
Citation: An, J.; Zhang, D.; Xu, K.;

Wang, D. An OpenCL-Based FPGA

Accelerator for Faster R-CNN.

Entropy 2022, 24, 1346. https://

doi.org/10.3390/e24101346

Academic Editor: Philip Broadbridge

Received: 13 July 2022

Accepted: 21 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An OpenCL-Based FPGA Accelerator for Faster R-CNN
Jianjing An 1,2, Dezheng Zhang 1,2, Ke Xu 1,2 and Dong Wang 1,2,*

1 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
2 Beijing Key Laboratory of Advanced Information Science and Network Technology,

Beijing Jiaotong University, Beijing 100044, China
* Correspondence: wangdong@bjtu.edu.cn

Abstract: In recent years, convolutional neural network (CNN)-based object detection algorithms have
made breakthroughs, and much of the research corresponds to hardware accelerator designs. Although
many previous works have proposed efficient FPGA designs for one-stage detectors such as Yolo,
there are still few accelerator designs for faster regions with CNN features (Faster R-CNN) algorithms.
Moreover, CNN’s inherently high computational complexity and high memory complexity bring
challenges to the design of efficient accelerators. This paper proposes a software-hardware co-design
scheme based on OpenCL to implement a Faster R-CNN object detection algorithm on FPGA. First,
we design an efficient, deep pipelined FPGA hardware accelerator that can implement Faster R-CNN
algorithms for different backbone networks. Then, an optimized hardware-aware software algorithm
was proposed, including fixed-point quantization, layer fusion, and a multi-batch Regions of interest
(RoIs) detector. Finally, we present an end-to-end design space exploration scheme to comprehensively
evaluate the performance and resource utilization of the proposed accelerator. Experimental results
show that the proposed design achieves a peak throughput of 846.9 GOP/s at the working frequency
of 172 MHz. Compared with the state-of-the-art Faster R-CNN accelerator and the one-stage YOLO
accelerator, our method achieves 10× and 2.1× inference throughput improvements, respectively.

Keywords: convolutional neural network; Faster R-CNN; FPGA; hardware accelerator

1. Introduction

CNN has made significant breakthroughs in many application scenarios in computer
vision, such as image classifications [1–3], object detection [4–7], speech recognition [8],
etc. In recent years, FPGA-based object detection accelerators have made great progress in
real-world applications, such as autonomous driving, smart security systems, etc.

It is a huge challenge to deploy a CNN-based object detection network model that is
computationally intensive and storage intensive to mobile devices with limited resources
(such as smartphones, smart wearable devices, etc.). As shown in Table 1, the Faster R-CNN
detection model [4], whose backbone network is vgg16 [2], requires up to 271.7 billion
floating point operations (FLOPS) and more than 137 Megabytes(MB) of model param-
eters. Therefore, we need to choose a suitable computing platform for object detection.
Recent studies have shown [9] that the computing capacity of a typical CPU can only reach
10–100 Giga Floating-point Operations Per Second (GFLOPS), and the energy consumption
efficiency is normally below 1 Giga Operation Per Joule (GOP/J). In contrast, the comput-
ing power of GPU can be as high as 10 Tera Operation Per Second (TOP/s), which is a
good choice for object detection applications. However, GPUs can usually only conduct
32-bit or 16-bit floating point operations and heavily rely on off-chip storage, which makes
power consumption high (typical GPUs exceed 200 W). In addition, FPGAs are becoming
a candidate platform for energy-saving and low-latency neural network acceleration pro-
cessing through hardware design for neural networks. FPGA can perform data-parallel
and task-parallel computing simultaneously to help improve efficiency. The flexibility of
FPGA can also leave more room for the realization and optimization of neural network

Entropy 2022, 24, 1346. https://doi.org/10.3390/e24101346 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24101346
https://doi.org/10.3390/e24101346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0068-8824
https://doi.org/10.3390/e24101346
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24101346?type=check_update&version=2

Entropy 2022, 24, 1346 2 of 18

algorithm functions. Furthermore, FPGA-based CNN hardware accelerator designs [10–15]
are rapidly developing due to their reconfigurability and fast development time, especially
when FPGA vendors provide high-level synthesis (HLS) tools. In [10] proposed a design
space exploration method by optimizing the computing resources and external memory
access of the CNN accelerator, but they only implemented the convolutional layer. The
author of [13] proposed a fixed-point CNN accelerator design scheme based on the OpenCL
framework. However, because their convolution implementation method was based on
the matrix multiplication mode and the device core separation design, the advantages of
FPGA’s deep pipeline characteristics were not been tapped to achieve a higher computing
efficiency and smaller storage bandwidth.

Due to the higher computational complexity of object detection algorithms and their
more complex network designs, hardware accelerator designs [16–23] for CNN-based
object detection algorithms are still rare from both the computing and storage perspectives.
Table 1 shows that the two-stage Faster R-CNN detection algorithm is more computationally
expensive than the single-stage Yolo detection algorithm by 5×–7×, so almost all FPGA-
based object detection accelerator designs only consider single-stage detection algorithms,
such as Yolo [18], Yolov2 [17,19,24], Yolov3 [22,23], etc. Due to the two-stage detection
algorithm, Faster R-CNN usually has an improved recognition accuracy for small objects
compared to the one-stage detection algorithm [4]. The optimization flow proposed in
work [16] can implement a Faster R-CNN; however, the peak performance and bandwidth
utilization of the design are greatly limited due to its use of a 32-bit floating-point format.
The work of [18] presents a high-performance hardware implementation of Faster R-CNN
and Yolov1 [6] on FPGA. However, their work only implements convolution computations
on FPGA and fully connected layer computations on CPU. This design is very unfriendly
to resource-constrained embedded platforms, because the CPUs of embedded platforms
are generally limited in terms of their computing power.

