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Abstract: Masi entropy is a popular criterion employed for identifying appropriate threshold values
in image thresholding. However, with an increasing number of thresholds, the efficiency of Masi
entropy-based multi-level thresholding algorithms becomes problematic. To overcome this, we
propose a novel differential evolution (DE) algorithm as an effective population-based metaheuristic
for Masi entropy-based multi-level image thresholding. Our ME-GDEAR algorithm benefits from a
grouping strategy to enhance the efficacy of the algorithm for which a clustering algorithm is used to
partition the current population. Then, an updating strategy is introduced to include the obtained
clusters in the current population. We further improve the algorithm using attraction (towards the
best individual) and repulsion (from random individuals) strategies. Extensive experiments on a set of
benchmark images convincingly show ME-GDEAR to give excellent image thresholding performance,
outperforming other metaheuristics in 37 out of 48 cases based on cost function evaluation, 26 of 48
cases based on feature similarity index, and 20 of 32 cases based on Dice similarity. The obtained
results demonstrate that population-based metaheuristics can be successfully applied to entropy-
based image thresholding and that strengthening both exploitation and exploration strategies, as
performed in ME-GDEAR, is crucial for designing such an algorithm.

Keywords: image segmentation; multi-level image thresholding; optimisation; differential evolution;
clustering

1. Introduction

Image segmentation is a challenging task in machine vision. It is the process of
dividing an image into several non-overlapping areas based on features such as colour
or texture. Image segmentation is used in a broad spectrum of applications including
medicine [1,2], the modelling of microstructures [3] and food quality [4]. While a variety
of image segmentation approaches have been proposed [5] and although deep learning
methods have shown impressive performance for image segmentation tasks [6], techniques
based on image thresholding remain popular due to their simplicity and robustness [7,8]
despite not requiring a training process. Image thresholding aims to find the threshold
value(s) for an image using information from the histogram of an image. While bi-level
image thresholding (BLIT) methods try to find a single threshold to discriminate between
the background and foreground, multi-level image thresholding (MLIT) approaches have
determined multiple threshold values to partition an image into several regions. MLIT is a
challenging task and has thus attracted the attention of significant research [9–12].
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In recent years, entropy-based MLIT algorithms have been extensively employed
for image segmentation [13–15]. Entropy is a measure of randomness or disorder so that
homogeneous regions are characterised by low unpredictability [16]. A higher value of
entropy thus shows higher separability between background and foreground, while differ-
ent types of entropy, such as Kapur entropy [17], Reni entropy [18], Shannon entropy [19]
and Tsallis entropy [20] can be employed. The information considered is either additive or
non-additive, and is exploited in entropy-based image thresholding [21]. Renyi entropy
can address additivity [18], while Tsallis entropy can take into consideration non-additivity;
however, neither can simultaneously employ both additive and non-additive information.

Masi entropy [22] combines the additivity feature of Renyi entropy and the non-
extensitivity feature of Tsallis entropy. Masi entropy has shown remarkable performance
for BLIT, but its efficiency drastically decreases when increasing the number of thresholds
due to the resulting time complexity. To address this issue, population-based metaheuristic
algorithms (PBMHs) such as differential evolution (DE) and particle swarm optimisation
(PSO), where a population of candidate solutions is iteratively and co-operatively im-
proved, offer a powerful alternative. While PBMHs have been extensively used for image
segmentation [23], there are only few works on PBMHs for Masi-based MLIT problems.
Khairuzzaman et al. [24] employ PSO with Masi entropy for image segmentation and
shows that PSO can outperform the dragonfly algorithm (DA) on six benchmark images.
Fractional order Darwinian PSO was used in [25] for image segmentation based on Masi
entropy. A post-processing step was introduced to remove small segmented regions and
merge them into bigger regions. In [26], the water cycle algorithm (WCA) was employed
for image thresholding using Masi entropy as the objective function. The obtained results
indicate that WCA can achieve better performance in comparison to 5 other algorithms
on 10 benchmark images. Ref. [27] employs the moth swarm algorithm (MSA) for image
thresholding based on context-sensitive energy and Masi entropy and shows that it can
outperform several PBMHs. Other PBMHs including multi-verse optimiser (MVO) [28,29],
Harris hawks optimisation (HHO) [21,30], cuttlefish algorithm (CA) [31], and barnacles mat-
ing optimiser (BMO) [32] have also been employed for Masi entropy-based MLIT problems.

Differential evolution [33] is a well-established PBMH with three main operators:
mutation, crossover, and selection. Similar to other PBMHs, during initialisation, a starting
population of individuals is (randomly) generated. The mutation operator generates a
mutant vector based on the differences among individuals, while crossover combines the
mutant vector and its parent. Finally, the selection operator chooses the individual to
include in the next iteration. In recent years, much research has focussed on improving
DE [34–36], while DE has been shown to yield notable performance in solving complex
problems [37–39].

In this paper, we propose a novel multi-level image thresholding algorithm named
Masi entropy-based grouping differential evolution boosted by attraction and repulsion
strategies (ME-GDEAR). Our proposed algorithm employs a grouping strategy using a
clustering algorithm to partition the current population into groups. ME-GDEAR then uses
the cluster information to update the current population. In addition, we apply attraction
and repulsion strategies to further improve the efficacy of the algorithm. Extensive experi-
ments on a set of benchmark images convincingly show the excellent image thresholding
performance of ME-GDEAR in comparison to other approaches.

The remainder of the paper is organised as follows. Section 2 reviews some back-
ground about differential evolution, clustering, and image thresholding. Section 3 explains
our proposed algorithm in detail, while Section 4 evaluates and discusses the obtained
experimental results. Section 5 concludes the paper.

2. Background
2.1. Differential Evolution

Differential evolution (DE) [33] is a well-established population-based metaheuristic
algorithm that has shown good performance in solving complex optimisation problems
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from a broad spectrum of domains [37,40,41]. The canonical DE algorithm includes four
main steps: initialisation, crossover, mutation, and selection. The pseudo-code of DE is
given in Algorithm 1, whereas the main operators are described below.

Algorithm 1: Pseudo-code of DE algorithm.
Input : D: number of dimensions, NP: population size, F: scaling factor, CR:

crossover probability
Output : x∗: the best solution

// Population initialisation
Generate initial population randomly;
Evaluate fitness for each candidate solution in population ;
Initialise generation counter iter = 1 ;
while stopping criterion not met do

for i← 1 to NP do
// Mutation
Select parents, xi1, xi2, and xi3, randomly from current population,
with xi1 6= xi2 6= xi3 ;

vi = xi1 + F(xi2 − xi3) ;
// Crossover
for j← 0 to D do

if randj[0, 1] < CR or j == jrand then
ui,j = vi,j ;

else
ui,j = xi,j ;

end
end
Evaluate fitness of ui ;
// Selection
if f (ui) < f (xi) then

x̄ ← ui ;
else

x̄ ← xi ;
end

end
x ← x̄ ;

end
x∗ ← best solution in current population;

2.1.1. Initialisation

Similarly to other PBMHs, DE begins with a population of NP randomly generated individu-
als, where for a D-dimensional problem, an individual is defined as xi = (xi,1, xi,2, . . . , xi,D) ∈ RD.

2.1.2. Mutation

Mutation creates a mutant vector based on differences among individuals. While there
is a wide range of mutation operators, DE/rand/1 is popular and defined as

vi = xr1 + F(xr2 − xr3), (1)

where xr1 (called the base vector), xr2, and xr3 are three randomly selected individuals
distinct from the current population, and F is a scaling factor.
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2.1.3. Crossover

Crossover combines the mutant and parent vectors, with the aim of enhancing the
exploration of the population. Among the different crossover operators, binomial crossover
is often chosen and is formulated as

ui,j =

{
vi,j rand(0, 1) ≤ CR

xi,j otherwise
, (2)

where i = 1, . . . , Npop, j = 1, . . . , D, u is called a trial vector, CR is the crossover rate,
and jrand is a random number in [1; Npop].

