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Abstract: The determination of The Radial Basis Function Network centers is an open problem.
This work determines the cluster centers by a proposed gradient algorithm, using the information
forces acting on each data point. These centers are applied to a Radial Basis Function Network
for data classification. A threshold is established based on Information Potential to classify the
outliers. The proposed algorithms are analysed based on databases considering the number of
clusters, overlap of clusters, noise, and unbalance of cluster sizes. Combined, the threshold, and the
centers determined by information forces, show good results in comparison to a similar Network
with a k-means clustering algorithm.

Keywords: information theory; Entropy; Radial Basis Functions Networks; classification; clustering
and outliers

1. Introduction

Broomhead and Lowe in 1988 [1] presented the Radial Basis Function Network (RBFN)
concept. It is a universal approximator [2,3]. Usually, the training of an RBFN is done in
two stages: initially, the centers cj and the variance σj of the basis functions are determined,
then, the network weights wij. The performance of the RBF Network depends on estimation
of these parameters. This work focuses on determining the RBF centers.

Clustering techniques can be used to determine the RBF centers. These techniques
find the cluster centers that reflect the distribution of the data points [4]. The most common
is the k-means algorithm [5]. Other clustering techniques have been developed for RBF
center identification. Examples include self-constructing clustering algorithm [6], nearest
neighbor-based clustering [7] and quantum clustering [8]. Besides clustering methods,
there are other techniques to estimate the RBF centers such as recursive orthogonal least
squares [9] and metaheuristic optimisation [10,11].

This work proposes two algorithms that are developed mainly based on two concepts
of Information Theory: the Information Potential (IP) and Information Force (IF). Those
concepts describe, respectively, the amount of agglomeration and the direction where this
agglomeration increases to [12]. These concepts are used in some clustering techniques,
such as the one developed by Jenssen et al. [13].

The main algorithm finds the cluster centroids by a gradient ascent technique using
Information Forces, and these centers are applied to an RBFN in classification problems.
The second one uses the concept of Information Potential to reduce the number of outliers
on noise data, and increases the performance of the RBFN. These algorithms constitute the
contributions of this work.

The algorithms are tested on datasets with gradual increase in difficulty. The difficulty
factors analysed are the number of clusters, overlap of clusters, noise, and unbalance of
cluster sizes. The results are compared with a similar RBFN with centers estimated via
k-means algorithm.
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This article was organised as follows: In Section 2, the RBFN is illustrated; In Section 3,
the concepts of Information Potential and Force are described, also the algorithm to estimate
the RBFN centers is presented. In Section 4, the algorithm to reduce the outliers is described;
In Section 5, the Data is presented and the experiment is described; In Section 6, the
algorithm parameters are analysed, and the results are displayed and discussed. The
conclusions are presented in Section 7.

2. Radial Basis Function Network

The RBFN is the function presented in the equation:

Classi = f (p) = w0 +
K

∑
j=1

wij ϕj(p) (1)

This Network is shown in Figure 1:

...
∑i

∑2

∑1

ϕ1(p)
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wij

Class 1
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p

Figure 1. Structure of Radial Basis Function Network.

The RBF network is composed by an input layer p, a hidden layer, and an output layer
which provide the classification. When an input datapoint p is fed into a node, the distance
is calculated from a center cj, transformed by a Radial Basis Function ϕj(·) and multiplied
by a weighting value wij [14]. All the values produced in the K nodes are summed for each
class, and the point p is classified where this sum is maximum.

The methods to obtain those parameters influence the classification performance.
In this work, the centers are estimated via IF and, for comparison, the k-means algo-
rithm [15–17]. The weights wij are determined by pseudoinverse matrix and a Gaussian
Function are chosen for RBF:

ϕj(p) = exp (−
||p− cj||2

2 · σ2 ) (2)

The variance is estimated by the equation proposed by Haykin [5]:

σ =
dmax√
2 · K

(3)

In which dmax is the maximum distance between the cluster centers and K is the
number of nodes. The variance is equal for all nodes.