Table 1. Statistics of operation, parameters and mean average precision(mAP) accuracy of different
object-detection models

Model Number of Region Proposal Resolution # Param # Operation mAP

Yolo [6] - 448 × 448 146.2 MB 40.3 G 63.4%
Yolov2 [25] - 4808 × 480 50.6 MB 39.1 G 77.8%

Yolov2 Tiny [25] - 4168 × 416 27.1 MB 29.4 G 57.2%

Faster-R-CNN(vgg16) [4] 300 8008 × 600 137.1 MB 271.7 G 69.9%
Faster-R-CNN(resnet50) [4] 300 8008 × 600 236 MB 215.6 G 73.7%

The reason for the large amount of parameters and calculation of the Faster R-CNN
detection algorithm is that it includes a fully connected(fc) layer with a large amount of
parameters and region proposals. Each region proposal needs to complete the calculation
of the fully connected layer just like a complete picture, and this will bring great obstacles
to memory and bandwidth, especially when applied to embedded FPGA platforms. In
this paper, we have studied how to deploy a complete Faster R-CNN object detection
accelerator on FPGA platform. An efficient and scalable hardware accelerator design for
Faster R-CNN object detection based on OpenCL is proposed. Specifically, this paper makes
the following contributions:

• We propose an OpenCL-based deep pipelined object detection hardware accelera-
tor design, which can implement Faster R-CNN algorithms for different backbone
networks (such as vgg16 [2], resnet50 [3]). To our knowledge, we are the first to
systematically analyze and design a Faster R-CNN object detection accelerator.

• We perform hardware-aware algorithm optimizations on the Faster R-CNN network,
including quantization, layer fusion, and a multi-batch RoIs detector. The cost of
quantizing the network is a less than 1% accuracy loss and the multi-batch RoIs
detector method can help the network to increases its speed by up to 11.1×. This

Entropy 2022, 24, 1346 3 of 18

greatly improves the utilization of hardware resources and bandwidth, maximizing
the performance gains of the final design.

• We introduce an end-to-end design space exploration flow for the proposed acceler-
ator, which can comprehensively evaluate the performance and hardware resource
utilization of the accelerator to fully exploit the potential of the accelerator.

• Experimental results show that the proposed accelerator design achieves a peak
throughput of 846.9 GOP/s at a working frequency of 172 MHz. Compared with the
state-of-the-art Faster R-CNN accelerator and the one-stage YOLO accelerator, our
method achieves 10× and 2.1× inference throughput improvements, respectively.

2. Preliminaries

This section mainly reviews the Faster R-CNN [4] object detection algorithm and
OpenCL-based heterorgeneous computing platform setup.

2.1. Review of the Faster R-CNN Algorithm

After the development of R-CNN [7] and Fast R-CNN [5], Faster R-CNN [4] is the most
classic object detection algorithm in the two-stage object detection algorithm to date. Faster
R-CNN was created to solve the bottleneck of candidate region extraction and further share
the convolution operation. Faster R-CNN is the first object detection algorithm to achieve
end-to-end training.

More specifically, Figure 1 shows the entire Faster R-CNN object detection algorithm
flow. Faster R-CNN mainly consists of four essential parts: backbone network, region
proposal network (RPN), region of interest (RoI) pooling layer, and classification and re-
gression network. The first part is the backbone network, which includes the preprocessing
of the input image and the forward computation of CNN. Generally speaking, this consists
of some typical CNN networks, such as vgg16 [2] and resnet50 [3], which are mainly used
to extract the features of the pictures. The last convolutional layer of the backbone network
is used as a shared convolutional layer, and the output feature map is used as the input of
RPN and RoI pooling.

classification and regression networkregion proposal networkbackbone network

conv relu pool fc

3x3 cls score

bbox pred

softmax proposal ROI pooling
softmax

bbox pred

cls prob

...

the shared
feature map

Figure 1. Faster R-CNN object detection algorithm flow.

RPN is the second part of Faster R-CNN, used to generate region proposals, which
are the regions of interest in the network. Classical detection methods are very time-
consuming when generating region proposal. For example, R-CNN [7] uses the Selective
Search(SS) [26] method to generate region proposals. Faster R-CNN uses RPN to generate
regional proposals, abandoning the traditional sliding window and SS methods, which
significantly improves the generation speed of region proposals. Specifically, from Figure 1,
we can see that the RPN is divided into two routes. The upper route is used to classify
anchors in softmax to obtain the foreground and background (the detection target is
foreground) and the lower route is used to calculate the bounding box regression offset for
the anchors to obtain accurate region proposals. The final proposal layer is responsible for
integrating foreground anchors and bounding box regression offsets to obtain proposals,
and eliminate proposals that are too small and beyond the boundary.

The third part is the RoI Pooling layer, which uses downsampling of the feature
maps of the region of interest generated by the RPN and the shared convolutional layer to

Entropy 2022, 24, 1346 4 of 18

further extract the feature maps of the region of interest and send them to the subsequent
network. As shown in Figure 2, spatial_scale is the scaling factor of the stride from the
first convolutional layer to the shared convolutional layer (the inverse of the product of
all strides from the first convolutional layer to the shared convolutional layer). Our goal
is to obtain region proposals on the feature map output using the shared convolutional
layer, but the size of the region proposals generated by RPN is relative to the original image
size. Accordingly, we need to multiply the value of the region proposals by the scaling
factor spatial_scale to obtain the mapped coordinates of the region proposals and the size
of the sub-grid. As the RoI pooling layer is characterized by more input and less output,
we performed a parallel processing on the input and output in the hardware, which can
greatly speed up the inference time. This part will be explained in detail in Section 3.2.4.

ROIs
*spatial_scale

RoI Pooling Mapping Logic

bin_size

roi_mapped

Figure 2. RoI pooling mapping logic.

The classification and regression network is the last part of Faster R-CNN. It uses
the candidate regions generated by the RPN to calculate the specific category (such as TV,
horse, car, etc.) to which each region proposal belongs through the fc layer and softmax.
Bounding box regression is used again to obtain the position offset of each region proposal,
which is used to regress a more accurate object detection proposal. However, each region
proposal needs to complete the calculation of the fully connected layer, as shown in Table 1.
When the number of region proposals is equal to 300, the operations of the Faster R-CNN
(vgg16) [4] model are as high as 271.7 G, so our detection accelerator will become very
inefficient. Here, we popose the multi-batch RoIs detector method to parallelize and reuse
data for different region proposals. This can help networks to increase their speed by up to
11.1×, significantly reducing bandwidth utilization and increasing throughput. This part
will be explained in detail in Section 3.3.3.

2.2. OpenCL-Based Heterorgeneous Computing Platform Setup

In recent years, with the increasing demand for computing speed and real-time data
processing in different fields, the advantages of FPGA’s high degree of parallelism and
reconfigurability have gradually emerged. Compared with Register Transfer Level (RTL),
such as HDL, High-Level Synthesis (HLS) tools have gradually become dominant in FPGA
applications due to their short development cycle and lower research costs. Due to its
parallel programming model [27], many people have recently paid more and more attention
to the adaptation of the OpenCL heterogeneous computing framework (programming
language based on C or C++) in FPGA. As shown in Figure 3, in this article, we used the
OpenCL framework to design a Faster R-CNN FPGA accelerator. Generally speaking, this
divides the computing system into two parts: the host side and the device side. (a) The
host side (usually a CPU processor) is a set of application program interfaces (API) used to
define and control the computing platform; (b) the device side (usually FPGA, DSP, GPU,
etc.) is used to compile a set of kernel functions to accelerate operations on the FPGA board.
The OpenCL device side first sends the data from the DDR memory to the Global Memory,
and then communicates with the host side from the Global memory or the local memory
through PCIe.

