provide a human-
perspective weight for each quantitative value. Yet, it would be statistically inappropriate
to take an average of the rank-scores and then combine them with binary or parametric
values due to many of the issue noted in the background section.

To minimize the limitations of combing Likert scale values with quantitative mea-
sures, the performance consensus vector utilizes two mathematical formulations originally
proposed by Weirman and Tastle [42] to obtain a consensus and its inverse (dissension).
These measures provide a statistic for assessing the amount of agreement in a sample
when data is extracted from a population using qualitative scales such as Likert values.
The approach proposed by Weirman and Tastle finds grounding in information theory
and entropy determination. Entropy, specifically the Shannon entropy [43], is useful in
quantifying the information that is contained in a sample. In this regard, entropy can be
useful in assessing an expected value, or the average information content that is missing
when a sample value is unknown. Equation (1) shows the definition of Shannon’s entropy.

−
n

∑
i = 1

p(xi) log2 p(xi) (1)

Weirman and Tastle adapted Shannon’s entropy to accommodate the notion of con-
sensus and its inverse, dissention. From this perspective, Shannon entropy measures the
information in a statistical distribution, particularly its dispersion. However, as seen in
Equation (1), Shannon’s entropy formulation uses only the probability distribution and
does not otherwise account for sample values.

1 +
n

∑
i = 1

pi log2

(
1− | xi − µx|

dx

)
(2)

The consensus measure shown above in Equation (2) utilizes the sample probability
distribution to determine the amount of agreement about a point on the scalar interval; in
this case, the mean is represented by µ. Examining Equation (2), the consensus measure for
the mean is defined as follows: Given a set of ranks (e.g., 5 = very important; 4 = important;
3 = neutral; 2 = marginally important; and 1 = unimportant), let xi represent a rank value
from I = 1 to n (given the example provided x1 = 1, x2 = 2, and so on); dx is the width of xi-n
(i.e., maximumx − minimumx); µ is the mean of the rank-values; and pi the probability of a
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rank. This calculation determines the amount of sample consensus about the mean as a
singular interval value between 0 and 1.

Alone, the consensus measure can be utilized as confidence indicator of a sample’s
calculated mean. Expanding this concept, Tastle and Tastle [44] extended the consensus
measure by adopting a rank reference called the strength-of-consensus. Equation (3) shows
the strength-of-consensus calculation, which is similar to the consensus measure with two
exceptions. The first exception is the replacement of the mean by a rank-reference; this is
shown in Equation (3) as rx. The consideration of a rank-reference is based on the notion
of a preferred answer; e.g., what is the consensus if the response was 4 (important)? By
assigning the mean to a specific rank-value, the consensus value is given with respect
to a particular rank. A second difference between Equations (2) and (3) is seen in the
division of the rank’s width (2dx). This step is necessary to keep the calculation bounded;
the mathematical proof for the strength-of-consensus metric is provided in Weirman and
Tastle [42], and is not included here for space considerations.

1 +
n

∑
i = 1

pi log2

(
1− | xi − rx|

2dx

)
(3)

shows an applied example of consensus and strength-of-consensus. The example has
4 critical clinical variables (V1–4) that received 10 expert-evaluations each. Variable scores
are assessed on a 1–5 rank scale: 5 = very important (V); 4 = important (I); 3 = neutral (N);
2 = marginally important (M); and 1 = unimportant (U).

Table 1 shows the respondents’ score frequency, the mean, the standard deviation
(StDv), consensus score (Cns), and each scale-rank’s strength-of-consensus. Despite each
variable (V1–4) having the same mean (3 – neutral), their assessed importance is not the same,
and it is clear that the consensus measure provides an indication of response agreement.
In this way, Cns is similar to the standard deviation, but Cns is not measured in the
scale domain. Strength-of-consensus indicates the degree of consensus when a specific
rank is considered.

Table 1. Example consensus results, illustrating Likert limitations.

