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Abstract: The rich history of prime numbers includes great names such as Euclid, who first an-
alytically studied the prime numbers and proved that there is an infinite number of them, Eu-
ler, who introduced the function ζ(s) ≡ ∑∞

n=1 n−s = ∏p prime
1

1−p−s , Gauss, who estimated the
rate at which prime numbers increase, and Riemann, who extended ζ(s) to the complex plane
z and conjectured that all nontrivial zeros are in the R(z) = 1/2 axis. The nonadditive entropy
Sq = k ∑i pi lnq(1/pi) (q ∈ R; S1 = SBG ≡ −k ∑i pi ln pi, where BG stands for Boltzmann-Gibbs) on
which nonextensive statistical mechanics is based, involves the function lnq z ≡ z1−q−1

1−q (ln1 z = ln z).
It is already known that this function paves the way for the emergence of a q-generalized alge-
bra, using q-numbers defined as 〈x〉q ≡ elnq x, which recover the number x for q = 1. The q-
prime numbers are then defined as the q-natural numbers 〈n〉q ≡ elnq n (n = 1, 2, 3, . . . ), where
n is a prime number p = 2, 3, 5, 7, . . . We show that, for any value of q, infinitely many q-prime
numbers exist; for q ≤ 1 they diverge for increasing prime number, whereas they converge for
q > 1; the standard prime numbers are recovered for q = 1. For q ≤ 1, we generalize the ζ(s)
function as follows: ζq(s) ≡ 〈ζ(s)〉q (s ∈ R). We show that this function appears to diverge
at s = 1 + 0, ∀q. Also, we alternatively define, for q ≤ 1, ζΣ

q (s) ≡ ∑∞
n=1

1
〈n〉sq

= 1 + 1
〈2〉sq

+ . . .

and ζΠ
q (s) ≡ ∏p prime

1
1−〈p〉−s

q
= 1

1−〈2〉−s
q

1
1−〈3〉−s

q

1
1−〈5〉−s

q
· · · , which, for q < 1, generically satisfy

ζΣ
q (s) < ζΠ

q (s), in variance with the q = 1 case, where of course ζΣ
1 (s) = ζΠ

1 (s).

Keywords: nonadditive entropies; q-prime numbers; q-algebras; q-zeta functions

1. Introduction

Extending the realm of the Boltzmann-Gibbs-von Neumann-Shannon entropic func-
tional, many measures of uncertainty have been proposed to handle complex systems
and, ultimately, complexity. All of them are nonadditive, excepting the Renyi functional.
Among them, a paradigmatic one is the entropy Sq defined, with the scope of generalizing
Boltzmann-Gibbs (BG) statistical mechanics, as follows [1]:

Sq = k
1−∑i pq

i
q− 1

= k ∑
i

pi lnq
1
pi

(k > 0) (1)
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with S1 = SBG ≡ k ∑i pi ln 1
pi

. The entropy Sq is the most general one which simultaneously
is composable and trace-form [2], and it has been shown to be connected to the Euler-
Riemann function ζ(s) [3]. The q-logarithm function is defined [4] as follows

lnq z ≡ z1−q − 1
1− q

(ln1 z = ln z) , (2)

its inverse function being

ez
q = [1 + (1− q)z]1/(1−q) (ez

1 = ez) (3)

when [1 + (1− q)z] ≥ 0; otherwise it vanishes. The definitions of the q-logarithm and q-
exponential functions allow consistent generalizations of algebras [5–9], calculus [6,8,10,11] (see
also [12]) and generalized numbers [8,13].

There are different ways of defining generalized q-numbers connected with the pair of
inverse (q-logarithm, q-exponential) functions, namely

〈x〉q = elnq x (〈x〉1 = x > 0) , (4)

q〈x〉 = eln x
q (1〈x〉 = x > 0) , (5)

[x]q = ln ex
q ([x]1 = x ∈ R) , (6)

q[x] = lnq ex (1[x] = x ∈ R) . (7)

Observe that 〈 q〈x〉 〉q = q〈 〈x〉q 〉 = [ q[x] ]q = q[ [x]q ] = x. These four possibilities are
explored in Ref. [8]. (Equations (4)–(7) are equivalent to Equations (11a,b) and (10a,b) of
Ref. [8] respectively. The notations introduced in Equations (4) and (5) differ from those used
in [8].) Other generalizations exist in the literature, also referred to as q-numbers [14,15].
Generalized arithmetic operations follow from each of the q-numbers and, consistently,
there are various possibilities. The present paper will only explore one possibility for
q-numbers, namely our Equation (4), equivalent to the iel-number Equation (11a) of [8].
For this choice, two algebras will be focused on here, namely,