Entropy 2022, 24, 1346 5 of 18

OpenCL Device

C/C++ Host
Code

Executable
File(.EXE)

OpenCL Kernels

Binary
Programming File(.AOCX)

Standard C/C++
Compiler

OpenCL
Kernel Compiler

DDR MemoryHost Memory

CPU

OpenCL Host

Global Memory Interconnect

Local Memory

PCIe
Kerne

l
Pipeli

ne

Kerne
l

Pipeli
ne

Local Memory

On-Chip
MemoryPCIe

Figure 3. Design flow of OpenCL-based heterogeneous computing platform for Faster R-CNN.

3. System Design
3.1. Software and Hardware Architecture Co-Design Scheme

As shown in Figure 4a, in this article, we propose a software and hardware co-design
scheme for Faster R-CNN object detection accelerator. This consists of two parts, the host
side and the device side (FPGA). The host side is a series of host task functions running
on the CPU, including Reorg function, RPN function, host Max pooling function, Fast
R-CNN detection function, host RoI Pooling function, and a task scheduler. The device
side is composed of a set of kernel functions with high parallelism running in FPGA, which
include Memory Convolution Read (MCR) kernel, Memory Convolution Write (MCW)
kernel, Convolution kernel, Max Pooling kernel and RoI Pooling kernel. The proposed
software and hardware co-design scheme places the computationally extensive layer on
the hardware acceleration device FPGA for execution and places the small computationally
complex and logically complex modules(such as RPN, Fast R-CNN detection, etc.) the host
side. The specific hardware architecture design and software solutions are described in
detail in the following Sections 3.2 and 3.3.

MCW KernelMCR Kernel

Conv Kernel

CU_N

CU_2

MCR Kernel

CU_1

CPU

Host Function

RPN

Fast rcnn

Max poolingReorg

RoI PoolingTask
scheduler

Input
Buffer

Global Memory

Output
Buffer

FPGA

M
C

R

L
o

g
ic

Conv Kernel

CU CU CU R
o

I
P

o
o

lin
g

 K
e

rn
e

l

M
a

x
P

o
o

lin
g

 K
e

rn
e

l

Mul/Ad
der

FR-
Buffer

WR-Buffer

Delay
Registe

r
Relu MCW

Kernel

Off-chip Access On-chip Data Flow PCIe(a)

(b)

M
C

W

L
o

g
ic

Figure 4. (a) Hardware architecture of OpenCL-based Faster R-CNN object detection accelerator.
(b) The hardware architecture of the convolution kernel.

3.2. Hardware Architecture Design
3.2.1. Overall Architecture

As shown in Figure 4a, the proposed Faster R-CNN object detection hardware architec-
ture includes five acceleration kernels, which can implement a series of CNN basic layers,

Entropy 2022, 24, 1346 6 of 18

so that we can obtain object detection accelerators for different backbones by adjusting
the network configuration parameters. The MCR and MCW kernels are responsible for
reading and writing data from the global memory. They are cascaded with the convolution
kernel through the OpenCL pipeline, so there is no need to repeatedly transmit the middle-
layer feature map data and weight parameters, which will greatly improve the bandwidth
utilization of the hardware.

3.2.2. Convolution Kernel

Figure 4b shows the internal structure of the convolution kernel, which reads the
vectorized feature map and weight parameters from the input buffer of the MCR kernel
through the OpenCL pipeline. We set the degree of parallelism at the Compute Unit(CU)
level, which can efficiently accelerate the convolution kernel. Each CU unit is responsible
for processing a series of sub-operations, including multiply and accumulate modules,
delay registers, and Rectified Linear Unit(Relu) units.

The multiply–accumulate module is shown in Figure 5. The vectorized input feature
map and weight parameters are sent to the multiplier and then output to the delay shift
register through the addition tree. The reason for designing the delay shift register is that
the accumulator will self-add, which will cause the reading and writing of the accumulator
results to be in the same memory area, causing memory conflicts. At this time, when a
shift register is added after the accumulator, the result of the accumulator forms a pipeline
between the accumulator and the shift register, which will greatly improve our convolution
kernel execution’s efficiency and throughput.

Mul/Adder and Delay Module

Feature Map

Weight

Vectorized
Feature and

weight

X

X

X

X

X

+
+

+
+

+
+

..
.

.
.. +

...

Mutipler Adder Tree

...

Delay Register

Figure 5. Multiply and accumulate unit of convolutional kernel.

3.2.3. Max Pooling Kernel

Figure 6 shows the accelerator’s max pooling kernel, which consists of a shift register,
a comparator, and two line buffers. The figure shows that the size of the pooling window is
3 × 3. We can see that it first reads data from the global memory and puts them into a shift
register of length three. Then the output of the shift register is compared, and the result of
the comparison is sent to the two line buffers. Finally, we compare the data in the two row
caches again, and the output result is the maximum value of the two row cache data, which
is written back to the global memory. From the perspective of the entire architecture, the
designed max pooling kernel only delays three clock cycles in the shift register, and will
efficiently perform pipeline operations to improve the efficiency of the max pooling kernel.

Entropy 2022, 24, 1346 7 of 18

Max Pooling Kernel

MAX

MAX

M
A
X

First line buffer

Second line buffer

Max pooling result

Shift register

Global Memory Input

Global
Memory Out

put

Figure 6. Max Pooling hardware architecture of proposed Faster R-CNN accelerator

3.2.4. RoI Pooling Kernel

As shown in Figure 7, we propose a RoI Pooling kernel hardware design based on the
NDRange method. First, we used a local work-item to read the region proposal feature
map in the global memory and obtain the information of the four coordinates. Then, the
region proposals generated by the RPN network (the generated size is based on the size
of the original image) were mapped to the size of the last convolution feature map, which
was multiplied by the scaling factor spatial_scale. According to the size of the obtained
region proposal, the max pooling operation was performed on the feature map of the
last convolutional layer. Finally, the output result was reordered and written back to the
global memory in the RoI pooling kernel according to the degree of parallelism. In order to
improve the concurrent workgroup processing of the kernel, work items were assigned to
multiple concurrent workgroups, and the size of each workgroup is (K, K, C). For example,
if we process 64 region proposals at a time, then we can map them to a single 3-D dataset
with the NDRange size of (8, 8, C).

