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Abstract: Extraction of subsets of highly connected nodes (“communities” or modules) is a standard
step in the analysis of complex social and biological networks. We here consider the problem of
finding a relatively small set of nodes in two labeled weighted graphs that is highly connected in both.
While many scoring functions and algorithms tackle the problem, the typically high computational
cost of permutation testing required to establish the p-value for the observed pattern presents a major
practical obstacle. To address this problem, we here extend the recently proposed CTD (“Connect
the Dots”) approach to establish information-theoretic upper bounds on the p-values and lower
bounds on the size and connectedness of communities that are detectable. This is an innovation on
the applicability of CTD, broadening its use to pairs of graphs.

Keywords: pattern discovery; connectedness; information theory; community detection

1. Introduction

Numerous social and biological networks can be modeled as graphs where each node
is uniquely labeled and where edge weights represent strength of connections, such as
strength of connection of two individuals within a social network or correlations between
two genes or two metabolites in a biological network. Extraction of subsets of highly
connected nodes (“communities” or modules) is a standard network analysis step. A wide
array of community detection algorithms exist [1], some of them based on information
theory [2,3]. We here consider the related problem of finding a relatively small set of nodes
in two labeled weighted graphs that is highly connected in both. Notably, the nodes may
be connected using only partially overlapping or even completely non-overlapping sets
of edges within the two graphs. Moreover, edge weights are taken into account. While
many scoring functions and algorithms may tackle the problem, the computational cost
of permutation testing that is required to establish the p-value for the observed pattern of
high connectedness of the corresponding nodes in the two graphs presents a major obstacle
in practical applications to large networks. To address this problem, we here extend the
recently proposed CTD (“Connect the Dots”) information-theoretic approach [4].

More formally, given two weighted undirected graphs G1 and G2 of same size with
unique node labels, the set of labels being identical for the two graphs, consider the problem
of detecting a subset S of node labels where corresponding nodes are highly connected in
both graphs. Specifically, we focus on establishing information-theoretic upper bounds
on the p-values and lower bounds on the size and connectedness of communities that are
detectable. Our results are independent of the algorithm used to detect S and thus pave
the way to many practical implementations. For example, the method can be used to test
the statistical significance of shared network substructures provided by some “external
user”, no matter the context of data represented by the networks or the procedure used
to choose the observed substructures which correspond to S. If the chosen substructures
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contain a shared connectivity pattern, it will be detected and its statistical significance will
be measured.

The problem of discovering a shared highly connected node module has broad ap-
plications in biology. Namely, gene co-expression networks and metabolic networks are
weighted undirected labeled graphs in which patterns of connectedness are very important
to detect and evaluate. Our previous work illustrates successful application of information-
theoretic methods to both gene expression networks in breast cancer [4] as well as to
metabolic networks that model metabolomic perturbations in human inborn errors of
metabolism [5,6]. A vast array of applications can be envisioned in social network analysis.
For example, groups of individuals that form tightly-knit communities on several different
social media platforms could be identified. The problem of finding a significantly con-
nected common set of nodes is at some level related to the classical network theory problem
of finding a maximum common subgraph (MCS). Despite being NP-hard, MCS remains
important for its applications in chemoinformatics [7], protein function prediction [8], etc.
However, the MCS problem is distinct as it is defined on graphs with unlabeled nodes and
centers on finding the correspondence of nodes and edges as it seeks the largest common
subgraph. In contrast, we are interested in nodes that may possibly be connected using
distinct sets of edges in the two graphs. Moreover, unlike in MCS, in our case, the edge
weights also count.

Our solution extends the Connect the Dots (CTD) [4] approach based on information
theory that can be used in its current implementation to find a significantly connected
sub-set of nodes within a given set S of nodes in the input weighted graph G. The method
provides an upper bound on the p-value that measures how significant this connectedness
is in G. CTD also finds a subgraph F whose nodes originate from S, which expresses the
pattern of high connectedness that is measured by the p-value. It has been successfully
employed in clinical diagnosis of 16 inborn errors of metabolism [4] as well as evaluation
of other metabolic disorders [6]. CTD-based metrics outperforms rule-based biomarker
models and shows comparable accuracy to pathway-based models, thus providing a
valuable method for automated, quantitative and scalable diagnosis of metabolic diseases,
especially those lacking clear pathway knowledge [4].