2.1.4. Selection

The selection operator aims to select the better individual from the trial vector and the
parent vector for inclusion in the next population.

2.2. Clustering

Clustering is an unsupervised pattern recognition technique to divide a set of samples
into a number of groups so that samples located in the same cluster are more similar com-
pared to those in different clusters. The main characteristics of a clustering algorithm are:

• Each cluster should have at least one sample: Ci 6= φ, i = 1, . . . , K;
• The total number of samples in all clusters must be equal to the total number of

samples: ∪K
i = 1 = O; and

• Distinct clusters should not have a mutual sample: ci ∩ cj = φ, j = 1, . . . , K, i 6= j.

Among the different clustering algorithms, k-means [42] is a simple yet effective
approach that is widely employed. k-means proceeds in the following steps:

1. Randomly select k samples as cluster centres;
2. Allocate each sample to its closest cluster centre based on a distance metric (often

Euclidean distance);
3. Recalculate the new cluster centres as the mean value of the samples located in

each cluster;
4. If the stopping condition is satisfied, the algorithm has terminated—otherwise go to

Step 2.

2.3. Multi-Level Image Thresholding

Multi-level image thresholding is a popular approach for image segmentation. MLIT
aims to find D threshold values as

M0 = { f (x, y) ∈ I|0 ≤ f (x, y) ≤ th1 − 1}
M1 = { f (x, y) ∈ I|th1 ≤ f (x, y) ≤ th2 − 1} (3)

Mi = { f (x, y) ∈ I|thi ≤ f (x, y) ≤ thi+1 − 1}
MD = { f (x, y) ∈ I|thm ≤ f (x, y) ≤ L− 1}

where f (x, y) indicates an image pixel at location (x, y) and L is the number of intensity
levels in the image. Mi thus gives an image segment based on the threshold values and it is
the selection of these thD that is at the core of this paper.

3. Proposed ME-GDEAR Algorithm

In this paper, we propose Masi entropy-based grouping differential evolution boosted
by attraction and repulsion strategies (ME-GDEAR), as an improved DE algorithm for
multi-level image thresholding. The general structure of our proposed algorithm is shown
in Figure 1. In the following, we first explain the main components of ME-GDEAR, and then
detail how the algorithm proceeds.
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Figure 1. General structure of the ME-GDEAR algorithm.

3.1. Grouping Strategy

We propose a grouping strategy, inspired by [43], for dividing the current popula-
tion into groups. Our grouping strategy has two main operators: region creation and
population update.

3.1.1. Region Creation

Our grouping strategy first creates some regions based on the k-means algorithm.
Here, each cluster indicates a region and the number of clusters is set as a random number
between 2 and

√
NP. Cluster centres are the means of individuals in the same cluster,

meaning that each cluster centre holds information about the individuals in the cluster.
The cluster centres thus support a sort of multi-parent crossover. Figure 2 indicates the
process of region creation for a toy example.
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Figure 2. Population clustering: red points represent individuals and black points indicate cluster
centres. The population is divided into 3 clusters. A is the set of cluster centres while B contains some
random individuals.

3.1.2. Population Update

The cluster centres created above should be included in the current population. To this
end, we employed a generic population-based algorithm (GPBA) proposed in [43,44] to
boost the performance of the algorithm. GPBA uses four operators to tackle optimisation
problems, namely:

• Selection: randomly choose some individuals from the current population. This
relates to choosing initial samples in the k-means algorithm;

• Generation: create m individuals as set A. For this, ME-GDEAR selects the cluster
centres as the new individuals, that is, the new individuals are generated using k-
means clustering;

• Substitution: choose m individuals (set B) from the population for substitution. There
are various ways to select some individuals from the population; ME-GDEAR uses
random selection as a simple selection strategy;

• Update: from the union set A ∪ B, the m best individuals are selected as B̄. The new
population is then obtained as (P− B) ∪ B̄.

3.1.3. Clustering Period

In ME-GDEAR, clustering is not performed in every iteration. Instead, clustering is
periodically performed [43,45], where parameter CP defines the clustering period. Selecting
an effective clustering period is essential so that DE can create stable clusters.

3.2. Attraction and Repulsion Strategies

We introduce attraction and repulsion strategies into ME-GDEAR inspired by the
WOA algorithm [46] in order to explore the search space more effectively. These strategies
are applied with a probability Pr. Three operators are employed, which we explain below,
while switching between them is performed based on some probabilities.

3.2.1. Repulsion from Random Individuals

This operator causes all individuals to move away from some randomly selected
individuals as

xi = xr − AM, (4)
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with
M = |Cxr − xi|, (5)

where xr is a random individual selected from the current population, A is a number greater
than 1, and C is a random number between 0 and 2.

3.2.2. Attraction towards the Best Individual

Here, each individual tries to converge towards the best individual as

xi = xbest − AM, (6)

with:
M = |Cxbest − xi|, (7)

where xbest is the best individual in the current population, A is a number less than 1, and C
is a random number between 0 and 2.

3.2.3. Attraction towards the Best Individual (Spirally)

This operator updates an individual in a spiral way as

xi = xbest + ebl cos(2πl)M, (8)

with:
M = |xbest − xi|, (9)

where xbest is the position of the best individual, b is a constant, and l is a random number
in [−1, 1].

3.3. Encoding Strategy

The encoding strategy determines the structure of each individual in the population.
In ME-GDEAR, we employed, as illustrated in Figure 3, a one-dimensional vector to encode
the threshold values as

x = [th1, th2, . . . , thD], (10)

where D is the number of threshold values, and thi is the i-th threshold value.

Figure 3. Encoding strategy in ME-GDEAR.



Entropy 2022, 24, 8 8 of 28

3.4. Objective Function

The probability of occurrence of pixel intensity i is:

hi =
ni

MN
, hi ≥ 0,

L−1

∑
i=0

hi = 1, (11)

where M and N are the dimensions of the image, L is the number of image intensities,
and ni is the number of pixels of intensity i.

For our MLIT algorithm, the class likelihoods are computed as

w1 =
th1

∑
i=0

hi, w2 =
th2

∑
i=th1+1

hi, . . . , wD =
L−1

∑
i=thD−1

hi, (12)

and the multi-level Masi entropy (MME) of each class is calculated as

H1 =
1

1− r
log[1− (1− r)

th1

∑
i=0

(
hi
w1

) log(
hi
w1

)]

H2 =
1

1− r
log[1− (1− r)

th2

∑
th1+1

(
hi
w2

) log(
hi
w2

)] (13)

. . .

HD =
1

1− r
log[1− (1− r)

L

∑
thD+1

(
hi

wD
) log(

hi
wD

)],

where r is the value of the entropic parameter.
Finally, we define the objective function as

f (t1, t2, . . . , tD) = H1 + H2 + . . . + HD. (14)

3.5. Proposed Algorithm

Our ME-GDEAR algorithm, which performs clustering-based DE boosted by attraction
and repulsion strategies for Masi-entropy multi-level image segmentation, proceeds in the
following steps:

1. Initialise the parameters including population size NP, maximum number of function
evaluations NFEmax, clustering period CP, probability of attraction and repulsion
strategies Pr, and entropic parameter r. Set the current number of function evaluations
NFE = 0, and the current iteration iter = 1.

2. Generate the initial population of size NP using uniformly distributed random numbers.
3. Calculate the objective function value of each individual in the population using

Equation (14).
4. Set NFE = NFE + NP.
5. For each individual, perform Steps 5a–5d:

(a) Apply mutation operator;
(b) Apply crossover operator;
(c) Calculate the objective function using Equation (14);
(d) Apply selection operator.