RoI Pooling Kernel

Region Proposal in
image original size

Spatial_scale

M
U
L

Multiplier Region Proposal in
last conv size

RoIs_mapped

Last conv feature
map

Reorder
Logic

G
lo

b
a

l M
e

m
o

ry

G
lo

b
a

l M
e

m
o

ry

Figure 7. RoI Pooling hardware architecture of proposed Faster R-CNN accelerator

3.2.5. MCR/MCW Kernel

As shown in Figure 4a, the data transfer kernels MCR and MCW are responsible
for transferring data between the convolution kernel channel and the global memory.
Specifically, MCR transfers the feature map and weight parameters of the image stored in
the global memory to the input buffer and then transfers them to the convolution kernel.
Similarly, MCW is responsible for writing the feature map data output by the convolution
kernel back into the global memory to feed them into the next layer of the network. The
data flow on the cache is realized through the OpenCL pipeline, which makes the data flow
between the kernels more efficient.

For the MCR and MCW cores, we propose a parallel circuit design in the on-chip cache.
Figure 8 shows the mapping process of the convolutional layer weights, input and output

Entropy 2022, 24, 1346 8 of 18

feature maps in the prefetch window of the MCR/MCW kernel. We design parallelism in
three directions, namely, the channel vectorization parallelism PZvec along the z direction,
the parallelism PYnc of multiple convolutions within the prefetch window along the y
direction, and parallelism based on the convolution kernel dimension PMcu. Specifically,
since the convolution is based on the operation of sliding windows, in order to increase the
bandwidth utilization, we will read the data of a prefetch window size each time, which
vectorizes the data in the z direction; then, multiple convolution operations can be executed
in parallel within the prefetch window in the y direction. Finally, in the dimension of the
convolution kernel, we perform parallel processing on multiple convolution kernels. For
example, we can execute PMcu convolution kernels concurrently.

FTpw

PYnc

weights

PMcu

*

input feature maps

prefetch window

PZvec

output feature maps

z
x

y

Figure 8. Convolutional weights, input and output feature maps mapping scheme of MCR/MCW
Kernel.

3.2.6. Buffer Design

In order to achieve simultaneous access and maximum data-sharing of multiple groups
of convolutional data on the prefetched window feature map, we propose a single-input
and multiple-output line buffer structure to achieve a feature map buffer. As shown in
Figure 9, the designed feature map buffer consists of a dual-port RAM, including one
write port and multiple read ports. Each time we read feature map data that are equal to
the size of the convolution kernel from the prefetch window in Z-order, the sub-window
sequentially slides the convolution kernel step size S units along the X axis. In order to
avoid memory conflicts caused by repeated readings of the same block address by adjacent
convolutions, we read the feature maps of S lines each time and write them into the line
buffer in turn. The proposed design can significantly improve the bandwidth utilization of
feature map transmission.

Conv-FTd

FTd

FTpw

FTpw

Prefetch Window

S

K

...

K’

D
M

U
X

read ports

1

2

3

...

write ports PYnc

x
y

Figure 9. Design and internal structure of the feature map buffer for MCR and MCW kernels. The
figure shows the convolution kernel of size K = K

′
= 3, S = 1, PYnc = 4. Each colored box represents

the convolution kernels executed in parallel.

Entropy 2022, 24, 1346 9 of 18

3.3. Hardware-Aware Algorithm-Level Optimization
3.3.1. Fixed-Point Quantization for Faster R-CNN

Although floating-point numbers can represent higher data accuracy, the implementation
of floating-point data on FPGA will use more storage resources and computing resources,
which will lead to a longer object detection forward inference time. With the complexity and
deepening of the network backbone, the requirements for reasoning delay will become more
and more demanding. Therefore, it is extremely important to compress the network. Recent
studies [14,28] have shown that using fixed-point formats (8/16bit) instead of floating-point
data in FPGAs can significantly reduce bandwidth requirements and dependence on on-chip
resources. However, this does not mean that we can use a too-short bit width to represent
the weight and activation of the network, because this will cause a serious loss of accuracy.
For example, the current binarization research work only uses 1 bit to compress the network
model to the extreme, but there will still be a significant decrease in accuracy. At present, there
is some research [29–31] on ultra-low precision quantization, such as binarization research
work, which only uses one bit to compress the network model extreme. However, at present,
the gap with the full-precision model is still huge.

In this paper, we extend the dynamic precision data quantification scheme proposed
in [14]. Specifically, we performed 8-bit width fixed-point quantization on the weights,
input and output of the convolutional layer, as well as the fully connected layer in Faster
R-CNN. Since the data of Faster R-CNN on the host side are a floating-point number, we
need to convert them to a fixed-point number before they can be sent to the FPGA device.
The definition of fixed-point quantization is as follows:

Q f = (−1)s · 2−FL
bw−2

∑
i=0

2i · Bi (1)

where Q f denotes the quantized fixed-point number, s represents the sign bit, FL indicates
that the fractional length may be positive or negative, bw denotes the bit width of the
fixed-point number, and Bi denotes mantissa.

The goal of quantifying Faster R-CNN object detection is to find the optimal fractional
length FL for the model weight parameters, the input and output in each convolution layer
or the fully connected layer under the condition of minimal losses of accuracy. They are
denoted as WFL, INFL, and OUTFL , respectively. Specifically, as shown in Algorithm 1,
we first set the target bit width bw for the model parameters, the input, and the output
of the convolutional layer or the fully connected layer of Faster R-CNN(denoted as BWw,
BWin and BWout), and then traversed this layer by layer until it met the detection accuracy
constraints.

Taking model parameters as an example, we set the traversal range to [−R+W i
FLinit

, R+

W i
FLinit

], where R is a threshold , and W i
FLinit

represents the fractional length initialization
of i-layer weights. Here, we set the method of initializing the length of the weight of the i
layer as follows:

W i
FLinit

= BWw − log2(max(Wi) + 1) (2)

The input and output settings of the convolutional layer and the fully connected
layer were the same as the parameters. Here, we set the traversal range to be very small
(usually set to 3). This will not affect the accuracy losses of Faster R-CNN, which will
greatly improve the efficiency of our experiment. Table 2 shows the quantization results
of the Faster R-CNN object detection framework based on different network backbones.
The model with the result of vgg16 was used as the backbone network, and compressed
four times, from the original 137.1 MB to 34.3 MB. Therefore, fixed-point quantization can
compress the model to accelerate the Faster R-CNN object detection accelerator.