3. RBF Centers Estimation via IF Gradient Algorithm
3.1. Information Forces

Considering xi ∈ Rm, i = 1, 2, ..., n a set of samples belonging to a random variable
X ∈ Rm, a Parzen Window [18] can be associated with a Gaussian kernel, directly estimating
the Probability Density Function (PDF) of the data. This function can be described by:
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f̂x(x) =
1
n

n

∑
i=1

G(x− xi, h2) (4)

where G is the Gaussian Kernel and h is the kernel bandwidth. There are several ways to
estimate the ideal bandwidth h [19]. In PDF’s that are near to the Normal distribution the
Rule-of-Thumb [20] is the most practical and simple one:

h = 1.06 ·min{σ̂,
IQR
1.34
}n−

1
5 (5)

where n is the number of data points, σ̂ is the estimated standard deviation of the dataset,
and IQR = Q3 − Q1 is the interquartile range. Q1 and Q3 are, respectively, the first and
third quartile.

The Renyi entropy equation of order two [21] is given by

HR2(X) = − log[
∫

X
f 2
x (x)dx] (6)

Applying the Parzen Window: ∫
X

f 2
x (x)dx =∫

[
1
n

n

∑
i=1

G(x− xi, h2)]2dx =

1
n2

n

∑
i=1

n

∑
j=1

∫
G(x− xi, h2)G(x− xj, h2)dx =

1
n2

n

∑
i=1

n

∑
j=1

G(xi − xj, 2 · h2)

(7)

That means:

HR2(X) = − log[
1
n2

n

∑
i=1

n

∑
j=1

G(xi − xj, 2h2)] (8)

The argument of the natural logarithm above is the Information Potential over all the
dataset, in an analogy with the potential energy of physical particles [22].

P({x}) = 1
n2

n

∑
i=1

n

∑
j=1

G(xi − xj, 2h2) (9)

The IP over a single point xi in the dataset is the sum of interactions of this point across
all the dataset.

P({xi}) =
1
n2

n

∑
j=1

G(xi − xj, 2h2) (10)

The IP indicates the amount of agglomeration around the point. Its derivative is the
Information Force acting in point xi [13].

F i f =
∂

∂(xi − xj)
P({xi}) =

− 1
N2 · h2

n

∑
j=1

G(xi − xj, 2h2) · (xi − xj)
(11)
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3.2. Gradient Algorithm

The IF points in the direction where the amount of agglomeration increases. Then, a center
candidate ci can approximate the central cluster by successive interaction of the equation:

ci(s + 1) = ci(s) + ηF i f (12)

This candidate ci could erroneously converge to a local maximum, similar to other
algorithms based on Gradient Descent/Ascent. Two approaches via Information Theory
could minimise this error. The first one is reducing the number of local maximum by
smoothing the IP distribution over [13]. The ideal h (Equation (5)) is multiplied by a
parameter κ which smooths or under-smooths the PDF’s distribution over.

Another solution is to variate the learning rate η over the data space. The magnitude
of the IF is bigger in the border of the cluster and decreases as the candidate c approximates
to the central cluster and the force vectors are balanced out. Then,

η = α · e||Fi f || (13)

Outliers also hinder the IF gradient algorithm. Candidates with small Information
Potential behave like outliers. Then, they are removed for the center estimation. The
detailed description of the IF Gradient Algorithm is illustrated in Algorithm 1.

Algorithm 1 Estimation of RBFN centers via IF
Input

• Xtrain % Data to train the RBFN;
• α % Learning rate constant;
• n_center % Number of initial candidates;
• δ % Threshold of Information Potential;
• β % Minimum distance between candidates;
• max_epochs % Maximum epochs;
• γ % Constant of convergence;

Output
• Ccluster % Cluster centers.

1: procedure IF_ALGORITHM(Xtrain,α,n_center,δ,β,max_epochs,γ)
2:
3: % Pi f (·) calculates the information potential.
4: % Fi f (·) calculates the information force.
5: for i ∈ 1 : n_center do % Raffle the candidates
6: Ccand(i) = random(Xtrain);
7: if Pi f (Ccand(i)) < δ then
8: Eliminate Ccand(i);
9: end if

10: end for
11:
12: s = 0;
13: while (s < max_epochs) and (not all Ccandidate are eliminated or converged) do
14: % Eliminate points to close each other
15: for i and j ∈ 1 : n_center do
16: if ||(Ccand(i)− Ccand(j))|| < β then
17: Eliminate Ccand(i)
18: end if
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Algorithm 1 Cont.