Assessment Score Frequency Strength-of-Consensus

U (1) M (2) N (3) I (4) V (5) Mean StDv Cns U M N I V

V1 5 0 0 0 5 3.000 2.000 0.000 0.500 0.565 0.585 0.565 0.500

V2 2 2 2 2 2 3.000 1.414 0.425 0.543 0.704 0.757 0.704 0.543

V3 0 3 4 3 0 3.000 0.775 0.605 0.573 0.798 0.884 0.798 0.573

V4 0 0 10 0 0 3.000 0.000 1.000 0.585 0.807 1.000 0.807 0.585

The efficacy of Weirman and Tastle’s measure has been illustrated in several research
efforts [45–47]. Despite the consensus measures demonstrated utility, little or no research
has been conducted using it with ML techniques or in a CDSS. From an HMT and associated
ML training data standpoint, the consensus measure provides several benefits. The first
is the transformation of ordinal rank data into continuous interval values. Calculating
consensus using base-2 log reduces the effects of scale disparity across experts when scoring.
The distance between 2 and 3 (marginal and neutral, in the above example) or any other
ranks should not be assumed the same when two different experts score an item; i.e.,
the difference between something being marginally important and neutral may be huge
for one expert and minor for another. The log transformation applied in the consensus
calculation minimizes any scale disparity effects that might exist [48]. A second benefit is
gained by the nature of the consensus measure being continuous and interval; hence it is
appropriate for parametric analysis techniques. A third benefit is realized in the strength-
of-consensus calculation, which accounts for the assessment’s distribution and when used
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as a vector also capture the sample values. A fourth benefit is that both consensus and
strength-of-consensus can be inverted, to provide measures of dissention.

3.2. Consensus Adjustment for Sample Size and Contextual Considerations

Because of the focus on agreement/consensus, Weirman’s and Tastle’s consensus
metric does not account for the quantity of respondents. However, in a machine-learning
context, sample size is important. Using Weirman’s and Tastle’s approach directly, it is
possible to have the same consensus and strength-of-consensus values even though the two
measures with different number of respondents are being compared. In this comparative
sense, the consensus may be the same but 20 experts strongly agreeing is not the same as
200 experts strongly agreeing. When incorporating a consensus for each variable into a
composite vector for the purposes of machine learning, it will be important to adjust the
consensus value according to the number of respondents. This issue can be handled by
applying a model-based weighting technique.

For example, it is likely desirable that as the number of respondents increases, greater
“weight” should be given to the consensus and strength-of-consensus. To achieve this, a
sigmoid function can be applied to adjust the consensus measures in a way that progresses
from a low value with an upwards slope towards a constant. Equation (4) illustrates the
strength-of-consensus measure adjusted with a (Gompertz) sigmoid function, such that
measures with respondent sample sizes or quantities (q) are logistically adjusted according
to the shape of the Gompertz S-curve.(

1 +
n

∑
i = 1

pi log2

(
1− | xi − rx|

2dx

))(
e−αe−βq

)
(4)

As part of the Gompertz sigmoid, Equation (4) introduces two variables (α and β)
whose values are dependent on the weighting context because they control the shape of
the resulting Gompertz S-curve; α adjusts the minimal resulting value (the left side of
the S-curve) and β adjusts the knee and slope of the curve. Assuming that the maximum
obtainable value from the Gompertz function is 1, to produce values that adjust the weight
so that quantity values above 100 are not penalized and positive values below 100 are
incrementally penalized to a 50% maximum, let α = 0.725 and β = 0.05. The values of α and β
change the shape of the resulting curve so that coefficients of the Gompertz-equation weight
would be moderated to comply with previously mentioned penalty rules. Alternative α and
β values could be selected, which would change the shape of the curve, and thus, implement
other penalty values. In short, it is the shape of the Gompertz curve that provides the
necessary value adjustments. Figure 2 shows an example of the resulting Gompertz curve
that would be applied to provide the aforementioned weighting-adjustment to any values
associated with the Gompertz equation.

It should be clear from this example that a model-based weighting approach is not
limited to just addressing sample size variability. Recalling that rank-scale values are
actually categorical in nature and that ordering the rank numbers is somewhat arbitrary
(implying that they have an equal distance between them when they do not), for some
assessment purposes it is useful to have a fixed interval. If using fixed intervals each interval
could be adjusted to influence the importance of one rank over another, essentially allowing
training data to incorporate scale sensitivities. The model-based weighting technique
can be used in conjunction with strength-of-consensus to also weight the ranks. The
ability to weight the consensus transformation permits a more precise incorporation of
qualitative assessment by minimizing the effects of ambiguous rank-intervals, uncertain
response distributions, and sample size. The resulting consensus transformation for each
qualitative measure can then be combined with other quantitative measures such as costs or
counts, resulting in an n-dimensional critical clinical event vector like the example shown
in Figure 3.
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3.3. The CCE Vector with Integrated Consensus Scores

An example critical clinical event (CCE) vector, illustrated in Figure 3, shows a
23-dimension vector that is composed of seven metrics, each labeled by a callout. Three of
the metrics (number of consults, ratio of length-of-stay (LOS) to prescribed length-of-stay
(PLOS), and re-admission) are quantitative and four are qualitative (importance of number
of consults, importance of LOS/PLOS ratio, importance of readmission binary, and the
patient experience score). The values that comprise the vector’s qualitative-metric elements
are the strength-of-consensus values for the respective rank data (very important (V); im-
portant (I); neutral (N); marginally important (M); and unimportant (U)). While Figure 3
only shows seven metrics, in practice the CCE vector may have more or fewer metrics, and
it may include consensus measures depending on the application requirements.