Entropy 2022, 24, 1346 10 of 18

Algorithm 1: Fixed-Point Quantization Algorithm Flow For Faster R-CNN
Input: Total number of convolutional and fc layers N , Faster R-CNN model

parametersW = {W1, W1, · · · , WL} the traversal range of fractional length
R, target bit-width of model parameters, input and ouput in each layer
BW = {BWw, BWin, BWout}, minimal gap between fixed-point precision
and 32-bit full-precision ε

1 , Output: The fractional length of Faster R-CNN model weight parameters, the
input and output in each convolution and fully connected layer
WFL =

{
W1

FL, W2
FL, · · · , W N

FL
}

, INFL =
{

IN1
FL, IN2

FL, · · · , INN
FL
}

,
OUTFL =

{
OUT1

FL, OUT2
FL, · · · , OUT N

FL
}

2 Load network Faster R-CNN model parametersW ;
3 Initialize i = 0 ;
4 Initialize the fractional length of the model parameters and the input of the i-th

layer W i
FLinit

,INi
FLinit

by Equation (2) ;
5 for i reach maximum of convolutional and fc layers N do
6 for the distance between fixed-point and full precision of less than ε do
7 for the distance between fixed-point and full precision of less than ε do
8 Traverse the weight parameter fractional length W i

FL of the i-th layer
within the traversal range [−R + W i

FL, R + W i
FL] ;

9 Test the precision MAPf ixed of the fixed-point Faster R-CNN network ;
10 end
11 Update model parametersW and fractional length W i

FL,IN i
FL ;

12 Initialize the fractional length of the output of the i-th layer OUT i
FLinit

by
Equation (2) ;

13 Traverse the output fractional length OUT i
FL of the i-th layer within the

traversal range [−R + OUT i
FL, R + OUT i

FL] ;
14 Test the precision MAPf ixed ;
15 end
16 i := i + 1
17 end

Table 2. Faster R-CNN 8-bit quantization result

Model float32 mAP FP8 mAP # Param # Param
Quantized

Faster-RCNN-vgg16 69.0% 68.3% 137.1 MB 34.3 MB
Faster-RCNN-resnet50 73.7% 73.4% 236 MB 59 MB

3.3.2. Layer Fusion

The convolution layer convolves the input feature map with the convolution kernel to
obtain the output feature map. This is actually a three-dimensional multiply–accumulate
operation, defined as follows:

f out
n,i,j =

C−1

∑
c=0

K−1

∑
kx=0

K−1

∑
ky=0

f in
c,i·S+kx ,j·S+ky

×Wn,c,kx ,ky (3)

where f in
c,i·S+kx j·S+ky

and f out
n,i,j represent the input and the output feature map of the convo-

lutional layer, respectively. Wn,c,kx ,ky denotes model parameters.
The Batch Normalization (BN) layer is used by many deep models due to its ability to

speed up convergence and prevent gradient explosion or gradient disappearance. Generally
speaking, the BN layer is behind the convolutional layer, which allows us to directly embed
the operations of the BN layer into the convolutional layer during the inference stage of

Entropy 2022, 24, 1346 11 of 18

the network. This can effectively reduce the amount of network calculations, and can also
increase the network’s reasoning time. Specifically, in the inference stage, the definition of
the BN layer is as follows:

f BN = γ× f in − µ√
σ2 + ε

+ β (4)

where f in is input of the BN layer (the output of the convolutional layer), f BN represents
the output of the BN layer, and µ represents the average and variance of the mini-batch. γ
is the scaling factor, β is the translation factor, and ε avoids the minimum value set by the
division by zero.

We further expand the above Equation (4):

f BN =
γ√

σ2 + ε
× f in + β− µ√

σ2 + ε
(5)

Therefore, we can transform this into the following:

f BN = WBN × f in + b (6)

where
WBN =

γ√
σ2 + ε

, b = β− µ√
σ2 + ε

(7)

Then, the weight of the fusion of the BN layer and the convolutional layer is a simple
multiplication of the two-layer parameter:

W f usion = Wn,c,kx ,ky ·W
BN (8)

The experimental results show that the layer fusion optimization has no accuracy loss,
but provides great benefits in the utilization of hardware resources.

3.3.3. Multi-Batch RoIs Detector

From Figure 10a, we know that the region proposals (denoted as Rois) obtained through
the RoI pooling layer are used in the subsequent detection phase (including two fully con-
nected layers and two 1 × 1 convolutional layers). As shown in Figure 10b, since Rois is an
independent execution detection phase, we propose a multi-batch RoIs detector method for
this feature in this article. Specifically, assuming that the total of Nrois region proposals are
output and Nrois can perform square root rounding operations, we can rearrange these into
the frame on the right side of Figure 10b, where Nrois = Rx × Ry. Through this reordering, we
can transform the original serial execution of multiple region proposals into a stage outputting
multiple region proposals at once. This can help the network to achieve a speedup gain of up
to 11.1×, which greatly reduces bandwidth utilization and increases throughput. Section 5.2
demonstrates the effectiveness of the approach.

ROI pooling

softmax

bbox pred

cls prob

RoIs Nroi

RoIs

RoIs

RoIs

.

.

.

Rx

Ry

C

(a) (b)

Figure 10. (a) Classification and regression network. (b) Based on hardware-aware Multi-batch RoIs’
detector algorithm optimization.

4. Performance Modeling

Maximizing the performance of the designed Faster R-CNN object detection accelera-
tor while being constrained by the limited resources of the FPGA is a formidable challenge.

Entropy 2022, 24, 1346 12 of 18

Synthesis fails because FPGA synthesis runs for a long time (maybe hours) or because of
insufficient hardware resources. Compiling for every combination of hardware parameters
is unwise and unfeasible. Therefore, this paper models performance and bandwidth for
rapid design space exploration. We assume that the input feature map size of the l layer of
our network is Nl × Pl × Cl , the size of the convolution kernel is Kl × K

′
l × Cl , the step size

is Sl , and the output feature map size is N
′
l × P

′
l × C

′
l .