6. Set NFE = NFE + NP.
7. If (iter%CP == 0), go to Step 7a—otherwise, go to Step 8:

(a) Randomly generate k as random integer number between 2 and
√

NP;
(b) Perform k-means clustering and select k cluster centres as set A;
(c) Select k individuals randomly from current population as set B;
(d) From A ∪ B, select best k individuals as B̄;
(e) Select new population as (P− B) ∪ B̄.
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8. If rand < Pr, go to Step 8a—otherwise, go to Step 9.

(a) Generate two random numbers, r1 and r2, between 0 and 1, and one random
number, C, between 0 and 2;

(b) Set a as 2− NFE(2/NFEmax) and A as 2ar1− a;
(c) If rand < 0.5, go to Step 8d—otherwise, go to Step 8g;
(d) If |A| ≥ 1, go to Step 8e—otherwise, go to Step 8f;
(e) Apply repulsion operator using Equation (4) and go to Step 9;
(f) Apply attraction operator using Equation (6) and go to Step 9;
(g) Apply spiral attraction operator using Equation (8).

9. Set iter = iter + 1.
10. If NFE > NFEmax, go to Step 11—otherwise, go to Step 5.
11. Select the best individual as the set of optimal threshold values.

3.6. Monte-Carlo Simulations

In our approach, clustering acts similarly to a multi-parent crossover. To analyse
the effect of clustering on the algorithm’s performance, we designed some Monte-Carlo
simulations. For this, we selected three representative images from the Berkeley image
segmentation database [47], namely 147091 , 101087, and 253027.

The golden region was defined as a hyper-sphere whose diameter is the middle 60%
interval of the shrunken search space and whose centre is the centre of the shrunken search
space [48]. The lower and higher bounds of the shrunken search space are the minimum and
maximum of the current population, respectively. An individual is located in the golden
region if the distance to the centre point is less than the radius of the hyper-sphere. Points
in the golden region are more likely to be close to an unknown optimum solution [48].

In the first simulation, the percentages of cluster centres and random individuals
which are located in the golden region were computed. In each iteration, several randomly
generated individuals were generated (based on the population size) and their locations
were found (inside the golden region or not). Then, the location of cluster centres was
obtained. Figure 4 gives the results (all simulations were repeated 10,000,000 times) and
shows that the probability of a cluster centre falling in the golden region is much higher
than that of a random individual, indicating that cluster centres are biased toward the
centre of the golden region.

Figure 4. Fractions of cluster centres and random individuals located in the golden region.

In the next experiment, we calculated the distance between the centre of the golden
region and cluster centres and between the centre of the golden region and random indi-
viduals. From Figure 5, which shows the results, we can observe that the distance between
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the cluster centres and the centre of golden region is smaller than the distance between
random individuals and the centre of golden region, indicating that the cluster centres are
closer to the centre of golden region compared to random individuals.

Figure 5. Distance between the centre of the golden region and the cluster centres/random individuals.

Finally, we evaluate the mean objective function value with and without our pro-
posed grouping strategy to assess its effectiveness. Figure 6 shows that for all images, the
mean objective function values are improved, confirming that the grouping stage leads to
improved thresholding performance.

Figure 6. Mean objective function results with/without grouping strategy.

4. Results and Discussion

In order to evaluate the performance of our proposed ME-GDEAR algorithm, we
performed several experiments on a set of benchmark images which are widely used to test
thresholding algorithms, namely Boats, Peppers, Goldhill, Lenna, and House, as well as seven
images from the Berkeley image segmentation database [47], 12003, 181079, 175043, 101085,
147091, 101087, and 253027. Figure 7 shows the images and their histograms. As we can
see, the image histograms show different characteristics; some images such as Lenna and
Peppers have different peaks and valleys, while others such as 175043 have only one peak
and images such as Goldhill have abrupt changes in the histogram.
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(a) Boats (b) Peppers (c) Goldhill (d) Lenna

(e) House (f) 12003 (g) 181079 (h) 175043

(i) 101085 (j) 147091 (k) 101087 (l) 253027

Figure 7. Test images and their histograms.

We compared ME-GDEAR with a number of population-based image thresholding
algorithms, including Masi entropy-based differential evolution (ME-DE), the Masi entropy-
based firefly algorithm (ME-FA), Masi entropy-based bat algorithm (ME-BA), Masi entropy-
based moth flame optimisation (ME-MFO), Masi entropy-based dragonfly algorithm (ME-
DA), and Masi entropy-based whale optimisation algorithm (ME-WOA).

The population size and the number of function evaluations for all algorithms were
50 and 10,000, respectively. For ME-GDEAR, Cp and pr are set to 5 and 0.2, respectively.
For the other algorithms, we used the default values for the various parameters which are
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listed in Table 1. For all algorithms, the entropic parameter was set to 1.2. Each algorithm
was run 25 times and we reported the average and standard deviation over these 25 runs.

Table 1. Parameter settings for the experiments.

Algorithm Parameter Value

ME-DE [33] scaling factor 0.5
crossover probability 0.9

ME-FA [49] light absorption coefficient (γ) 1
attractiveness at r = 0 (β0) 1
scaling factor 0.25

ME-BA [50] loudness 0.5
pulse rate 0.5

ME-MFO [51] a −1
b 1

ME-DA [52] no parameters

ME-WOA [46] constant defining shape of logarithmic spiral 1

ME-GDEAR scaling factor 0.5
crossover probability 0.9
clustering period 0.5
Pr 0.2

4.1. Objective Function Results

We first compared the algorithms in terms of objective function values. Table 2 gives
the results of all algorithms and all images for D = 3. For each image and algorithm, we
give the average, standard deviation, and resulting rank (based on the average) of each
algorithm. In addition, the average ranks and overall ranks are reported.

As we can see, ME-GDEAR is ranked first or second for 8 of the 12 images, leading to
the first overall rank. ME-DE is ranked top for three images, while ME-FA gives the best
results for two images and these two algorithms give the second-best results overall.

Table 3 reports the results for D = 4. ME-GDEAR is again clearly ranked first overall.
By comparing Tables 2 and 3, we can observe that ME-DE drops from an average rank
of 3.25 to 4.50, leading to an overall rank of 5 for D = 4. In contrast, ME-MFO is ranked
second overall for D = 4, improving from its fourth rank for D = 3.

Table 2. Objective function results for D = 3.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 35.23 34.25 33.98 34.85 34.73 34.45 34.71
std.dev. 0.02 0.97 0.96 0.49 0.54 0.41 0.64
rank 1 6 7 2 3 5 4

Peppers mean 66.20 63.92 58.27 64.23 66.42 61.71 66.33
std.dev. 8.75 9.26 7.95 6.94 7.98 10.34 6.51
rank 3 5 7 4 1 6 2

Goldhill mean 15.56 15.77 15.28 16.03 15.76 15.42 16.05
std.dev. 0.21 0.57 0.93 0.12 0.31 0.89 0.03
rank 5 3 7 2 4 6 1

Lenna mean 70.74 64.87 62.04 65.91 61.05 63.54 67.10
std.dev. 2.17 5.39 5.83 5.67 4.92 6.56 5.04
rank 1 4 6 3 7 5 2
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Table 2. Cont.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

House mean 64.75 66.38 64.67 64.43 64.69 65.16 66.64
std.dev. 2.92 7.13 3.44 1.5cm7 4.10 7.84 4.36
rank 4 2 6 7 5 3 1

12003 mean 66.30 62.38 58.57 62.06 64.88 64.44 64.29
std.dev. 6.61 6.47 5.77 7.10 5.17 6.29 7.17
rank 1 5 7 6 2 3 4

181079 mean 66.24 63.42 60.68 67.24 61.74 61.07 63.29
std.dev. 3.44 7.56 5.97 3.94 5.25 7.62 6.61
rank 2 3 7 1 5 6 4

175043 mean 63.16 65.59 59.16 63.62 62.32 61.72 64.77
std.dev. 3.50 6.04 4.16 4.75 5.49 6.50 6.30
rank 4 1 7 3 5 6 2