19: end for
20:
21: for i ∈ 1 : n_center do . Update the center candidate.
22: Ccand(i, s + 1) = Ccand(i, s) + α ∗ e||Fi f (i,s)|| ∗ Fi f (i, s)

23: if |e||Fi f (i,s+1)|| − e||Fi f (i,s)||| < γ then
24: Ccand(i) converge!
25: end if
26: end for
27: s = s + 1
28: end while
29: Ccluster = ∪Ccand that converge.
30: return Ccluster
31:
32: end procedure

Initially, a set of center candidates c is raffled between the dataset. This set is sufficiently
big to ensure that at least one point is raffled on each cluster. Some candidates could be too
close. In this case, one of the points is eliminated. Many candidates tend to converge to a
single central cluster. On each interaction, if two candidates are too close to each other, one
of them is eliminated.

The points raffled with small IP constitute another problem. Far from the central
cluster, the greatest information force is exerted by the point initially picked. In this way,
the center candidate ci is stuck to the starting point. To avoid that, the IP is calculated
in the initial epoch over the candidates. If it is below a threshold, the center candidate is
eliminated.

The interactions over a specific center candidate stop when the difference is reached:

| exp (|Fi f |)(s + 1)− exp (|Fi f |)(s)| < γ (14)

where γ is a small value described in parameters section. When a center candidate nears a
cluster center, the forces tend to equilibrium and the left-hand side of inequality (14) tends
to zero.

The algorithm completely stops when all the candidates’ centers converge or are
eliminated. If they do not converge, it stops when it reaches the maximum number of
epochs.

4. Outlier Reduction

The RBFN has difficulties in identifying the outliers. A mechanism of outlier detection
improves the RBFN results. This can be done by observing the IP on each point, because
outliers have small information potential.

A threshold δ can be established with the training data. Then, this threshold can be
applied to the test data and most outliers can be identified. The detailed description of this
mechanism is in Algorithm 2 below.

The threshold δ is estimated using the IP values of the outliers. Some points in the
clusters also have small IP and could be erroneously classified as outliers. The constant θ
(<1) is established to avoid this problem.
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Algorithm 2 Outlier Detection
Input

• Xtrain % Data to train the RBFN;
• Xtest % Data to test the RBFN;
• n_outlier % nº of outliers in training data;
• θ % Constant of outlier reduction;

Output
• COutlier % Set of outliers.

1: procedure OUTLIER_DETECTION(Xtrain,Xtest,n_outlier,θ)
2:
3: for i ∈ 1 : size(Xtrain) do
4: pottrei(i) = Pi f (Xtrain(i)) % The IP.
5: end for
6:
7: pottrei = sort(pottrei,′ ascend′) % Sort in ascend order.
8: δ = pottrei(θ · n_outlier) % The threshold.
9:

10: for i ∈ 1 : size(Xtest) do
11: if Pi f (Xtest(i)) ≤ δ then
12: Xtest(i) ∈ COutlier
13: end if
14: end for
15: return COutlier
16:
17: end procedure

5. Data and Experiment

The k-means and the IF algorithm have random initialisation and the results oscillate
depending on the set of initial points. Then, the algorithm is tested over different simula-
tions and the average performance is collected. Experimentally, it was considered that one
hundred simulations for each configuration is enough.

The algorithms are tested on synthetic and non-synthetic data. Each set is divided
into three subsets: train, validation, and test, in a ratio respectively of 70%/15%/15%.
The performance of each RBFN configuration is measured by the percentage of correctly
classified points on the test set.

Synthetic data with known ground truth can lead to a best analysis of the algorithms
in clustering research because the characteristics of the data can be controlled [23]. The
performance of the algorithm is studied in synthetic datasets with a gradual increase of:

• Number of clusters;
• Cluster overlap;
• Unbalance in cluster size;
• Noise data.

The data come from the Clustering basic benchmark [23]. The characteristics of the data
are presented in Table 1.

The noise dataset is generated by the addition of independent and identically dis-
tributed random points to the first S dataset. The data distribution of the datasets presented
in Table 1 are shown in Figure 2.
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Table 1. Datasets characteristics.

Dataset Varying Size #Clusters Per cluster %Outliers Source

S Overlap 5000 15 333 0 [24]

A Number of clusters 3000–7500 20;30;50 150 0 [25]

Unbalance Balance in cluster size 6500 8 100–2000 0 [26]

Noise Outliers 5250–5750 15 150 5%;10%;15% Authors 1

1 The S dataset with random noise.

Figure 2. Synthetic dataset distributions.

All synthetic datasets are two-dimensional, and the points are normalised in the interval
(0, 1) for each dimension. Each sequence of dataset has an ascendant level of complexity in
relation to the principal characteristic. The clusters are Gaussian distributions, some of them
are skewed. Also, small datasets are artificially generated via the Multidimensional Dataset
Generator for Clustering (MDCGen) [27] to analyse the parameters of the Algorithm 1.