Figure 8 shows that the designed accelerator has three dimensions of parallelism,
which are based on the parallelism of different convolution kernels (PMcu), the parallelism
PYnc of multiple convolutions within the prefetch window along the y direction and the
channel vectorization parallelism PZvec along the z direction. Choosing the best combina-
tion of design variables (PMcu, PYnc, PMcu) can maximize the performance of the Faster
R-CNN accelerator. Since the fully connected layer can be regarded as a convolutional layer
of 1× 1, we model the running time of the convolutional or fully connected layer under
the condition of FPGA resource constraints:

Rl
time =

Operations l

PMcu × PZvec × PYnc × Clock

min
PMcu ,PZvec ,PYnc

L

∑
l=1

(
Rl

time

)
s.t. Ruse ≤ MAXRC

(9)

where #Operationsl = N
′
l × P

′
l × C

′
l × Kl × K

′
l × Cl represents the l layer operations, Clock

indicates the clock frequency at which the accelerator works. Ruse represents the number of
FPGA resources consumed by the designed accelerator to run, including DSP, logic resources,
and on-chip memory, and MAXRC represents the total number of resources that are actually
owned by a given FPGA. The total time of the other functional layers is insignificant when
compared to the total runtime, so the total throughput can be evaluated as:

THPtotal =
1

∑L
l=1

(
Rl

time
) (10)

The detailed design space exploration process and resource exploration are elaborated
in the following experimental Section 5.2, and we compare the obtained theoretical time
with the time measured on the board on an actual FPGA.

5. Results
5.1. Experimental Setup

To evaluate the performance of the proposed object detection accelerator, we imple-
mented the design on Intel Arria-10 GX FPGA Development Kit. The FPGA device has
427 K Adaptive Logic Modules, 1518 DSP blocks, 66 Mb of on-chip memory, 2 GB of off-chip
memory, and external memory DDR. The bandwidth is 19.2 GB/s. The FPGA board is
equipped with an Intel i9-9900k CPU and 64 GB memory on the workstation. The proposed
framework adopts a high-level synthesis (HLS)-based design method, and its OpenCL
kernel code is compiled on Intel FPGA OpenCL SDK v20.1. The host-side CPU executes
the host program and the device-side FPGA executes the kernel code with a large amount
of computation, such as convolutional layers, fully connected layers, etc. We selected two
backbone networks (resnet50 [3] and vgg16 [2]) to test the performance of the Faster R-CNN
accelerator. The Pascal VOC2007 dataset [32] was used to measure the detection accuracy
of Faster R-CNN. We quantized the Faster R-CNN model with 8-bit precision, and the
accuracy dropped by less than 1%.

5.2. Design Space Exploration

We developed an automatic design space exploration engine based on a python script
to fully and reasonably use hardware resources. As shown in Figure 11, this solution

Entropy 2022, 24, 1346 13 of 18

can automatically load the fixed-point model to quickly compile multiple accelerator
kernel codes. Then, we analyzed and counted the consumed hardware resources using
compilation report and selected the best theoretical performance that met the expectations
to execute the complete compilation and synthesis process, and finally generate the FPGA
bitstream file.

Specifically, we first analyzed the Faster R-CNN model from the perspective of perfor-
mance modeling. For a specific network later, the speedup gain introduced by the parallel
data flow along the y direction iwa affected by the ratio N

′
/PYnc. Figure 12 shows the

speedup gain curves of the Faster R-CNN model under different degrees of parallelism
PYnc. We can see that the speedup gain of different backbone network models rapidly
decreased when PYnc > 14. For large values of PYnc, the increase in speed drops rapidly
for layers with small feature maps along the y direction. Therefore, we chose PYnc = 14 as
the best configuration for hardware parameters. As shown in Figure 9, the line buffer of the
feature map should accommodate the prefetch window of one line, and the buffer depth
FTd of the feature map should satisfy FTd ≥ FTpw · S · C. In this way, we can obtain the
optimal FTd in the model. From Figure 12, we can also see that the proposed multi-batch
RoIs’ detector method can greatly improve the speed. For example, when PYnc = 14, the
speed using this method increased by 11.1× (blue line in the figure), while the speed when
not using this method only increased by 3.2× (green line in Figure 12).

Fixed-point Model

Faster R-CNN Model Analysis

Bandwidth Analysis and Performance Evaluation

FTd PYnc

Fast Compilation

PMcu PZvec

FPGA Bitstream

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 1 0 12 14 1 6

DS
P
Bl
oc
ks

Ncu

Wvec=2

Wvec=4

Wvec=8

Wvec=16

0

50

100

150

200

250

300

350

2 4 6 8 1 0 12 14 1 6

Lo
gi
c E

le
m
en

ts
(K
)

Ncu

Wvec=2

Wvec=4

Wvec=8

Wvec=16

0

1000

2000

3000

4000

5000

6000

2 4 6 8 1 0 1 2 1 4 1 6

Ex
cu
tio

n
Ti
m
e(
m
s)

Ncu

Wvec=2

Wvec=4

Wvec=8

Wvec=16

0

500

1000

1500

2000

2500

1 2 3 4

M
20
K
RA

M

Ncu

Wvec=2

Wvec=4

Wvec=8

Wvec=16

Figure 11. Design space exploration flow.

Then, we quickly compiled the kernel code for the target FPGA device multiple times,
and obtained the consumed hardware resource information such as DSP, on-chip storage,
and logic from the compilation report. The huge advantage of this fast compilation is that
the model can be generated quickly through the python scripting language. Figure 13
shows the design space exploration results of the proposed Faster R-CNN accelerator,
and the average execution time per image is calculated by Equation (9). We can see
that when PMcu = 16, PZvec = 16, the DSP utilization of the target device Arria-10
GX1150 FPGA exceeds 99%; therefore, when we increase the parallelism, the compilation
will fail. Therefore, for the Faster R-CNN network whose backbone network is resnet50,

Entropy 2022, 24, 1346 14 of 18

the hardware parameters are configured as PMcu = 16, PZvec = 16 to maximize the
performance and resource utilization of the accelerator.

5 10 15 20 25 30
PYnc

5

10

15

20

25

Sp
ee

du
p

Ga
in

upper limit(y=x)

FR-resnet50
FR-resnet50-serial
FR-vgg16
FR-vgg16-serial

Figure 12. Exploration of the optimal value of PYnc under the frequency of 200 MHz.