The main advantage of CTD over other candidate algorithms for connectedness
discovery is its ability to calculate a p-value via use of information theory, without the
need to conduct costly permutation testing. Next, a very powerful aspect of CTD is that
knowledge about the whole graph G is not needed, just the information about its size and
knowledge about the nodes in S and close to it (one or two hops from a node from S). These
facts make it quick and efficient even for big graphs and ideal for the application of finding
shared highly connected node modules.

The core idea of this paper is to use one of the input graphs as a proposer graph, while
the other graph takes the role of a tester as shown in Figure 1. The proposer proposes a
node subset S, and we use CTD to calculate the p-value for S in the tester. However, this
p-value needs to be corrected for multiple testing and we do this by applying weighted
Bonferroni correction. Weights for the weighted Bonferroni correction are chosen using
Kraft–McMillan inequality [9,10] to construct a probability distribution on the power set of
the proposer graph, based on the CTD encoding scheme and the algorithmic significance
theorem [11]. Afterwards, the probability of S occurring in G1 according to the calculated
probability distribution is used as the weight for weighted Bonferroni correction. The
described procedure is an information theoretic algorithm based on CTD that can evaluate
the statistical significance of connectedness of a node module in a graph pair, that is, solve
the problem of shared highly connected node module detection.
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Figure 1. Process of calculating relation between the proposer and tester graphs.

2. Materials and Methods

In this section, we give a short review of the main features of the CTD algorithm
and the mathematical apparatus applied in our work. Furthermore, we describe the
methodology of conducting synthetic graph generation for the purpose of testing of our
approach and list the set of software tools and platforms used in implementation.

2.1. Probability Distribution on the Power Set of G

Let G(V, E) be a weighted undirected graph and let P(V) denote its power set. As
discussed in [4], running the CTD algorithm on G with the chosen node subset S yields
an optimal bitstring encoding for S, constructed via the CTD’s encoding scheme. Let l(A)
denote the length of the optimal encoding of the node subset A. The encoding scheme used
by CTD satisfies the requirements for applying the Kraft–McMillan inequality to the set
of encodings of P(V). Emulating the proof of Algorithmic significance theorem [11], the
following inequality holds:

∑
A∈P(V)

2−l(A) ≤ 1 (1)

Therefore, for some k < 1, we have ∑A∈P(V) 2−l(A) = k. Then, after dividing both
sides with k, we obtain:

∑
A∈P(V)

2−l(A)

k
= 1 (2)

This generates a discrete probability distribution on the power set of G, where P(A) =
2−l(A)

k . Therefore, the probability of some node subset A ∈ P(V) and the pattern of its
induced subgraph occurring in G, according to the probability distribution generated by
the CTD’s encoding scheme, are given by:

P(A) =
2−l(A)

k
≥ 2−l(A) (3)

Note that, in order to get a bound on probability of a node subset A, we only need to
run CTD to encode A, without the need to encode all possible subgraphs of G.

2.2. Applying Weighted Bonferroni Correction

Let G1(V1, E1) and G2(V2, E2) be weighted graphs with identical node labels (V1 ≡ V2)
and let P be a discrete probability distribution on the power set of G1 generated by running
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the CTD encoding scheme on G1, as discussed in the previous subsection. Alternatively, G1
and G2 can be graphs with an established node correspondence.

Let S be a subset of nodes of G1 that was deemed significant in G1. Let p(S, G2) be
a p-value of S in G2, as calculated by CTD. Then, in order to acquire a p-value for the
significance of S as a common subset of G1 and G2, we need to apply a correction for
multiple testing, as we are choosing S as a subset of P(V1). As P is a discrete probability
distribution on P(V1), we can take weights for weighted Bonferroni correction as

wA = P(A), A ∈ P(V1). (4)

Then, the weighted Bonferroni corrected p-value pBon f erroni is calculated as

pBon f erroni(S, G1, G2) =
p(S, G2)

P(S)
(5)

As shown in [4], by the direct application of the Algorithmic significance theorem [11]
on the CTD encoding scheme as the coding algorithm, the CTD calculated p-value can be
bounded as follows:

p(S, G2) ≤ 2−dscore , (6)

where dscore can be calculated as a difference between the lengths of encodings given by
the null hypothesis and the alternate hypothesis. To reiterate, when S is much smaller
than G, the encoding given by the null hypothesis encodes each node in G with log2(|V|)
bits. The encoding according to the alternate hypothesis is based on the CTD encoding
scheme. It firstly encodes one of the nodes in S using about log2(|V|) bits. Afterwards, a
probability-diffusion-based network walker is used to encode other nodes in S, by visiting
nodes in descending order of probability diffused to them. Some nodes from S are possibly
not encoded in this compressed manner and need to be “hardcoded” with log2(|V|) bits.