〈x〉q #q 〈y〉q ≡ 〈 x ◦ y 〉q (8)

and
〈 x #q y 〉q ≡ 〈x〉q ◦ 〈y〉q , (9)

the symbol ◦ representing any of the ordinary arithmetic operators ◦ ∈ {+,−,×, /}, and
#q or #q representing the corresponding generalized operators; naturally, #1 = #1 = ◦.
Possibility (8) preserves prime number factorizability, while possibility (9) does not. The
algebra corresponding to Equation (8) is developed in Section 4, and it was not addressed in
Ref. [8]. We use a superscript for its algebraic operators, #q, a notation that was not adopted
in Ref. [8]. The other algebra, corresponding to Equation (9), is presented in Section 5, and
it corresponds to the oel-arithmetics addressed in Section III.D of Ref. [8], where {q}# is
here noted #q.

2. Preliminaries

Let us remind the reader, at this point, the so-called Basel problem, which focuses on
the value of the series

I2 =
∞

∑
n=1

1
n2 , (10)

proposed in 1644 by Pietro Mengoli of Bologna, in contrast to the divergent harmonic series,

I1 =
∞

∑
n=1

1
n

. (11)
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This problem was intensively studied by the Bernoulli brothers from Basel almost half a
century later, and became known as the Basel Problem. They proved that I1 is divergent,
but I2 is finite and smaller than 2, but failed to obtain the exact value.

The Basel problem was solved by Euler in 1735. He also exhibited the connection with
prime numbers, namely

I2 =
∞

∏
i=1

1
1− p−2

i
=

1
6

π2,

where pi is the i-th prime numbers (2, 3, 5, ...), thus introducing for the first time the so-
called Euler’s product.

In =
∞

∏
i=1

1
1− p−n

i
. (12)

In 1859, Riemann extended the domain of the exponent n to complex numbers, intro-
ducing the notation

ζ(s) ≡
∞

∑
n=1

1
ns (13)

=
∞

∏
i=1

1
1− p−s

i
, (14)

so that ζ(s) is often called Riemann’s zeta function (or Euler-Riemann zeta function). By
the way, Gauss made many important contributions to the field, especially the so-called
prime number theorem, π(N) ∼ N/ ln N (N → ∞), where π(N) is the number of primes
up to the integer N.

For the oncoming discussion, it is useful to remind some properties within integers
which are necessary to prove

∞

∑
n=1

1
ns =

∞

∏
i=1

1
1− p−s

i
. (15)

For this, let us consider a function f (z), for z = xy, which can be written as

f (z) = f (x) f (y). (16)

The function f (z) = 1
zs admits such a property. Indeed, the power law satisfies

za+b = zazb, (17)

z−a =
1
za , (18)

zab = (za)b =
(

zb
)a

. (19)

Now, we know that any integer n can be decomposed into an unique product of
prime numbers,

n = pm1
1

pm2
2 ...pmi

i · · · (20)

where mi is the multiplicity of the prime pi in the product (p0 = 1, p1 = 2, p2 = 3, . . . ) and
they are uniquely determined for a given n ∈ N. That is, the set

{m1, m2, · · · , mi, · · · } (21)

is determined for a given value of n so we can use the notation

{m1(n), m2(n), · · · , mi(n), · · · } . (22)

Let us focus on an interesting aspect of the primes. Taking logarithm of Equation (20),
for any positive integer n ∈ N, we get ln n = ∑i m(n)i ln pi = ∑i m(n)i êi where êi ≡ ln pi.
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We can therefore consider the set {ln n, n ∈ N} as a kind of infinite dimensional vector
space, whose basis vectors are {êi, i = 1, ..., }. However, rigorously, this is not a vector
space, since the coefficients of the linear combination, i.e., the set of multiplicities, are only
integers, and not the set of real numbers.

Note that to guarantee the uniqueness of the decomposition, the commutativity m n =
n m and the associativity l (m n) = (l m) n of the product operation are essential.

