
����������
�������

Citation: Singh, A.; Ogunfunmi, T.

An Overview of Variational

Autoencoders for Source Separation,

Finance, and Bio-Signal Applications.

Entropy 2022, 24, 55. https://doi.org/

10.3390/e24010055

Academic Editor: Sotiris Kotsiantis

Received: 6 November 2021

Accepted: 21 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

An Overview of Variational Autoencoders for Source
Separation, Finance, and Bio-Signal Applications

Aman Singh and Tokunbo Ogunfunmi *

Department of Electrical & Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA;
asingh9@scu.edu
* Correspondence: togunfunmi@scu.edu

Abstract: Autoencoders are a self-supervised learning system where, during training, the output is
an approximation of the input. Typically, autoencoders have three parts: Encoder (which produces
a compressed latent space representation of the input data), the Latent Space (which retains the
knowledge in the input data with reduced dimensionality but preserves maximum information) and
the Decoder (which reconstructs the input data from the compressed latent space). Autoencoders have
found wide applications in dimensionality reduction, object detection, image classification, and image
denoising applications. Variational Autoencoders (VAEs) can be regarded as enhanced Autoencoders
where a Bayesian approach is used to learn the probability distribution of the input data. VAEs have
found wide applications in generating data for speech, images, and text. In this paper, we present a
general comprehensive overview of variational autoencoders. We discuss problems with the VAEs
and present several variants of the VAEs that attempt to provide solutions to the problems. We
present applications of variational autoencoders for finance (a new and emerging field of application),
speech/audio source separation, and biosignal applications. Experimental results are presented for
an example of speech source separation to illustrate the powerful application of variants of VAE:
VAE, β-VAE, and ITL-AE. We conclude the paper with a summary, and we identify possible areas of
research in improving performance of VAEs in particular and deep generative models in general, of
which VAEs and generative adversarial networks (GANs) are examples.

Keywords: variational autoencoders; deep learning; volatility surfaces; speech source separation;
EEG; EMG; ECG; generative models

1. Introduction

One of the distinct traits of human intelligence is the ability to imagine and synthesize.
Generative modeling in machine learning aims to train algorithms to synthesize completely
new data, such as audio, text, and images; it does so by estimating the density of the
data, and then sampling from that estimated density. The deep learning [1] revolution
has led to breakthroughs in generative modeling with deep generative models such as
variational autoencoders, generative stochastic networks, neural autoregressive models,
and generative adversarial networks.

Variational autoencoders combine Bayesian variational inference with deep learning [2];
like the autoencoder, it has an encoder and decoder, but it aims to learn the probability
distribution through amortized variational inference and the reparameterization trick.
Information theory is a key component of variational inference because it involves mini-
mizing the KL Divergence between the posterior distribution and variational posterior. The
generative adversarial network is a framework for training two models (a discriminator
and a generator) simultaneously with an adversarial process.

There has been lots of research on deep generative models for image, text, and audio
generation. Generative adversarial networks (GANs) tend to outperform variational au-
toencoders in image fidelity, while a variational autoencoder is more stable and is better for
estimating the probability distribution itself. Neural autoregressive models are powerful at

Entropy 2022, 24, 55. https://doi.org/10.3390/e24010055 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24010055
https://doi.org/10.3390/e24010055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4103-8761
https://orcid.org/0000-0003-3517-9779
https://doi.org/10.3390/e24010055
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010055?type=check_update&version=2

Entropy 2022, 24, 55 2 of 55

density estimation but often slower than VAEs in sampling. Often times, these different
frameworks have been integrated to compliment the different strengths and ameliorate
the weaknesses, such as with the adversarial autoencoder, VAE-GAN, VAE with inverse
autoregressive flow, and PixelVAE.

Source separation, especially blind source separation, has long been a problem of
interest in the signal processing community. The cocktail party problem is a common
example of the blind source separation problem. It is when a listener is at a cocktail party
where there are many people speaking concurrently, and the listener must try to follow one
of the conversations. It seems like an easy task for humans, but, for computers, it is more
difficult. Source separation has applications in music/speech/audio data, EEG signals,
ECG signals, and image processing. In the past, methods like Independent Component
Analysis (ICA) and Non Negative Matrix Factorization (NNMF) have been the state-of-
the-art methods for this problem. More recently, deep learning methods have improved
our solution, including variational autoencoders, generative adversarial networks, and
recurrent neural networks.

For applications in finance (which is relatively new), VAEs are used to generate
synthetic volatility surfaces for options trading.

Bio-signal applications of VAE include detection of serious diseases using electrocar-
diogram (ECG) signals, data augmentation of bio-signals and improving electroencephalog-
raphy (EEG)-based speech recognition systems, etc.

The key contributions of our paper include:
(1) A general overview of autoencoders and VAEs (2) A comprehensive survey of

applications of the variational autoencoders for speech source separation, data augmenta-
tion and dimensionality reduction in finance, and biosignal analysis. (3) A comprehensive
survey of variational autoencoder variants. (4) Experiments and analysis of results in
speech source separation using various VAE models. (5) While multiple survey papers
have covered the VAE [3,4], this paper has a special focus on time series/signal processing
applications and information-theoretic interpretations.

The paper is organized as follows: Section 2 provides a general background information
and Section 3 discusses Variational Inference. Section 4 presents the Variational Autoencoder
while Section 5 discusses Problems with the VAE. Several variants of the VAEs are presented
in Section 6. Three interesting applications of VAEs are discussed in Section 7. Experimental
results on speech source separation are discussed in Sections 8 and 9 concludes the paper.

Notations

The following notation will be used throughout this paper:

- Lower case p, q, f , γ, ψ, or p(.), q(.), f (.), γ(.), ψ(.), to denote probability density
functions (PDFs) or probability mass functions (PMFs).

- Random variables are written in lower case italicized letters, for example, x, with the
exception of ε, which will represent both a random variable and its instance.

- Deterministic scalar terms, including realizations of random variables, are written
in lower case letters, for example, x. Greek alphabets α, β, θ, and φ will also denote
deterministic scalar terms. Deterministic scalar terms that are not realizations of
random variables can also be written in upper case letters, such as N.

- Random vectors are written in lower case italicized bold letters, for example, x.
- if we have a random vector x, then its jth component will be noted xj.
- Ordinary vectors are written in lowercase bold letters or bold Greek alphabets θ, µ,

and φ. A realization of a random vector x will be written as x.
- Matrices are written in uppercase bold italics, such as W . I denotes the identity matrix.
- If we have two random variables x and y with probability functions p(x) and p(y),

we can write their joint probability function as p(x, y). Their conditional probability
distribution function is written as p(x|y).

- If we have a PMF/PDF p(x = x), p(x) is the shorthand notation. For p(x|y = y),
p(x|y) is the shorthand. For p(x = x|y = y), p(x|y) is the shorthand.

Entropy 2022, 24, 55 3 of 55

- If we have p(.; θ) or pθ(x), this denotes that the PDF/PMF p is parameterized by
θ—similarly with qφ(z). However, there are exceptions in some contexts. px(x) will
be shorthand for a distribution p(x) associated with random variable x; pz(z) will be
shorthand for a distribution p associated with random variable z; and px|z(x | zi) de-
notes a conditional distribution of random variable x given z=zi. The term p(x,y)(x, y)
is a joint PDF/PMF between random variables x and y. The term p(x,z)(x, z) is a joint
PDF/PMF between random variables x and z. In Section 2.8, pg(z) would represent
the distribution that is the input to the generator in the GAN, while pd(x) represents
the data distribution.

- range(x) denotes the range of random variable x and dom(x) denotes the domain of
random variable x.

- If we have a dataset X =
{

x(i)
}N

i=1
, where there are N independent and identically

distributed (i.i.d.) realizations/observations of some continuous or discrete random
variable x, the ith observation is denoted as x(i).

- If we have a dataset X =
{

x(i)
}N

i=1
, where there are N i.i.d. realizations/observations

of some continuous or discrete random vector x, the ith observation is denoted as x(i).
If this our dataset, then x(i)j represents the jth component of the ith observation.

- diag (x) is a diagonal matrix, with the diagonal values being the values of vector x
and det (W) is the determinant of matrix W .

2. Background

In this section, we summarize the prerequisite information for understanding varia-
tional autoencoders and its many extensions.

2.1. Distances and Information-Theoretic Measures

Information theory is key to machine learning, from the usage of information-theoretic
measures for the loss functions [5–7] to use for analysis through the information bottleneck
framework [8–10]. It is also key to the development of the VAE [2]. Therefore, it is
recommended to know key measures in information theory.

2.1.1. Shannon’s Entropy

If you have a random variable x, Shannon’s Entropy is a measure of uncertainty of x,
with a PDF of p(x) [11]. It can also be thought of as a way to measure the uncertainty in a
random vector or random process x, which has a joint PDF p(x). It is also a generalization
of the variance of a process.

Discrete Shannon’s Entropy, for discrete random variable x, with a PMF p(x), is
defined as:

H(x) = − ∑
x∈range(x)

p(x) log(p(x)) (1)

Continuous (Differential) Shannon’s Entropy, with the PDF p(x), for random variable x, is
given by

H(x) = −
∫

range(x)
p(x) log(p(x))dx (2)

We can also rewrite both discrete and differential Entropy as:

H(x) = −Ep(x)[log(p(x))] (3)

Entropy 2022, 24, 55 4 of 55

2.1.2. Shannon’s Joint Entropy

The Joint Entropy H(x, y) of a pair of discrete random variables (x, y) with a joint
distribution p(x,y)(x, y) is defined as

H(x, y) = − ∑
x∈range(x)

∑
y∈range(y)

p(x,y)(x, y) log(p(x,y)(x, y)) (4)

We can also write the Joint Entropy as

H(x, y) = −Ep(x,y)[log(p(x, y))] (5)

and
H(x, y) = H(y) +H(x|y) (6)

If we have x = (x1, x2, . . . , xn) ∼ p(x1, x2, . . . , xn) = p(x), where x is a discrete random
vector, then

H(x1, x2, . . . , xn) = − ∑
x1,x2,...,xn

p(x1, x2, . . . , xn) log(p(x1, x2, . . . , xn)) (7)

H(x) = − ∑
x∈range(x)

p(x) log(p(x)) (8)

If we have x = (x1, x2, . . . , xn) ∼ p(x1, x2, . . . , xn) = p(x), where x is a continuous
random vector, then

H(x1, . . . , xn) = −
∫

p(x1, . . . , xn) log(p(x1, . . . , xn))dx1 . . . dxn (9)

H(x) = −
∫

p(x) log(p(x))dx (10)

2.1.3. Shannon’s Conditional Entropy

If we have (x, y) ∼ p(x,y)(x, y), where x and y are discrete random variables, the
conditional Entropy H(y|x) is:

H(y|x) = ∑
x∈range(x)

p(x)H(y|x = x)

= − ∑
x∈range(x)

p(x) ∑
y∈range(y)

py|x(y|x) log(py|x(y|x))

= − ∑
x∈range(x)

∑
y∈range(y)

p(x,y)(x, y) log(py|x(y|x))

= −Ep(x,y)[log(p(y|x))]

The conditional Entropy H(x|y) is:

H(x|y) = ∑
y∈range(y)

p(y)H(x|y = y)

= − ∑
y∈range(y)

p(y) ∑
x∈range(x)

px|y(x|y) log(px|y(x|y))

= − ∑
y∈range(y)

∑
x∈range(x)

p(x,y)(x, y) log(px|y(x|y))

= −Ep(x,y)[log(p(x|y))]

Conditional Entropy can be thought of as the “expected value of the entropies of the conditional
distributions, averaged over the conditioning random variable” [11].

Entropy 2022, 24, 55 5 of 55

If (x, y) are continuous random variables with the joint PDF p(x, y), the conditional
differential Entropy H(x|y) is

H(x|y) = −
∫

p(x, y) log(p(x|y))dxdy.

Since the joint PDF has the property p(x|y) = p(x, y)/p(y), H(x|y) = H(x, y)−H(y).

2.1.4. Kullback–Leiber (KL) Divergence

If you have two probability distributions, p and q, the KL Divergence measures the
similarity between the two distributions; however, it is asymmetric [11]. It is also non-negative.

For discrete random variables with PMFs p and q, the discrete KL Divergence is
given by

DKL(p‖q) = ∑
x∈range(x)

p(x) log
(

p(x)
q(x)

)
(11)

If p and q are distributions of a continuous random variable x, the continuous KL Diver-
gence is given by

DKL(p‖q) =
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx (12)

We can also write the KL Divergence as

DKL(p‖q) = Ep(x)

[
log
(

p(x)
q(x)

)]
(13)

DKL(q‖p) = Eq(x)

[
log
(

q(x)
p(x)

)]
(14)

KL Divergence can be used when we are approximating a probability distribution
p with another probability distribution q. We can use DKL(p‖q), called the forward KL,
or DKL(q‖p), which is called the reverse KL. Minimizing the forward KL with respect to
the approximate distribution q is called moment projection [12]. In the case where p is
positive but q is 0, log

(
p
q

)
becomes ∞, so then the support of p is overestimated in the

approximation q. Minimizing the reverse KL with respect to the approximate distribution q
is called information projection. In the case where q is positive but p is 0, log

(
q
p

)
becomes

∞, so the approximation q does not include any input where p is 0.

2.1.5. Mutual Information

Mutual Information of random variables x and y, denoted I(x; y), measures the infor-
mation that x and y share and the dependence between them [11]. Intuitively, it is how
much knowing one random variable decreases uncertainty in the other one; this can be
seen by the following formula:

I(x; y) = H(y)−H(y|x) = H(x)−H(x|y) (15)

Mutual Information can also be written as

I(x; y) = H(x) +H(y)−H(x, y) (16)

If x and y are discrete random variables, their discrete Mutual Information is given by

I(x; y) = ∑
y∈range(y)

∑
x∈range(x)

p(x,y)(x, y) log

(
p(x,y)(x, y)

px(x)py(y)

)
(17)

Entropy 2022, 24, 55 6 of 55

I(x; y) = ∑
y∈range(y)

∑
x∈range(x)

p(x,y)(x, y) log

(
p(x,y)(x, y)

px(x)py(y)

)
(18)

where p(x,y)(x, y) is the joint PMF between x and y. If x and y are continuous random
variables, their continuous Mutual Information is

I(x; y) =
∫∫

range(x),range(y)
p(x,y)(x, y) log

(
p(x,y)(x, y)

px(x)py(y)

)
dxdy (19)

I(x; y) = 0 if and only if x and y are independent. Mutual Information is non-negative
and symmetric.

2.1.6. Cross-Entropy

For two PMFs p and q, the Cross-Entropy is defined as:

H(p, q) = − ∑
x∈range(x)

p(x) log(q(x)) (20)

2.1.7. Jensen–Shannon (JS) Divergence

Given PDFs p and q, we have ψ = 1
2 (p + q). The JS Divergence is

JSD(p‖q) = 1
2
DKL(p‖ψ) + 1

2
DKL(q‖ψ) (21)

This is also a symmetric measure.

2.1.8. Renyi’s Entropy

Renyi’s Entropy is a generalization of Shannon’s Entropy [6]. Discrete Renyi’s Entropy
for PMF p(x) is given by

hα(X) =
1

α− 1
log

(
N

∑
k=1

(pα(x))

)
, α > 0 (22)

Continuous Renyi’s Entropy for PDF p(x) is given by

hα(x) =
1

α− 1
log
(∫

(pα(x)dx)
)

, α > 0 (23)

When α → 1, Renyi’s Entropy converges to Shannon’s Entropy. When α = 2, it becomes
quadratic entropy. The term Vα(x) is called information potential:

Vα(x) =
N

∑
k=1

pα(x) =
N

∑
i=1

pα−1(x)p(x) = E
[

pα−1(x)
]

(24)

If α = 2, it becomes the quadratic information potential (QIP):

Vα(x) =
N

∑
k=1

pα(x) =
N

∑
i=1

pα−1(x)p(x) = E
[

pα−1(x)
]

(25)

We first look at the continuous Quadratic Entropy, which is a case of α-Renyi Entropy where
α= 2:

h2(x) = − log
(∫

p2(x)dx
)
= − log(E[p(x)]) (26)

V2(x) = Ep(x)[p(x)] is the QIP; it is the expected value of the PDF if x is continuous,
or PMF if x is discrete. From this point on, all information potentials will be QIPs. In

Entropy 2022, 24, 55 7 of 55

addition, the subscripts will denote the PDF/PMF associated with the QIP; Vp will be the
QIP associated with p.

2.1.9. Renyi’s Cross-Entropy

Renyi’s Cross-Entropy for two PDFs is given by:

h2(p, q) = − log
(∫

p(x)q(x)dx
)

(27)

The cross information potential is given by:

V2(p, q) =
(∫

p(x)q(x)dx
)

(28)

From this point, all information potentials in this paper will be quadratic. In addition, the
subscripts will denote the PDF/PMF associated with the QIP; Vp will be the QIP associated
with p; Vq will be the QIP associated with q; Vc will be the cross information potential
associated with p and q.