Plugging in Equations (3) and (6) into Equation (5), we have

pBon f erroni(S, G1, G2) ≤
2−dscore

2−l(A)
(7)

Using the notation described in [4] and writing Equation (7) in terms of the encodings
given by the alternate hypothesis and null hypothesis, we obtain

pBon f erroni(S, G1, G2) ≤
2−(I0(G2)−IA(G2))

2−IA(G1)
(8)

Therefore,

pBon f erroni(S, G1, G2) ≤ 2−(I0(G2)−IA(G2)−IA(G1)) (9)

or, taking a logarithm with base 2,

log2(pBon f erroni(S, G1, G2)) ≤ IA(G1) + IA(G2)− I0(G2) (10)

Equation (10) gives us an upper bound for the p-value. As expected, it depends on
the lengths of bitstring encodings of S in G1 and G2 and the null hypothesis, which is only
impacted by the size (number of nodes) of G2.

The use of encoding-induced probability distribution on the power set of G1 to gener-
ate weights for weighted Bonferroni correction is an unassuming, but significant novelty
of this method. It leads to Equation (10), which brings a key innovation, as it allows for
CTD to be applied to a pair of graphs, instead of using it on a singular graph. Furthermore,
Equation (10) can be easily generalized to multiple graphs by repeating the same approach
for correcting for multiple testing.
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2.3. Setup for Synthetic Graph Generation

Using weighted Bonferroni correction weakens the statistical power and yields statis-
tical significance that is lower than the statistical significance of S in the proposer graph.
Estimating the precise impact of the Bonferroni correction on the resulting p-value is too
computationally expensive. Therefore, an empirical approach is used. We synthesize pairs
of graphs (G1, G2) of varying sizes and densities, pick different common node subsets S,
apply the proposed method and measure the resulting p-value. By exploring different com-
binations of parameters, we are able to find empirical limits of the method and show when
it can be used to yield a p-value that is small enough to be used for better understanding of
metabolite relationships or identifying disease markers.

The graph generation procedure consists of three steps. Firstly, two random connected
graphs G1 and G2 with the specified parameters are generated. Then, the chosen common
subset of nodes S and the pattern F induced by it are planted into the graphs and the
weights of edges in the planted graph are increased, which generates a contrast between the
planted module and the remainder of the graph. Finally, as planting possibly added new
edges to G1 and G2, the graphs are rewired and pruned in order to preserve the density
specified by the input parameters. This workflow is depicted in Figure 2.

Figure 2. Employed synthetic graph generation method.

For the ease of verification of test results, the synthesized graphs need to be connected.
Few existing random graph generators can be applied to the problem of generating random
connected graphs with a planted subgraph. A majority of previous attempts repeatedly use
a random graph generator to generate a graph according to the Erdos–Renyi model [12],
until the generated graph ends up being connected. We chose to generate a random tree
and then keep randomly adding edges until the specified density is reached, then plant
S and F and possibly rewire. This approach leads to a slight bias in the distribution of
graphs that are generated but benefits from a predictable execution time. Alternatively,
recent development of Complex Graph Fourier Transform for surrogating graph data [13]
could possibly be used to generate the synthetic graphs needed for experiments, given
that controlling the second smallest eigenvalue of the graph Laplacian guarantees that the
generated graph will consist of a single connected component.

In order to explore two ends of the connectedness spectrum, the planted graphs are
chosen to be a path graph or a clique. It is to be expected that a clique will be discoverable
with a much lower contrast than a path graph.

2.4. Setup for Application to Metabolomic Co-Perturbation Networks

Metabolite co-perturbation networks of diseases contain differing numbers of nodes.
Even though the proposed approach expects G1 and G2 to have the same label sets or that
there is a node correspondence between them, for the CTD encoding algorithm to work,
only the nodes chosen for S need to necessarily exist in both networks. Therefore, a relaxed
node set overlap constraint can be applied, without the need for making significant changes
to the algorithm, where only node correspondence on subgraphs induced by S in G1 and
G2 is required.