Now, the sum over all positive integer values of a function f (n) satisfying Equation (16)
can be written, if it converges absolutely, as

∞

∑
n=1

f (n) =
∞

∑
n=1

∞

∏
i

f (pmi(n)
i ) , (23)

This comes from the fact that the direct product of the sets
{

pi, p2
i , p3

i , · · · , pm
i , · · ·

}
for

all primes is equal to the set of positive natural numbers N+ ≡ {1, 2, 3, · · · },

∞

∏
i=0
⊗
{

pi, p2
i , p3

i , · · · , pm
i , · · ·

}
= N+, (24)

where⊗ denotes the direct product. The meaning of Equation (23) can be seen more
intuitively here below as

{1 2 22 23 · · · 2m · · · }
⊗{1 3 32 33 · · · 3m · · · }

⊗{1 ...
...

... · · ·
... }

⊗{1 pi p2
i p3

i · · · pm
i }

...
...

...
...

...
...

...

=
{

1, 1 · 2, · · · , pm1
1
· pm2

2 · ... · p
mi
i ·, . . .

}
= N . (25)

Note that the multiplicity mi(n) of the i-th prime pi takes all integer values if n runs
over all natural numbers. Consistently, for a given pi, the value of mi(n) runs over all non-
negative integers. That is, mi(n) and i can run over all nonnegative integers independently.
Therefore, by using l (m + n) = l m + l n, we can exchange the order of the sum and the
product in Equation (23):

∞

∑
n=1

f (n) =
∞

∏
i=1

∞

∑
m=0

f (pm
i ) (26)

if f (x) satisfies the property indicated in Equation (16).
Now, let us take the case of the Euler product,

f (n) =
1
ns .

Then the summation in m of Equation(26) for pi term is

S ≡
∞

∑
m=0

((
1
pi

)s)m

= 1 +
1
ps

i
+

(
1
ps

i

)2
+ · · ·+

(
1
ps

i

)k
+ · · · (27)

which is a geometric series. By writing r ≡ 1/ps
i , we obtain

S ≡ 1 + r + r2 + · · · = 1
1− r

=
1

1− (1/pi)
s . (28)
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Finally, we have the Euler product form as

∞

∑
n=1

1
ns =

∞

∏
i=1

∞

∑
m=0

(
1
ps

i

)m
=

∞

∏
i=1

(
1

1− (1/pi)
s

)
. (29)

This connection is known as Euler’s product form. Riemann extended the domain of s
of this function into the complex plane z, being since then frequently referred to as the
Riemann zeta function ζ(z).

3. q-Integers

We focus on the q-generalized numbers 〈n〉q, n ∈ N, given by Equation (4), to see how
far we can conserve the essential concept of prime numbers in the set of q-numbers. This
particular q-number 〈n〉q satisfies

ln 〈n〉q = lnq n. (30)

Let us consider the set of nonnegative integers N. Equation (4) defines a mapping
from N to Nq, where Nq denotes the set of all positive q-integers. Note that limx→1〈x〉q → 1
but, for other general natural numbers n, its q-partner

〈n〉q = exp
{

n1−q − 1
1− q

}
(31)

is not an integer, in general. This point is crucial for the question of factorization. The
inverse mapping is then (see Equation (5))

n = expq
{

ln
(
〈n〉q

)}
= q〈 〈n〉q 〉. (32)

The q-mapping and its inverse N � Nq are one-to-one [expq(lnq x) = lnq(expq(x)) =
x, ∀x ∈ R+]. However, it is clear that, for q 6= 1, N 6= Nq.

For q ∈ (1, ∞), the q-natural numbers satisfy limn→∞〈n〉q = e1/(q−1) > 1 . For
q ∈ (−∞, 1], the q-natural numbers satisfy limn→∞〈n〉q = ∞ . There are infinitely many
q-prime numbers for q ∈ (−∞, ∞). See Figure 1.

5 10 15 20
n

5

10

15

20

〈n〉
q

10.90.80.50

1.2

1.5

2.0

Figure 1. q-natural numbers for typical values of q. The q-prime numbers are indicated in red. The
dotted lines correspond to real values for the abscissa.
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4. Algebra Preserving Factorizability of q-Integer Numbers in q-Prime Numbers

In order to introduce the concept of q-primes, we should keep the factorization concept
in N+

q . Thus we must first define the product operation Nq, and should be kept invariant
under the q-mapping from N+. Following Equation (8), let 〈m〉q ⊗q 〈n〉q be such a product
(note that here ⊗q is not the direct product of sets, but this specific q-generalized product
of q-numbers) between any pair of q-integers 〈m〉q, 〈n〉q ∈ Nq, whose result give the
q-transform of m n ∈ N, i.e., obeys the following factorizability:

〈m〉q ⊗q 〈n〉q = 〈mn〉q. (33)

We also define the following generalized summation operator ⊕q in Nq as

〈m〉q ⊕q 〈n〉q = 〈m + n〉q. (34)

The above definitions correspond to those introduced in Ref. [13] (its Equations (5) and
(6); the operations defined in [13] follows the same structure of Equation (33), or, more
generally, Equation (8), but with a different deformed number, namely the Heine number.).