2.1.10. Renyi’s α-Divergence

For two PMFs, p(x) and q(x), the formula is:

Dα(p(x); q(x)) =
1

α− 1
log

 ∑
x∈range(x)

∑
y∈range(y)

p(x)
(

p(x)
q(x)

)α−1
 (29)

=
1

α− 1
log

 ∑
x∈range(x)

∑
y∈range(y)

pα(x)
qα−1(x)

When α→ 1, it converges to KL Divergence.

For two PDFs p(x) and q(x), the formula is:

Dα(p(x); q(x)) =
1

α− 1
log

(∫
p(x)

(
p(x)
q(x)

)α−1

dx

)
(30)

=
1

α− 1
log
(∫

(p(x))α

(q(x))α−1 dx
)

2.1.11. Euclidean Divergence

The Euclidean Divergence between PDFs p(x) and q(x) is given by the following formula:

DED(p(x); q(x)) =
∫
(p(x)− q(x))2dx (31)

=
∫
(p(x))2dx +

∫
(q(x))2dx− 2

∫
(p(x)q(x))dx

If we want to express the Euclidean Divergence between p and q in terms of QIP, it is
given by:

DED(p(x)‖q(x)) = Vp +Vq − 2Vc (32)

The Euclidean Divergence is a symmetric measure.

Entropy 2022, 24, 55 8 of 55

2.1.12. Cauchy–Schwarz Divergence

The Cauchy–Schwarz (CS) Divergence, for probability density functions p(x) and q(x),
is given by the following formula [6]:

DCS(p(x); q(x)) =
−1
2

log

(
(
∫

p(x)q(x)dx)2∫
p2(x)dx

∫
q2(x)dx

)
(33)

If we have PDFs p(x) and q(x), and want to express the CS Divergence between them in
terms of QIP, it is given by:

DCS(p(x)‖q(x)) = log
(VpVq

V2
c

)
(34)

Unlike KL Divergence and Renyi’s α-Divergence, CS Divergence is a symmetric measure.

2.2. Monte Carlo

Monte Carlo methods [13,14] are methods using random simulations; they are often
used to estimate integrals. This is useful in statistics for estimating expected values. In
machine learning, it is especially useful for the case of gradient estimation.

Given the fact that we have an integrable function g : [0, 1]d 7→ R, we can look at the
following integral [14]:

A =
∫
[0,1]d

g(x)dx

If the domain of the integral is in Rd, the change of variables can change the domain to
[0, 1]d.

We can generate an i.i.d sequence {u1, . . . , uN} from a standard uniform distribution
over [0, 1]d. Then, the Monte Carlo estimator is given by

AN =
1
N

N

∑
n=1

g(un) (35)

We can also use a more general Monte Carlo estimator for integration [15]. We can find a
PDF f of random variable z ∈ [0, 1]d such that f > 0 on [0, 1]d and

∫
[0,1]d f (x)dx = 1.

Given that h(x) = g(x)/ f (x), our integral becomes

A =
∫
[0,1]d

h(x) f (x)dx = E[h(z)] = E f [h(z)]

The Monte Carlo estimator is then given by

AN =
1
N

N

∑
k=1

h(xk) (36)

Thus, the steps are

(1) sample i.i.d sequence {x1, x2. . .xN} ∼ f
(2) Plug i.i.d. sequence into the estimator given by Equation (36).

If we set f (x) =1 over the region [0, 1]d, we arrive at Equation (35). From the Law of
Large Numbers, AN for both Monte Carlo estimators converge to A when n→ ∞, and
the convergence rate does not depend on dimension d; this provides an advantage over
traditional integration.

2.3. Autoencoders

The Autoencoder is a self supervised learning algorithm that is used for lossy data
compression [16]. The compression is specific to the data that is used to train the model.

Entropy 2022, 24, 55 9 of 55

There is an encoder that creates a compressed representation; this representation goes
into the decoder and outputs a reconstructed input. This algorithm test label is the data
input itself. Autoencoders can be considered a nonlinear Principal Component Analysis
(PCA). Often times, the compressed representation has a smaller dimension than the input
and output. Figure 1 shows the architecture of an Autoencoder with the MNIST data set as
the data.

The encoder and decoder are typically multilayered perceptrons (MLPs), but they
can be replaced with convolutional neural networks, which becomes a Convolutional
Autoencoder. The convolutional autoencoder is better with reconstructing image data. The
use of convolution in deep learning actually refers to what is known as cross-correlation in
signal processing terminology [1]. The LSTM-Autoencoder uses LSTMs instead of MLPs
for the encoder and decoder.

One important variation of the Autoencoder is the Denoising Autoencoder (DAE) [17];
the DAE is used to clean data that is corrupted by noise. Random noise is added to the
input, but the reconstruction loss is between the clean input and the output. Some noise
that can be added includes salt & pepper noise, additive white Gaussian noise (AWGN),
and masking noise.

Discrete-time white noise is a zero mean discrete-time random process with finite
variance whose samples are serially uncorrelated random variables. AWGN is discrete-time
white noise that is Gaussian and additive. Additive implies it is added to the original signal.
We add AWGN to the original signal/image x. If our signal is a 1D discrete time series,
the AWGN vector added to the signal can be represented as w ∼ N

(
0, σ2 I

)
. To introduce

masking noise into x, a certain fraction of the elements of x are randomly chosen and set to 0.
Salt & pepper noise is when a certain fraction of the elements of x are randomly chosen and
set to the min or max possible value. This is chosen by a fair coin flip. We can also convolve
the input x with a Gaussian filter, blurring the input [18]. In the context of MNIST data set,
we can corrupt the data by adding a block of white pixels to the center of the digits [18].
Salt & pepper noise and masking noise both corrupt a fraction of the elements in a signal
significantly, while not affecting the others. By denoising, we are attempting to recover
the original values of the elements that were corrupted. The only scenario where this is
possible is if, in high dimensional probability distributions, there is a dependency between
dimensions. What we expect when training the DAE is that it learns these dependencies.
Thus, for low dimensional distribution, it does not make sense to use the DAE approach
as much.

Convolutional Denoising Autoencoders (CDAEs) are DAEs with convolutional layers.
Stacked denoising autoencoders (SAE) are when we are stacking layers of DAEs.

Figure 1. Autoencoder with MNIST input. The input is fed into the encoder. The encoder outputs
a compressed representation, which is then inputted into the decoder. The decoder outputs a
reconstruction of the input.

2.4. Bayesian Networks

For any joint probability distribution, their independence/dependence relationships
can be depicted using Probabilistic Graphical Models. When the relationships are repre-
sented via directed acyclical graphs (DAGs), the graphical models are known as Bayesian
Networks. Other names for Bayesian Networks include Directed Graphical Models and

Entropy 2022, 24, 55 10 of 55

Belief Networks. To illustrate the use of Bayesian Networks, we will use an example
from [19].

A woman named Tracey notices that her lawn is wet in the morning. She wonders
whether it is from the rain or her accidentally leaving the sprinklers on the previous night.
She then sees that her neighbor Jack also has a wet lawn. Her conclusion was that it rained
last night.

Our variables are:
r ∈ {0, 1}, where r = 1 denotes it was raining last night, 0 denotes it was not raining

last night.
s ∈ {0, 1}, where s = 1 denotes Tracey left the sprinklers on the previous night, and

0 otherwise.
j ∈ {0, 1}, where j = 1 indicates that Jack’s lawn is wet, and 0 otherwise.
t ∈ {0, 1}, where t = 1 Denotes that Tracey’s grass is wet, and 0 otherwise.
We can represent this with a joint probability function p(t, j, r, s). Using the chain rule

of probability, we can decompose this into:

p(t, j, r, s) = p(t|j, r, s)p(j, r, s)

= p(t|j, r, s)p(j|r, s)p(r, s)

= p(t|j, r, s)p(j|r, s)p(r|s)p(s)

However, we can simplify this further by looking at the constraints. We know that
the status of Tracey’s lawn does not depend on Jack’s; it depends on whether it rained and
whether she left the sprinkler on. Thus, then:

p(t|j, r, s) = p(t|r, s)

We can also assume that the only variable affecting the status of Jack’s lawn is whether
it was raining the night before. Thus, then:

p(j|r, s) = p(j|r)

We assume that the rain is affected by the sprinkler.

p(r|s) = p(r)

Thus, our simplified model is:

p(t, j, r, s) = p(t|j, r, s)p(j|r, s)p(r|s)p(s) = p(t|r, s)p(j|r)p(r)p(s)

We can represent this with a Bayesian Network, as shown in Figure 2. Each node in
this graph represents a variable from the joint distribution. Notice that there is a directed
edge from r to j. This means that the r is the parent node of j, while j is the child node of
the r. If any variable is a parent of another variable, it means it is on the right side of the
conditional bar; like for p(j|r), r is on the right side of the conditional bar.

If we have a set of random variables {x1, . . ., xM} with certain conditional indepen-
dence assumptions, we can represent their joint distribution as

pθ(x1, . . . , xM) =
M

∏
j=1

pθ

(
xj|Parents

(
xj
))

(37)

Similarly, for a set of random vectors, {x1, . . ., xM} we can represent their joint distri-
butions as:

pθ(x1, . . . , xM) =
M

∏
j=1

pθ

(
xj|Parents

(
xj
))

(38)

Entropy 2022, 24, 55 11 of 55

For root nodes in the Bayesian Network, the set of parents is the empty set. Thus, they
are marginal distributions. Parents

(
xj
)

denotes the set of parent variables for node xj in
the Bayesian Network.

Initially, the parameterization of each conditional probability distribution was done
with a lookup table or a linear model. In deep learning, we can use neural networks to
parameterize conditional distributions; this is more flexible. The meaning of a neural
network parameterizing a PDF is that it is part of the function that computes the PDF [20].

Figure 2. Bayesian Network of p(t|j, r, s). Since r affects j and t, it is a parent node of those two. s is
also a parent node of t.

2.5. Generative Models vs. Discriminative Models

Given the PDF p(x, y), we generate a dataset D =
{

x(i), y(i)
}N

i=1
. We have the re-

alizations of an i.i.d sequence X =
{

x(i)
}N

i=1
where x(i) ∈ Rd and each x(i) has a label

y(i) associated with it [21]. A generative model would attempt to learn p(x, y). It would
then generate new examples x from estimated distribution. The term p(y|x) would be a
discriminative model; it attempts to estimate the label generating probability distribution
function. A discriminative model can predict y given examples x, but it cannot generate a
sample of x.

There are three types of generative models typically used in deep learning [22]: latent
variable models, neural autoregressive models, and implicit models.

2.6. Latent Variable Models

Latent variables are underlying variables; often times, they are not directly observable.
An example given by Dr. Nuno Vasconcelos [23] is the bridge example. There is a bridge,
and there are weight sensors measuring the weight of each car. However, we do not have
a camera, so we do not know what type of car it is; it could be a compact, sedan, station
wagon, pick up, or van. Thus, the hidden/latent variable, represented by random variable
z, is the type of the car, and the observed variable is the weight measured, represented
by random variable x. Figure 3 shows the process of data generation. Our example can
be represented by the Bayesian Network in Figure 4a. The latent variables and observed
variables can also be random vectors, denoted as z and x.

Entropy 2022, 24, 55 12 of 55

Figure 3. This shows the data generating process for a scenario with a latent variable. First, zi is
sampled from p(z); we assume zi can take K values from 1 to K. Then, given zi, we can generate x.

(a) (b)

Figure 4. (a) A Bayesian Network representation of latent variable z and observation variable x. They
can also be random vectors x and z; (b) another Bayesian Network for z and x, this time showing the
dotted arrow for inference.

Sampling our observation takes two steps. First, a sample z comes from the probability
distribution pz(z). Then, a sample x comes from px|z(x|z). This is also called generation,
represented by z→ x in Figure 4a,b; it is represented by the solid arrow. With pz(z) with

Entropy 2022, 24, 55 13 of 55

px|z(x|z), we can obtain the joint density p(x,z)(x, z). Then, by marginalizing the joint
density, we get px(x). Then, from there, we can get p(z|x). Obtaining p(z|x) is represented
by x → z. It is the inverse of generation, and is called inference. In Figure 4b, inference is
represented by the dotted arrow. Inference can be obtained using Bayes Rule:

pz|x(z|x) =
px|z(x|z)pz(z)

px(x)
(39)

Often times, calculating px(x) is intractable, making inference intractable through
this method. This leads to approximation methods. Markov Chain Monte Carlo (MCMC)
methods [13] are a common collection of methods [24] used for this. However, variational
inference is a quicker family of methods. They do not guarantee that we will create exact
samples from the target density function asymptotically like MCMC methods [25].

If we parameterize our model with θ, we use pθ(x); this means that the PDF p(x) is
associated with random variable x and has parameters represented by θ. We would attempt
to learn θ using maximum likelihood estimation.

When we have a latent variable model pθ(x, z), where a deep neural network parame-
terizes pθ(x, z), it is called a deep latent variable model (DLVM) [20].

An example of a DLVM is given by the following [26]:

z = (z1, z2, · · · , zK) ∼ p(z; β) =
K

∏
k=1

β
zk
k (1− βk)

1−zk

x = (x1, x2, · · · , xL) ∼ pθ(x|z)⇔ Bernoulli(xi; DNN(z))

We have a random vector z, of length K, sampled from a multivariate Bernoulli
distribution. This is then fed into a neural network, denoted by DNN, which outputs
random vector x. The neural network can have L output units with sigmoid activations.

Another example of DLVM is the following [27]: If the observation data x of size L
is binary data, the latent space is Gaussian latent space, and the observation model is a
factorized multivariate Bernoulli distribution, we have the following formulas:

p(z) = N (z; 0, I)

a = DNNθ(z)

log(p(x|z)) =
L

∑
j=1

log(p
(
xj|z

)
) =

L

∑
j=1

log(Bernoulli
(
xj; aj

)
)

=
L

∑
j=1

xj log(aj) +
(
1− xj

)
log
(
1− aj

)
where aj is a value between 0 and 1 and a is a vector with aj’s; it can be implemented by
having the output layer of the neural network have sigmoid activation functions.

A third example of a DLVM is where z is a Gaussian distribution, and p(x|z) can be a
neural network with a softmax activation function for its output layer [26]. Our generative
model in the case of latent variable models learns the joint PDF pθ(z, x).

Overall, latent variable training can be summarized by the following four steps [26]:

(1) Sampling
z ∼ pz(z)
x ∼ pθ(x|z)

(2) Evaluate likelihood pθ(x) = ∑z pz(z)pθ(x|z)
(3) Train arg max

θ
∑N

i=1 log pθ

(
x(i)
)
= ∑i log ∑z pz(z)pθ

(
x(i)|z

)
(4) Representation x→ z

Entropy 2022, 24, 55 14 of 55

Common latent variable models in deep learning include energy-based models, varia-
tional autoencoders, and flow models [28,29]. The VAE explicitly models the density of the
distribution, so it has a prescribed Bayesian Network.

2.7. Neural Autoregressive Models

In time series analysis, an autoregressive model of order p is denoted as AR(p) [30]. If
we have a time series {y[n], y[n− 1], . . ., y[n− p]}, it is an AR(p) process if it satisfies the
following equation:

y[n] =
p

∑
j=1

ajy[n− j] + w[n] + µ (40)

y[n] denotes the value of y (a scalar value) at time n. y[n] is a linear combination of the
p past values of y, weighted by scalar coefficients aj plus some white noise w[n] and the
mean µ of the process (E[y[n]] = µ).

In neural networks, there is a subtype of the AR model, called the neural autoregressive
model or autoregressive neural density estimators; in deep learning literature, this subtype
is often just called an autoregressive model. The neural autoregressive model involves using
a Bayesian Network structure where the conditional probabilities are set to neural networks.

If we are given a Bayesian Network representation for a model, we can get a tractable
gradient for our log likelihood by setting the conditional probability distributions to neural
networks [31]:

log(pθ(x)) =
d

∑
i=1

log(pθ(xi|Parents(xi))) (41)

Parent denotes the parent nodes of xi. If we assume that our Bayesian Network is fully ex-
pressive, any joint probability distribution can be decomposed to a product of conditionals,
using the probability chain rule and conditional independence assumptions:

log(p(x)) =
d

∑
i=1

log(p(xi|x1:i−1)) (42)

This is called a neural autoregressive model. Common neural autoregressive models include
Neural Autoregressive Distribution Estimation (NADE) [32,33], Masked Autoencoder
for Distribution Estimation (MADE) [34], Deep AutoRegressive Networks (DARN) [35],
PixelRNN [36], PixelCNN [36,37], and WaveNet [38].

Neural AR models are slower because they sequentially generate from one dimension
at a time. They also tend to model local structure better than global structure.

2.8. Generative Adversarial Networks (GANs)

Two major implicit models are Generative Stochastic Networks (GSNs) and GANs [39,40].
A GAN trains a generative model Gen and a discriminative model Dis simultaneously.

Gen attempts to estimate the distribution of the data, while Dis tries to estimate the
probability that the data came from the training set rather than Gen. Gen tries to maximize
the probability that the discriminator makes a mistake. Typically for a GAN, Dis is only
used during training, but, afterwards, it is discarded.