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12 14 16

DS
P
Bl
oc
ks

PMcu

PZvec=2

PZvec=4

PZvec=8

PZvec=16

0

50

100

150

200

250

300

350

2 4 6 8 10 12 14 16

Lo
gi
c
El
em

en
ts
(K
)

PMcu

PZvec=2

PZvec=4

PZvec=8

PZvec=16

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10 12 14 16

Ex
ec
ut
io
n
Ti
m
e(
m
s)

PMcu

PZvec=2

PZvec=4

PZvec=8

PZvec=16

0

500

1000

1500

2000

2500

1 2 3 4

M
20
K
RA

M

PMcu

PZvec=2

PZvec=4

PZvec=8

PZvec=16

Figure 13. Design space exploration results for proposed Faster R-CNN object detection accelerator
using resnet50 [3] model with PYnc = 14 and the frequency is 200 MHz.

5.3. Comparison with Estimated Performance

As shown in Figure 14, we obtained the theoretical execution time of convolutional
and fully connected layers from Equation (9) for performance modeling, and compared this
with the actual execution time in the designed accelerator. From Figure 14, we can observe
that the execution efficiency of most convolutional layers is about 80%. The main reason
for this is that the size of the convolution kernel is 1× 1, which means that the calculation
amount on the FPGA chip is too small. In this case, the accelerator transmits data most of
the time; that is to say, the computing unit on the FPGA chip is waiting most of the time
instead of working, resulting in a low utilization of the accelerator’s core channel pipeline.

Entropy 2022, 24, 1346 15 of 18

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

0.000

10.000

20.000

30.000

40.000

50.000

60.000

Ef
fic
ie
nc
y

Ti
m
e(
m
s)

Estimated Latency Actual Latency Efficiency

Figure 14. Comparison of the efficiency of the convolution computation for each layer of the Faster
R-CNN and the backbone network is vgg16 [2]. The estimated time is calculated using the theoretical
performance model, and the actual time is on the Faster R-CNN-vgg16 design.The hardware configure
parameters is PYnc = 14, PMcu = 16, PZvec = 8.

5.4. Comparison with Start-of-the-Art

As shown in Table 3, we first compared the proposed accelerator design with the state-of-
the-art Faster R-CNN accelerator with the same backbone network on different acceleration
platforms. Using the premise that the backbone networks are all vgg16 [2], we achieved
the highest detection accuracy, while the detection speed was 3.5× of work [16] and 2.7× of
work [18]. On this basis, we achieved a full throughput improvement of 10× over work [18].
Second, we compared the YOLO family of state-of-the-art one-stage detectors, whose designs
employ different types of convolution strategies, including spatial convolution [19], frequency
domain convolution [24], and multiplication-free binary convolution [17]. As shown in Table 1,
since the input image resolution of Faster R-CNN is larger than that of the one-stage detector,
the computation of Faster R-CNN ranges from about 3 to 6 times larger than that of YOLO.
Therefore, even though our designed Faster R-CNN accelerator has a lower detection speed
than the YOLO accelerator, the proposed design comparison work [17] achieves a performance
improvement of 2.1× in terms of throughput.

Table 3. Comparison with the state-of-the-art object detection FPGA accelerators.

Implementation Resolution Precision Target
Device

Logic
Usage

DSP
Usage

RAM
Usage Clock Latency

(ms)
Throughput
(GOP/s)

Accuracy
(mAP) Power(W)

Faster R-CNN
(vgg16) [16] - 32(float) Xilinx

ZC706 - - - 200 MHz 875 - - 1.167

Faster R-CNN [18] - 8(fixed) Zynq
7045 - - - - 680 86.8 66 3

YOLOv1 [18] 416 × 416 8(fixed) Xilinx
KU115 - - - - 65 461.5 62 13

Lightweight
YOLOv2 [17] 224 × 224 1-16(fixed) Zynq

MPSoC - - - 300 MHz 24.5 408.1 67.6 4.5

OpenCL-
YOLOv2 [19] 416 × 416 8(fixed) Arria-10

GX1150 34% 72% 68% 200 MHz 53 566 76 26

FCLCNN [24] 416 × 416 16(fixed) Arria-10
GX1150 50% 98% 88% 278 MHz 53.8 557.6 76.08 45

Proposed Faster
R-CNN(resnet50) 800 × 600 8(fixed) Arria-10

GX1150 71% 99% 72% 172 MHz 153.6 719 73.4 26

Proposed Faster
R-CNN(vgg16) 800 × 600 8(fixed) Arria-10

GX1150 71% 99% 72% 172 MHz 248.7 864.9 68.3 26

Entropy 2022, 24, 1346 16 of 18

Finally, the first row of Table 4 shows a comparison with the results achieved on
NVIDIA K40 GPU [4]. When the same backbone network is run vgg16 [2], the results
show that our designed Faster R-CNN accelerator achieved a 5.7× improvement in power
efficiency at the cost of a 1-point drop in detection accuracy. Compared with GPU, the
hardware accelerator designed in this paper, which can be deployed on FPGA, has more
flexibility and a higher practical application value.

Table 4. Comparison with the baseline GPU imlpementation.

Implementation Resolution Precision Target Device Latency (ms) Throughput
(GOP/s)

Accuracy
(mAP)

Power
Efficiency (GOP/s/W)

Faster R-CNN GPU basline [4] 800 × 600 32(float) Nvidia K40 198 1372.2 69.9 5.83
Proposed Faster

R-CNN(resnet50) 800 × 600 8(fixed) Arria-10
GX1150 153.6 719 73.4 27.7

Proposed Faster
R-CNN(vgg16) 800 × 600 8(fixed) Arria-10

GX1150 248.7 864.9 68.3 33.3

6. Conclusions

This work proposes a high-throughput Faster R-CNN object detection accelerator
design. The hardware architecture designed in this paper adopts a series of flexible and
scalable kernel pipeline designs to support Faster R-CNN architectures of different back-
bone networks such as resnet50, vgg16, etc. Through an 8 bit width quantization, layer
fusion, and ,ulti-batch RoIs detector method, the resource utilization of the hardware is
greatly improved. We also propose end-to-end design space exploration, and the experi-
mental results show that our design achieves a 10x improvement in inference throughput
compared to state-of-the-art designs.

For future studies, we intend to sparse the Faster R-CNN design and achieve a higher
compression ratio, using the pruning algorithm to achieve a more efficient Faster R-CNN
detection accelerator.