In order that the above operations are meaningful in N+
q , it is necessary that they are

closed operations in Nq.
The following definitions satisfy properties (33) and (34):

〈m〉q ⊗q 〈n〉q = 〈m〉q 〈n〉q e(1−q)(ln〈m〉q)(ln〈n〉q), (35)

〈m〉q ⊕q 〈n〉q = exp
{
(m + n)1−q − 1

1− q

}
. (36)

Equation (35) can be rearranged as

〈m〉q ⊗q 〈n〉q = 〈m〉q 〈n〉q eln〈m〉q ⊕q ln〈n〉q − ln〈m〉q − ln〈n〉q . (37)

The result of these definitions is a q-integer by construction.
By construction, it is clear that this definition of the q-product ⊗q as an operator in

Nq, conserves the factorization property under the q-transform n = k m ∈ N⇐⇒ 〈n〉q =
〈k〉q ⊗q 〈m〉q ∈ Nq. In addition, also by construction, the operators, ⊗q and ⊕q satisfy the
following basic properties of algebras, valid in Nq:

• Closedness of the operation:

∀〈m〉q, 〈n〉q ∈ N+
q =⇒ 〈m〉q ⊕q 〈n〉q ∈ N+

q , 〈m〉q ⊗q 〈n〉q ∈ N+
q , (38)

• Commutativity

〈m〉q ⊕q 〈n〉q = 〈n〉q ⊕q 〈m〉q, (39)

〈m〉q ⊗q 〈n〉q = 〈n〉q ⊗q 〈m〉q, (40)

• Associativity

〈k〉q ⊕q (〈m〉q ⊕q 〈n〉q
)
=
(
〈k〉q ⊕q 〈m〉q

)
⊕q 〈n〉q, (41)

〈k〉q ⊗q (〈m〉q ⊗q 〈n〉q
)
=
(
〈k〉q ⊗q 〈m〉q

)
⊗q 〈n〉q, (42)

• Distributivity of the product ⊗q with regard to the sum ⊕q

〈k〉q ⊗q (〈m〉q ⊕q 〈n〉q
)
=
(
〈k〉q ⊗q 〈m〉q

)
⊕q (〈k〉q ⊗q 〈n〉q

)
. (43)
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• Neutral element of the q-addition

〈m〉q ⊕q 〈0〉q = 〈m〉q ⊕q 0 = 〈m〉q (q ≥ 1). (44)

• Neutral element of the q-product

〈m〉q ⊗q 〈1〉q = 〈m〉q ⊗q 1 = 〈m〉q . (45)

We show that these properties are essential to keep the nature of prime numbers for
q-transformed integers, corresponding to Equation (20) in N.

We also define the following operations:

〈x〉q �q 〈y〉q = 〈x/y〉q (46)

and
〈x〉q 	q 〈y〉q = 〈x− y〉q (47)

Besides, for any a ∈ R, we can define a a-power of a q-number by

〈x〉q©∧ qa ≡
〈

xa
〉

q
(48)

from what follows

〈x〉q©∧ q(a + b) =
〈

xa+b
〉

q

= 〈xa〉q ⊗q 〈xb〉q

=
(
〈x〉q©∧ qa

)
⊗q

(
〈x〉q©∧ qb

)
, (49)

〈x〉q©∧ q(ab) =
〈

xab
〉

q

=
〈

xa
〉

q
©∧ qb

=
(
〈x〉q©∧ qa

)
©∧ qb

=
(
〈x〉q©∧ qb

)
©∧ qa, (50)

and (
〈x〉q©∧ qs

)
⊗q

(
〈x〉q©∧ qt

)
=
(
〈x〉q

)〈s〉q ⊕q 〈t〉q
. (51)

As we see, for fixed q, this algebra is isomorphic to the standard algebra.

Definition 1. A q-integer 〈n〉q (i.e., an element of N+
q ) is called “q-prime” and written as 〈p〉q if

it can not be written as a q-factorized form in terms of two smaller q-integers as

〈n〉q = 〈m〉q ⊗q 〈k〉q, (52)

with 〈m〉q, 〈k〉q ∈ N+
q , except for the trivial factorization case, i.e., either one of 〈m〉q or 〈k〉q is the

unity, 〈1〉q.