The Clustering basic benchmark also supplies the ground truth centroids for each syn-
thetic dataset. The IF algorithm and the k-means also are evaluated on the capacity to
correctly locate the estimated centroids. This evaluation is done by calculating the average
distance from the estimated cluster centers and their near ground truth centroids. This
measure of performance, the Average Distance to the Truth Centroid (ADTC), is presented
on the equation:

ADTC =


1
n

n

∑
i=1

min
i,j
|cgt i − cest j| if n ≥ m

1
n

n

∑
j=1

min
i,j
|cgt i − cest j|+

1
m− n

m−n

∑
j′=1

min
j′ ,i
|cest j′ − cgt i| with j 6= j′ if n < m

(15)

where cest and cgt are, respectively, the estimated and the ground truth centroids, with n
and m as their respective number of elements. Different from the k-means, IF algorithm
does not have the number centroids as parameter and can mistake the real number of
clusters and their centroids. The Equation (15) also penalises when the estimated number
of centroids is different from the number of clusters.
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Non-synthetic datasets are also important to evaluate the algorithm performance on
real problems. The Iris Dataset [28,29] is used to analyze the algorithms. This database is
one of the best known to be found in the pattern recognition literature.

6. Parameters and Results
6.1. Parameters
6.1.1. Learning Rate Constant

Figure 3 shows the effect of the Learning rate constant α on Algorithm 1.

Figure 3. Learning rate constant. The black dots represent the estimated cluster centers. The red lines
represent the trajectory of the eliminated candidates. The blue lines represent the converged ones.

If the constant α is too small, some centers candidates erroneously converge to local
maxima. If α is too big, the candidates oscillate around the central cluster and the algorithm
loses accuracy. If α is very big, the algorithm does not converge before reaching the
maximum epochs. Experimentally, a good value for α is ten times the standard deviation
of the clusters.

6.1.2. Minimum distance between centers candidates

Figure 4 shows the constant β effects on Algorithm 1.

Figure 4. Minimum distance between centers candidates.
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If this distance is too small, just a few points are eliminated on each epoch and the
algorithm demands more computational effort. If β is too big, a center candidate in one
cluster could eliminate good center candidates in other clusters. Experimentally, a good
value for β is 10% of the standard deviation of the clusters.

6.1.3. Constant of convergence

Figure 5 shows the constant γ effects on Algorithm 1.

Figure 5. Constant of convergence.

The precision increases when the constant γ diminishes, although the algorithm
takes more epochs to converge, requiring more computational effort. If γ is too big, the
center candidates stop before the forces balance out, far from the actual central cluster.
Experimentally, γ = 10−6 is an appropriate value.

6.1.4. IP Threshold

Figure 6 shows the threshold δ effects on the Algorithm 1. The potential is calculated
at each point. The threshold is tested as the 1st, 5th, 10th and 50th percentile from the IP
distribution of the points.

Figure 6. IP threshold.

Some center candidates are raffled on points with small IP. These candidates are stuck
close to the origin, not converging to the actual cluster centers. If the threshold δ is too
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small, these center candidates are not eliminated by the algorithm. In the other side, if δ is
too big, it eliminates good center candidates in clusters with small IP.

6.1.5. Smoothie Parameter

Figure 7 shows the parameter κ effects on Algorithm 1.

Figure 7. Smoothie parameter.

If κ is small, the candidates converge to local maxima inside the clusters but far from
the actual center. If κ is big, points too far from the central cluster exert too much influence
in the IF vectors, confusing the gradient algorithm.

6.1.6. Constant of Outlier Reduction

Table 2 shows, in dataset S1 with 10% of noise, the performance of the RBFN associated
with Algorithm 2 and percentage of the points correctly classified as outliers using different
values of the parameter θ.

Table 2. Accuracy of the RBFN associated with the outlier reduction for different θ values.

θ Points Correctly Classified Outliers Correctly Classified

0.5 93.69% 39.34%
0.75 94.06% 54.10%

1 93.21% 63.93%

As described in Section 2, some points inside the cluster but far from the actual
center have small IP. The parameter θ partially avoids that the outlier reduction algorithm
misclassifies these points. The value of θ depends on the concentration level of points in
the clusters.