101085 mean 63.96 62.49 61.59 64.08 66.85 61.21 66.20
std.dev. 4.86 5.71 5.09 5.41 3.05 5.94 5.69
rank 4 5 6 3 1 7 2

147091 mean 67.88 67.97 65.16 67.62 66.95 65.15 68.05
std.dev. 1.56 2.70 3.82 1.61 1.20 4.40 2.22
rank 3 2 6 4 5 7 1

101087 mean 59.46 65.73 60.56 64.92 63.64 64.99 71.12
std.dev. 7.20 9.02 7.60 7.09 7.42 8.55 3.91
rank 7 2 6 4 5 3 1

253027 mean 29.99 30.07 29.87 30.03 29.92 29.97 30.03
std.dev. 0.07 0.07 0.23 0.13 0.17 0.16 0.13
rank 4 1 7 2 6 5 3

average rank 3.25 3.25 6.58 3.42 4.08 5.17 2.25
overall rank 2.5 2.5 7 4 5 6 1

Table 3. Objective function results for D = 4.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 35.39 35.84 35.22 35.87 35.79 35.80 35.84
std.dev. 0.20 0.02 0.48 0.11 0.19 0.21 0.02
rank 6 3 7 1 5 4 2

Peppers mean 66.45 65.67 62.46 68.23 66.39 64.90 71.57
std.dev. 6.49 10.13 8.86 7.65 7.90 9.98 7.94
rank 3 5 7 2 4 6 1

Goldhill mean 16.80 17.32 17.24 18.14 17.21 16.87 17.61
std.dev. 0.47 0.29 0.56 0.42 0.31 0.75 0.35
rank 7 3 4 1 5 6 2

Lenna mean 71.57 66.49 63.34 68.87 63.74 65.17 70.22
std.dev. 2.06 5.90 5.44 5.58 5.09 6.61 5.22
rank 1 4 7 3 6 5 2

House mean 64.92 67.11 64.48 67.14 65.55 64.82 68.62
std.dev. 2.41 8.91 2.61 4.27 3.78 7.53 4.19
rank 5 3 7 2 4 6 1

12003 mean 65.84 63.35 63.79 66.29 69.58 64.16 68.69
std.dev. 7.14 7.49 6.69 6.40 3.66 7.12 5.71
rank 4 7 6 3 1 5 2

181079 mean 68.29 68.97 60.33 68.33 65.18 62.18 65.78
std.dev. 2.79 5.29 5.14 4.08 5.40 7.61 6.79
rank 3 1 7 2 5 6 4
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Table 3. Cont.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

175043 mean 62.84 67.97 61.56 63.57 62.61 59.77 66.16
std.dev. 3.63 5.65 4.35 3.52 5.77 6.05 6.07
rank 4 1 6 3 5 7 2

101085 mean 64.24 64.36 62.44 66.87 69.09 65.96 68.04
std.dev. 4.22 5.80 4.35 5.69 1.54 5.86 4.98
rank 6 5 7 3 1 4 2

147091 mean 70.11 70.11 68.22 69.73 69.41 66.69 70.68
std.dev. 2.28 3.40 4.16 1.88 1.64 5.46 2.28
rank 2 3 6 4 5 7 1

101087 mean 62.25 69.13 62.67 68.57 69.01 66.49 70.57
std.dev. 5.94 10.06 6.96 7.21 8.01 9.04 7.82
rank 7 2 6 4 3 5 1

253027 mean 32.99 33.22 32.89 33.26 33.18 33.06 33.21
std.dev. 0.09 0.11 0.27 0.02 0.11 0.21 0.15
rank 6 2 7 1 4 5 3

average rank 4.50 3.25 6.42 2.42 4.00 5.50 1.92
overall rank 5 3 7 2 4 6 1

For D = 5, similar results can be seen in Table 4. ME-GDEAR yields the first overall
rank, while ME-MFO is ranked second. There is a clear difference between the average
rank of ME-GDEAR (1.83) and that of ME-DE (4.17) which shows that our approach clearly
outperforms differential evolution.

Table 4. Objective function results for D = 5.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 37.76 38.39 37.94 38.40 38.18 38.15 38.35
std.dev. 0.22 0.12 0.36 0.18 0.20 0.27 0.20
rank 7 2 6 1 4 5 3

Peppers mean 68.26 68.96 65.50 69.32 64.66 66.02 70.44
std.dev. 7.76 7.89 8.12 6.85 7.07 10.10 8.67
rank 4 3 6 2 7 5 1

Goldhill mean 17.48 18.82 18.28 19.86 18.61 18.49 19.01
std.dev. 0.64 0.64 0.71 0.30 0.41 0.46 0.28
rank 7 3 6 1 4 5 2

Lenna mean 73.16 68.20 68.15 70.58 64.39 67.49 71.51
std.dev. 1.51 5.73 5.63 5.42 5.67 7.35 5.43
rank 1 4 5 3 7 6 2

House mean 67.70 42.00 64.87 65.34 61.41 58.10 68.78
std.dev. 3.36 12.44 3.87 9.24 7.85 8.57 4.30
rank 2 7 4 3 5 6 1

12003 mean 68.55 69.43 65.12 68.96 67.90 64.66 71.27
std.dev. 4.65 7.55 8.30 7.07 4.65 6.83 5.62
rank 4 2 6 3 5 7 1

181079 mean 70.16 53.32 62.10 69.29 63.59 61.53 66.81
std.dev. 3.02 16.02 5.33 8.51 5.27 9.09 5.89
rank 1 7 6 2 4 5 3

175043 mean 63.96 54.01 61.11 64.55 59.43 60.84 68.18
std.dev. 4.80 13.72 3.48 4.80 4.70 6.85 6.20
rank 3 7 4 2 6 5 1
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Table 4. Cont.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

101085 mean 67.46 65.38 67.37 69.57 69.85 66.43 69.95
std.dev. 4.39 5.28 5.68 4.71 3.45 6.23 4.67
rank 4 7 5 3 2 6 1

147091 mean 70.68 71.75 67.48 70.72 70.01 69.16 70.73
std.dev. 1.67 4.51 3.65 4.44 2.49 5.00 1.49
rank 4 1 7 3 5 6 2

101087 mean 65.94 72.41 64.94 71.27 67.22 68.94 74.58
std.dev. 7.50 8.27 5.43 8.13 7.40 9.07 5.51
rank 6 2 7 3 5 4 1

253027 mean 35.87 36.29 36.02 36.28 36.16 36.25 36.22
std.dev. 0.15 0.05 0.34 0.10 0.16 0.17 0.17
rank 7 1 6 2 5 3 4

average rank 4.17 3.83 5.67 2.33 4.92 5.25 1.83
overall rank 4 3 7 2 5 6 1

The curse of dimensionality is a challenging problem in solving an optimisation
problem, since increasing the number of dimensions results in exponentially expanding
the search space. To assess our proposed algorithm in higher dimensions, we compared
ME-GDEAR for D = 10 against the other algorithms in Table 5. It is obvious that our
algorithm again yields the best results, being ranked first or second for 9 of the 12 images,
while ME-BA is ranked second overall.

Overall, ME-GDEAR thus outperforms all other algorithms for all tested dimensional-
ities, indicating the impressive multi-level image thresholding performance.