The Bayesian Network in Figure 4a from Section 2.6 can also represent the generator
from a GAN. This is because a random noise term z, often sampled from a uniform
distribution, is the input to Gen, which outputs synthetic data Gen(z); we can also write
Gen(z) as x̂. The GAN implicitly models the distribution and so it has an implicit Bayesian
network [41]. Thus, the GAN is both an implicit model and has a latent variable model.

The algorithm is outlined in Algorithm 1. The noise prior pg(z) is the input to the
generator; it is often typically a uniform distribution. The data generating distribution is
denoted pd (x); it is the data behind our real distribution. The hyperparameter k denotes
how many steps the discriminator is applied. θG represents the weights and biases of Gen,

Entropy 2022, 24, 55 15 of 55

while θD represents the weights and biases of Dis; the subscripts denote their association
with the discriminator and generator. Figure 5 shows the architecture.

Figure 5. GAN architecture. A random noise vector drives our generator to create fake data. The
fake data and training data are sent to the discriminator, which attempts to classify which data are
fake or real.

Algorithm 1 Original GAN algorithm

for do # of training iterations:
for k do steps

Sample minibatch
{

z(1), . . . , z(m)
}
∼ pg(z)

Sample minibatch
{

x(1), . . . , x(m)
}
∼ pd (x)

Update the weights of the discriminator by ascending its stochastic gradient:

∇θD

1
m

m

∑
i=1

[
log
(

Dis
(

x(i)
))

+ log
(

1− Dis
(

Gen
(

z(i)
)))]

end for
Sample minibatch

{
z(1), . . . , z(m)

}
∼ pg(z)

Update the weights of the generator by descending its stochastic gradient:

∇θG

1
m

m

∑
i=1

log
(

1− Dis
(

Gen
(

z(i)
)))

.

end for

Gradient updates can use any rule. The loss function is similar to JS Divergence. When
Dis is optimal, the weights of Gen are updated in a way that it minimizes the JS Divergence.

The original GAN had issues such as mode collapse, convergence, and vanishing
gradients. The Wasserstein GAN [42] is a class of GAN meant to improve on these flaws; it
uses Wasserstein distance instead. Conditional GANs (CGANs) [43] are another type of
GAN that attempts to alleviate some of the flaws of the GAN.

The Deep Convolutional GAN (DCGAN) [44] is what many GANs are based on; it uses
ADAM to optimize, uses an all convolutional network [45], and has batch normalization [46]
in most layers for Dis and Gen. Gen’s last and Dis’s first layer are not batch normalized. Other
GAN methods include Periodic Spatial GAN (PSGAN) [47], INFOGAN [48], CycleGAN [49],
StyleGAN [50], and Self-Attention GAN (SAGAN) [51].

Entropy 2022, 24, 55 16 of 55

2.9. Gradient Estimation
2.9.1. REINFORCE Estimator/Score Function

Two important gradient estimators are the score function and the pathwise gradient
estimator [22,26,52,53]. The score function (also known as the REINFORCE estimator) can
handle non-differentiable functions; the downside is that it has a high variance.

If you have a function pθ(x), which is a PDF of random variable x parameterized by θ,
then the score function is∇θ log(pθ(x)). This is the derivative of the log of our PDF w.r.t to
θ. This score function can be written as:

∇θ log(pθ(x)) =
∇θpθ(x)

pθ(x)
(43)

The score function’s expectation is zero:

Epθ(x)[∇θ log(pθ(x))] =
∫

pθ(x)
∇θpθ(x)

pθ(x)
dx = ∇θ

∫
pθ(x)dx = ∇θ1 = 0

The score function’s variance is the Fisher information. The estimator for the score function
can be derived as follows:

∇θEpθ(x)[f(x)] = ∇θ

∫
pθ(x)f(x)dx =

∫
f(x)∇θpθ(x)dx

=
∫

pθ(x)f(x)∇θ log(pθ(x))dx

= Epθ(x)[f(x)∇θ log(pθ(x))]

≈ 1
L

L

∑
l=1

f
(

x(l)
)
∇θ log(pθ

(
x(l)
)
); x(l) ∼ pθ(x)

(44)

2.9.2. Pathwise Gradient Estimator

The pathwise gradient estimator is also known as the reparameterization trick or the
pathwise derivative estimator. However, it has low variance, so it is a common choice.
More details about this estimator will be shown in the next section. For a continuous
distribution for x, direct sampling has an equivalent indirect process:

x ∼ pθ(x) ≡ x = g(ε, θ), ε ∼ p(ε)

This statement means an indirect way to create samples x from pθ(x) is to sample from p(ε)
first; this distribution is independent of θ. The next step is to apply a transformation with
g(ε, θ) which is deterministic. This can be called a sampling path or a sampling process.

For indirect sampling from a Gaussian distribution denoted by N (x; µ, C), we can
reparameterize it by making g(ε, θ) a location scale transformation, given by g(ε, θ) =
µ + Lε, where LLT = C. L is a lower triangular matrix with nonzero diagonal values and
ε is sampled from a standard isotropic multivariate Gaussian p(ε) = N (0, I).

We can derive the gradient estimator by the following:

∇θEpθ(x)[f(x)] = ∇θ

∫
pθ(x)f(x)dx

= ∇θ

∫
p(ε)f(g(ε, θ))dε

= Ep(ε)[∇θf(g(ε, θ))]

≈ 1
L

L

∑
l=1
∇θf

(
g
(

ε(l), θ
))

; ε(l) ∼ p(ε)

Entropy 2022, 24, 55 17 of 55

Thus, our pathwise gradient estimator where our x is distributed according toN (x; µ, C)
is given by:

∇θEpθ(x)[f(x)] ≈ 1
L

L

∑
l=1
∇θf

(
g
(

ε(l), θ
))

; ε(l) ∼ p(ε) (45)

where g(ε, θ) = µ + Lε, LLT = C, p(ε) = N (0, I).

3. Variational Inference

In Bayesian statistics, parameters that we estimate are random variables instead of
deterministic variables. For latent random vector z and observation variables/vector
x,pθ(z|x) is known as the posterior distribution; p(z) is the prior distribution, pθ(x) is the
model evidence or marginal likelihood, and pθ(x|z) is the likelihood. We perform updates
on prior pz(z) using Bayesian rule.

Variational inference is a particular method for approximating the posterior distribu-
tion. We approximate the posterior distribution pθ(z|x) with the approximate posterior
qφ(z); it is also known as the variational posterior, where φ represents the variational
parameters. We will optimize over φ so we can fit the variational posterior to the real
posterior. Any valid distribution for qφ(z) can be used as long as we can sample data
from it and we can compute log(qφ(z)) and ∇φ log(qφ(z)). Thus, we want to solve the
following for all x(i)

min
qφ(z)

DKL

(
qφ(z)‖pθ

(
z|x(i)

))
(46)

We are taking the reverse-KL Divergence between p and q. There are different pos-
teriors for each datapoint x(i), so we learn a different φ for each datapoint. To make this
calculation more quick, we can use an amortized formulation for variational inference:

min
φ

∑
i
DKL

(
qφ

(
z|x(i)

)
‖pθ

(
z|x(i)

))
(47)

In this formulation, we predict φ with a neural network, called an inference network;
variational parameters φ refer to the parameters of this inference network. The down-
side of this formulation is less precision. With this, we can derive the Evidence Lower
Bound (ELBO):

DKL(qφ(z|x)‖pθ(z|x)) =
∫ ∞

−∞
qφ(z|x) log

(
qφ(z|x)
pθ(z|x)

)
dz = Eqφ(z|x)

[
log
(

qφ(z|x)
pθ(z|x)

)]

= Eqφ(z|x)[log(qφ(z|x))− log(pθ(z|x))] = Eqφ(z|x)

[
log(qφ(z|x))− log

(
pθ(x|z)p(z)

pθ(x)

)]
= Eqφ(z|x)[log(qφ(z|x))− log(pθ(x|z))− log(p(z)) + log(pθ(x))]

= Eqφ(z|x)[log(qφ(z|x))− log(pθ(x|z))− log(p(z))] + log(pθ(x))

= −L(θ, φ; x) + log(pθ(x))

where L(θ, φ; x) = Eqφ(z|x)[− log(qφ(z|x)) + log(pθ(x|z)) + log(p(z))].
Since DKL((qφ(z|x)‖pθ(z|x)) ≥ 0, we have−L(θ, φ; x) + log(pθ(x)) ≥ 0.

Thus, we arrive at:
L(θ, φ; x) ≤ log(pθ(x)) (48)

or

L(θ, φ; x) = Eqφ(z|x)[− log(qφ(z|x)) + log(pθ(x|z)) + log(p(z))] (49)

≤ log(pθ(x))

This is called the Evidence Lower Bound (ELBO), or variational lower bound.

Entropy 2022, 24, 55 18 of 55

We can derive a second formulation as follows:

L(θ, φ; x) = Eqφ(z|x)
[
− log(qφ(z|x)) + log(pθ(x|z)) + log(p(z))

]
=

Eqφ(z|x)

[
log
(

pθ(x, z)
qφ(z|x)

)]
≤ log(pθ(x))

Thus, we arrive at:

L(θ, φ; x) = Eqφ(z|x)

[
log
(

pθ(x, z)
qφ(z|x)

)]
≤ log(pθ(x)) (50)

We also derive a third formulation as follows:

Eqφ(z|x)
[
− log(qφ(z|x)) + log(pθ(x|z)) + log(p(z))

]
= Eqφ(z|x)[log(pθ(x|z))] +Eqφ(z|x)

[
log
(

p(z)
qφ(z|x)

)]
= Eqφ(z|x)[log(pθ(x|z))]−DKL(qφ(z|x)‖p(z))

Thus, we arrive at:

L(θ, φ; x) = Eqφ(z|x)[log(pθ(x|z))]−DKL(qφ(z|x)‖p(z)) ≤ log(pθ(x)) (51)

We would train our model by maximizing the ELBO L(θ, φ; x) with respect to θ and
φ, which are our model parameters and variational parameters.

Taking the gradient of ELBO w.r.t. to θ is easily calculated.

∇θL(θ, φ; x) = ∇θEqφ(z|x)

[
log
(

pθ(x,z)
qφ(z|x)

)]
= Eqφ(z|x)[∇θ log(pθ(x, z))]

≈ 1
L ∑L

l=1∇θ log(pθ(x, z(l))) with z(l) ∼ qφ(z|x)

Thus, we estimate the gradient w.r.t to θ using the formula

1
L

L

∑
l=1
∇θ log(pθ(x, z(l))) with z(l) ∼ qφ(z|x) (52)

We can generate samples from q and use it to calculate each∇θ log(pθ(x, z(l))), and average
these individual gradients to estimate the gradient of the ELBO w.r.t θ.

Estimating∇φL(θ, φ; x) is more difficult. This is because we cannot bring the gradient
inside the expectation because the expectation is a function of φ.

∇φL(θ, φ; x) = ∇φEqφ(z|x)

[
log
(

pθ(x,z)
qφ(z|x)

)]
6= Eqφ(z|x)

[
∇φ
(
log(pθ(x, z))− log(qφ(z|x))

)]
The score function and pathwise gradient estimator are both possible methods to

estimate the gradient. The score function can apply to latent variables that are continuous
or discrete. The pathwise gradient estimator applied to continuous latent variables and
requires that the function being estimated is differentiable. For the pathwise gradient
estimator, we reparameterize a sample from qφ(z|x) by expressing it as a function of a
sample ε from some fixed distribution p(ε):

z = g(ε, φ, x) (53)

p(ε) is independent of x or φ. We can bring ∇φ inside the expectation because p(ε)
does not depend on φ. We assume g(ε, φ, x) is differentiable with respect to φ. Thus, our

Entropy 2022, 24, 55 19 of 55

pathwise gradient estimator for ∇φL(θ, φ; x), where z is supposed to be sampled from
N (z; µ, C), can be derived using Equation (45):

∇φEqφ(z)[f(z)] ≈
1
L

L

∑
l=1
∇φf

(
g
(

ε(l); φ
))

; ε(l) ∼ p(ε) (54)

where z = g(ε, φ, x) = µ + Lε, LLT = C, p(ε) = N (0, I)

We can choose our qφ(z|x) = N
(
z; µ, diag

(
σ2)), which is a multivariate Gaussian

distribution with a diagonal matrix as its covariance matrix. µ is the mean vector and σ2 is
a vector that creates covariance matrix diag

(
σ2), which we can sample using

z = g(ε, φ, x) = µ + Lε = µ + σ � ε (55)

where diag(σ2) = LLT , and � is an elementwise multiplication operator. If we have
z ∼ N

(
µ, σ2), we can reparameterize it by

z = µ + σε, ε ∼ p(ε) = N (0, 1)

If we are not using amortized variational inference, the formula for ELBO is different.

4. The Variational Autoencoder

The Variational Autoencoder uses an inference network as its encoder. The VAE has a
MLP encoder and an MLP decoder [2]. The encoder is the variational posterior qφ(z|x) and
is an inference/recognition model. The decoder is a generative model, and it represents the
likelihood pθ(x|z).

A joint inference distribution can be defined as

qφ(x, z) ≡ pθ(x)qφ(z|x)

qφ(z) is called the aggregated posterior, given by the following:∫
range(x)

pθ(x)qφ(z|x)dx ≡
∫

range(x)
qφ(x, z)dx ≡ qφ(z) (56)

The prior is a standard multivariate isotropic Gaussian distribution, pz(z) = N (z; 0, I),
while the likelihood function pθ(x|z) is a Gaussian distribution or a Bernoulli distribution.
The Gaussian likelihood is pθ(x|z) = N

(
x; µdecoder, diag(σ2

decoder)
)
, which is a multivariate

Gaussian with a diagonal covariance matrix. The posterior distribution can be any PDF,
but is assumed to be approximately a multivariate Gaussian with a diagonal covariance
matrix. The variational posterior is also taken to be a multivariate Gaussian with a diagonal
covariance matrix, given by qφ(z|x) = N

(
z; µ, diag

(
σ2)); µ and σ2 from the variational

posterior are outputs of the encoder.
The weights and biases for the encoder are the variational parameters φ, while the

weights and biases for the decoder are the model parameters θ.
We sample z from the encoder using the reparameterization trick; so the encoder

outputs µ and σ2, and generates ε from N (0, I). The variable z is the input to the decoder,
which then generates a new example of x. Equation (55) is used.

Note that, in practice, the encoder outputs log(σ2) instead of σ2 to ensure positive
values for σ2. We can then retrieve σ2 by taking the exponential of log(σ2). We can also
retrieve σ by taking the exponential of (0.5)log(σ2). In the literature, they often refer to the
output as σ instead of σ2.

Entropy 2022, 24, 55 20 of 55

If we assume that our encoder has one hidden layer, and the distribution is multivariate
Gaussian with a diagonal covariance matrix, we can write it and the sampling process as:

h = tanh(W1x + b1)

µ = W2h + b2

log(σ2) = W3h + b3

z = µ + σ � ε

{W1, W2, W3, b1, b2, b3} are the weights and biases of the encoder MLP, so they are varia-
tional parameters φ.

An encoder with any number of hidden layers can be summarized with the follow-
ing equations:

ε ∼ N (0, I)

(µ, log(σ2)) = EncoderNeuralNet φ(x)

z = µ + σ � ε

For the decoder, we have two choices.

(1) Multivariate Bernoulli MLP for decoder:

The likelihood pθ(x|z) is a multivariate Bernoulli. With decoder input z, the probabili-
ties of the decoder are calculated with the MLP. {W1, W2, b1, b2} are the weights and biases
of the decoder MLP. The hidden layer has a tanh activation function, while the output layer
has a sigmoid activation function sig(.). The output is plugged into the log likelihood,
getting a Cross-Entropy (CE) function.

h = tanh(W1z + b1)

y =sig(W2h + b2)

log(p(x|z)) =
D

∑
i=1

xi log(yi) + (1− xi) · log(1− yi)

The equations for more hidden layers can be written as

y = DecoderNeuralNet θ(z)

log(p(x|z)) =
d

∑
j=1

log(p
(
xj|z

)
) =

d

∑
j=1

log(Bernoulli
(
xj; yj

)
)

=
d

∑
j=1

(xj log(yj) +
(
1− xj

)
log
(
1− yj

)
)

The variable d is the dimensionality of x and Bernoulli (.; y) is the Bernoulli PMF. ∀yj ∈ y :
0 ≤ yj ≤ 1. This y can be implemented by making the last layer of the decoder a sigmoid
function. This is similar to the second example of a DLVM in Section 2.6.

(2) Gaussian MLP as decoder

This is the case where the decoder distribution is a multivariate Gaussian with a
diagonal covariance structure:

Entropy 2022, 24, 55 21 of 55

h = tanh(W3z + b3)

µdecoder = W4h + b4

log(σ2
decoder) = W5h + b5

log(p(x|z)) = log(N
(

x; µ, diag(σ2
decoder)

)
)

=
−L
2

log(2π) +
−1
2 ∑ σ2

decoder,i + ∑
(xi − µdecoder,i)

2

−2σ2
decoder,i

where {W3, W4, W5, b3, b4, b5} are the weights and biases of the decoder MLP, so they are
the model parameters θ.

Those are the derivations for the forward propagation in the VAE. Figure 6 shows the
architecture of the VAE for a forward pass, excluding the ELBO calculation.