6.2. Results
6.2.1. Number of clusters

The RBFN centers are estimated by information forces (Algorithm 1) and by k-means
algorithm for comparison. The A datasets are used to analyse the effects of the number of
clusters in the performance of the algorithms. The κ parameter from the IF algorithm is kept
around 0.2 in order to under-smooth the data distribution, and, consequently, the algorithm
can better differentiate the clusters. The Figure 8 show the centers location estimated for
each method on each A dataset.
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Figure 8. Estimated cluster centers in dataset A. The black dots represent the estimated cluster
centers.

The k-means algorithm presents difficulties in correctly estimating the centroids, as
it can be observed in figure 8. The information forces point to one center on each cluster,
closer to their centroids. The table 3 shows the average distance between the estimated
centers and their near ground truth centroids for the simulations:

Table 3. Average Distance to the Truth Centroid for the A dataset.

Dataset Information Forces k-Means

A1 0.00593 0.01396
A2 0.004053 0.01107
A3 0.003918 0.008813

The ADTC measure for the IF algorithm is smaller than for the K-means. This indicate
that the centers estimated by the IF algorithm are nearer from the ground truth centroids
than the estimated ones by the k-means. The ADTC values presented in Table 3 are the
average over the repeated simulations. The distribution of the ADTC values are presented
in the Figure 9:

Figure 9. Distribution of the ADTC values in dataset A over the simulations.
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In the A datasets, the ADTC values from the IF algorithm are distributed in a small
interval. This distribution is smaller than the correspondent k-means. This indicates that
the IF algorithm has a better capacity in converge to the correct centroids. The estimated
centers are applied to the RBFN. The percentage of correctly classified points are presented
in Table 4.

Table 4. Percentage of Accuracy in out-of-sample data for the A dataset.

Dataset Information Forces k-Means

A1 95.69% 95.95%
A2 97.47% 97.49%
A3 97.54% 97.55%

The results of the RBFN with centers estimated via Information Forces are similar to
the analogue RBFN with centers estimated via k-means. However, the IF algorithm can
handle the increasing number of clusters and better locate the RBF center, which supplies
more stable results.

6.2.2. Cluster Overlap

The S datasets are used to analyse the effects of the overlap between the clusters in
the performance of the algorithms. The Figure 10 shows the centers’ estimated location for
each method on each S dataset.

Figure 10. Estimated cluster centers in dataset S.

Similar to the A dataset, the k-means also has difficulties in correctly locate the cen-
troids and the IF algorithm better estimate them. The Table 5 shows the ADTC measure for
the S dataset.

Table 5. Average Distance to the Truth Centroid for the S dataset.

Dataset Information Forces k-Means

S1 0.002239 0.01359
S2 0.003487 0.01629
S3 0.01275 0.01872
S4 0.009276 0.02091

The IF algorithm can better handle the cluster overlap and locate the centroids closer
to the ground truth. The κ parameter must also under-smooth the data distribution for
the algorithm better differentiate the clusters. The distribution of the ADTC values are
presented on the Figure 11:
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Figure 11. Distribution of the ADTC values in dataset S over the simulations.

The ADTC values for the IF algorithm stay in a smaller interval which indicates a
better convergence. The percentage of correctly classified points by the RBFN are presented
in Table 6.

Table 6. Percentage of Accuracy in out-of-sample data for the S dataset.

Dataset Information Forces k-Means

S1 98.81% 98.87%
S2 95.73% 95.65%
S3 84.87% 84.81%
S4 80.10% 79.93%

Analogue to the dataset A, the IF algorithm gives similar results to the k-means’ in
the classification of the out-of-sample data. However, the RBF centers estimated by IF
algorithm are better located, which gives more robust results.

6.2.3. Unbalance in Cluster Size

Clustering algorithms with random initialization have difficulties to handle datasets
where the clusters have big differences in number of points. The probability to sort the right
amount of points on each cluster tend to diminish when the unbalancing in the number of
points in the clusters tend to increase. The k-means algorithm has this weakness [23].

The IF algorithm also has random initialization, and, consequentially, has difficulties
in unbalance clusters. Figure 12 shows the estimated cluster centers by the IF algorithm on
the Unbalance dataset.

Figure 12. Estimated cluster centers in the Unbalance dataset.
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The IF algorithm incorrectly identifies the points of the less dense clusters as outliers.
However, the centroids of denser areas are correctly estimated. In this way, the algorithm
can be used with other strategies to identify the denser areas and better estimate the
centroids of less dense clusters.