Table 5. Objective function results for D = 10.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 50.61 51.20 51.02 51.38 50.54 51.14 51.10
std.dev. 0.16 0.15 0.22 0.11 0.27 0.16 0.24
rank 6 2 5 1 7 3 4

Peppers mean 51.27 49.84 60.95 54.62 50.92 58.53 73.47
std.dev. 3.30 0.26 9.31 10.81 6.36 6.73 5.87
rank 5 7 2 4 6 3 1

Goldhill mean 24.21 24.45 24.22 26.85 23.16 23.72 24.13
std.dev. 0.45 1.12 1.55 1.06 0.55 0.87 0.92
rank 4 2 3 1 7 6 5

Lenna mean 58.84 49.93 70.03 54.82 50.07 60.99 74.63
std.dev. 7.21 0.23 5.47 10.61 2.08 5.09 6.31
rank 4 7 2 5 6 3 1

House mean 49.51 50.06 63.28 50.29 49.22 51.92 64.51
std.dev. 0.21 0.17 6.97 0.05 0.32 5.59 8.08
rank 6 5 2 4 7 3 1

12003 mean 61.17 51.75 68.35 63.73 52.08 60.81 74.15
std.dev. 5.80 0.12 8.73 12.25 1.82 3.68 6.18
rank 4 7 2 3 6 5 1

181079 mean 50.30 50.74 64.51 51.17 49.90 58.92 63.68
std.dev. 0.36 0.39 6.95 0.03 0.52 4.47 5.65
rank 6 5 1 4 7 3 2

175043 mean 50.84 51.12 61.65 51.72 50.49 56.54 62.62
std.dev. 0.20 0.32 4.57 0.15 0.41 4.30 6.13
rank 6 5 2 4 7 3 1
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Table 5. Cont.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

101085 mean 60.09 52.61 68.84 58.63 55.00 66.96 74.33
std.dev. 7.01 0.14 7.57 8.43 5.81 4.63 4.24
rank 4 7 2 5 6 3 1

147091 mean 56.56 52.43 69.47 53.44 52.45 67.77 76.56
std.dev. 6.64 0.13 5.98 4.03 2.52 4.69 3.45
rank 4 7 2 5 6 3 1

101087 mean 55.69 50.39 62.74 56.56 49.60 56.76 76.40
std.dev. 6.80 0.14 9.65 11.74 0.33 11.03 8.46
rank 5 6 2 4 7 3 1

253027 mean 48.80 49.35 49.37 49.51 48.40 49.39 49.38
std.dev. 0.22 0.16 0.23 0.06 0.35 0.11 0.12
rank 6 5 4 1 7 2 3

average rank 5.00 5.42 2.42 3.42 6.58 3.33 1.83
overall rank 5 6 2 4 7 3 1

4.2. Feature Similarity Index Results

The feature similarity index measure (FSIM) [53] is a popular measure for evaluat-
ing image quality which is based on two low-level features—phase congruency, which
measures the significance of local structures; and gradient magnitude, which incorporates
contrast information.

Table 6 lists the FSIM results for D = 3. From there, we can see that our proposed
algorithm is again ranked top overall. The same holds for D = 4 whose results are in
Table 7 and for D = 5 with results in Table 8.

Table 6. FSIM results for D = 3.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 0.4784 0.5276 0.5365 0.4737 0.4713 0.4662 0.4855
std.dev. 0.0006 0.1130 0.1262 0.0083 0.0085 0.0077 0.0554
rank 4 2 1 5 6 7 3

Peppers mean 0.6064 0.5988 0.6048 0.6034 0.5947 0.6089 0.6120
std.dev. 0.0196 0.0179 0.0175 0.0184 0.0175 0.0189 0.0164
rank 3 6 4 5 7 2 1

Goldhill mean 0.6152 0.6237 0.6326 0.5951 0.6206 0.6089 0.6258
std.dev. 0.0565 0.0513 0.0418 0.0521 0.0562 0.0352 0.0036
rank 5 3 1 7 4 6 2

Lenna mean 0.6381 0.6203 0.6129 0.6092 0.6112 0.6219 0.6237
std.dev. 0.0109 0.0271 0.0271 0.0262 0.0271 0.0263 0.0260
rank 1 4 5 7 6 3 2

House mean 0.4519 0.4575 0.4512 0.4484 0.4524 0.4563 0.4537
std.dev. 0.0137 0.0141 0.0118 0.0105 0.0133 0.0146 0.0138
rank 5 1 6 7 4 2 3

12003 mean 0.5288 0.5267 0.5343 0.5329 0.5118 0.5182 0.5327
std.dev. 0.0214 0.0273 0.0276 0.0232 0.0206 0.0239 0.0309
rank 4 5 1 2 7 6 3

181079 mean 0.5123 0.5169 0.5152 0.5140 0.5120 0.5141 0.5138
std.dev. 0.0029 0.0048 0.0050 0.0028 0.0016 0.0039 0.0028
rank 6 1 2 4 7 3 5

175043 mean 0.2920 0.2918 0.2911 0.2917 0.2918 0.2923 0.2948
std.dev. 0.0033 0.0020 0.0045 0.0033 0.0028 0.0027 0.0023
rank 3 4 7 6 5 2 1



Entropy 2022, 24, 8 17 of 28

Table 6. Cont.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

101085 mean 0.5475 0.5748 0.5862 0.5853 0.5607 0.5590 0.5631
std.dev. 0.0294 0.0462 0.0485 0.0477 0.0380 0.0445 0.0434
rank 7 3 1 2 5 6 4

147091 mean 0.5974 0.6270 0.6138 0.6018 0.5940 0.6541 0.6022
std.dev. 0.0126 0.0591 0.0546 0.0341 0.0016 0.0795 0.0207
rank 6 2 3 5 7 1 4

101087 mean 0.6353 0.6323 0.6282 0.6338 0.6349 0.6297 0.6384
std.dev. 0.0076 0.0134 0.0146 0.0111 0.0098 0.0156 0.0025
rank 2 5 7 4 3 6 1

253027 mean 0.6052 0.6169 0.6348 0.6173 0.6137 0.6154 0.6171
std.dev. 0.0113 0.0007 0.0462 0.0012 0.0060 0.0062 0.0015
rank 7 4 1 2 6 5 3

average rank 4.41 3.33 3.25 4.58 5.50 4.08 2.66
overall rank 5 3 2 6 7 4 1

Table 7. FSIM results for D = 4.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 0.7608 0.7674 0.7993 0.7549 0.7362 0.7465 0.7661
std.dev. 0.0870 0.0031 0.0272 0.0580 0.0982 0.0836 0.0023
rank 4 2 1 5 7 6 3

Peppers mean 0.6094 0.6099 0.6057 0.6040 0.5991 0.6016 0.6098
std.dev. 0.0161 0.0201 0.0197 0.0202 0.0151 0.0205 0.0212
rank 3 1 4 5 7 6 2

Goldhill mean 0.6856 0.6961 0.6928 0.6126 0.6783 0.6698 0.6937
std.dev. 0.0779 0.0745 0.0526 0.0488 0.0808 0.0787 0.0803
rank 4 1 3 7 5 6 2

Lenna mean 0.6329 0.6080 0.6028 0.6141 0.6199 0.6207 0.6288
std.dev. 0.0193 0.0267 0.0237 0.0266 0.0270 0.0266 0.0234
rank 1 6 7 5 4 3 2

House mean 0.4461 0.4617 0.4487 0.4564 0.4518 0.4531 0.4573
std.dev. 0.0076 0.0166 0.0105 0.0148 0.0136 0.0140 0.0146
rank 7 1 6 3 5 4 2

12003 mean 0.5347 0.5500 0.5372 0.5353 0.5089 0.5391 0.5324
std.dev. 0.0221 0.0208 0.0267 0.0247 0.0194 0.0268 0.0236
rank 5 1 3 4 7 2 6

181079 mean 0.5124 0.5153 0.5163 0.5148 0.5142 0.5160 0.5178
std.dev. 0.0022 0.0040 0.0061 0.0044 0.0034 0.0044 0.0023
rank 7 4 2 5 6 3 1

175043 mean 0.2925 0.2904 0.2924 0.2926 0.2913 0.2924 0.2924
std.dev. 0.0028 0.0033 0.0034 0.0028 0.0034 0.0034 0.0028
rank 2 7 4 1 6 5 3