With qualitative expert-perspective qualifiers, the CCE vector represents each en-
counter in a quantitative manner, such that the representation is suitable for ML training
data. The consensus transformations retain explainability, while minimizing the negative
effects of rank-scale elicitations. The incorporation of human-expert perspective at the
lowest level of the machine intelligence provides traceability and an integration of human
concerns, and becomes the basis for machine outputs and guidance. While not likely to
solve the full range of HMT concerns, the CCE vector provides a construct with tunable
flexibility to incorporate human concerns in machine intelligence and to improve trust in
an AI-based CDSS as a teammate in healthcare applications.

4. Discussion of Similarity, Machine Learning, and Human Machine Teaming in
Decision Support

Two predominant hurdles have been theorized that potentially compromise a clini-
cian’s willingness to integrate ML models into their work. First, experts may struggle to
develop trust with ML-based systems due to a large number of inputs and the complex
integration of data involved. The complexity of the data can make it challenging or impos-
sible to convey the specific logic behind an alert or a recommendation [49]. Second, some
evidence suggests that many view ML as too objective or too narrowly focused relative to
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human expertise, and they question whether it can add clinical value for highly trained
expert users [50]. Use of the CCE vector in ML training data seeks to minimize these
two concerns by incorporating expert perspectives in a statistically sound manner. Data
constructed in the CCE vector provides a transformative basis on which ML models can
be trained. However, the ML methods that are applied are highly relevant to the success
of HMT with a CDSS teammate. As a reminder, the target CDSS for the CCE vector is not
one making providing clinical diagnoses. Rather, the CCE vector method targets a CDSS
that provides guidance on operations, administrative, or financial concerns; this section
provides some discussion of the appropriate methods in which to use the CCE vector as
the underlying ML training data for a CDSS.

4.1. Similarity—A Simple Approach to Referenced-Based Guidance

Being able to relate two things is highly relevant to human cognition and decision-
making. As such, explainable similarity is a factor that should be considered in HMT
contexts. Research has shown that cognitive association is a common method that aids, and
in some cases hinders, decision-making–the more similar two elements are perceived to be,
the more likely they are associated with the same category [51]. Additionally, referential
familiarity can improve understanding in HMT contexts. Given that the CCE vector
represents clinical events that can be composed at any point in an encounter, it is possible
to compare encounters and relate them as a function of how similar their values are. The
notion of better or worse, and good or bad, can be defined by consensus weighting relative
to all of the encounters’ CCE vectors. However, this comparison is relative. A more precise,
but not always feasible, approach would be to have a reference vector that defines the
baseline for alerts, recommendations, or bounded-guidance. This reference CCE vector
would provide a focal point in an n-dimensional space, such that there exists a baseline or
ideal reference. The single, or set of, reference CCE vectors may have artificial ideal values
or they may be an actual real “ideal” encounter(s). The reference values would undergo
the same consensus transformation and vector composition. Given a valid reference, the
vectors can be mathematically compared resulting in a similarity statistic for each vector.

By applying similarity analysis to encounter CCE vectors and a reference CCE vector,
a deterministic continuous measure of performance can be acquired that will provide
decision support. There are several techniques that will calculate similarity between two
vectors, euclidian distance being one of the most common. Euclidian distance calculates the
length of the path connecting two points in 2 . . . n-dimensional space. Equation (5) shows
an example of the calculation for determining the distance (d) between two 3-dimensional
points (x1, y1, z1) and (x2, y2, z2), and Equation (6) shows the generalized form of euclidian
distance for points a and b with n-dimensions.

d =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (5)

d =

√
n

∑
i = 1

(ai − bi)
2 (6)

Another popular distance measurement is the cosine angle distance, which measures
similarity by computing the cosine of the angle between two vectors. Euclidian and
cosine distances are only two of numerous distance statistics, and they have limitations
that are germane to decision support. While presented here because of their common
use and simplicity, both cosine and euclidian distances have significant limitations in a
CDSS context. For example, both statistics assume the dimensional values are orthogonal.
Both statistics also lack directional implications–they are blind to correlated or inversely
correlated vectors.

Alternatively, perhaps preferentially, the Mahalanobis statistical distance (e.g., Hotelling’s
T2 statistic) may be applied to encounter CCE vectors, as this distance calculation accounts
for the directional correlations between vectors. The CCE vectors may be normalized before
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the distance calculation to put the vectors into the same coordinate scale, e.g., 0–1. This
step will calibrate the different dimensions, recalling that appropriate weighting may have
been applied during the CCE vector composition. Equation (7) shows the general form for
calculating the Mahalanobis distance (d) between two vectors, x (an assessed encounter)
and y (the reference CCE vector), where S is the vector’s covariance matrix.

d(
→
x ,
→
y ) =

√
(
→
x −→y )

T
S−1(

→
x −→y ) (7)

The Mahalanobis distance quantifies the dissimilarity between the ideal performance
reference and the assessed entity, providing a single continuous value for each encounter’s
CCE vector that indicates the encounters similarity to (distance from) the reference and
each other.