It is evident from the definition of q-integers that all the set of q-primes
{
〈pi〉q, i = 1, . . .

}
are q-partners of the prime numbers in N+, {pi, i = 1, ...}. For any integer n ∈ N+ which is
not a prime, there exists the non-trivial factors, k, m ∈ N+ such that n = k×m. However,
from the definition of the q-product, Equation (33), 〈n〉q = 〈km〉q = 〈k〉q ⊗q 〈m〉q, showing
that 〈n〉q has a non-trivial q-factorization and it is not a q-prime. As we mentioned, the
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q-correspondence between the two sets, N+ and N+
q is one-to-one, q-primes in N+

q are
q-transformations of the normal primes in N+.

The basic property of primes is that any natural number n ≥ 2 can be written uniquely
as the products of primes {pi} as

n = ∏
i

pmi(n)
i , (53)

where
{p1, p2, p3, p4, p5 · · · } = {2, 3, 5, 7, · · · }

is the set of primes and for a given n,

{m1(n), m2(n), · · · }

is the set of multiplicities mi(n) of the prime pi is uniquely determined for given n.
Now, for q-integers, 〈n〉q ∈ N+

q , the corresponding decomposition property is valid
in N+

q in terms q-integers with q-products, satisfying the properties of commutativity and
distributivity. By construction, we can write for any 〈n〉q the q-prime decomposition as

〈n〉q = ∏
i

q
(
〈pi〉q©∧ qmi(n)

)
(54)

for the sake of isomorphism of the product operations in N and Nq. The symbol ∏q

represents the generalized product (33) of a number of terms,
n

∏q

i
xi ≡ x1⊗q x2⊗q · · · ⊗q xn.

Since we have the isomorphisms of the operations of sum and product in N+ and in
N+

q , we can write down the q-version of the Euler product:

∑
〈n〉q∈N+

q

q
(

1
〈n〉q

)m⊕q s
= ∑
〈n〉q∈N+

q

q ∏
i

(
〈pi〉q

)mi(n)
, (55)

with the symbol ∑q representing the generalized summation according to Equation (34).
Now, the multiplicity mi(n) of the i-th prime pi should take all integer values if n runs

over all the integers. Inversely, for a given pi, the value of mi(n) runs over all integers.
That is, mi(n) and i can run over all integers independently. This comes from the fact that
the direct product of the sets,

{
pi, p2

i , p3
i , · · · , pm

i , · · ·
}

, for every prime is equal to the set
of natural numbers N+ (see Equation (24)). We can therefore see that exchange the order
of the sum and the product (due to the distributivity of the ordinary multiplication with
regard to the ordinary addition, l (m + n) = l m + l n) in Equation (23) as

∑
n∈N+

f (n) =
∞

∑
n=1

∏
i

f
(

pmi(n)
i

)
= ∏

i=1

∞

∑
m=0

f (pm
i ) (56)

if f (x) satisfies the property Equation (16).
The definitions of the q-algebra introduced here is sufficient to write down the q-

version of the Euler sum and the Euler product in q-representation formally as

ζq(s) = ∑
∀〈n〉q∈Nq

q
〈
〈1〉q �q (〈n〉q©∧ qs

) 〉
q

(57)

= ∏q

i∈N

〈
〈1〉q �q 〈 1− 1/ps

i 〉q
〉

q
, (58)

and
ζq(s) ≡ 〈ζ(s)〉q (59)
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(with ζ1(s) ≡ ζ(s)). In other words, the Euler product form is preserved for all values of q.
Figure 2 depicts ζq(s) for different values of q.

-0.5 0 1 2
s

0

5

10

15

20

〈ζ
(s
)〉

q

1

1.2

1.5

2

0.5 0 -1

Figure 2. 〈ζ(s)〉q = ζq(s) for typical values of q. These values have been calculated from Equation (59)
with the first 105 prime numbers. The q-number 〈n〉q, Equation (31), with q > 1 presents an upper
limit, limn→∞〈n〉q>1 = e1/(q−1), and this prevents the divergence of ζq(s) for s < 1.