Figure 6. Diagram of the variational autoencoder. The input x goes into the encoder, which then
creates a sample of z using the reparameterization trick. z is the input to the decoder, which outputs
a new example of x, denoted as x̃.

We will get ELBO estimates by looking at this equation:

Eqφ(z|x)[log(pθ(x|z))]−DKL(qφ(z|x)‖pz(z)) ≤ log(pθ(x))

Eqφ(z|x)[log(pθ(x|z))] is a reconstruction loss, while DKL(qφ(z|x)‖p(z)) is a regularizing term.
We derive the expression to get −DKL(qφ(z|x)‖pz(z)) [2].

DKL
(
qφ(z|x)‖pz(z)

)
=
∫

qφ(z|x)
(
log
(

pz(z))− log
(
qφ(z|x)

)
)dz

=
∫

qφ(z|x)(log(pz(z))dz−
∫

qφ(z|x) log
(
qφ(z|x)

)
dz

Split into two parts:∫
qφ(z|x)(log(pz(z))dz =

∫
N (z; µ, Cv) log(N (z; 0, I))dz

=
−j
2

log(2π) +
1
2

J

∑
j=1

(
µ2

j + σ2
j

)
∫

qφ(z|x) log
(
qφ(z|x)

)
dz =

∫
N (z; µ, Cv) log(N (z; µ, Cv))dz

=
−j
2

log(2π)− 1
2

J

∑
j=1

(
1 + log

(
σ2

j

))

Entropy 2022, 24, 55 22 of 55

We can then add the two terms:

−DKL(qφ(z|x)‖pz(z)) =
∫

qφ(z|x) log(qφ(z|x))dz−
∫

qφ(z|x)(log(pz(z))dz.

=
−j
2

log(2π)− 1
2

J

∑
j=1

(1 + log(σ2
j))−

(
−j
2

log(2π) +
1
2

J

∑
j=1

(µ2
j + σ2

j)

)

=
1
2

J

∑
j=1

(1 + log(σ2
j)− σ2

j − µ2
j)

σ2
j and µj represent the jth component of the σ2 and µ vectors for a given datapoint

inputted into the encoder.

Our total training set is X =
{

x(i)
}N

i=1
. Our Stochastic Gradient Variational Bayes

Estimator (SGVB Estimator) estimates the lower bound for one datapoint by:

L̃
(

θ, φ; x(i)
)
= −DKL

(
qφ

(
z|x(i)

)
‖pθ(z)

)
+

1
L

L

∑
l=1

(
log pθ

(
x(i)|z(i,l)

))
where z(i,l) = g

(
φ, ε(i,l), x(i)

)
and ε(l) ∼ p(ε)

We can then have our SGVB estimator using minibatches from X , where X (M) is the
M-th minibatch.

We can have X (M) =
{

x(i)
}M

i=1
, where X (M) is a minibatch from X with M datapoints.

Then, we can estimate the ELBO over the full dataset X , denoted by L(θ, φ;X):

L(θ, φ;X) ' L̃(M)
(

θ, φ;X (M)
)
=

N
M

M

∑
i=1
L̃
(

θ, φ; x(i)
)

(57)

where L̃(M)
(

θ, φ;X (M)
)

is a minibatch estimator. Empirically, it has been shown that L
could be set to 1 if the size of the minibatch is large.

The method used to train the VAE to find the parameters is called the Auto-Encoding
Variational Bayes (AEVB) algorithm. Algorithm 2 shows the steps of the AEVB algorithm.

Algorithm 2 AEVB algorithm using minibatches

θ, φ← Initialize parameters
for do # of training iterations:
X (M) ← Random minibatch of M datapoints from full dataset X
Sample ε ∼ p(ε)
Calculate minibatch estimate L̃(M)

(
θ, φ;X (M), ε

)
Calculate gradients of minibatch estimator ∇θ,φL̃(M)

(
θ, φ;X (M), ε

)
θ, φ← Update parameters using gradients with methods like SGD or Adagrad

end for

We have presented and derived the original variational autoencoder model; however,
the variational autoencoder often refers more of a general framework, where we can choose
different prior, posterior and likelihood distributions, along with many other variations.
Thus, the VAE framework can refer to a continuous latent variable deep learning model
that uses the reparameterization trick and amortized variational inference [22].

5. Problems/Tradeoffs with the VAE

While being a powerful model, the VAE has multiple problems and trade-offs. We will
cover variance loss, image blurriness, posterior collapse, disentanglement, the balancing

Entropy 2022, 24, 55 23 of 55

issue, the origin gravity effect, and the curse of dimensionality. We then compare the VAE
with the GAN.

5.1. Variance Loss and Image Blurriness

When comparing input data to generated data for the generic Autoencoders and the
VAE, there is a variance loss [54]. This was empirically measured in [54]. This phenomena
is possibly due to averaging.

When being used to generate new images, VAEs tend to be more blurry compared to
other generative models. Variance loss is a main cause of this [54]. In [55], they find that the
maximum likelihood approach is not always the cause of blurriness, it is choice of the infer-
ence distribution. They use a sequential VAE model. Choosing flexible inference models or
flexible generative models in the architecture also helps to reduce this problem [27].

The VAE-GAN reduces image blurriness by replacing the reconstruction loss term
with a discriminator [56]. The multi stage VAE [57], deep residual VAE, and Hierarchical
VAEs such as VAE’s with inverse autoregressive flows (IAF-VAE) [58] and Noveau VAE
(NVAE) [59] also improve image generation quality. PixelVAE [60], 2-Stage VAE [61], and
VQ-VAE are also very effective in generating good quality images.

5.2. Disentanglement

How successful machine learning methods are depends on data representation. In [62],
they hypothesize that the reason behind this dependence on data representation is that multi-
ple explanatory factors of variations of the data are entangled and hidden by the representation.
Representation learning can be defined as learning data representations that makes extracting
useful information easier for input into predictors [62]. Three important goals of a good
representation include being distributed, invariant, and having disentangled the factors of
variation. Disentanglement and disentangled representations do not have agreed upon formal
definitions. An intuitive definition that is commonly used is “a disentangled representation
should separate the distinct, informative factors of variations in the data” [63].

The vanilla VAE fails to learn disentangled representations. INFOVAE [64], β-VAE [65],
β-TCVAE [66], AnnealedVAE [67], DIP-VAE I/II [68], and FactorVAE [68] are VAE variants
that attempt to obtain a disentangled representation, and many of them are the state of the
art for disentanglement. However, according to a large-scale empirical study by Google AI,
these state-of-the-art VAE models do not really learn disentangled representations in an
unsupervised manner [63]; the choice of the model is not as important as the random seeds
and hyperparameters; these hyperparameters do not transfer across data sets.

5.3. The Balancing Issue

In the VAE loss function for context of images, the KL Divergence regularizes the latent
space, while the reconstruction loss affects the quality of the image [69]. There is a tension
between these two effects. If we emphasize the reconstruction loss, the reconstruction is
more powerful, but the latent space shape is affected, so the capabilities of the VAE to
generate new examples are negatively affected. If we emphasize the regularizing term, the
disentangling becomes better and the latent space is smoother and normalized. However,
it also results in the images being more blurry.

The 2-Stage VAE uses a balancing factor that it learns during training to balance
these effects. In [69], they use a deterministic variable for the decoder variance to balance
these factors.

5.4. Variational Pruning and Posterior Collapse

Generally, in variational inference, there is a problem called variational pruning. If we
rewrite ELBO as the following:

L(θ, φ; x) = log(pθ(x))−DKL
(
qφ(z|x)‖pθ(z|x)

)
(58)

Entropy 2022, 24, 55 24 of 55

The DKL(qφ(z|x)‖pθ(z|x)) term is known as the variational gap. When we maximize
ELBO, we either decrease the variational gap or increase the log evidence. Maximum
likelihood training increases the log evidence. To decrease the variational gap, there are
two options. The first is to update φ to make the variational posterior closer to the real
posterior. The second way is to update θ so that the real posterior is closer to the variational
posterior; this can lead to a decrease in how well the model can fit the data. This effect can
be mitigated by using a more expressive posterior.

One possible consequence of this is called variational pruning; this is when latent
variables are not used for the model, and the posterior becomes the same as the prior. In
variational autoencoders, this is called posterior collapse. Some researchers speculate that
the KL Divergence term DKL(qφ(z|x)‖p(z)) in the ELBO is a cause of this phenomena.
Thus, this has led to a focus on reducing the effect of this KL term. The decoder becoming
powerful is another cause. Lucas [70] investigated posterior collapse; initially, they investi-
gated it for a linear VAE, and then extended their results for nonlinear VAEs. They find
that, in cases where the decoder is not powerful, posterior collapse can still happen. They
also formally define posterior collapse and how to measure it.

The δ-VAE [71], Variational Mixture of Posteriors prior VAE (VampPrior VAE) [72],
2-Stage VAE [61], epitomic VAE (eVAE) [73], and VQ-VAE [74] are some models that
attempt to deal with preventing posterior collapse.

5.5. Origin Gravity Effect

The origin gravity effect is an effect in low dimensions. Since the prior is a multivariate
standard normal distribution, the probabilities are centered around the origin. This pushes
the points in the latent space towards the origin. Thus, even when the data are spread
around multiple clusters, the Gaussian prior tends to push the clusters centers of the latent
space toward the origin. Ideally, the latent space should have separate clusters and the
prior should not push the mean toward the origin. We can exploit this clustering structure
by using GMM based models, such as VADE and GMM-VAE [75,76].

5.6. Hidden Score Function

The pathwise gradient has a hidden score function that can lead to high variance; this
is discussed more in depth in Section 6.1.

5.7. Curse of Dimensionality

Since the Gaussian prior has a L2 norm, it suffers from the curse of dimensionality [77].
The mass of the Gaussian distribution is no longer concentrated around the mean when we
go to higher dimensions. Instead of a bell curve, a higher dimensional Gaussian resembles
a uniform distribution on a surface of a hypersphere; most of the mass is on the shell of
the hypersphere. This can cause inefficiencies when sampling in high dimensions [78].
The random walk Metropolis algorithm tends to perform poorly when sampling in high
dimensions; the Hamiltonian Monte Carlo tends to perform better.

5.8. GANs vs. VAEs

VAEs and GANs use generative models to generate new data. GANs tend to be better
at generating images that are perceived by humans to be good quality; however, they do
not model the density very well with respect to the likelihood criterion [27]. VAEs are the
opposite; they tend to have blurry images but model the density very well with respect to
the likelihood criterion. The VAE is more stable to train than the GAN.

6. Variations of the VAE

There are many ways to extend the VAE models. You can change the prior, the poste-
rior/variational posterior, regularize the posterior, and change the architecture. Changing
the architecture includes changing the layers to RNNs/LSTMs/CNN layers, and use other
Divergence measures instead of KL Divergence. Many of these variations will often include

Entropy 2022, 24, 55 25 of 55

convolutional layers, even if not explicitly stated. In this section, we will refer to the original
VAE as the vanilla VAE.

6.1. VAE Using an STL Estimator

For the VAE, we can decompose the gradient of the lower bound w.r.t φ as follows [79]:

∇̂TD(ε, φ) = ∇φ
[
log(pθ(x|z)) + log(pθ(z))− log(qφ(z|x))

]
= ∇φ

[
log(pθ(z|x)) + log(pθ(x))− log(qφ(z|x))

]
= ∇z

[
log(pθ(z|x))− log(qφ(z|x))

]
∇φg(ε, φ, x)︸ ︷︷ ︸

path derivative

−∇φ log(qφ(z|x))︸ ︷︷ ︸
score function

The score function term can lead to a higher variance than necessary. One way to
address this is to drop the score function term, leading to the following term being used
instead of the gradient:

∇z
[
log(pθ(z|x))− log(qφ(z|x))

]
∇φg(ε, φ, x) (59)

This does not affect the bias of the estimator because the expectation of the score
function is 0. In some cases, dropping it can actually increase the variance if the score
function is correlated with the other terms.

We call it the STL estimator because the paper that invented this new estimator was
titled “Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational
Inference”.

6.2. ρ-VAE

Instead of an isotropic Gaussian approximate posterior, we use an AR(1) Gaussian
distribution [80], so this is a posterior variant. Note by autoregressive Gaussian that we are
referring to a traditional autoregressive model. The covariance matrix of the AR(1) process
is given by

C(ρ,s) = s

1 ρ ρ2 ρ3 · · · ρd−1

ρ 1 ρ ρ2 · · · ρd−2

ρ2 ρ 1 ρ · · · ρd−3

ρ3 ρ2 ρ 1 · · · ρd−4

...
.

...
ρd−1 · · · ρ3 ρ2 ρ 1

(60)

The ρ parameter is a scalar parameter controlling the correlation, so it is between −1 and
1; s > 0 is a scalar scaling parameter. The subscript (ρ, s) denotes that that the covariance
matrix is dependent on ρ and s.

The vanilla VAE encoder outputs µ and σ2 (or log(σ2)); the encoder in the ρ-VAE
outputs µ, ρ, and s. The determinant for this matrix is

det
(

C(ρ,s)

)
= sd

(
1− ρ2

)d−1
(61)

The regularization term in the loss function can be formulated as:

DKL

(
N
(

µ(i), C(ρ,s)

)
‖N (0, Id)

)
=

1
2

[∥∥∥µ(i)
∥∥∥2

2
+ d(s− 1− log(s))− (d− 1) log

(
1− ρ2

)]
We can take the Cholesky decomposition of the covariance matrix; from there, we get the
following lower triangular matrix:

Entropy 2022, 24, 55 26 of 55

C̃(ρ,s) =
1√
s

1 0 0 0 0 0
ρ

√
1− ρ2 0 0 · · · 0

ρ2 ρ
√

1− ρ2
√

1− ρ2 0 · · · 0
ρ3 ρ2√1− ρ2 ρ

√
1− ρ2

√
1− ρ2 · · · 0

...
.

...
ρd · · · ρ3√1− ρ2 ρ2√1− ρ2 ρ

√
1− ρ2

√
1− ρ2

z(i) = µ(i) + C̃(i)

(ρ,s)ε, can be used to generate the latent codes. z(i) is d-dimensional
latent code associated with the ith input; ε is a d-dimensional vector sampled from a
multivariate standard normal distribution, and C̃(i)

(ρ,s) is a d x d lower triangular matrix for
the ith input. Variations of the ρ-VAE include the ρ− β-VAE and the INFO-β-VAE.

6.3. Importance Weighted Autoencoder (IWAE)
6.3.1. Importance Sampling

Importance sampling is a Monte Carlo variance reduction method [81], where you
have the following integral to estimate

A =
∫

range(x)
g(x) f (x)dx = E f [g(x)]

where range(x) ⊆ Rd is bounded , g : range(x) → Rd is bounded and integrable; f :
PDF of a random variable x ∈ range(x); f ≥ 0 on range(x), f = 0 outside of range(x),
and

∫
f (x)dx = 1. We choose probability distribution function γ on range(x); γ 6= 0 on

range(x); this γ is called the importance function.∫
range(x) g(x) f (x)dx→

∫
range(x)

g(x) f (x)
γ(x) γ(x)dx = Eγ

[
g(y) f (y)

γ(y)

]
= J, where y ∼ γ

The importance sampling Monte Carlo estimator becomes

Ĵ = JN =
1
N

N

∑
k=1

g(yk) f (yk)

γ(yk)
(62)

The algorithm is as follows:

(1) Generate i.i.d sequence {y1, · · · , yN} ∼ γ.
(2) Plug into Equation (62).

This is an unbiased estimator.

6.3.2. Importance Sampling for a Latent Variable Model

If we are trying to train a latent variable model to perform inference, with random
vectors z and x, we can use importance sampling in training the likelihood. If our f is
our prior distribution pz(z), and g is the log conditional likelihood pθ(x(i)|z), the expected
value we are estimating is

Eγ

[
p(x|y)pz(y)

γ(y)

]
Then, the importance sampling estimator becomes

JN =
1
L

L

∑
l=1

g
(

y(l)
)

pz

(
y(l)

)
γ
(

y(l)
) , y(l) ∼ γ(l)

We would use importance sampling here if our pz(z) was difficult to sample from, or
was not informative. When training the likelihood given by ∑i log

(
∑z pz(z)pθ(x(i)|z)

)
,

Entropy 2022, 24, 55 27 of 55

∑k pz(z)pθ(x(i)|z) can be estimated with JN, so

∑
i

log

(
∑

l
pz(z)pθ(x(i)|z)

)
≈∑

i
log

 1
L

L

∑
l=1

pθ

(
y(i,l)

)
γ
(
y(i,l)

) pθ

(
x(i)|y(i,l))

), y(i,l) ∼ γ
(

y(i,l)
)

We choose our importance function to be the variational posterior, qφ(z|x).