6.2.4. Noise Data

The Figure 13 shows the distribution of the ADTC values for the noise data:

Figure 13. Distribution of the ADTC values in the noise dataset over the simulations. The abscissa
refers to the percentage of random noise added to the S1 dataset.

The ADTC values for the IF algorithm are smaller and located at a small interval
than the correspondent k-means. This indicates that the IF algorithm better estimates the
centroids with a better convergence. The information forces exerted by the random noise
points have the tendency to balance out and does not disturb the IF algorithm. Even with
the increase of random noise in the data, the ADTC values stay very similar.

The Table 7 shows the performance of the RBFN on noise data. The centers are
estimated via k-means and the IF algorithm, with and without the noise reduction by the
Algorithm 2.

Table 7. Percentage of Accuracy in out-of-sample data for the S dataset.

Dataset
Information Forces

with Outlier
Reduction

Information Forces
without Outlier

Reduction
k-Means

S1 with 5% of noise 95.05% 94.32% 94.40%
S1 with 10% of noise 91.95% 90.36% 90.50%
S1 with 15% of noise 90.68% 86.82% 87.06%

The IF gradient algorithm without outlier reduction has a reasonable performance on
this dataset. There is an improvement when the outlier reduction is used alongside the
RBFN with centers estimated by IF. This improvement leads the IF gradient algorithm to
outperform the k-means.

6.2.5. Iris Dataset

The Iris Data is a four dimension non-synthetic dataset. It is formed by three classes,
each one referring to a type of iris plant. One of the clusters is linearly separable from the
other two, however, the other two are not linearly separable from each other. The Figure 14
shows the centers location estimated via IF.
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Figure 14. Estimated cluster centers in the Iris dataset via IF.

The clusters in the Iris data are skewed and not radial. The IF algorithm estimate the
centers following the level of agglomeration in the data. Then, there is the tendency in
the Iris Data to estimate more than one center per cluster, and locate them far from the
geometrical center. With the IF algorithm, the RBFN has a accuracy of 90.87%, against
89.74% from a similar neural network operating with the k-means.

6.2.6. Discussion and Future Works

The proposed algorithm constitutes a tool that, in comparison with k-means, has a
good ability to identify cluster centroids in datasets, centroids which are used as centers
of RBF network. The IF algorithm can handle the increase in the number of clusters and
cluster overlap. On Noise Data, the outlier reduction improves the RBFN results. The
algorithm demonstrates some difficulties on the Unbalance dataset, however, the results
may still lead to solutions for handle this characteristic on data.

The preliminary results show good accuracy of the RBFN configured with the IF
algorithm. Other studies may analyze the performance of the proposed methods on
more complex databases. Further on, it may analyze how the RBFN behaves with the IF
gradient algorithm alongside other methods to determine the basis function variance and
the network weights.

The ability of the IF algorithm to estimate the cluster centroids may also improve
clustering algorithms. Future works may use the IF algorithm ability to search cluster
centroids as an initialization technique for clustering algorithms, replacing the random
initialization present in some clustering techniques such as the k-means itself. Also, the
IF algorithm may be used in association with density based clustering techniques to find
denser areas in the data.

7. Conclusions

This proposed method to assign the RBFN centers presents satisfactory preliminary
results in comparison to the traditional k-means algorithm. Also, the outlier reduction
based on information potential improves the results on noise data. It is noteworthy that the
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proposed method accuracy depends on the correct adjustment of some parameters, but this
also happens in other methods.
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The following abbreviations are used in this manuscript:

ADTC Average Distance to the Truth Centroid
IF Information Force
IP Information Potential
MDPI Multidisciplinary Digital Publishing Institute
PDF Probability Density Function
RBF Radial Basis Function
RBFN Radial Basis Function Network
List of variables
c Centroids/RBF centers
cest estimated centroids
cgt ground truth centroids
dmax Maximum distance between the cluster centers
f Function
Fi f Information Force
G Gaussian Kernel
h Kernel bandwidth
H Entropy
IQR Interquartile range
K Neural network nodes
n Number of samples
p Datapoint
P(·) Information Potential
Q1 First quartile
Q3 Third quartile
s Epoch
w Weights
x Sample
X Set of samples
α Learning rate constant
β Minimum distance between candidates
γ Constant of convergence
δ Threshold of Information Potential
η Learning rate
θ Constant of outlier reduction
κ Smoothie parameter
σ̂ Estimated standard deviation
σ2 Variance/RBF width
ϕ Radial Basis Function
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