We numerically identify the location of the divergence by fixing an arbitrary value
of ζq(s) noted as ζdiv

q and identify the corresponding the value of s (noted as sdiv) with
increasing number of primes. The procedure is repeated with increasing values of ζdiv

q . The
three top panels of Figure 3 illustrate the procedure for q = 1, and the three bottom panels
for q = −1. Each curve in Figure 3 (top left) displays the value of sdiv for which ζq(sdiv) ≡
ζdiv

q = 〈ζ1(sdiv)〉q = 103, 104, . . . , 108 with increasing numbers of primes (103, 104, . . . , 106

primes, shown with solid circles). The representation with 1/ log10(number of primes) in
the abscissa is not a straight line, and we empirically found that introducing a power σ (σ
depends on ζdiv

q ) as shown in Figure 3 (top middle), straight lines emerge, which can be
extrapolated (dashed lines) to infinite number of primes — the open circles at the ordinate
axis. These extrapolations correspond to infinite number of primes, but, nevertheless, the
values of ζdiv

q are still finite. Finally, the limit ζdiv
q → ∞ is achieved as illustrated in Figure 3

(top right). The open circles at the ordinate axis of Figure 3 (top middle) are represented in
Figure 3 (top right) for each value of ζdiv

q , identified with their respective colors, with the
change of variables 1/[log10(ζ

div
q )]µ in the abscissa. µ is an empirical power that transforms

the curves into straight lines (µ depends on q; µ(q = 1) = 1). A final extrapolation is
then allowed, identifying the location of the divergence (open square). The difference
limζdiv

1 →∞ limnumber of primes→∞ sdiv − 1 characterizes the numerical error. We use the same
procedure for q < 1, and the three bottom panels illustrate the case q = −1.

Figure 4 shows the final step of the procedure (see Figure 3 top right and bottom right
panels) for different values of q ≤ 1, and the maximal estimated numerical error is less than
3% for the values of q that we have checked. This result definitely differs from what a brief
glance at Figure 2 might induce one to think.
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Figure 3. Top left panel: Dependence of sdiv = s(ζdiv
1 ) with 1/ log10(number of primes) in

Equation (14); ζdiv
1 is a proxy for the divergence of ζ1(s). Top middle panel: Power-law rescaling

of sdiv = s(ζdiv
1 ) with 1/

[
log10(number of primes)

]σ. The curves point towards sdiv with infinite
number of primes (open circles); Top right panel: Extrapolated values of Figure 3(top middle) linearly

rescaled with 1/
[
log10(ζ

div
q )

]µ
point towards the analytically exact value sdiv(∞) = 1 (open square)

(limζdiv
1 →∞ limnumber of primes→∞ sdiv = 1) within a numerical error less than 2% for q = 1. The colors

of the open circles refer to the values of ζdiv
1 identified in Figure 3(top middle). Bottom panels: the

same as top panels for q = −1, Equation (59).
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Figure 4. The same as Figure 3 (top right and bottom right) for typical values of q ≤ 1. The colors
of the open circles identify the value of ζdiv

q as used in Figure 3 (top middle and bottom middle).
The colors of the solid lines identify the value of q according to the legend in the present figure. The
divergence of ζq(s) occurs at sdiv(∞) = 1 (open squares) within a numerical error less than 3% for the
values of q that we have checked.

The numerical procedure can be taken in the inverse order, taking ζdiv
q → ∞ as the

first step, and then taking increasing number of primes: see Figures 5 and 6. Each curve in
Figure 5 (top left and bottom left) displays the value of sdiv calculated with the same number
of primes in Equation (59) (103, 104, 105, 106 primes) as a function of 1/ log10 ζdiv

q . Here,
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similarly to Figure 3 (top left and bottom left), the curves are not straight lines, so they can
hardly be extrapolated. The empirical power-law rescaling shown in Figure 5 (top middle
and bottom middle) indicates that sdiv linearly scales with 1/[log10 ζdiv

q ]ρ (ρ depends on the
number of primes), and the generated straight lines point to the corresponding values of
sdiv with infinite number of primes in the ζq(s) function (open circles of the top middle and
bottom middle panels). These extrapolated values are rescaled according to a power-law
shown in Figure 5 (top right and bottom right), with the empirical power ν depending
on q.

Figure 6 is equivalent to top right and bottom right panels of Figure 5 for different
values of q ≤ 1. All these cases indicate limnumber of primes→∞ limζdiv

q →∞ sdiv = 1 within a
numerical error less than 4%

The empirical powers (σ, ρ, µ, ν) have been estimated by fitting a parabola y =
a+ bx+ cx2 to the corresponding curve, x is the variable of the abscissa of the corresponding
middle and right panels, y = sdiv, and the fitting value of the power is that for which
c ≈ 0, estimated with four digits for the power parameter. The coefficient a of the fitting of
the parabola is the extrapolated value of the corresponding curve (open circles of the top
middle and bottom middle panels of Figures 3 and 5, open squares of the top right and
bottom right panels of Figures 3 and 5 and open squares of Figures 4 and 6).