When working with metabolite co-perturbation networks, it is natural to choose a
disease module (set of expertly curated co-perturbed metabolites important for the disease)
of the proposer graph as S. However, some of the metabolites in the disease module of
the proposer graph could be excluded from the tester graph, making the relaxed node set
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overlap constraint unfulfilled. To fulfill it, the problematic nodes and their incident edges
can be removed from the proposer network. An alternative approach is to add the missing
nodes to the tester network and leave them isolated. Both modifications possibly impact
the statistical power of the method but not its correctness. For the tests conducted and
presented in Section 3.3, the approach of node removal was used.

Finally, edges in metabolite co-perturbation networks can have negative weights
between nodes corresponding to a substrate and a product around a perturbed enzyme [5].
However, this negative weight still expresses connectedness. Therefore, to transform the
metabolite co-perturbation networks to the appropriate network model needed for applying
our method, weights of all edges in the networks are substituted with their absolute value.

2.5. Platforms and Software Tools

All code related to this research was written in Python 3, and it is publicly available.
Graph generation and manipulation were implemented using NetworkX Python pack-
age [14]. Gephi [15] was used in order to visualize the graphs and conduct data exploration
for the purposes of manual checking of the method for smaller graph sizes.

The total of 664 experiments conducted during this research demanded significant
computational power available only on the cloud infrastructure. The time complexity of
CTD is tough to estimate precisely because of the use of a network walker that is sensitive
not only to the size, but also to the topological structure of the network. However, CTD was
not a limiting factor with regard to the total execution time of the experiments, completing
in seconds, whereas synthetic graph generation took longer periods of time measured
in hours when executing a simulation batch with higher specified network density. To
facilitate faster experiment execution, we have created several Python scripts and wrapped
them into command line tools using the Common Workflow Language [16]. This allows
for the execution of the scripts on the Cancer Genomics Cloud platform [17]. Another
advantage of such approach is simple reproducibility of the obtained results together with
portability of the created tools across several different platforms enabled by Docker [18]
light virtualization.

3. Results

The main results of this paper can be divided into three categories, each of them
presented in a corresponding subsection. Firstly, we derive theoretic bounds for the
minimal size of a node module discoverable by our approach of applying CTD two times
and using weighted Bonferroni correction to obtain a p-value. Afterwards, in order to
explore the impact of other parameters, such as graph density and contrast of the node
module, we generate a series of synthetic graphs on which we run tests. Finally, we
apply our approach to real metabolite perturbation networks for two similar metabolomic
disorders, in order to check the applicability of the method.

3.1. Lower Bound on the Size of a Minimal Discoverable Node Subset

Very small node subsets can be hard to discover using CTD. In order to estimate
the minimal size of a common node subset S that can be statistically significant, we can
observe the best case, where the bitstring encoding of S contains all the nodes in S and no
other nodes.

Lemma 1. Let G1(V1, E1) and G2(V2, E2) be two weighted graphs with identical node labels
(V1 ≡ V2) or two graphs with an established node correspondence, let V be the set of their node
labels, and let |V| represent the cardinality of their node sets. Let S be a node subset of V that is
significantly smaller than V (|S| < 2|V|

log2(|V|) ). Then, in the ideal case, the p-value of a node subset S
in both G1 and G2 corrected by weighted Bonferroni correction is bounded as follows:

pBon f erroni_ideal(S, G1, G2) ≤ 4(
4
|V| )

|S|−2. (11)
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Proof of Lemma 1. Let us run CTD on G and let S be encoded with a bitstring of length
l(S) and f ound be the number of ones in that bitstring (the number of nodes in S that were
successfully encoded in the bitstring). As stated in [4], length of an encoding given by CTD
can be calculated as

IA(G) = (|S| − f ound + 1) ∗ log2(|V|) + l(S)− 1, (12)

and, as S is much smaller than V, the encoding by the null hypothesis is given by

I0(G) = |S| ∗ log2(|V|). (13)

Consider the ideal case when the bitstring encodings of S in both G1 and G2 contain
all the nodes in S and no other nodes. Then, Equation (12) simplifies to

IA(G1) = IA(G2) = log2(|V|) + l(S)− 1 = log2(|V|) + |S| − 1. (14)

According to Equation (9), we have:

pBon f erroni(S, G1, G2) ≤ 2−(I0(G2)−IA(G2)−IA(G1)). (15)

Substituting Equations (13) and (14) into Equation (15), we obtain:

pBon f erroni_ideal(S, G1, G2) ≤ 2−(|S|∗log2(|V|)−2∗(log2(|V|)+|S|−1)). (16)

After simplifying Equation (16), we obtain the inequality stated by Equation (11),
which we wanted to prove.