101085 mean 0.5573 0.5858 0.6029 0.6112 0.5750 0.5793 0.5761
std.dev. 0.0354 0.0574 0.0577 0.0511 0.0397 0.0474 0.0457
rank 7 3 2 1 6 4 5

147091 mean 0.6045 0.6406 0.6226 0.6095 0.6034 0.6438 0.6204
std.dev. 0.0210 0.0570 0.0540 0.0398 0.0197 0.0701 0.0449
rank 6 2 3 5 7 1 4

101087 mean 0.6398 0.6292 0.6334 0.6383 0.6392 0.6289 0.6366
std.dev. 0.0082 0.0171 0.0116 0.0094 0.0077 0.0162 0.0116
rank 1 6 5 3 2 7 4
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Table 7. Cont.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

253027 mean 0.6512 0.6439 0.7278 0.6341 0.6456 0.7124 0.6538
std.dev. 0.0233 0.0366 0.0807 0.0070 0.0371 0.0856 0.0592
rank 4 6 1 7 5 2 3

average rank 4.25 3.33 3.41 4.25 5.58 4.08 3.08
overall rank 5.5 2 3 5.5 7 4 1

Table 8. FSIM results for D = 5.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 0.8391 0.8105 0.8440 0.8158 0.8282 0.8374 0.8440
std.dev. 0.0302 0.0188 0.0407 0.0272 0.0279 0.0368 0.0278
rank 3 7 1 6 5 4 2

Peppers mean 0.6098 0.6067 0.6107 0.6141 0.6020 0.6010 0.6140
std.dev. 0.0169 0.0183 0.0157 0.0131 0.0173 0.0201 0.0208
rank 4 5 3 1 6 7 2

Goldhill mean 0.7417 0.7613 0.7859 0.6458 0.7097 0.7432 0.7860
std.dev. 0.0879 0.0581 0.0625 0.0770 0.0768 0.0761 0.0505
rank 5 3 2 7 6 4 1

Lenna mean 0.6400 0.6028 0.6086 0.6084 0.6082 0.6249 0.6358
std.dev. 0.0105 0.0242 0.0251 0.0259 0.0267 0.0258 0.0187
rank 1 7 4 5 6 3 2

House mean 0.4565 0.4524 0.4524 0.4877 0.4678 0.4465 0.4565
std.dev. 0.0149 0.1245 0.0108 0.1083 0.0807 0.0083 0.0149
rank 4 6 5 1 2 7 3

12003 mean 0.5221 0.5483 0.5273 0.5494 0.5140 0.5422 0.5428
std.dev. 0.0200 0.0219 0.0302 0.0208 0.0192 0.0257 0.0296
rank 6 2 5 1 7 4 3

181079 mean 0.5129 0.6074 0.5151 0.5242 0.5141 0.5175 0.5260
std.dev. 0.0021 0.1071 0.0051 0.0456 0.0042 0.0049 0.0050
rank 7 1 5 3 6 4 2

175043 mean 0.2919 0.2917 0.2934 0.2922 0.2916 0.2908 0.2911
std.dev. 0.0033 0.2409 0.0021 0.0028 0.0039 0.0047 0.0024
rank 3 4 1 2 5 7 6

101085 mean 0.5916 0.5814 0.5914 0.6079 0.5845 0.5987 0.5864
std.dev. 0.0549 0.0594 0.0597 0.0538 0.0455 0.0527 0.0395
rank 3 7 4 1 6 2 5

147091 mean 0.5981 0.6270 0.6295 0.6353 0.6149 0.6626 0.6382
std.dev. 0.0016 0.0573 0.0603 0.0607 0.0396 0.0733 0.0016
rank 7 5 4 3 6 1 2

101087 mean 0.6419 0.6341 0.6356 0.6381 0.6360 0.6310 0.6405
std.dev. 0.0051 0.0145 0.0091 0.0142 0.0100 0.0163 0.0085
rank 1 6 5 3 4 7 2

253027 mean 0.7938 0.8103 0.8062 0.8055 0.7971 0.7917 0.8064
std.dev. 0.0358 0.0315 0.0459 0.0377 0.0448 0.0552 0.0391
rank 6 1 3 4 5 7 2

average rank 4.17 4.50 3.50 3.08 5.33 4.75 2.67
overall rank 4 5 3 2 7 6 1

The results for the higher-dimensional problem with D = 10 are given in Table 9. From there,
we can see that ME-GDEAR maintains its efficacy and outperforms all other algorithms.
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Table 9. FSIM results for D = 10.

Image ME-DE ME-FA ME-BA ME-MFO ME-DA ME-WOA ME-GDEAR

Boats mean 0.9521 0.9646 0.9585 0.9613 0.9548 0.9575 0.9664
std.dev. 0.0157 0.0053 0.0111 0.0076 0.0119 0.0094 0.0063
rank 7 2 4 3 6 5 1

Peppers mean 0.7943 0.8648 0.6669 0.8619 0.8301 0.8250 0.8716
std.dev. 0.1394 0.0064 0.1258 0.1083 0.1247 0.0164 0.0137
rank 6 2 7 3 4 5 1

Goldhill mean 0.8447 0.8778 0.8766 0.8211 0.8567 0.8258 0.8708
std.dev. 0.0481 0.0328 0.0551 0.0468 0.0260 0.0615 0.0466
rank 5 1 2 7 4 6 3

Lenna mean 0.6295 0.6345 0.6253 0.6403 0.6409 0.6397 0.6465
std.dev. 0.0902 0.0070 0.0235 0.1175 0.1346 0.0150 0.0281
rank 6 5 7 3 2 4 1

House mean 0.9525 0.9645 0.9994 0.9637 0.9484 0.8953 0.9600
std.dev. 0.0131 0.0044 0.1913 0.0046 0.0110 0.1675 0.2078
rank 5 2 1 3 6 7 4

12003 mean 0.5950 0.5990 0.5357 0.5919 0.5921 0.5820 0.5980
std.dev. 0.1161 0.0112 0.0280 0.1845 0.1593 0.0163 0.0279
rank 3 1 7 5 4 6 2

181079 mean 0.8247 0.8753 0.8441 0.8613 0.8572 0.8205 0.8788
std.dev. 0.0950 0.0106 0.0953 0.0069 0.0192 0.0945 0.0053
rank 6 2 5 3 4 7 1

175043 mean 0.9327 0.9551 0.9369 0.9486 0.9252 0.9322 0.9488
std.dev. 0.0168 0.0070 0.1852 0.0045 0.0266 0.2206 0.0054
rank 5 1 4 3 7 6 2

101085 mean 0.8335 0.8441 0.8773 0.8331 0.8345 0.8270 0.8381
std.dev. 0.1426 0.0070 0.0455 0.1606 0.1413 0.0620 0.0501
rank 5 2 1 6 4 7 3

147091 mean 0.8307 0.8958 0.8308 0.8848 0.8706 0.8642 0.8769
std.dev. 0.1192 0.0067 0.0587 0.0541 0.0602 0.0833 0.0591
rank 7 1 6 2 4 5 3

101087 mean 0.8122 0.8123 0.8261 0.8417 0.8915 0.8194 0.8376
std.dev. 0.1178 0.0074 0.0082 0.1172 0.0180 0.1316 0.0149
rank 7 6 4 2 1 5 3

253027 mean 0.9057 0.9173 0.9069 0.9125 0.8978 0.9079 0.9197
std.dev. 0.0168 0.0106 0.0116 0.0069 0.0199 0.0114 0.0131
rank 6 2 5 3 7 4 1

average rank 5.67 2.25 4.42 3.58 4.42 5.58 2.08
overall rank 7 2 4.5 3 4.5 6 1

Overall, ME-GDEAR also outperforms all other algorithms in terms of FSIM and does
so for all dimensionalities, confirming the efficacy of our proposed algorithm.