∑
i

log

 1
L

L

∑
l=1

pz

(
z(i,l)

)
q
(

z(i,l)|x
) pθ

(
x(i)|z(i,l)

), z(i,l) ∼ q
(

z(i,l)
)

(63)

The IWAE [82] is a variation that uses importance sampling for weighted estimates of the
log probability. There are two important terms:

Term 1: ∑i log
(

1
L ∑L

l=1
pz(z(i,l))
q(z(i,l))

pθ

(
x(i)|z(i,l)

))
with z(i,l) ∼ q

(
z(i,l)

)
Term 2: minφ ∑i DKL

(
qφ

(
z|x(i)

)
‖pθ

(
z|x(i)

))
We want to maximize Term 1–Term 2. Thus, we end up with

LIWAE = Ez(i,1),z(i,2),z(i,3) ·...,z(i,l)∼q(z|x)

log

 1
L

L

∑
l=1

pθ

(
x, z(i,L)

)
q(z(i,l)|x(i))

 (64)

≤ log
(

pθ(x(i))
)

We can do a form of the ELBO by taking L samples of qφ(z|x).

LVAE = Ez(i,1),z(i,2),z(i,3),...,z(i,L)∼q(z|x)

 1
L

L

∑
l=1

log

 pθ

(
x(i), z(i,l)

)
q(z(i,l) | x(i))

 ≤ log
(

pθ(x(i))
)

Using Jensen’s Inequality, we can see that

LVAE ≤ LIWAE ≤ log
(

pθ(x(i))
)

(65)

The loss for the IWAE forms a tighter bound than the VAE, and, as you increase K, the
bound becomes tighter. In the IWAE lower bound, the gradient weighs the datapoint by
relative importance. In the VAE lower bound, the weights are equally weighted.

6.3.3. IWAE Variance Reductions

The gradient estimator of the IWAE can still have higher variance than desirable [79,83],
due to a hidden score function. To eliminate this problem, you can drop the hidden score
function, leading to IWAE-STL [79]. You can also use the reparametrization trick on the
hidden score function [84]. This new estimator is called the doubly reparametrized gradient
estimator (DReG). This leads to the IWAE-DReG.

6.4. Mixture-of-Experts Multimodal VAE (MMVAE)

The Multimodal VAE (MVAE) [85] and MMVAE model [86] address generative model-
ing of data across multiple modalities. In this context, examples of multimodal data include
images with captions and video data with accompanying audio.

We have M modalities, denoted by m = 1, . . . , M of the form

pΘ(z, x1:M) = p(z)
M

∏
m=1

pθm(xm|z) (66)

Entropy 2022, 24, 55 28 of 55

where pθm(xm|z) are likelihoods; it is parameterized by a decoder. This decoder has
parameters Θ = {θ1, . . . , θM}.

The true joint posterior is denoted as pΘ(z|x1:M), and the variational joint posterior
qΦ(z|x1:M),

qΦ(z|x1:M) =
M

∑
m=1

amqφm
(z|xm) (67)

where am = 1
M and qφm(z|xm) denotes a unimodal posterior.

We plug this into the LIWAE to get

LMoE
IWAE =

1
M

M

∑
m=1

Ez1:K∼qΦ(z|x1:M)

log

 K

∑
k=1

1
K

pΘ

(
zk

m, x1:M

)
qΦ

(
zk

m|x1:M
)
 (68)

6.5. VR-α Autoencoder and VRmax Autoencoder

We can also derive a variational lower bound for Rényi’s α-Divergence, called varia-
tional Rényi (VR) bound [87]. We approximate the exact posterior pθ(z|x) for α > 0.

min
q(z)

Dα

(
qφ(z|x)‖pθ

(
z|x(i)

))
max
q∈Q
Lα(q; x) = max

q∈Q
log(pθ(x))−Dα

(
qφ(z|x)‖pθ(z|x)

)
when α 6= 1, it is equivalent to

Lα(q; x) :=
1

1− α
logEq

[(
p(z, x)
q(z | x)

)1−α
]

(69)

This definition can be extended to α ≤ 0, The VR-α Autoencoder minimizes this VR bound.
The VRmax Autoencoder is an autoencoder in the case of the Renyi Divergence where
α = −∞.

IWAE can also be seen as the case of the Renyi Divergence when α = 0 and L < ∞; L is
the sample size of the Monte Carlo estimator. When α = 1, the VR-α Autoencoder becomes
the vanilla VAE.

6.6. INFOVAE

The INFOVAE [64], also known as MMD-VAE, is a posterior regularizing variant. This
leads to better disentangled representations. However, the INFOVAE still has the blurred
images generation problem.

The term qφ(x|z) is the posterior to qφ(z|x) and pθ(z|x) is the posterior to pθ(x|z).
The Divergence between q and p, DKL

(
qφ(z)‖p(z)

)
, is multiplied by λ, a scaling

parameter. A mutual information between x and z under q, denoted by Iq(x; z), is also
added, and scaled by parameter α (this α is different from the α in Renyi Entropy and
Divergence). This gives us the following loss function:

LInfoVAE = −λDKL
(
qφ(z|x)‖p(z)

)
−Eq(z)

[
DKL

(
qφ(x|z)‖pθ(x|z)

)]
(70)

+αIq(x; z)

This objective function cannot be optimized directly; an equivalent form is

LInfoVAE ≡ Epθ(x)Eqφ(z|x)[log(pθ(x|z))]− (1− α)Epθ(x)DKL
(
qφ(z|x)‖p(z)

)
− (71)

(α + λ− 1)DKL
(
qφ(z)‖p(z)

)
One typical architecture configuration for the INFOVAE involves using a DCGAN for

both the encoder and the decoder.

Entropy 2022, 24, 55 29 of 55

6.7. β-VAE

The β-VAE [65] is a posterior regularizing variant. We weight the regularizing term by
β, so the ELBO is modified to:

Eqφ(z|x)[log(pθ(x|z))]− βDKL(qφ(z|x)‖pz(z)) (72)

β is typically greater than 1. The correct choice of β creates more disentangled latent
representation. However, the balancing issue comes in to play; there is a trade-off between
reconstruction fidelity and the disentanglement of the latent code [67]. In [67,88,89], the β-
VAE’s ability to disentangle has been analyzed. In [67], the authors explore disentanglement
through the information bottleneck perspective and propose modifications to increase the
disentanglement capabilities of the β-VAE.

6.8. PixelVAE

The PixelVAE [60] is a VAE based model with a decoder based on the PixelCNN. Since
the PixelCNN is a neural autoregressive model, the decoder of the PixelVAE is a neural
autoregressive decoder.

The encoder and decoder both have convolutional layers. The convolutional layers use
strided convolutions in the encoder for downsampling. The convolutions in the decoder
and are transposed for upsampling.

Typically, a VAE decoder models each output dimension independently, so they use
factorizable distributions. In the PixelVAE, a conditional PixelCNN is used in the decoder.
The decoder is modeled by:

p(x|z) = ∏
i

p(xi|x1, . . . , xi−1, z) (73)

We model the distribution of x as the product of the distributions of each dimension of
x, denoted by xi, conditioned by z and all of previous dimensions. The variable z is the
latent variable.

The PixelCNN is great at capturing details but does not have a latent code. The
VAE is great at learning latent representations and capturing a global structure; it is not
great at capturing details. The PixelVAE has the positives of both models; it has a latent
representation, and is great at capturing global structure and small details. It can also have
latent codes that are more compressed than the vanilla VAE. Figure 7 shows the architecture
of the PixelVAE.

Figure 7. PixelVAE architecture. Image taken from [60].

The performance of VAEs can be improved by creating a hierarchy of random latent
variables through stacking VAEs. This idea can also be applied to the PixelVAE.

The PixelVAE++ algorithm uses PixelCNN++ instead of PixelCNN in the decoder [90].
It also uses a discrete latent variables with a Restricted Boltzmann Machine prior.

Entropy 2022, 24, 55 30 of 55

6.9. HyperSpherical VAE/S-VAE

The vanilla VAE often fails to model data whose latent structure is hyperspherical.
The soap bubble effect and the gravity origin effect are also a problem with Gaussian priors
in the VAE. The HyperSpherical VAE [77] attempts to deal with these problems.

The von Mises Fisher (vmF) distribution is parameterized by µ ∈ Rm and κ ∈ R≥0; µ
is the mean direction, and κ is the concentration around the mean. The PDF of a vmF
distribution for random vector z ∈ Rm:

q(z; µ, κ) = Cm(κ) exp
(

κµTz
)

Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)

(74)

Iv represents a modified Bessel function of the first kind at order v.
The hyperspherical VAE uses the vMF as a the variational posterior. The primary

advantage of this is the ability to use a uniform distribution as the prior. The KL Divergence
term DKL

(
vMF(µ, κ)‖U

(
Sm−1)) to be optimized is:

κ
Im/2(k)
Im/2−1(k)

+ log(Cm(κ))− log

2
(

πm/2
)

Γ(m/2)

−1

(75)

The KL term does not depend on µ, this parameter is only optimized in the reconstruction
term. The gradient with respect to the κ is

∇κDKL
(
vMF(µ, κ)‖U

(
Sm−1)) = 1

2 k
(
Im/2+1(k)
Im/2−1(k)

− Im/2(k)(Im/2−2(k)+Im/2(k))
Im/2−1(k)2 + 1

) (76)

The sampling procedure for the vmF can be found in [91]. The N-Transformation
reparameterization trick can be used to extend the reparameterization trick to more
distributions [92]; it is used to reparameterize vmF sampling.

6.10. δ-VAE

DKL(qφ(z|x)‖p(z)) is also called the rate term. The δ-VAE [71] attempts to prevent
posterior inference by preventing the rate term from going to 0 by using a lower bound.
They address the posterior collapse problem with structural constraints so that the KL
Divergence between the posterior and prior is lower bounded by design. This can be
achieved by choosing families of distributions for pθ(z) and qφ(z|x) such that

min
θ,φ

DKL
(
qφ(z|x)‖pθ(z)

)
≥ δ (77)

The committed rate of the model is denoted by δ. One way to do so is to select from a
family of Gaussian distributions with variances that are fixed but different.

6.11. Conditional Variational Autoencoder

The conditional VAE [93] is a type of deep conditional generative model (CGM). In
a deep CGM, there are three types of variables: x denotes the input variables, y denotes
the output variables, and z denotes the latent variables. The approximate posterior is is
qφ(z|x, y). The conditional prior is pθ(z|x), and the conditional likelihood is pθ(y|x, z).

After x is observed, z is sampled from pθ(z|x). Then, y is generated from pθ(y|x, z).
The variational lower bound of the deep CGM is

log(pθ(y|x)) ≥ −DKL
(
qφ(z|x, y)‖pθ(z|x)

)
+Eqφ(z|x,y)[log(pθ(y|x, z))] (78)

Entropy 2022, 24, 55 31 of 55

For the CVAE, where L is the number of samples, z(l) = gφ

(
x, y, ε(l)

)
, ε(l) ∼ N (0, I), the

lower bound estimator is

L̃CVAE(x, y; θ, φ) = −DKL
(
qφ(z|x, y)‖pθ(z|x)

)
+

1
L

L

∑
l=1

log(pθ(y|x, z(l))) (79)

The encoder is qφ(z|x, y), the conditional prior is pθ(z|x), and the decoder is pθ(y|x, z).

6.12. VAE-GAN

The VAE-GAN architecture [56] is influenced by both the VAE and the GAN; the
decoder is also the generator, and the reconstruction loss term is replaced by a discriminator.

As shown in Figure 8, there you have the same VAE structure, but the sample coming
out of the VAE is fed into a discriminator, along with the original training data.

Figure 8. Diagram of the VAE-GAN architecture. x is the input to the encoder, which outputs
latent variable z, which goes into the decoder/generator. This is fed into the discriminator. The
decoder/generator is part of both the VAE and GAN.

In this model, z is the output of the encoder, denoted z ∼ Enc(x) = q(z|x), and x̃ is the
output of the decoder, denoted by x̃ ∼ Dec(z) = p(x|z). Disl(x) denotes the representation
of the l th layer of the discriminator.

The likelihood of the lth layer of the discriminator can be given by

p(Disl(x)|z) = N (Disl(x); Disl(x̃), I)

It is a Gaussian distribution parametrized with mean Disl(x̃) and the identity matrix I
as its covariance. The likelihood loss for Disl(x) can be calculated as

LDis l
llike = −Eq(z|x)[log(p(Disl(x)|z))]

The loss of the GAN is typically given byLGAN = log(Dis(x))+ log(1−Dis(Gen(z))).
Since the generator and decoder are the same for the VAE-GAN, it can be rewritten as

LGAN = log(Dis(x)) + log(1−Dis(Dec(z)))

The overall loss used for training the VAE-GAN is

L = DKL(q(z|x)‖p(z)) + LDis l
llike + LGAN (80)

There are multiple practical considerations regarding training the VAE-GAN. The first
consideration is to limit propagation of error signals to only certain networks. θEnc , θDec , θDis
denote the parameters of each network.

The second consideration is to weigh the error signals that the decoder receives. The
decoder receives these signals from both LDis l

llike and LGAN,
The parameter η is used as a weighting factor, and the update of the decoders parame-

ters looks like:
θDec ← −∇θDec

(
ηLDisl

llike −LGAN

)

Entropy 2022, 24, 55 32 of 55

Empirically, the VAE-GAN performs better if the discriminator input includes samples
from both p(z) and q(z|x). Therefore, the GAN loss can be rewritten as:

LGAN = log(Dis(x)) + log(1−Dis(Dec(z)))

+ log(1−Dis(Dec(Enc(x))))

Algorithm 3 shows the VAE-GAN training algorithm given practical considerations,
and Figure 9 shows the architecture given these modifications.

Figure 9. Diagram of the VAE-GAN training, taken from [56].

Algorithm 3 VAE-GAN training

θEnc , θDec , θDis ← initialize network parameters for encoder, decoder, and discriminator
networks
for do # of training iterations:
X (M) ← random mini-batch
Z (M) ← Enc(X (M))

Lprior ← DKL(q(Z (M)|X (M))‖p(Z (M))

X̃ (M) ← Dec(Z (M))

LDisl
Llike ← −Eq(Z (M) |X (M))

[
p
(

Disl(X (M))|Z (M)
)]

Z (M)
p ← samples from prior N (0, I)

X (M)
p ← Dec

(
Z (M)

p

)
LGAN ← log(Dis(X (M))) + log(1−Dis(X̃ (M)))

+ log
(

1−Dis
(
X (M)

p

))
Update the network parameters with their stochastic gradients:
θEnc

+← −∇θEnc

(
Lprior + LDis l

llike

)
θDec

+← −∇θDec

(
ηLDis l

llike −LGAN

)
θDis

+← −∇θDisLGAN
end for

Extensions of the VAE-GAN include the Zero-VAE-GAN [94], F-VAEGAN-D2 [95],
3DVAE-GAN [96], and Hierarchical Patch VAE-GAN [97].

6.13. Adversarial Autoencoders (AAE)

The adversarial autoencoder is another architecture that takes inspiration from both
the VAE and GAN [98]. We denote x as the input and z as the latent code of the autoencoder.
Then, p(z) is the prior probability distribution over the latent code, q(z|x) is the probability

Entropy 2022, 24, 55 33 of 55

distribution for the encoder, p(x|z) is the distribution for the decoder, pd(x) denotes the
data generating distribution, and p(x) is the model distribution. The encoder has an
aggregated posterior distribution defined as

q(z) =
∫

x
q(z|x)pd(x)dx

An adversarial network is connected to the latent code. From there, we sample
from the aggregated posterior and the prior, and input both into the discriminator. The
discriminator tries to distinguish whether or not the z is from the prior, which means it
is real, or if it is from the aggregrated variational posterior, which is fake. This matches
the prior with the aggregrated variational posterior, which has a regularizing effect on
the autoencoder. The encoder can also be considered the generator of the adversarial net
because it is generating the latent code. The autoencoder part of the AAE tries to minimize
the reconstruction error.

The AE and the adversarial network are trained in two phases. The first phase is
the reconstruction phase. This is where the autoencoder is trained on minimizing the
reconstruction loss. The second phase is the regularization phase. In this phase, the
discriminative network is trained to discriminate between the real samples and the fake
ones. Then, the generator (the encoder of the AE) is also trained to fool the discriminator
better. Both of these steps use minibatch SGD.

There is a broad choice of functions for the approximate posterior. Some common
choices are a deterministic function, a Gaussian probability distribution, or a universal
approximator of the posterior.

Figure 10 shows the architecture of the AAE. We can adjust the architecture of the
AAE to do supervised learning, semi supervised learning, unsupervised clustering, and
dimensionality reduction.

Figure 10. Adversarial Autoencoder architecture. The top part is the autoencoder, while the encoder
and the bottom part constitute the GAN.

6.14. Information-Theoretic Learning Autoencoder

The Information-Theoretic Learning Autoencoder (ITL-AE) [99] is similar to the VAE,
with both and encoder and decoder layers. There are two main differences. One is that it
does not use the reparameterization trick.

The second difference is that, instead of using the KL Divergence, it uses alternate
Divergence measures, like the CS Divergence and the Euclidean Divergence; these Diver-
gences are estimated through kernel density estimation (KDE) [100].

cost = L(x, x̃) + λR(Enc, p) (81)

where L is the reconstruction loss, R is the regularization term, typically the Euclidean or
CS Divergence. The chosen prior is p, Enc is the encoder, and λ controls the magnitude of
the regularization.