Lemma 2. In order to obtain a statistical significance of at least pwanted according to the bounds
given by the Algorithmic significance theorem [11], the chosen subset of nodes S needs to contain at
least 2 + 2−log2(pwanted)

log2(|V|)−2 nodes.

Proof of Lemma 2. Obviously, pBon f erroni can never be lower than in the ideal case de-
scribed in the proof of Lemma 1. Therefore, if the p-value for this ideal case is larger than
some threshold pwanted, the p-value for the other cases can not be lower than pwanted. In or-
der to ensure that, in the ideal case, we can achieve a wanted level of statistical significance,
we strictly enforce pBon f erroni_ideal to be smaller than pwanted by enforcing the upper bound
on pBon f erroni_ideal to be bounded by pwanted.

The aforementioned bound enforcement can be stated as

pBon f erroni_ideal(S, G1, G2) ≤ 4(
4
|V| )

|S|−2 ≤ pwanted. (17)

Taking a logarithm with base 2 and solving for |S| directly leads to

|S| ≥ 2 +
2− log2(pwanted)

log2(|V|)− 2
, (18)

which is the statement we wanted to prove.

Note that Lemma 2 does not state that by choosing a node subset larger than some
threshold value we can ensure that the p-value will be smaller than pwanted; it only establishes
a bound on when the algorithmic significance theorem can be applied to estimate statistical
significance. In other words, it is possible that a smaller subset of nodes could yield a higher
connectedness, but its statistical significance could not be proven by our approach.

An important consequence of Lemma 2 is that we can skip tests on some parts of
parameter space for graph generation, as we already know that for that part of the parameter
space we can not get statistical significance, speeding up the parameter space exploration.
For example, when synthesizing graphs with 1000 nodes, a minimal discoverable node
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subset with a statistical significance of 0.05 contains at least three nodes. However, if we
change the wanted statistical significance threshold to 5× 10−10, the size of the minimal
discoverable node subset increases to 7, even though we changed the statistical significance
threshold by 8 orders of magnitude. This slow increase shows that a minimal size of the
shared node module is not a significant limiting factor on the applicability of the method.
This is why, in the next subsection, we employ synthetic graph generation in order to test
the impact of other parameters that are harder to constrain theoretically.

3.2. Empirical Results on Synthetic Graphs

In order to see how the effectiveness of the proposed approach is impacted by other
graph and node module features, we have generated random synthetic graphs defined by
five parameters. The values of parameters were assigned to be similar to potential biological
use cases—disease-specific metabolite co-perturbation networks contain between 300 and
1000 nodes [4,5], while gene co-expression networks consist of thousands of nodes [19], but
the connectedness patterns remain significantly smaller, consisting of no more than 1% of
network nodes. An overview of the parameters used for synthetic graph generation and
their values is given in Table 1.

Table 1. List of parameters used for generating pairs of random synthetic graphs.

Graph Parameter Set of Values

Number of nodes in graphs G1 and G2 100, 1000, 10,000
Average number of neighbours for each node 5, 10, 15, 20, 25

Percentage of graph nodes that are in S 0.5%, 1%
Node module contrast 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0

Type of the graph planted by S Path, Clique

Average number of neighbours for each node (average unweighted node degree) is
a more descriptive parameter than graph density if the number of nodes in the graph
is also known and is therefore chosen instead of graph density. A higher number of
neighbours makes it harder for CTD to detect a pattern as statistically significant because
the probability diffusion scheme used for encoding by the CTD is based on recursively
distributing probability to neighbouring nodes. Therefore, a larger neighbourhood leads to
larger probability dispersion and a weaker signal.

The impact of the percentage of nodes in G that are included in S has already been
discussed in Section 3.1. and has been shown to not be a significant limiting factor to the
applicability of the method, especially if a relatively weak measure is used to determine if
a result is statistically significant, such as requiring a p-value to be lower than 0.05 as is
often the case in medicine or biology.

As mentioned in Section 2.3, node module contrast is defined as a relative difference
in the average edge weight in the planted node module and in the remainder of the graph.
It is important to note that the subgraphs induced by S in G1 and G2 could contain edges
that are not in the planted node module contained in S. That is why node module contrast
specifically takes into consideration only the edges in S that belong to the planted module.