4.3. Dice Measure

We further performed an evaluation based on Dice similarity [54], which measures
the overlap between two segmented images. Since the Dice measure requires a ground
truth, we can only apply it on the images of the Berkeley segmentation dataset. As there
are multiple manual segmentations for each image, we take the maximum obtained Dice
score as our measure for comparison.

Table 10 gives the results for D = 3 and shows ME-GDEAR to give the best Dice score
for 5 of the 7 images, and, consequently, the best average rank.
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Table 10. Dice score results for D = 3.

Image ME-DE ME-BA ME-ALO ME-DA ME-MVO ME-WOA ME-GDEAR

12003 mean 0.7775 0.7537 0.9412 0.7589 0.8207 0.8203 0.8128
std.dev. 0.0634 0.0706 0.0000 0.0676 0.0000 0.0000 0.0662
rank 5 7 1 6 2 3 4

181079 mean 0.3865 0.6533 0.7601 0.6533 0.7848 0.7847 0.6533
std.dev. 0.0651 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rank 7 4 3 6 1 2 5

175043 Mean 0.8148 0.8421 0.8355 0.8416 0.8314 0.8537 0.9438
std.dev. 0.0053 0.0521 0.0484 0.0523 0.0426 0.0578 0.0557
rank 7 3 5 4 6 2 1

101085 mean 0.6533 0.9412 0.6533 0.8207 0.8203 0.6533 0.9412
std.dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rank 5 1.5 6.5 3 4 6.5 1.5

147091 mean 0.7967 0.9412 0.7875 0.8224 0.8271 0.7615 0.9412
std.dev. 0.0268 0.0000 0.0563 0.0058 0.0102 0.0579 0.0000
rank 5 1.5 6 4 3 7 1.5

101087 mean 0.6533 0.9412 0.6533 0.8207 0.8203 0.6533 0.9412
std.dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rank 5 1.5 6.5 3 4 6.5 1.5

253027 mean 0.8228 0.9412 0.7889 0.8225 0.8218 0.7966 0.9412
std.dev. 0.0004 0.0000 0.0387 0.0008 0.0013 0.0389 0.0000
rank 3 1.5 7 4 5 6 1.5

average rank 5.29 2.86 5.00 4.29 3.57 4.71 2.29

overall rank 7 2 6 4 3 5 1

Similar results are obtained for D = 4, D = 5, and D = 10, as can be observed from
Tables 11–13, respectively.

Table 11. Dice score results for D = 4.

Image ME-DE ME-BA ME-ALO ME-DA ME-MVO ME-WOA ME-GDEAR

12003 mean 0.7749 0.7608 0.9394 0.7622 0.7934 0.8192 0.7031
std.dev. 0.0539 0.0617 0.0000 0.0611 0.0197 0.0000 0.0893
rank 4 6 1 5 3 2 7

181079 mean 0.4388 0.4603 0.7601 0.5376 0.6531 0.7847 0.5424
std.dev. 0.0500 0.0326 0.0000 0.0024 0.0000 0.0000 0.0140
rank 7 6 2 5 3 1 4

175043 mean 0.8226 0.8430 0.8329 0.8287 0.8442 0.8787 0.8383
std.dev. 0.0157 0.0513 0.0421 0.0353 0.0524 0.0637 0.0471
rank 7 3 5 6 2 1 4

101085 mean 0.5367 0.8196 0.5406 0.6531 0.8192 0.4894 0.9394
std.dev. 0.0000 0.0000 0.0080 0.0000 0.0000 0.0403 0.0000
rank 6 2 5 4 3 7 1

147091 mean 0.7885 0.8221 0.7607 0.7862 0.8251 0.7467 0.9394
std.dev. 0.0311 0.0056 0.0635 0.0450 0.0081 0.0676 0.0000
rank 4 3 6 5 2 7 1

101087 mean 0.5367 0.8196 0.5367 0.6531 0.8192 0.4496 0.9394
std.dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rank 6 2 5 4 3 7 1
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Table 11. Cont.

Image ME-DE ME-BA ME-ALO ME-DA ME-MVO ME-WOA ME-GDEAR

253027 mean 0.8133 0.8196 0.7710 0.8155 0.8192 0.7820 0.9394
std.dev. 0.0029 0.0000 0.0351 0.0008 0.0000 0.0407 0.0000
rank 5 2 7 4 3 6 1

average rank 5.57 3.43 4.43 4.71 2.71 4.43 2.71

overall rank 7 3 4.5 6 1.5 4.5 1.5

Table 12. Dice score results for D = 5.

Image ME-DE ME-BA ME-ALO ME-DA ME-MVO ME-WOA ME-GDEAR

12003 mean 0.7644 0.8196 0.9360 0.9360 0.7414 0.7268 0.9381
std.dev. 0.0405 0.0000 0.0000 0.0000 0.0567 0.0615 0.0000
rank 5 4 2.5 2.5 6 7 1

181079 mean 0.4826 0.7847 0.7597 0.7597 0.5485 0.6527 0.7589
std.dev. 0.0401 0.0000 0.0000 0.0000 0.0247 0.0000 0.0000
rank 7 1 2.5 2.5 6 5 4

175043 mean 0.8285 0.8266 0.8265 0.8398 0.8331 0.8672 0.8436
std.dev. 0.0164 0.0491 0.0347 0.0459 0.0422 0.0665 0.0502
rank 5 6 7 3 4 1 2

101085 mean 0.8196 0.9360 0.9360 0.5455 0.6527 0.8199 0.9381
std.dev. 0.0000 0.0000 0.0000 0.0224 0.0000 0.0000 0.0000
R 5 2.5 2.5 7 6 4 1

147091 mean 0.8233 0.9360 0.9360 0.7557 0.7748 0.8215 0.9381
std.dev. 0.0049 0.0000 0.0000 0.0711 0.0455 0.0025 0.0000
rank 4 2.5 2.5 7 6 5 1

101087 mean 0.8196 0.9360 0.9360 0.5368 0.6527 0.8199 0.9381
std.dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rank 5 2.5 2.5 7 6 4 1

253027 mean 0.8196 0.9360 0.9360 0.7290 0.7342 0.8199 0.9381
std.dev. 0.0000 0.0000 0.0000 0.0249 0.0285 0.0000 0.0000
rank 5 2.5 2.5 7 6 4 1

average rank 5.14 3.00 3.14 5.14 5.71 4.29 1.57

overall rank 5.5 2 3 5.5 7 4 1

Table 13. Dice score results for D = 10.

Image ME-DE ME-BA ME-ALO ME-DA ME-MVO ME-WOA ME-GDEAR

12003 mean 0.6094 0.5869 0.5886 0.6294 0.5824 0.5020 0.6506
std.dev. 0.0840 0.0210 0.1445 0.0711 0.0472 0.0769 0.0786
rank 3 5 4 2 6 7 1

181079 mean 0.6346 0.6297 0.5256 0.6322 0.6273 0.7311 0.6383
std.dev. 0.0147 0.0176 0.2312 0.0100 0.0147 0.0666 0.0274
rank 3 5 7 4 6 1 2

175043 mean 0.8067 0.8171 0.7149 0.8165 0.8105 0.6004 0.7849
std.dev. 0.0248 0.0173 0.1576 0.0136 0.0237 0.0864 0.0419
rank 4 1 6 2 3 7 5

101085 mean 0.6779 0.5834 0.5608 0.6248 0.6573 0.6934 0.7201
std.dev. 0.1409 0.0375 0.2307 0.1022 0.1205 0.2814 0.0711
rank 3 6 7 5 4 2 1
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Table 13. Cont.