Similar behavior is expected for ζq(s) evaluated with the version with summations,
Equation (57).
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Figure 5. Top left panel: Dependence of sdiv = s(ζdiv
1 ) with 1/ log10(ζ

div
1 ) in Equation (14);

Top middle panel: Power-law rescaling of sdiv = s(ζdiv
1 ) with 1/

[
log10(ζ

div
1 )

]ρ
. The curves point

towards sdiv with ζdiv
q → ∞ (open circles); Top right panel: Extrapolated values of Figure 5 (top

middle) linearly rescaled with 1/
[
log10(number of primes)

]ν point towards sdiv(∞) = 1 (open square)
(limnumber of primes→∞ limζdiv

1 →∞ sdiv = 1) within a numerical error less than 3%. The colors of the
open circles refer to the number of primes identified in Figure 5 (top middle). Bottom panels: the
same as top panels with q = −1, Equation (59).
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Figure 6. The same as Figure 5 (top right and bottom right) for typical values of q ≤ 1. The colors of
the open circles identify the number of primes as used in Figure 5 (top middle and bottom middle).
The colors of the solid lines identify the value of q according to the legend in the present figure. The
divergence of ζq(s) occurs at sdiv(∞) = 1 (open squares) within a numerical error less than 4% for the
values of q that we have checked.

5. Algebra Violating Factorizability of q-Integer Numbers in q-Prime Numbers

The q-product corresponding to Equation (9),

〈x⊗q y〉q = 〈x〉q 〈y〉q, (60)

is defined as (Equation (7) of [6], Equation (48) of [8])

x ⊗q y ≡
[

x1−q + y1−q − 1
] 1

1−q
(x ≥ 0, y ≥ 0; x⊗1 y = xy) (61)

or, equivalently,

x⊗q y ≡ e
lnq x+lnq y
q , (62)

and the q-sum is defined as (Equation (A19) of [8])

x⊕q y ≡ eln [elnq x+elnq y ]
q

=
{

1 + (1− q) ln
[
e

x1−q−1
1−q + e

y1−q−1
1−q

]}1/(1−q)
. (63)

If q 6= 1, 〈x〉q〈y〉q 6= 〈x y〉q. Equation (63) with the symbol⊕q is equivalent to Equations (44)
and (A19) of [8] with the symbol {q}⊕, called oel-addition. (The notation ⊕q adopted in
Equation (63) was used as Equation (4) of [6] with a different meaning than here, namely
x ⊕q y ≡ x + y + (1− q)xy, which is usually referred to as q-sum. x + y + (1− q)xy is
denoted in Ref. [8] (Equation (25)) with the symbol x [q]⊕ y and is called ole-addition.)

The properties (38)–(45) also hold for the #q operations (see [8]).

ζΣ′
q (s) ≡

∞

∑q
n=1

1
ns = 1⊕q

1
2s ⊕q

1
3s ⊕q . . . (64)

and

ζΠ′
q (s) ≡ ∏q

p prime

1
1− p−s

=
1

1− 2−s ⊗q
1

1− 3−s ⊗q
1

1− 5−s ⊗q · · · (65)
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In the next Section we present details on a specific generalization.

6. q-Generalizations of the ζ(s) Function Directly Stemming from q-Numbers

We define the following q-generalizations of the Riemann ζ function:

ζΣ
q (s) ≡

∞

∑
n=1

1
〈n〉sq

= 1 +
1
〈2〉sq

+
1
〈3〉sq

+ . . . (s ∈ R) (66)

and

ζΠ
q (s) ≡ ∏

p prime

1
1− 〈p〉−s

q

=
1

1− 〈2〉−s
q

1
1− 〈3〉−s

q

1
1− 〈5〉−s

q
· · · , (67)

where 〈n〉q is the q-number defined in Equation (4); see Figures 7 and 8.
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Figure 7. Influence on ζΣ
1 (x) = ζΠ

1 (x) = ζ(x) of the number of terms in the sum and in the product,
where we have used respectively Equation (66) and (67).
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q (s) and ζΠ

q (s) for typical values of q ≤ 1.