Entropy 2022, 24, 55 34 of 55

If we want to estimate the QIP V for p(x) using KDE, it is given by the formula

V̂p =
1

N2

N

∑
j=1

N

∑
i=1

G
(

xi|xj, σ2
)

(82)

where there are N datapoints, and a Gaussian kernel G with kernel bandwidth σ2. Mini-
mizing the QIP is equivalent to maximizing the quadratic Entropy.

To get the kernel density estimator for the CS-Divergence:

D̂CS(q; p) = log

(
V̂qV̂p

V̂2
c

)
(83)

V̂q is the QIP estimator for PDF q(x), V̂p is the QIP estimator for PDF p(x), V̂c the cross
information potential estimator, given by

V̂c =
1

NqNp

Np

∑
j=1

Nq

∑
k=1

G
(

xqk |xpj , 2σ2
)

(84)

where Nq is the number of observations for distribution q(x), Np is the number of observa-

tions for distribution p(x), G
(

xqk |xpj , 2σ2
)

is a Gaussian kernel between points xqk and xpj ,

with a kernel bandwidth 2σ2.
KDE for Euclidean Divergence estimator is given by

D̂ED(q; p) = V̂q + V̂p − 2V̂c (85)

We can choose q as the approximation distribution, and p as the prior distribution.
When we try to minimize the information potential with respect to q, the samples that are
generated from q would be spread out; when we try to maximize the cross information
potential with respect to q, the samples from q and p are closer together. Thus, there is
tension between these two effects.

The authors of [99] experimented with three different priors: Laplacian distribution,
2D Swissroll, and a Gaussian distribution, and experimented on MNIST data generation.
The Euclidean Divergence did not perform as well as the CS Divergence when the data
became high dimensional; high dimensionality also means the batch size has to be larger
for the ITL-AE.

6.15. Other Important Variations

Important architectures we have not covered include

(1) The VRNN and VRAE: The VRNN [101] is a RNN with a VAE in each layer. There is
also the Variational Recurrent Auto-Encoder (VRAE) [102].

(2) VaDe and GMVAE: Both methods use Gaussian Mixture Models; the specific use case
is for clustering and generation [75,76].

(3) VQ-VAE: This method combines Vector Quantization (VQ) with the variational au-
toencoder [74]. Both the posterior and prior are categorical distributions, and the
latent code is discrete. An extension of the VQ-VAE is the VQ-VAE2 [103]. These
methods are comparable to GANs in terms of image fidelity.

(4) VAE-IAF: This uses inverse autoregressive flow with the VAE [58].
(5) Wasserstein Auto-Encoder (WAE):

The WAE minimizes a form of the Wasserstein distance between the model PDF and
the target PDF [104].

(6) 2-Stage VAE

The 2-Stage VAE [61] addresses multiple problems: image blurriness and the balancing
issue. It also can tackle the problem of a mismatch between the aggregrate posterior and

Entropy 2022, 24, 55 35 of 55

expected prior. It trains two different VAEs sequentially. The first VAE learns how to
sample from the variational posterior without matching q(z) = p(z). The second VAE
attempts to sample from the true q(z) without using p(z).

7. Applications

VAEs are typically used for generating data, including images and audio; another
common application is for dimensionality reduction. There are many example applica-
tions we could have chosen. However, we decided to focus on three: financial, speech
source separation, and biosignal applications. The financial applications for VAEs is a new
area of research with a huge potential for innovation. Source separation has long been
an important problem in the signal processing community, so it is important to survey
how the VAE performs in this application. Innovations in biosignal research has a great
potential for positive impact for patients with disabilities and disorders; VAEs can help
improve the performance of classifiers in biosignal applications through denoising and
data augmentation.

7.1. Financial Applications

One application is described in [105], where the β -VAE is used to complete volatility
surfaces and generate synthetic volatility surfaces for options (in the context of finance).
Volatility is the standard deviation of the return on an asset. In finance, options are a
contract between two parties that “gives the holder the right to trade in the future at a previously
agreed price but takes away the obligation” [106]. This is for the simple options; there are more
complex options. A volatility surface is a volatility function based on moneyness and time
to maturity. For moneyness, delta is used; in the context of finance, delta is the derivative
of an option price with respect to the underlying asset.

We sample N points from the volatility surface. There are two types of methods to
generate volatility surfaces with the VAE: the grid-based approach and pointwise approach.
For the grid-based approach, the input to the encoder is the N grid point surface; this
surface is flattened into an N point vector. The encoder outputs z which has d dimensions.
The decoder uses z to reconstruct the original grid points. Figures 11 and 12 show the
architecture for the encoder and decoder for this approach.

For the pointwise approach, the input to the encoder is the N grid point surface, which
is then flattened into an N point vector. The encoder outputs z, which is d dimensions.
The input to the decoder is z along with moneyness K and maturity T. The output of the
decoder is 1 point on the volatility surface. We obtain all the points using batch inference.
Figures 13 and 14 show the architecture for the encoder and decoder for this approach.

In the experiments, each volatility surface was a 40 points grid, with eight times
to maturity and five deltas. Six currency pairs were used in this experiment. Only the
pointwise approach was used. For completing surfaces, it was compared with the Heston
Model; this algorithm predicts the surface faster than the Heston Model. In some cases, it
outperforms the Heston Model. Table 1 shows the results from the paper comparing the
Heston Model with a Variational Autoencoder.

The experiments also generated new volatility surfaces. One main use of generating
these surfaces is for data augmentation to create more observations for deep learning
models (Maxime Bergeron, Private Communications).

Entropy 2022, 24, 55 36 of 55

Table 1. Results from [105] comparing the Heston Model with the VAE for six currency pairs. The
units are in Mean Absolute Error (MAE), and the VAE has a latent code size of 4.

Currency Pair Heston Model VAE Model

AUD/USD 56.6 33.6

USD/CAD 35.3 32.5

EUR/USD 32.2 30.9

GBP/USD 47.5 34.0

USD/JPY 58.4 38.2

USD/MXN 92.2 56.7

Figure 11. Encoder for grid-based approach.

Figure 12. Decoder for grid-based approach.

Figure 13. Encoder for pointwise approach.

Entropy 2022, 24, 55 37 of 55

Figure 14. Decoder for pointwise approach.

In [107], the β-VAE was used in conjunction with continuous time stochastic differ-
ential equations models to generate arbitrage-free implied volatility (IV) surfaces. SDE
models that were tested included Lévy additive processes and time-varying regime switch-
ing models.

The method, shown in the chart in Figure 15, has the following steps:

(1) Use historical market data to fit the arbitrage-free SDE model,
get collection SDE model parameters.

(2) Train VAE model using on the SDE model parameters.
(3) Sample from the latent space of the VAE model using a KDE approach.
(4) Get a collection of the SDE model parameters by decoding the samples.
(5) Use the SDE model with parameters to get arbitrage-free surfaces.

Figure 15. Hybrid model diagram, taken from [107].

In [108], LSTM and LightGBM were used to predict the hourly directions of eight
banking stocks listed in the BIST 30 Index from 2011 and 2015. The first three years were
used in the training set, and the last 2 years were used in the test set. The first experiment
used the stock features as the input to the models. The second experiment first put the stock
features through a VAE for dimensionality reduction before inputting it into the models.
The results found that they performed similarly, though the VAE filtered input uses 16.67%
less features. The 3rd experiment involved adding features from other stocks into the first
and second experiments, to account for effects from other stocks.

In [109], a deep learning framework was used for multi-step-ahead prediction of the
stock closing price. The input features were market open price, market high price, market
low price, market close price, and market volume price. This framework used the LSTM-
VAE to remove noise, then combined these reconstructed features with original features;
these were the input to a stacked LSTM Autoencoder, which outputted a prediction.

In [110], they looked at the index tracking performance of various autoencoder models,
including the sparse AE, contractive AE, stacked AE, DAE, and VAE. These were used to
find the relationships between stocks and construct tracking portfolios. The results were
then compared to conventional methods, and results showed that, in order for the deep
learning methods to perform better, there needed to be a higher number of stocks in the
tracking portfolio.

Entropy 2022, 24, 55 38 of 55

7.2. Speech Source Separation Applications

Deep learning has been applied to various aspects of speech processing, speech recog-
nition, speech and speaker identification and such applications [111]. In this subsection,
we focus on speech source separation applications using variational autoencoders.

If you have N signals, si(t), you can have mixed signal y(t) = ∑N
i=1 si(t); the goal of

signal/source separation is to retrieve an estimate of each si(t), ŝi(t). When it is unsuper-
vised, it is known as blind source separation. Figure 16 shows two speech signals, Signal 1
and Signal 2 mixed to create a mixed signal.

Signal to Distortion Ratio (SDR), Signal to Artifact Ratio (SAR), Signal to Interference
Ratio (SIR), Signal to Noise Ratio (SNR), and Perceptual Evaluation of Speech Quality
(PESQ) are common measures to evaluate speech source separation [112,113]. SDR, SAR,
SIR, and SNR are all typically measured in decibels (dB). We will drop the i subscript of a
signal estimate ŝi(t) for simplicity in the following formulas. Using the BSSEval toolbox,
we can decompose our estimate of a signal as

ŝ(t) = starget (t) + einterf (t) + enoise (t) + eartif (t)

starget (t) is a deformed version of si(t), eartif (t) is an artifact term, einterf (t) denotes the
deformation of the signals due to interference from the unwanted signals, enoise (t) is a
deformation of the perturbating noise.

0 0.5 1 1.5 2 2.5 3 3.5 4

Seconds

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

A
m

p
lit

u
d

e

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

Seconds

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

A
m

p
lit

u
d
e

(b)

Figure 16. Cont.

Entropy 2022, 24, 55 39 of 55

0 0.5 1 1.5 2 2.5 3 3.5 4

Seconds

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

A
m

p
lit

u
d
e

(c)

Figure 16. Signal 1 and Signal 2 are mixed together to create the mixed signal. (a) Signal 1, (b) Signal 2,
(c) Mixed Signal.

The SDR is then given by:

SDR = 10 log10
‖sdist ‖2

‖einterf + enoise + eartif ‖2 (86)

The SIR is given by:

SIR = 10 log10
‖sdist ‖2

‖einterf ‖2 (87)

the SNR is given by:

SNR = 10 log10
‖sdist + einterf ‖2

‖enoise ‖2 (88)

and the SAR is:

SAR = 10 log10
‖sdist + einterf + enoise ‖2

‖eartif ‖2 (89)

Spectrograms can be used to view a signal’s time-frequency representation. The
amplitude and frequency information are represented by color intensity indicating the
amplitude of the frequency. A common way of generating spectrograms is to take the
Short Time Fourier Transform (STFT) of the signal. Two important parameters for the STFT
are the window size and overlap size. The spectrogram is found by taking the square
of the magnitude of the STFT especially for deep learning algorithms involving speech.
Typically, in practice, the spectrogram is often normalized before being fed into a neural
network [111]. Alternative inputs include log spectrograms and mel spectrograms.

In [114], the VAE was compared with NNMF, GAN, Gaussian WGAN, including
Autoencoding WGANs (AE WGAN), and Autoencoders trained with maximum likelihood
(MLAE) in the task of blind monoaural source separation. This VAE did not use convolu-
tional layers. The TIMIT data set was used [115]. Each training set had a female and male
speech signal mixed together. There is a VAE for each speaker; so, for a mixed signal that
mixes a female and male speaker, we need two VAEs. The input to the VAE is a normalized
spectrogram. The training label is the ground truth spectrogram of the original signal that
we are trying to obtain. The signal is reconstructed via the Wiener filtering equation:

x̂k(t) = iSTFT

(
Ŝk

Ŝm + Ŝ f
� Smixed � ei(phase)

)
, k ∈ {m, f} (90)

Smixed is the magnitude spectra of the mixed signal, and phase is the phase of the
mixture signal. Sm and S f are the reconstructed estimate of male magnitude spectra and

Entropy 2022, 24, 55 40 of 55

reconstructed estimate of female magnitude spectra. x̂k(t) is the reconstructed signal.
iSTFT denotes the inverse STFT. � denotes element wise multiplication. The experiments
show that NNMF and the VAE methods result in similar SDR, SIR and SAR. The Gaussian
WGAN has a better SIR and SDR than the NNMF and the VAE. The MLAE has a superior
SAR to all the other models. Figure 17 shows the results for the experiments.

(a)

(b)

(c)

Figure 17. The results for the experiments from paper [114]; the graphs are taken directly from this
paper. (a) These are the results for the SAR. (b) These are the results for the SDR. (c) These are the
results for the SIR.

Entropy 2022, 24, 55 41 of 55

In [116], the researchers used two data sets, TIMIT and VIVOS. TIMIT is a speech
corpus for American English; it has 8 dialects and 630 speakers. Each speaker speaks
10 sentences. In the experiment, they used all eight dialects. Background noise was also
used, particularly trumpet sounds, traffic sounds and water sounds.

The architecture of the algorithm involved taking the STFT of the mixed signal, feeding
it into a complex data based VAE, using a Chebyshev bandpass filter on the output, followed
by an iSTFT to get the final reconstructed signal (Figure 18). The metrics used were SIR
and SDR. There are two ways to implement a VAE for this STFT based method, to account
for the complex input. One is to assume the real and imaginary part of the input are
independent, there will be a VAE for the real and imaginary part respectively, and the
output of the two VAEs will be rejoined again before being put into an inverse STFT (Hao
Dao, Private Communications).

There were four cases: one dialect vs. one background, many dialects vs. one back-
ground, one dialect vs. many backgrounds, and many dialects vs. many backgrounds. In
one dialect vs. one background, one dialect was chosen at a time, with 10 people randomly
chosen, with 100 utterances total; for each dialect, the utterances were mixed with trumpet
sounds and Gaussian noise. The results were shown to be good but not stable. In many
dialects vs. one background, 100 utterances were chosen and mixed with trumpet sounds
and Gaussian noise. The results were shown to be better than the previous case, possibly
due to a different data distribution. In one dialect vs. many backgrounds, the speech data
were mixed in four ways: with each background sound or all three of them. The difference
in performance between the background sound was not huge, though there was a reduction
when all three mixed with the speech signal. Experiments were also run with VIVOS, a
speech corpus for Vietnamese language; the performance was slightly lower. They also
indicate that performance depends on depth size and code size. They also compare with
the ICA, regular VAE, filter banks, and wavelets, and find that their model has better SDR,
SIR, and PESQ. The exact results are shown in Table 2.

Table 2. Results from [116], comparing the paper’s approach with other methods.

Group Model SDR (dB) SIR (dB) PESQ

1 Wavelet 7.56 16.22 -
Time-Frequency filter bank 9.47 1.09 -

2 ICA 5.98 11.92 -
VAE 9.47 - 2.37

3 VAE 9.47 - 2.35

Paper Approach
VAE 9.08 14.76 2.02
BPF 6.87 10.01 0.97
VAE + BPF 12.99 15.02 2.41

In [117], source separation is achieved through class information instead of the source
signal themselves using the β-VAE; this β-VAE had convolutional layers.

Figure 18. This is the architecture used by [116].

Entropy 2022, 24, 55 42 of 55

In [118], Convolutional Denoising Autoencoders (CDAEs) were used for monoaural
source separation. Given the trained CDAEs, the magnitude spectrogram of the mixed
signal is passed through all the trained CDAEs. The output of the CDAE of source i is the
estimate S̃i of the spectrogram of source i. The CDAE performs better than the MLP at
separating drums but is similar in separating the other components.

In [119], the multichannel conditional VAE (MCVAE) method was developed and used
for semi-blind source separation with the Voice Conversion Challenge (VCC) 2018 data set.
This technique has also been used with supervised determined source separation [120].

The generalized MCVAE is used to deal with multichannel audio source separation
that has underdetermined conditions [121,122]. While the MVAE has good performance in
source separation, the computational complexity is high, and it does not have a high source
classification accuracy. The Fast MCVAE has been developed to deal with these issues [123].
The MCVAE does not perform as well under reverberant conditions, and ref. [124] works
on extending the MCVAE to deal with this problem.

In [125], variational RNNs (VRNNs) were used for speech separation on the TIMIT
dataset, achieving superior results over the RNN, NNMF, and DNN for SDR, SIR, and SAR.

Autoencoders and VAEs are also used for speech enhancement [126–130]. The goal of
speech enhancement is to increase the quality of a speech signal, often by removing noise.

7.3. BioSignal Applications

VAEs can also be applied to biosignals, such as electrocardiogram (ECG) signals,
electroencephalography (EEG) signals, and electromyography (EMG) signals.

7.3.1. ECG Related Applications

ECG machines measure the electrical signals from the heart; the signal recorded in
an ECG machine is known as an ECG signal. The typical ECG has 12 leads; six on the
arms/legs are called limb leads, and the six on the torso are called precordial leads. ECG
waves can be defined as a “positive or negative deflection from baseline that indicates a specific
electrical event” [131]. The common ECG waves are the P wave, Q wave, R wave, S wave, T
wave, and U wave. A typical ECG waveform is shown in Figure 19. The frequencies of an
ECG signal are in the 0–300 Hz range, though most of the information is available in the
0.5–150 Hz range [132].