Author Contributions: Methodology, J.A.; software, J.A., D.Z. and K.X.; writing and editing, J.A.;
analysis, J.A. and D.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Beijing Natural Science Foundation under Grant No. 4202063,
National Key Research and Development Program of China under Grant No. 2019YFB2204200.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable
comments and constructive suggestions, which helped in improving the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
2. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

cOmputer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
4. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]
5. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December

2015; pp. 1440–1448.
6. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

http://doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

Entropy 2022, 24, 1346 17 of 18

7. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and pAttern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

8. Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition.
IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]

9. Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. [DL] A survey of FPGA-based neural network inference accelerators. ACM Trans.
Reconfigurable Technol. Syst. (TRETS) 2019, 12, 1–26. [CrossRef]

10. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on fIeld-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; pp. 161–170.

11. Wang, D.; An, J.; Xu, K. PipeCNN: An OpenCL-based FPGA accelerator for large-scale convolution neuron networks. arXiv 2016,
arXiv:1611.02450.

12. Wang, D.; Xu, K.; Jia, Q.; Ghiasi, S. ABM-SpConv: A Novel Approach to FPGA-Based Acceleration of ConvolutionaI NeuraI
Network Inference. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA,
2–6 June 2019; pp. 1–6.

13. Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.; Vrudhula, S.; Seo, J.S.; Cao, Y. Throughput-optimized OpenCL-based FPGA
accelerator for large-scale convolutional neural networks. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 16–25.

14. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper with embedded fpga platform
for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

15. Zeng, H.; Chen, R.; Zhang, C.; Prasanna, V. A framework for generating high throughput CNN implementations on FPGAs. In
Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 25–27
February 2018; pp. 117–126.

16. Zhao, R.; Niu, X.; Wu, Y.; Luk, W.; Liu, Q. Optimizing CNN-based object detection algorithms on embedded FPGA platforms. In
Proceedings of the International Symposium on Applied Reconfigurable Computing. Springer, Delft, The Netherlands, 3–7 April
2017; pp. 255–267.

17. Nakahara, H.; Yonekawa, H.; Fujii, T.; Sato, S. A lightweight YOLOv2: A binarized CNN with a parallel support vector regression
for an FPGA. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 25–27 February 2018; pp. 31–40.

18. Yu, J.; Guo, K.; Hu, Y.; Ning, X.; Qiu, J.; Mao, H.; Yao, S.; Tang, T.; Li, B.; Wang, Y.; et al. Real-time object detection towards high
power efficiency. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 19–23 March 2018; pp. 704–708.

19. Xu, K.; Wang, X.; Liu, X.; Cao, C.; Li, H.; Peng, H.; Wang, D. A dedicated hardware accelerator for real-time acceleration of
YOLOv2. J. -Real-Time Image Process. 2021, 18, 481–492. [CrossRef]

20. Ding, C.; Wang, S.; Liu, N.; Xu, K.; Wang, Y.; Liang, Y. REQ-YOLO: A resource-aware, efficient quantization framework for object
detection on FPGAs. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Seaside, CA, USA, 24–26 February 2019; pp. 33–42.

21. Wang, Z.; Xu, K.; Wu, S.; Liu, L.; Liu, L.; Wang, D. Sparse-YOLO: Hardware/Software co-design of an FPGA accelerator for
YOLOv2. IEEE Access 2020, 8, 116569–116585. [CrossRef]

22. Yu, L.; Zhu, J.; Zhao, Q.; Wang, Z. An Efficient YOLO Algorithm with an Attention Mechanism for Vision-Based Defect Inspection
Deployed on FPGA. Micromachines 2022, 13, 1058. [CrossRef] [PubMed]

23. Pestana, D.; Miranda, P.R.; Lopes, J.D.; Duarte, R.P.; Véstias, M.P.; Neto, H.C.; De Sousa, J.T. A full featured configurable
accelerator for object detection with YOLO. IEEE Access 2021, 9, 75864–75877. [CrossRef]

24. Xu, X.; Liu, B. FCLNN: A flexible framework for fast CNN prototyping on FPGA with OpenCL and caffe. In Proceedings of
the 2018 International Conference on Field-Programmable Technology (FPT), Naha, Okinawa, Japan, 10–14 December 2018;
pp. 238–241.

25. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

26. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013,
104, 154–171. [CrossRef]

27. Khronos OpenCL Working Group; The OpenCL Specification Version 1.1. 2011. Available online: http://www.khronos.org/
registry/cl/specs/opencl-1.1.pdf (accessed on 20 September 2022).

28. Gysel, P.; Pimentel, J.; Motamedi, M.; Ghiasi, S. Ristretto: A framework for empirical study of resource-efficient inference in
convolutional neural networks. IEEE Trans. Neural Networks Learn. Syst. 2018, 29, 5784–5789. [CrossRef] [PubMed]

29. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.
In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2016; Springer: New York,
NY, USA, 2016; pp. 525–542.

http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1145/3289185
http://dx.doi.org/10.1007/s11554-020-00977-w
http://dx.doi.org/10.1109/ACCESS.2020.3004198
http://dx.doi.org/10.3390/mi13071058
http://www.ncbi.nlm.nih.gov/pubmed/35888875
http://dx.doi.org/10.1109/ACCESS.2021.3081818
http://dx.doi.org/10.1007/s11263-013-0620-5
http://www. khronos. org/registry/cl/specs/opencl-1.1. pdf
http://www. khronos. org/registry/cl/specs/opencl-1.1. pdf
http://dx.doi.org/10.1109/TNNLS.2018.2808319
http://www.ncbi.nlm.nih.gov/pubmed/29993820

Entropy 2022, 24, 1346 18 of 18

30. Liu, Z.; Wu, B.; Luo, W.; Yang, X.; Liu, W.; Cheng, K.T. Bi-real net: Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorithm. In Proceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany, 8–14 September 2018; pp. 722–737.

31. Leng, C.; Dou, Z.; Li, H.; Zhu, S.; Jin, R. Extremely low bit neural network: Squeeze the last bit out with admm. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

32. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

http://dx.doi.org/10.1007/s11263-009-0275-4

	Introduction
	Preliminaries
	Review of the Faster R-CNN Algorithm
	OpenCL-Based Heterorgeneous Computing Platform Setup

	System Design
	Software and Hardware Architecture Co-Design Scheme
	Hardware Architecture Design
	Overall Architecture
	Convolution Kernel
	Max Pooling Kernel
	RoI Pooling Kernel
	MCR/MCW Kernel
	Buffer Design

	Hardware-Aware Algorithm-Level Optimization
	Fixed-Point Quantization for Faster R-CNN
	Layer Fusion
	Multi-Batch RoIs Detector

	Performance Modeling
	Results
	Experimental Setup
	Design Space Exploration
	Comparison with Estimated Performance
	Comparison with Start-of-the-Art

	Conclusions
	References