The use of similarity statistics and a reference to identify variances, trigger alerts,
and supply guidance provide a relatable and understandable method on which to base
decision-related support. Notions of similarity appear to play a fundamental role in human
learning, and thus psychologists have done extensive research to model human similarity
judgement [52]. Human judgments crucially involve determining the similarity between an
object of interest and some other relevant entity and then basing the judgment on a resulting
degree of similarity. Therefore, a CDSS implementing similarity statistics, would have
a cognitive model that its human teammates would intrinsically understand. Moreover,
similarity is a means of classification that can be applied to ranking encounters, trended
against time, or utilized for other decision related analyses such as prediction, classification,
or clustering.

4.2. Machine Learning and Decision Support

Before machine intelligence can be deployed in a healthcare CDSS, the ML models
need to be trained with data that is representative of clinical activities, such as screening,
diagnosis, treatment assignment and so on. This is so the machine can learn similar groups
of encounters, associations between subject features and other outcomes of interest. The
CCE vector provides a construct for representative training data that also incorporates
qualitative human perspectives. However, training data is only half of the ML equation; a
ML model approach is also required. Despite the popularity and successes of Deep Neural
Nets and other deep-learning techniques, most healthcare data is suitable for traditional
machine learning methods [25]. Because of the need for categorization and recommen-
dation, machine learning approaches such as K-nearest neighbor (KNN) and k-Means
clustering are applicable and of particular interest. Both of these approaches are common,
well-understood ML techniques, which also makes them suitable for CDSS applications.

KNN and k-Means are methods for classifying or clustering entities based on their
relationship to other entities. While clustering and classification may seem the same, they
are different in their orientation. Classification assumes known partitions or containers,
whereas clustering does not. Building a KNN using CCE vector training data can assist deci-
sion makers with taking an appropriate action, given a derived encounter class. Extending
this notion further, as the underlying knowledge base is developed, the CCE vector-based
CDSS can suggest guidance for corrective or lauding activities. Moreover, the application
of both KNN and k-Means provides a point of departure for expert system capabilities to
be integrated in the CDSS, based on the learned models.

When performance classes are not known or need to be validated, k-Means is appli-
cable. K-Means partitions CCE vector data into k clusters where each encounter belongs
to a cluster with the nearest mean. The k-Means method takes the number of clusters
(k) as input and iterates to determine which encounter fits in which cluster. This type of
machine learning can identify previously unknown relationships in data. For example, if
encounter CCE vectors are evaluated against other characteristics new classifications may
be discovered. For example, natural partitions may exist between patient satisfaction and
length of stay. The identification of this relationship may allow predictions in the case of
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new encounter CCE vectors. To support further clustering analysis, individual dimensions
of the CCE vector can be extracted and applied to k-Means. This type of analysis might
reveal relationships within the CCE vector itself. Further, KNN and k-Means can be ap-
plied to encounter CCE vectors over time. This perspective can be useful for trending and
prediction related analyses. Moreover, the CCE vector does not have to be limited to these
machine learning approaches–other techniques may be applicable.

5. Conclusions

The CCE vector transformation combined with similarity or ML approaches can help
to discover patterns and trends, as well as surprises in operational healthcare data. This
approach allows qualitative data to be integrated with quantitative data in a manner that
increases precision. When incorporated in a CDSS the CCE vector forms the basis for
improved human machine teaming. However, a number of practical considerations should
be considered to make the CCE vector technique more broadly useful and generalizable.
Other distance calculations, such as the Canberra distance, which is sensitive to small
variances from zero (i.e., for items that are very close together), may provide different
benefits or greater fidelity depending on the underlying CCE vector distributions. Isolating
one measure for factor analysis may be affected by weighting. The issues of sample size
are related to the weighting and may emphasize undesirable effects. The CCE vector
increases the computational complexity and issues of scale may arise when a dataset
becomes too large.

Despite these potential pragmatic limitations, the CCE vector addresses the challenges
of adapting quantitative health data-features with human expertise insights. It does so
by integrating qualitative data with quantitative data into a composite CCE vector that
can be used for ML training data to allow human expertise to be encoded within machine
intelligence. This encoding provides a basis for increasing explainability, understandability,
and ultimately trust in an AI-based CDSS, thereby improving HMT concerns. This paper
presents a CCE vector method and provides a discussion of its applications. While this
presentation does not focus on experimental results, it does illustrate the CCE concept and
provide details on implementation. Prior work implementing the benefits of the consensus
measure has been shown in several works from the literature. As a priority, future work is
planned to design a CDSS that incorporates the CCE vector method and to evaluate the
integrated system in a real-world clinical HMT setting.
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