Figure 19. ECG waveform with P, Q, R, S, and T waves shown, taken from [133].

Using ECGs, doctors can detect serious diseases by identifying distortions in the signal.
One very important application is measuring the ECG signal of a fetus when a woman is
pregnant; this is to help detect any heart problem that the fetus has. There are invasive and
noninvasive methods of measuring this; due to side effects of the invasive methods, the
noninvasive method is preferred. However, the mother’s ECG (MECG) signal is mixed
with the baby’s ECG (FECG) signal, along with external respiratory noise. Thus, the two
signals need to be separated, which is the blind source separation problem. The traditional
methods to deal with fetal source separation have been ICA methods and adaptive filters

Entropy 2022, 24, 55 43 of 55

such as LMS and RLS. For GANS, VAEs and AEs, it is more difficult to train the models
due to the fact that we do not have a ground truth for the FECG signals. This problem
can be solved by generating synthetic FECG and MECG signals from libraries such as
signalz [134] and FECGSYN toolbox [135]. The average range for the beats per minute
(BPM) of a pregnant woman is 80–90. The average range for the BPM of a fetus is 120–160.
The MECG signal amplitude is also 2–10 times larger than the amplitude of a FECG signal.
These are the important parameters needed to generate the synthetic ECG signals necessary.

While the VAE itself has not been used for fetal source separation, a similar method, the
cross adversarial source separation framework (CASS), has been used. CASS is a method
mixing AE and GANs for source separation tasks [136]. For each mixture component, there
is an autoencoder and discriminator. The mixed signal goes into each autoencoder, whose
output goes into a discriminator. Typically, each AE and GAN pair is trained independently.
For each pair, the ith signal is separated, and the rest of the components in the mixture are
treated as noise. Cross adversarial training is used to share information between each of
those components. This was done by letting the ith discriminator to reject samples from
the other components. Figure 20 shows the architectures. In their paper, the authors used
two components in CASS for this particular problem. They generated synthetic FECG
and MECG signals, mixed them, and added noise to simulate periodic respiratory noise.
This noise consisted of random sinusoidal signals with varying frequencies and varying
amplitudes. The synthetic data were converted into spectrograms before being inputted to
the networks. The results are shown in Table 3. The CASS is superior to the AE model, but
the CASS with cross adversarial training is inferior to CASS with training each component
independently for the MECG.

Table 3. Results from [136]. Lp norm errors of different frameworks after training. The three
frameworks were the baseline AE design, CASS (training each component independently), and CASS
with cross adversarial training.

Maternal Method L1 Error L2 Error L∞ Error

Baseline AE 0.45158 0.53502 0.85077

CASS 0.40672 0.47942 0.77370

CASS with Cross Training 0.40994 0.48082 0.77911

Fetal Method L1 Error L2 Error L∞ Error

Baseline AE 0.49818 0.57435 0.80708

CASS 0.37387 0.46627 0.75402

CASS with Cross Training 0.37218 0.45848 0.74462

(a)

Figure 20. Cont.

Entropy 2022, 24, 55 44 of 55

(b)

(c)

Figure 20. The architectures for the experiments for each model from [136]. (a) This is source
separation using K autoencoders. (b) This is the CASS architecture, where each component is trained
independently. (c) This is the CASS architecture using cross adversarial training.

Detecting distortions in ECG signals are difficult to find due to noise from disturbances,
such baseline wandering, muscle shaking, and electrode movement. The VAE has been
used to distinguish these ECG signals under noise conditions [137]. They used three data
sets: AHA ECG database, the APNEA ECG database, and CHFDB ECG database. From
these datasets, they obtained 30,000 ECG signals.

To evaluate how well the model denoised the ECG signals, noise was added to the
ECG signal data. This included AWGN, salt and pepper noise, and Poisson noise (also
known as shot noise). Sinusoidal signals with different amplitudes were also added to the
signal to imitate baseline wandering noise. First, the ECG signal is preprocessed; this is
done by using an algorithm to split the waves in segments according to the cardiac cycle.
After these steps are completed, the new data are inputted into a VAE. The results showed
that the VAE is as robust in the noise scenarios presented.

Morphological diagnosis, which is “A diagnosis based on predominant lesion(s) in the
tissue(s)” [138], is one use of ECGs. Human experts typically perform better at ECG morpho-
logical recognition than deep learning methods, due to the fact that there are an insufficient
amount of positive samples. In [139], a pipeline is used that involves the VQ-VAE to
generate new positive samples for data augmentation purposes. A classifier was then
trained using this additional synthetic data to identify ten ECG morphological abnormali-
ties, which resulted in an increase in the F1 score for the classifier. These ten abnormalities
are myocardial infarction (MI), left bundle branch block (LBBB), right bundle branch block
(RBBB), left anterior fascicular block (LAFB), left atrial enlargement (LAE), right atrial

Entropy 2022, 24, 55 45 of 55

enlargement (RAE), left ventricular hypertrophy (LVH), right ventricular hypertrophy
(RVH), I ◦ atrial ventricular block (IAVB), and pre-excitation syndrome (WPW).

Myocardial infarctions are also known as heart attacks, which can often lead to death.
They need to be rapidly diagnosed to prevent deaths. Conventional methods are not very
reliable and also perform poorly when applied to 6 lead ECG. In [140], a deep learning
algorithm was used to detect myocardial infarction using a 6 lead ECG. They found that
using a deep learning algorithm with VAE for 6-lead ECG performed better than the
traditional rule-based interpretation. 425,066 ECGs from 292,152 patients were used in
the study.

Deep learning can be used to classify the type of beat in an ECG signal. However, due
to the black box nature of deep learning algorithms and their complexity, they are not easily
adopted into clinical practice. Autoencoders have been used to reduce the complexity;
the neural networks models would then use a lower dimensional embedding for the
data. This solution still has problems with interpretability due to interactions between
components of the embeddings. The β-VAE can be used to disentangle these interactions
between components, leading to an interpretable and explainable beat embedding; this was
done in [141]. They used the β-VAE to create interpretable embedding with the MIT-BIH
Arrhythmia dataset. VAEs can also be used to generating an ECG signal for one cardiac
cycle [142]. This is useful for data augmentation purposes. This method is relatively simple
but cannot generate whole ECG signals.

In electrocardiographic imaging, recreating the heart’s electrical activity runs into
numerical difficulties when using body surface potentials. A method using generative
neural nets based on CVAEs have been used to tackle this problem [143].

7.3.2. EEG Related Applications

EEG machines measure the electrical signals from the scalp; these are used to measure
problems in the brain. A RNN based VAE has been used to improve the EEG based speech
recognition systems by generating new features from raw EEG data [144]. VAEs have been
used to find the latent factors for emotion recognition in multi channel EEG data [145].
These latent factors are then used as input for a sequence based model to predict emotion.
Similarly, the bi-lateral variational domain adversarial neural network (BiVDANN), which
uses a VAE as part of its architecture, has been used for emotion recognition from EEG
signals [146]. Video game to assess cognitive abilities have been developed, with a task
performance metric and EEG signals recorded; from this, a deep learning algorithm for
detecting task performance from the EEG data has been developed [147]. First, this involves
feature extraction, then dimensionality reduction by the VAE. The output of the VAE are
used as input to an MLP, which predicts task performance.

7.3.3. EMG Related Applications

An EMG machine “measures muscle response or electrical activity in response to a nerve’s
stimulation of the muscle” [148]. They can be used to find neuromuscular problems. Upper
limb prosthetics use myoelectric controllers; however, these controllers are susceptible
to interface noise, which reduces performance [149]. Latent representations of muscle
activation patterns have been found using supervised denoising VAE. These representations
were robust to noise in single EMG channels. Latent space based deep learning classifiers
have outperformed conventional LDA based classifiers.

Brain-Machine Interfaces (BMIs) can be used in paralyzed patients to help return their
voluntary movement; they can do this by extracting information from neural signals. How-
ever, the interface has performance issues with this method. Using latent representations
through methods like the VAE has improved the performance of the BMI [150].

Entropy 2022, 24, 55 46 of 55

8. Experiments
8.1. Experiment Setup and Data

We focused specifically on speech source separation experiments. We used the TIMIT
dataset for the input [115]. Two types of speakers, male and female, were used; each of the
recordings was 2–4 s. We normalized the speech signals, then combined male signals with
female signals to create 90 mixed signals. Eighty signals were used for training, 10 were
used for testing. We used three models: the VAE, ITL-AE, and β-VAE. For all three models,
we used fully connected layers.

First, we will go over the VAE setup. There is a VAE for each speaker; thus, for a
mixed signal that mixes a female and male speaker, we need two VAEs. The input to the
VAE is a normalized spectrogram. The training label is the ground truth spectrogram of
the original signal that we are trying to obtain. The signal is reconstructed via the Wiener
filtering equation, from Equation (90). The metrics used SDR, SIR, and SAR, evaluated
using the BSS Eval Toolbox [112]. This setup is repeated for the β-VAE and ITL-AE.

8.2. Results
8.2.1. Hyperparameter Tuning

Normalizing the spectrogram was necessary for the loss function to not explode. We
also found that the Gaussian distribution that generates ε had to have a standard deviation
of 0.01. Parameters that we varied include window and overlap size for the STFT, latent
variable code size, and batch size.

Figure 21 shows the results of varying the window size and overlap size with violin
plots. The encoding layers had the value [M, 256, 256, 128], and the decoding layers had
the value [256, 256, M], with M being the number of spectral frames, which depends on
the choice of the STFT parameters. Using a 64 ms window size fared worse than a 32 ms
window and a 16 ms window. Using 64 ms window with 32 ms overlap size resulted in
a better SAR than using 64 ms window with 16 ms overlap size. Using a 16 ms window
size with 8 ms overlap size had the best overall results by a wide margin. Using a 16 ms
window size with 4 ms overlap size had worse results than using a 16 ms window size
with 8 ms overlap size. When the window size went down to 8 ms, the results became
worse than 16 ms window size.

We varied the latent code size d. The encoder layers are [129-128-d], and the decoding
layers are [128-129], with the window size being 256 ms and overlap size is 128 ms. The
experiment found no clear difference in SIR, SDR, and SAR. We also experiment between
the batch sizes in 1, 17, 34, 70. For batch sizes 17, 34, and 70, there was no clear difference
between varying the batch size. Using batch size 1 increased the time while not changing
the performance.

For the β-VAE, β was a hyperparameter to be tuned. For β >1, there is no discernible
difference between the various β ’s.

For the ITL-AE, the hyperparameter that we varied was the latent code size. We varied
the latent code size in the range [32, 64, 128, 256]. There was no discernible difference
between the various latent codes.

8.2.2. Final Results

In Figure 22, we compare the results from the three different models using violin plots.
The VAE and β-VAE have similar results. The ITL-AE has a worse SAR, similar SDR, and a
better SIR.

Entropy 2022, 24, 55 47 of 55

(a)

(b)

(c)

Figure 21. These are the results of varying the resolution and window size, in dB. For (window size,
overlap size) pairs, A is (64 ms, 16 ms), B is (64 ms, 32 ms), C is (32 ms, 8 ms), D is (32 ms, 16 ms), E is
(16 ms, 8 ms), F is (16 ms, 4 ms), G is (8 ms, 4 ms) and H is (8 ms, 2 ms) (a) These are the results for
the SAR. (b) These are the results for the SDR. (c) These are the results for the SIR.

Entropy 2022, 24, 55 48 of 55

(a)

(b)

(c)

Figure 22. The results for the experiments for each model are shown here, in dB. (a) These are the
results for the SAR. (b) These are the results for the SDR. (c) These are the results for the SIR.

Entropy 2022, 24, 55 49 of 55

9. Conclusions

In this paper, first, we provided a detailed tutorial on the original variational autoen-
coder model. After that, we outlined the major problems of the vanilla VAE and the latest
research on resolving these issues. These problems include posterior collapse, variance
loss/image blurriness, disentanglement, the soap bubble effect, and the balancing issue.

Then, we comprehensively surveyed many important variations of the VAE. We can
organize most of the variations into the following four groups:

(1) Regularizing Posterior Variant:We can regularize the posterior distribution to improve
the disentanglement, like with the β-VAE and INFOVAE.

(2) Prior/Posterior variants: We can change the prior or posterior, like with the hyper-
spherical VAE, ρ-VAE, and the VQ-VAE. The hyperspherical VAE uses a vmF for the
posterior and a uniform for the prior, which makes it superior for a hyperspherical
latent space. The ρ-VAE uses an AR(1) Gaussian process as its posterior, which leads
to superior results over a vanilla VAE in terms of the loss function.

(3) Architectural Changes: There are many potential architectural changes. The VAE-
GAN and Adversarial Autoencoder take inspiration from both the VAE and GAN,
and as a result mitigate the downsides of both frameworks. Combining the VAE
framework with neural autoregressive models has created more flexible inference
networks; the PixelVAE combines the PixelCNN with the VAE, allowing it to capture
both small details and global structure. The conditional VAE uses a conditional
likelihood instead of likelihood; it has been key to the MCVAE method for source
separation. The MMVAE is better at dealing with data that have multiple modalities.

(4) Other Variations: Variance reduction of the VAE has been achieved through the STL
estimator. Methods such as the IWAE use importance sampling to achieve a tighter
lower bound for the loss function; variations of the IWAE using a DreG estimator or
STL estimator have also reduced variance.

The applications of VAEs for generating images, speech/audio and text data are well
known and well studied. In our article, we decided to focus on the less well known appli-
cations that VAEs can be used for, specifically in signal processing/time series analysis.
In finance, we highlighted the use of the VAE in generation and completion of volatility
surfaces for options, along with dimensionality reduction use cases. In the speech source
separation subsection, we summarized the research on using the VAE framework for source
separation in speech signals. We reviewed the use of the VAE framework for dimension-
ality reduction, generating disentangled interpretable features, and data generation for
biosignals such as EEG, ECG, and EMG signals.

Some of the future potential areas of research for VAEs are:

(1) Disentanglement Representations: While many VAE extensions are state of the art
for disentanglement, there is still the problem that they do not learn the disentangled
representation in a truly unsupervised manner.

(2) Data Generation in Finance: VAEs are relatively unused in finance applications com-
pared to other fields. For generating data, the VAE framework has been studied
thoroughly and has had amazing results for natural images and audio data. Re-
search into generating finance related data, such as volatility surfaces, is relatively
unexplored, as we have only found two papers on this topic.

(3) Source Separation for Biosignals and Images: While speech source separation using
the VAE framework has been heavily explored, the literature on biosignal source
separation and image source separation with VAE is sparse. We see these as strong
candidates for exploring the powerful capabilities of the VAE.

Author Contributions: Conceptualization, A.S., T.O.; methodology, A.S.; software, A.S.; validation,
A.S.; formal analysis, A.S., T.O.; investigation, A.S.; resources, A.S., T.O.; data curation, A.S.; writing—
original draft preparation, A.S., T.O.; writing—review and editing, A.S., T.O.; visualization, A.S.;
supervision, T.O.; project administration, T.O.; funding acquisition, T.O. All authors have read and
agreed to the published version of the manuscript.

Entropy 2022, 24, 55 50 of 55

Funding: This research received no external funding.

Data Availability Statement: The TIMIT dataset is available in a publicly accessible repository.

Acknowledgments: We would like to acknowledge Maxime Bergeron, Sohrab Ferdowsi, and Hao
Dao for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodfellow, I.J.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
2. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
3. Wei, R.; Garcia, C.; El-Sayed, A.; Peterson, V.; Mahmood, A. Variations in Variational Autoencoders—A Comparative Evaluation.

IEEE Access 2020, 8, 153651–153670. [CrossRef]
4. Asperti, A.; Evangelista, D.; Piccolomini, E.L. A survey on Variational Autoencoders from a GreenAI perspective. arXiv 2021,

arXiv:2103.01071.
5. Cox, D.R. The Regression Analysis of Binary Sequences. J. R. Stat. Soc. Ser. b-Methodol. 1958, 20, 215–232. [CrossRef]
6. E Silva, D.G.; Fantinato, D.G.; Canuto, J.C.; Duarte, L.T.; Neves, A.; Suyama, R.; Montalvão, J.; de Faissol Attux, R. An Introduction

to Information Theoretic Learning, Part I: Foundations. J. Commun. Inf. Syst. 2016, 31. [CrossRef]
7. Ogunfunmi, T.; Deb, M. On the PDF Estimation for Information Theoretic Learning for Neural Networks. In Proceedings of the

2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI,
USA, 12–15 November 2018; pp. 1215–1221. [CrossRef]

8. Yu, S.; Príncipe, J.C. Understanding Autoencoders with Information Theoretic Concepts. Neural Netw. 2019, 117, 104–123.
[CrossRef]

9. Tapia, N.I.; Est’evez, P.A. On the Information Plane of Autoencoders. In Proceedings of the 2020 International Joint Conference
on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

10. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
11. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing); Wiley-Interscience:

Hoboken, NJ, USA, 2006; pp. 39–69.
12. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; pp. 733–734.
13. Jaoude, A.A. The Monte Carlo Methods—Recent Advances, New Perspectives and Applications; InfoTech Publishers: Irving, TX,

USA, 2021.
14. Gobet, E. Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear; CRC Press: Boca Raton, FL, USA, 2016; p. 10.
15. Li, B.Math 214:Computational Stochastics: Lecture 1; University of California: San Diego, CA, USA, 2021.
16. Chollet, F. Building Autoencoders in Keras. Available online: https://blog.keras.io/building-autoencoders-in-keras.html

(accessed on 31 October 2021).
17. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations

in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
18. Fleuret, F. Denoising Autoencoders. Available online: https://fleuret.org/dlc/materials/dlc-slides-7-3-denoising-autoencoders.

pdf (accessed on 31 October 2021).
19. Barber, D. Bayesian Reasoning and Machine Learning; Cambridge University Press: Cambridge, UK, 2012.
20. Kingma, D.P. Variational Inference & Deep Learning: A New Synthesis. Ph.D. Thesis, University of Amsterdam, Amsterdam,

The Netherlands, 2017.
21. Atanasov, N. ECE 276A Sensing & Estimation in Robotics Lecture 4: Supervised Learning; University of California: San Diego, CA,

USA, 2020.
22. Mnih, A. Modern Latent Variable Models and Variational Inference, UCL x DeepMind. Available online: https://storage.

googleapis.com/deepmind-media/UCLxDeepMind_2020/L11%20-%20UCLxDeepMind%20DL2020.pdf (accessed on 31 October
2021).