The type of the planted pattern (a path graph or a clique) will influence the ability of
the method to detect the pattern. A path maximizes the dispersion of probability to the
remainder of the graph, while a clique minimizes it. Therefore, these two patterns define
the best and worst case for the CTD algorithm in the spectrum of Hamiltonian graphs.

After creating the synthetic graph pairs, for each created graph pair, we have calculated
the Bonferroni corrected p-value. The results of applying our approach to the synthetically
generated graphs are given in Figure 3, which represent the results on graph pairs with
100, 1000 and 10,000 nodes.
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Figure 3. The distribution of Bonferroni-corrected p-values for different randomly generated synthetic
graphs with 100 (a), 1000 (b) and 10,000 (c) nodes. The x-axis shows the node module contrast (the
ratio between branch weights in the planted S module and in the rest of the graph). The y-axis displays
the average number of neighbouring nodes for each node (average unweighted node degree). Smaller
marker relates to the S node set with five nodes in (a,b) and 50 nodes in (c), while the larger stands for
S with 10 nodes in (a,b) and 100 nodes in (c). “|” marker corresponds to the case when a path graph
is planted, while “Y” corresponds to the case where a clique is planted via S. A p-value is considered
significant if it is lower than 0.05.

Comparing diagrams in Figure 3, we can conclude that all the hypotheses on the impact
of parameters on the obtained statistical significance were correct. Graphs with larger
density (higher average number of neighbours) suffer more from dispersed probability
and are more likely to lead to the algorithm yielding an unsatisfactory p-value. Graphs
pairs that had a clique planted obtain a satisfactory statistical significance more commonly
compared to the ones where a path graph was planted. A significant impact of node
module contrast can be seen by constructing imaginary hypercurves that would separate
the statistically significant points (green on the figures) from the ones with a p-value larger
than 0.05. A majority of the graphs with 15 and less neighbouring nodes with node module
contrast higher than 1.2 also obtain a statistical significance when searching for S in G2.

3.3. Application on Metabolite Perturbation Networks

In order to test the applicability of our approach on metabolite perturbation networks,
two metabolic disorders argininemia (ARG) and Rhizomelic chondrodysplasia punctata
(RCDP) were chosen, based on a high similarity between their disease modules, as discussed
in [5]. Metabolite perturbation networks for ARG and RCDP contain 430 and 381 nodes,
respectively, making them comparable in size with the synthesized networks discussed
in Section 3.2. S is chosen as the known disease module for ARG and contains 22 nodes.
However, the networks need to be preprocessed and adjusted to apply our approach. The
methodology behind these adjustments is discussed in detail in Section 2.4.

Table 2 shows results of tests on ARG and RCDP metabolite co-perturbation networks.
The first row represents the results of applying the approach on the original ARG and RCDP
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networks. The following rows correspond to the tests where a clique with increased contrast
was planted inside the node module of the tester graph (in this case the RCDP network).

Table 2. Results of applying our approach to Argininemia (ARG) and Rhizomelic chondrodysplasia
punctata (RCDP) metabolite co-perturbation networks. ARG network takes place of the proposer
graph G1 and the RCDP network is used as the tester graph G2. Node module contrast is defined as
the relative difference in average edge weight in the node module and in the remainder of the graph.

Test Case Planted Module Node Module Contrast in G2 Upper Bound for p-Value

Original ARG and RCPD
networks None 0.72 8.06× 1023

Planted graph with original
contrast Clique 0.72 4.24× 1023

Planted graph with ×2
original contrast Clique 1.44 5.73× 1017

Planted graph with ×3
original contrast Clique 2.16 2.01× 10−31

As shown in Table 2, the node module contrast in G2 is lower than 1, meaning that the
node module is less connected than the rest of G2. The contrast in G1 is not as important, as
S was chosen as the known disease module for ARG; therefore, its occurrence probability in
G1 according to the CTD induced probability distribution is guaranteed to be high. Looking
at Figure 3, it is expected that no statistical significance would be observed for graphs of
this size and node module contrast in the tester graph, and that is exactly the case.

As the node module contrast in G2 is low, the node module is situated in a sparser part
of the network. Upon further inspection, the S-induced subgraph in the RCDP network is
not connected. Therefore, even if the contrast was higher, the probability diffusion walker
would need to incur misses, venturing outside of S in order to encode the nodes from
two unconnected parts of the S-induced subgraph. This means that the choice of S as the
disease module of Argininemia is ill-suited for being the shared highly connected node
module between ARG and RCDP, as seen from the fact that our approach detected no
statistical significance (row 1 of Table 2).