Image ME-DE ME-BA ME-ALO ME-DA ME-MVO ME-WOA ME-GDEAR

147091 mean 0.5510 0.4469 0.6957 0.4718 0.4815 0.5239 0.6560
std.dev. 0.1039 0.0235 0.0927 0.0452 0.0333 0.1151 0.0479
rank 3 7 1 6 5 4 2

101087 mean 0.4310 0.4334 0.4041 0.4234 0.4646 0.3783 0.4421
std.dev. 0.0333 0.0246 0.1592 0.0247 0.0062 0.0971 0.0677
rank 4 3 6 5 1 7 2

253027 mean 0.5256 0.5191 0.5210 0.5157 0.5136 0.5233 0.5205
std.dev. 0.0228 0.0268 0.0216 0.0215 0.0406 0.0238 0.0303
rank 1 5 3 6 7 2 4

average rank 3.00 4.57 4.86 4.29 4.57 4.29 2.43

overall rank 2 4.5 7 3.5 4.5 3.5 1

4.4. Statistical Tests

Owing to the random characteristics of PBMHs, we also performed statistical tests,
based on objective function performance, to further assess the algorithms. In particular,
we conducted two non-parametric statistical tests, the Wilcoxon signed rank test and the
Friedman test [55]. The Wilcoxon signed rank test is a pair-wise test to compare two
algorithms, while the Friedman test allows to evaluate more than two algorithms. The null
hypothesis (H0) states that there is no significant difference between algorithms, while the
alternative hypothesis (H1) investigates a difference. Furthermore, the level of statistical
significance α indicates the hypothesis rejection probability: if the calculated p-value is
lower than α, H0 is rejected.

The results of the Wilcoxon signed rank test between ME-GDEAR and the other
algorithms are given in Table 14. From there, we can see that in all cases, the obtained p-
value is much smaller than α = 0.05, confirming that ME-GDEAR statistically outperforms
the other algorithms.

Table 14. Results of Wilcoxon signed rank test.

p-Value

ME-GDEAR vs. ME-DE 5.8052× 10−5

ME-GDEAR vs. ME-BA 2.9061× 10−6

ME-GDEAR vs. ME-GWO 4.4433× 10−9

ME-GDEAR vs. ME-DA 9.4286× 10−5

ME-GDEAR vs. ME-MVO 1.1412× 10−7

ME-GDEAR vs. ME-WOA 3.6885× 10−9

The results of the Friedman test are given in Table 15. It is apparent that ME-GDEAR
yields the lowest rank (1.96) and with a wide margin over the second ranked algorithm
(ME-BA). The obtained p-value is negligible, confirming the fact that there is a significant
difference between the algorithms. The critical value for (8− 1) = 7 degrees of freedom with
a 0.05 significance level is 14.067 (from chi-squared distribution table). The obtained chi-
squared value of 87.6 is much higher than the critical value; in other words, H0 is rejected.
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Table 15. Results of Friedman test.

Algorithm Rank

ME-DE 4.24
ME-BA 3.92

ME-GWO 5.27
ME-DA 2.91

ME-MVO 4.90
ME-WOA 4.81

ME-GDEAR 1.96

p-value 9.5625× 10−17

chi-squared 87.6

4.5. Visual Evaluation

In this section, we visually compare the results of the algorithms. For this, we select
(due to length restrictions) image 147091 for D = 5 and image 101087 for D = 10 as
representatives examples. Since the images are from the Berkley segmentation dataset,
there are several ground truth segmentations available for each, although these are often
quite different.

Figure 8 shows the manual segmentations together with the images thresholded by
all algorithms for image 147091 for D = 5. We can notice that our proposed algorithm
can segment the image with less noise, particularly the parts of the sky that are cloudless.
In contrast, some algorithms such as ME-BA and ME-WOA are unable to distinguish
between the left vertical margin and its adjacent parts.

(a) image 253027 (b) manual segmentation 1 (c) manual segmentation 2

(d) manual segmentation 3 (e) manual segmentation 4 (f) manual segmentation 5

(g) ME-DE (h) ME-FA (i) ME-BA

(j) ME-MFO (k) ME-DA (l) ME-WOA

Figure 8. Cont.
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(m) ME-GDEAR

Figure 8. Thresholding results for image 147091 for D = 5. (a) Original image, (b–f) true manual
segmentation, (g) segmented image for ME-DE, (h) segmented image for ME-FA, (i) segmented image
for ME-BA, (j) segmented image for ME-MFO, (k) segmented image ME-DA, (l) segmented image
for ME-WOA, and (m) segmented image for ME-GDEAR.

Figure 9 shows the results for images 101087 and D = 10. Here, we can observe that
some algorithms such as ME-WOA and ME-BA do not perform well, most noticeably in the
sky part, while ME-GDEAR works significantly better and with less noise. Some algorithms
such as ME-FA, ME-BA, and ME-WOA cannot properly segment the shadow part of the
lake; these algorithms segment the shadow part into three different regions with almost
the same proportions, while our proposed algorithm segments this part more reasonably
into two partitions. It is worth noting that in our proposed method the distribution of the
classes in the shadow part is not the same and most of the shadow part belongs to one
single class, which is more in line with reality.

(a) image 253027 (b) manual segmentation 1 (c) manual segmentation 2

(d) manual segmentation 3 (e) manual segmentation 4 (f) manual segmentation 5

(g) ME-DE (h) ME-FA (i) ME-BA

Figure 9. Cont.
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(j) ME-MFO (k) ME-DA (l) ME-WOA

(m) ME-GDEAR

Figure 9. Thresholding results for image 101087 for D = 10. (a): original image, (b–f): different man-
ual segmentations, (g) segmented image for ME-DE, (h) segmented image for ME-FA,(i) segmented
image for ME-BA, (j) segmented image for ME-MFO, (k) segmented image for ME-DA, (l) segmented
image for ME-WOA, and (m) segmented image for ME-GDEAR.

4.6. Effect of Parameters

In ME-GDEAR, we introduce two new parameters, namely CP and Pr. To see their
effect, we select three representative images, 147091, 101087, and 253027 with D = 10.
As shown in Figure 10, the performance highly depends on CP. Therefore, finding a good
value for CP is beneficial to achieve better thresholding. The best value was obtained for
CP = 5.

(a) 147091 (b) 101087 (c) 253027

Figure 10. Effect of CP on the mean objective function value for images (a) 147091, (b) 101087,
and (c) 253027 for D = 10.

Figure 11 shows results for different values of Pr. As we can see, 0.2 is an appropriate
value for this parameter.
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(a) 147091 (b) 101087 (c) 253027

Figure 11. Effect of Pr on the mean objective function value for images (a) 147091, (b) 101087,
and (c) 253027 for D = 10.

5. Conclusions

Multi-level image thresholding remains a popular image segmentation approach. Its
aim is to find optimal thresholds based on information available in the image histogram.
In this paper, we proposed an improved differential evolution algorithm for MLIT based
on Masi entropy. Our ME-GDEAR algorithm introduces (1) a grouping strategy into DE
to cluster the population and use cluster information to update the population; and (2)
attraction and repulsion strategies to more effectively update individuals. Experiments on
a benchmark image set with different characteristics clearly demonstrate that ME-GDEAR
outperforms other MLIT approaches.

One challenge of image thresholding algorithm is that they may not be too widely
used on their own, particularly for higher dimensions. However, they can also be effectively
employed as a pre-processing technique. For example, ref. [56] uses image thresholding
as a pre-processing step for the application of a subsequent graph cut segmentation algo-
rithm. Therefore, in future work, we intend to integrate our approach with other image
segmentation algorithms. Another challenge is that only the image histogram is used, thus
ignoring 2-dimensional image information including texture.

Furthermore, some of the drawbacks of ME-GDEAR can be addressed in future work.
For instance, it uses k-means to cluster the population which can be time-consuming. Using
methods with lower computational demand can thus be considered. Furthermore, as is
common with other population-based metaheuristic algorithms, parameter tuning is a
demanding task and investigating mechanisms for automatic parameter-tuning will be
beneficial. Other planned future work includes the application of alternative objective
functions to improve segmentation and a multi-objective variant of the algorithm.
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