Other possibilities may naturally be considered for generalizing ζ(s), for instance

ζΣ′′
q (s) ≡

∞

∑
n=1

〈 1
ns

〉
q
= 1 +

〈 1
2s

〉
q
+
〈 1

3s

〉
q
+ . . . (68)

and

ζΠ′′
q (s) ≡ ∏

p prime

〈 1
1− p−s

〉
q

=
〈 1

1− 2−s

〉
q

〈 1
1− 3−s

〉
q

〈 1
1− 5−s

〉
q
· · · (69)

Let us however clarify that it is not the scope of the present paper to systematically
study all such possibilities.

7. Final Remarks

Let us now illustrate the two algebraic approaches focused on in the present paper
(see Figure 9):

〈18〉q = 〈2〉q ⊗q 〈3〉q ⊗q 〈3〉q = 〈2〉q ⊗q (〈3〉q©∧ q2
)

(∀q) (70)

whereas
〈18〉q 6= 〈2〉q ⊗q 〈3〉q ⊗q 〈3〉q 6= 〈2〉q ⊗q

(
〈3〉q©∧ q2

)
(∀q 6= 1). (71)

Analogously we have
〈5〉q = 〈2〉q ⊕q 〈3〉q (∀q) (72)

whereas
〈5〉q 6= 〈2〉q ⊕q 〈3〉q (∀q 6= 1). (73)
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Figure 9. Left panel: Factorization is preserved through the generalized product defined by (33),
illustrated with 〈2〉q ⊗q 〈3〉q ⊗q 〈3〉q for different values of q (black curve); the generalized product
defined by (62), 〈2〉q ⊗q 〈3〉q ⊗q 〈3〉q, does not preserve factorization (green curve). The red curve is
the corresponding q-number, Equation (4). Right panel: instance of the q-sum of q-numbers, with the
q-sums given by (34), 〈2〉q ⊕q 〈3〉q, (black curve) and (63), 〈2〉q ⊕q 〈3〉q, (green curve). The red curve
is the corresponding q-number, Equation (4). Notice that there exists a nontrivial value of q 6= 1 for
which 〈2〉q ⊗q 〈3〉q ⊗q 〈3〉q = 18 and, similarly, 〈2〉q ⊕q 〈3〉q = 5.

The algebra preserving the factorizability of q-integer numbers into q-prime numbers
(see equality (70)) achieves this remarkable property essentially because it is isomorphic
to the usual prime numbers. On the other hand, precisely because of that, it is unable to
properly q-generalize the concept of a vectorial space in terms of nonlinearity. In contrast,
the algebra which violates the factorizability of q-integer numbers into q-prime numbers
(see inequality (71)), or some similar algebra, emerges as a possible path for achieving the
concept of nonlinear vector spaces, which has the potential of uncountable applications in
theoretical chemistry and elsewhere.

Since the inequality relation between q-primes remains the same as that for q = 1,
it is plausible that the nontrivial zeros in the analytic extension behaves similarly. More
precisely, it might well be that, by extending ζq(s), ζΣ

q (s) and ζΠ
q (s) to the complex plane

z, all nontrivial zeros belong to specific single continuous curves, R(z) = fq(I(z)), thus
q-generalizing the q = 1 Riemann’s 1859 celebrated conjecture R(z) = 1/2.

We have here explored generalizations of the ζ(s) function based on a specific type of
q-number, Equation (4), and two associated generalized algebras (Sections 4 and 5). Three
additional forms of q-generalized numbers, Equations (5)–(7), are identified in Ref. [8]. To
each of these q-numbers, we can associate two consistently generalized algebras, one of
them violating the factorizability in prime numbers (see Ref. [8]), the other one following
along the lines of Section 4. Similarly, various other generalizations of the ζ(s) function
may of course be developed. Naturally, the extension of the present q-generalized ζ(s)
functions to complex z surely is interesting, but does not belong to the aim of the present
effort. In any case, the intriguing fact that various infinities appear to linearly scale with
negative powers of logarithms might indicate some general tendencies.

It is well known that both random matrices and quantum chaos (classically corre-
sponding to strong chaos, i.e., positive maximal Lyapunov exponent) [16–20] are related to
the Riemann ζ-function and prime numbers. On the other hand, both random matrices
and strong chaos have been conveniently q-generalized, in [21–24] respectively. These facts
open the door for possible applications of the present q-generalizations of prime numbers
and of the ζ-function to q-random matrices and to weak chaos (classically corresponding to
vanishing maximal Lyapunov exponent, which recovers strong chaos in the q → 1 limit).
Moreover, connections of the present developments within the realm of the theory of
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numbers, or, more specifically, the theory of prime numbers, remain, at this stage, out of
our scope. Further work along these lines would naturally be very welcome.
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