One might wonder if a slight change in structure of the S-induced subgraph or a
choice of different S with higher contrast in G2 would lead to statistical significance. As
the weighted Bonferroni correction based on the probability distribution in G1 already
accounts for the choice of S, we could possibly have chosen another S which would be
closer to the ideal case, without the need to further correct for multiple testing. Therefore,
the remaining tests are run with a slightly modified G2, in which a clique was planted
inside the node module. Additionally, node module contrast of the planted clique was
progressively increased. The results of tests on the modified graphs correspond to rows 2–4
of Table 2, and they clearly demonstrate that better connectedness and contrast are needed
for the pattern to be detected.

These results show that node module contrast can impact the boundary for p-value by
orders of magnitude, as higher contrast yields less probability dispersion to nodes outside
of S, which in turn lead to a lower bitstring encoding length. Additionally, the importance
of choosing S is demonstrated, as is the sensitivity of the algorithm to the connectedness
expressed by S.

4. Discussion

Our work establishes information-theoretic upper bounds on the p-values for localized
pattern of similarity between two labeled weighted graphs, where the similarity consists
of a set S of nodes that are identically labeled and highly connected in both graphs. Our
results are independent of the algorithm used to detect S and thus pave the way toward
future practical algorithmic implementations.
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Our work extends the recently proposed CTD method [4]. From the definition of
the CTD method and the derived theoretical work shown in Section 2, the choice of the
encoding scheme will impact the p-value bound, but not the correctness of our approach.
Therefore, modifications of the encoding scheme are also potentially fruitful directions of
future work, as they would allow for discovery of a broader scope of connectivity patterns
induced by shared highly connected node modules. These modifications could include
tuning of parameters of the diffusion algorithm, such as the stopping threshold or complete
replacement of the diffusion scheme with, for example, a slightly modified graph search
algorithm such as A∗ [20].

For the ease of understanding, the proposed method requires node sets of G1 and G2
to be equal or a node correspondence to exist between the graphs. However, as briefly
discussed in Sections 2.4 and 3.3, even though at first glance this looks like a significant
limitation, it can be easily circumvented by extending the node sets of graphs to include
all the nodes from the other graph’s node set, but leaving them isolated. This is a valid
approach, as it can only weaken the signal but never lead to false deductions. Especially in
the field of metabolomics, the metabolite co-perturbation networks are constructed from
samples that always measure the same set of metabolites, but some of the metabolites are
pruned from the specific disease’s perturbation network as they are deemed unimportant
for the disease and only cause noise. However, if the pruning step is omitted or reversed,
the metabolite co-perturbation networks can easily be equalized to the same (starting) set
of node labels.

Alternatively, a relaxed criterion can be applied, only requiring that both graphs
contain all nodes in the node module. This is valid because the size of G1 is implicitly
accounted for by the constructed probability distribution used to penalize the weighted
Bonferroni correction, and the size of G2 is taken into account by the CTD algorithm when
calculating the p-value of S in G2. Therefore, if there are some nodes in the node module
that do not exist in one of the graphs, the same approach of adding them as isolated nodes
can be applied.

A third way of satisfying the criteria for applying our method is removing the prob-
lematic nodes from the node module altogether. This approach is easiest to implement
and was used on the real world example presented in Section 3.3. However, this method
is ill suited for situations where a large number of nodes would need to be removed, as
each removed node increases the probability of removal of a node on the Hamiltonian path
in the node module. That would lead to drastic degradation of either the p-value of the
node module in the tester graph or the probability of node module in the proposer graph,
ultimately having a devastating impact on the Bonferroni corrected p-value and possibly
discarding the shared connectedness pattern expressed by the node module. This is a
possible explanation of the problems that the method was experiencing on the presented
real world example before planting of the connectedness pattern.

By using a weighted Bonferroni correction, our approach already accounts for multiple
testing on the power set of G1; therefore, one could consider all subgraphs of G1 and
calculate the Bonferroni corrected p-value of their corresponding node modules for the
graph pair (G1, G2) without the need to apply any further corrections. As the cardinality
of a power set is exponentially related to the size of G1, the complexity of such approach
would be computationally impossible for any real applications. Therefore, development of
a heuristic method of choosing the node module S is a natural direction of future work to
be explored.
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