23. Vasconcelos, N. Mixture Density Estimation. Available online: http://www.svcl.ucsd.edu/courses/ece271A/handouts/mixtures.
pdf (accessed on 31 October 2021).

24. Ogunfunmi, T.; Deb, M.K. Markov Chain Monte Carlo in a Dynamical System of Information Theoretic Particles. In The Monte
Carlo Methods—Recent Advances, New Perspectives and Applications; Intechopen: London, UK, 2021.

25. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2016, 112, 859–877.
[CrossRef]

26. Abbeel, P. CS294-158-SP20 Deep Unsupervised Learning Lecture 4 Latent Variable Models—Variational AutoEncoder (VAE); University
of California: Berkeley, CA, USA, 2020. Available online: https://drive.google.com/file/d/1JV-Rsz1MECZWWtvdXjxnt0
3HOxiGWPYy/view (accessed on 31 October 2021).

27. Kingma, D.P.; Welling, M. An Introduction to Variational Autoencoders. Found. Trends Mach. Learn. 2019, 12, 307–392. [CrossRef]
28. Bond-Taylor, S.; Leach, A.; Long, Y.; Willcocks, C.G. Deep Generative Modelling: A Comparative Review of VAEs, GANs,

Normalizing Flows, Energy-Based and Autoregressive Models. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3018151
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00292.x
http://dx.doi.org/10.14209/jcis.2016.6
http://dx.doi.org/10.23919/APSIPA.2018.8659642
http://dx.doi.org/10.1016/j.neunet.2019.05.003
 https://blog.keras.io/building-autoencoders-in-keras.html
https://fleuret.org/dlc/materials/dlc-slides-7-3-denoising-autoencoders.pdf
https://fleuret.org/dlc/materials/dlc-slides-7-3-denoising-autoencoders.pdf
https://storage.googleapis.com/deepmind-media/UCLxDeepMind_2020/L11%20-%20UCLxDeepMind%20DL2020.pdf
https://storage.googleapis.com/deepmind-media/UCLxDeepMind_2020/L11%20-%20UCLxDeepMind%20DL2020.pdf
http://www.svcl.ucsd.edu/courses/ece271A/handouts/mixtures.pdf
http://www.svcl.ucsd.edu/courses/ece271A/handouts/mixtures.pdf
http://dx.doi.org/10.1080/01621459.2017.1285773
https://drive.google.com/file/d/1JV-Rsz1MECZWWtvdXjxnt03HOxiGWPYy/view
https://drive.google.com/file/d/1JV-Rsz1MECZWWtvdXjxnt03HOxiGWPYy/view
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1109/TPAMI.2021.3116668

Entropy 2022, 24, 55 51 of 55

29. Abbeel, P. CS294-158-SP20 Deep Unsupervised Learning Lecture 3 Likelihood Models: Flow Models; University of California: Berkeley,
CA, USA, 2020. Available online: https://drive.google.com/file/d/1j-3ErOVr8gPLEbN6J4jBeO84I7CqQdde/view (accessed on
31 October 2021).

30. Haykin, S. Adaptive Filter Theory, 4th ed.; Pearson: Albuquerque, NM, USA, 2002.
31. Abbeel, P. CS294-158-SP20 Deep Unsupervised Learning Lecture 2 Likelihood Models: Autoregressive Models; University of California:

Berkeley, CA, USA, 2020. Available online: https://drive.google.com/file/d/1sHTVdppBqStzL1G1AHdWQrzHiqNFkzGH/
view (accessed on 31 October 2021).

32. Larochelle, H.; Murray, I. The Neural Autoregressive Distribution Estimator. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 11–13 April 2011.

33. Uria, B.; Côté, M.A.; Gregor, K.; Murray, I.; Larochelle, H. Neural Autoregressive Distribution Estimation. J. Mach. Learn. Res.
2016, 17, 205:1–205:37.

34. Germain, M.; Gregor, K.; Murray, I.; Larochelle, H. MADE: Masked Autoencoder for Distribution Estimation. In Proceedings of
the International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015.

35. Gregor, K.; Danihelka, I.; Mnih, A.; Blundell, C.; Wierstra, D. Deep AutoRegressive Networks. arXiv 2014, arXiv:1310.8499.
36. van den Oord, A.; Kalchbrenner, N.; Kavukcuoglu, K. Pixel Recurrent Neural Networks. arXiv 2016, arXiv:1601.06759.
37. van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Kavukcuoglu, K.; Vinyals, O.; Graves, A. Conditional Image Generation with

PixelCNN Decoders. In Proceedings of the Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain,
5–10 December 2016.

38. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.W.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.

39. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative
Adversarial Nets. In Proceedings of the Annual Conference on Neural Information Processing Systems 2014 (NIPS), Montreal,
QC, Canada, 8–13 December 2014.

40. Goodfellow, I.J. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2017, arXiv:1701.00160.
41. Chang, D.T. Latent Variable Modeling for Generative Concept Representations and Deep Generative Models. arXiv 2018,

arXiv:1812.11856.
42. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
43. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.
44. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial

Networks. arXiv 2016, arXiv:1511.06434.
45. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M.A. Striving for Simplicity: The All Convolutional Net. arXiv 2015,

arXiv:1412.6806.
46. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.
47. Jiang, W.; Liu, S.; Gao, C.; Cao, J.; He, R.; Feng, J.; Yan, S. PSGAN: Pose and Expression Robust Spatial-Aware GAN for

Customizable Makeup Transfer. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5193–5201.

48. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets. In Proceedings of the Conference on Neural Information Processing
Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016.

49. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2242–2251.

50. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–19 June 2019;
pp. 4396–4405.

51. Zhang, H.; Goodfellow, I.J.; Metaxas, D.N.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the
International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019.

52. Williams, R.J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Mach. Learn. 2004,
8, 229–256. [CrossRef]

53. Mohamed, S.; Rosca, M.; Figurnov, M.; Mnih, A. Monte Carlo Gradient Estimation in Machine Learning. J. Mach. Learn. Res.
2020, 21, 132:1–132:62.

54. Asperti, A. Variance Loss in Variational Autoencoders. arXiv 2020, arXiv:2002.09860.
55. Zhao, S.; Song, J.; Ermon, S. Towards Deeper Understanding of Variational Autoencoding Models. arXiv 2017, arXiv:1702.08658.
56. Larsen, A.B.L.; Sønderby, S.K.; Larochelle, H.; Winther, O. Autoencoding beyond pixels using a learned similarity metric. arXiv

2016, arXiv:1512.09300.
57. Cai, L.; Gao, H.; Ji, S. Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation. In Proceedings of the SIAM

International Conference on Data Mining (SDM), Calgry, AB, Canada, 2–4 May 2019. [CrossRef]

https://drive.google.com/file/d/1j-3ErOVr8gPLEbN6J4jBeO84I7CqQdde/view
https://drive.google.com/file/d/1sHTVdppBqStzL1G1AHdWQrzHiqNFkzGH/view
https://drive.google.com/file/d/1sHTVdppBqStzL1G1AHdWQrzHiqNFkzGH/view
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1137/1.9781611975673.71

Entropy 2022, 24, 55 52 of 55

58. Kingma, D.P.; Salimans, T.; Józefowicz, R.; Chen, X.; Sutskever, I.; Welling, M. Improving Variational Autoencoders with Inverse
Autoregressive Flow. In Proceedings of the Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain,
5–10 December 2016.

59. Vahdat, A.; Kautz, J. NVAE: A Deep Hierarchical Variational Autoencoder. arXiv 2020, arXiv:2007.03898.
60. Gulrajani, I.; Kumar, K.; Ahmed, F.; Taïga, A.A.; Visin, F.; Vázquez, D.; Courville, A.C. PixelVAE: A Latent Variable Model for

Natural Images. arXiv 2017, arXiv:1611.05013.
61. Dai, B.; Wipf, D.P. Diagnosing and Enhancing VAE Models. arXiv 2019, arXiv:1903.05789.
62. Bengio, Y.; Courville, A.C.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
63. Locatello, F.; Bauer, S.; Lucic, M.; Gelly, S.; Schölkopf, B.; Bachem, O. Challenging Common Assumptions in the Unsupervised

Learning of Disentangled Representations. arXiv 2019, arXiv:1811.12359.
64. Zhao, S.; Song, J.; Ermon, S. InfoVAE: Balancing Learning and Inference in Variational Autoencoders. In Proceedings of the

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), Honolulu, HI, USA, 27 January–1 February 2019. [CrossRef]
65. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.P.; Glorot, X.; Botvinick, M.M.; Mohamed, S.; Lerchner, A. beta-VAE: Learning

Basic Visual Concepts with a Constrained Variational Framework. In Proceedings of the International Conference on Learning
Representations (ICLR), Toulon, France, 24–26 April 2017.

66. Chen, T.Q.; Li, X.; Grosse, R.B.; Duvenaud, D.K. Isolating Sources of Disentanglement in Variational Autoencoders. In Proceedings
of the 2018 Conference on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 3–8 December 2018.

67. Burgess, C.P.; Higgins, I.; Pal, A.; Matthey, L.; Watters, N.; Desjardins, G.; Lerchner, A. Understanding disentangling in β-VAE.
arXiv 2018, arXiv:1804.03599.

68. Kim, H.; Mnih, A. Disentangling by Factorising. arXiv 2018, arXiv:1802.05983.
69. Asperti, A.; Trentin, M. Balancing Reconstruction Error and Kullback–Leibler Divergence in Variational Autoencoders.

IEEE Access 2020, 8, 199440–199448. [CrossRef]
70. Lucas, J.; Tucker, G.; Grosse, R.B.; Norouzi, M. Don’t Blame the ELBO! A Linear VAE Perspective on Posterior Collapse.

In Proceedings of the 2019 Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14
December 2019.

71. Razavi, A.; van den Oord, A.; Poole, B.; Vinyals, O. Preventing Posterior Collapse with delta-VAEs. arXiv 2019, arXiv:1901.03416.
72. Tomczak, J.M.; Welling, M. VAE with a VampPrior. In Proceedings of the International Conference on Artificial Intelligence and

Statistics (AISTATS), Lanzarote, Spain, 9–11 April 2018.
73. Yeung, S.; Kannan, A.; Dauphin, Y.; Fei-Fei, L. Tackling Over-pruning in Variational Autoencoders. arXiv 2017, arXiv:1706.03643.
74. van den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural Discrete Representation Learning. In Proceedings of the Conference on

Neural Information Processing Systems NIPS, Long Beach, CA, USA, 4–9 December 2017.
75. Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; Zhou, H. Variational Deep Embedding: An Unsupervised and Generative Approach to

Clustering. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, 19–25
August 2017.

76. Dilokthanakul, N.; Mediano, P.A.M.; Garnelo, M.; Lee, M.J.; Salimbeni, H.; Arulkumaran, K.; Shanahan, M. Deep Unsupervised
Clustering with Gaussian Mixture Variational Autoencoders. arXiv 2016, arXiv:1611.02648.

77. Davidson, T.R.; Falorsi, L.; Cao, N.D.; Kipf, T.; Tomczak, J.M. Hyperspherical Variational Auto-Encoders. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), Monterey, CA, USA, 7–9 August 2018.

78. Park, B. The Curse of Dimensionality. 2018. Available online: https://barumpark.com/blog/2018/the-curse-of-dimensionality/
(accessed on 31 October 2021).

79. Roeder, G.; Wu, Y.; Duvenaud, D.K. Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference.
In Proceedings of the Conference on Neural Information Processing Systems NIPS, Long Beach, CA, USA, 4–9 December 2017.

80. Ferdowsi, S.; Diephuis, M.; Rezaeifar, S.; Voloshynovskiy, S. ρ-VAE: Autoregressive parametrization of the VAE encoder. arXiv
2019, arXiv:1909.06236.

81. Li, B. Math 214:Computational Stochastics: Lecture 12; University of California: San Diego, CA, USA, 2021.
82. Burda, Y.; Grosse, R.B.; Salakhutdinov, R. Importance Weighted Autoencoders. arXiv 2016, arXiv:1509.00519.
83. Rainforth, T.; Kosiorek, A.R.; Le, T.A.; Maddison, C.J.; Igl, M.; Wood, F.; Teh, Y.W. Tighter Variational Bounds are Not Necessarily

Better. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018.
84. Tucker, G.; Lawson, D.; Gu, S.S.; Maddison, C.J. Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives. arXiv

2019, arXiv:1810.04152.
85. Wu, M.; Goodman, N.D. Multimodal Generative Models for Scalable Weakly-Supervised Learning. In Proceedings of the 2018

Conference on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 3–8 December 2018.
86. Shi, Y.; Siddharth, N.; Paige, B.; Torr, P.H.S. Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative

Models. arXiv 2019, arXiv:1911.03393.
87. Li, Y.; Turner, R.E. Rényi Divergence Variational Inference. In Proceedings of the Conference on Neural Information Processing

Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016.
88. Mathieu, E.; Rainforth, T.; Narayanaswamy, S.; Teh, Y.W. Disentangling Disentanglement in Variational Autoencoders. In Pro-

ceedings of the International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019.

http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1609/aaai.v33i01.33015885
http://dx.doi.org/10.1109/ACCESS.2020.3034828
 https://barumpark.com/blog/2018/the-curse-of-dimensionality/

Entropy 2022, 24, 55 53 of 55

89. Sikka, H.D.; Zhong, W.; Yin, J.; Pehlevan, C. A Closer Look at Disentangling in β-VAE. In Proceedings of the 2019 53rd Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 888–895.

90. Sadeghi, H.; Andriyash, E.; Vinci, W.; Buffoni, L.; Amin, M.H. PixelVAE++: Improved PixelVAE with Discrete Prior. arXiv 2019,
arXiv:1908.09948.

91. Ulrich, G. Computer Generation of Distributions on the M-Sphere. J. R. Stat. Soc. Ser. C-Appl. Stat. 1984, 33, 158–163. [CrossRef]
92. Naesseth, C.A.; Ruiz, F.J.R.; Linderman, S.W.; Blei, D.M. Reparameterization Gradients through Acceptance-Rejection Sampling

Algorithms. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale,
FL, USA, 20–22 April 2017.

93. Sohn, K.; Lee, H.; Yan, X. Learning Structured Output Representation using Deep Conditional Generative Models. In Proceedings
of the Annual Conference on Neural Information Processing Systems 2015 (NIPS), Montreal, QC, Canada, 7–12 December 2015.

94. Gao, R.; Hou, X.; Qin, J.; Chen, J.; Liu, L.; Zhu, F.; Zhang, Z.; Shao, L. Zero-VAE-GAN: Generating Unseen Features for Generalized
and Transductive Zero-Shot Learning. IEEE Trans. Image Process. 2020, 29, 3665–3680. [CrossRef] [PubMed]

95. Xian, Y.; Sharma, S.; Schiele, B.; Akata, Z. F-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning. In Proceed-
ings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–19 June
2019; pp. 10267–10276.

96. Wu, J.; Zhang, C.; Xue, T.; Freeman, B.; Tenenbaum, J.B. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-
Adversarial Modeling. In Proceedings of the Conference on Neural Information Processing Systems (NIPS 2016), Barcelona,
Spain, 5–10 December 2016.

97. Gur, S.; Benaim, S.; Wolf, L. Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample. arXiv 2020,
arXiv:2006.12226.

98. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.J. Adversarial Autoencoders. arXiv 2015, arXiv:1511.05644.
99. Santana, E.; Emigh, M.S.; Príncipe, J.C. Information Theoretic-Learning auto-encoder. In Proceedings of the 2016 International

Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 3296–3301.
100. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman & Hall: London, UK, 1986.
101. Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.C.; Bengio, Y. A Recurrent Latent Variable Model for Sequential Data.

In Proceedings of the Annual Conference on Neural Information Processing Systems 2015 (NIPS), Montreal, QC, Canada, 7–12
December 2015.

102. Fabius, O.; van Amersfoort, J.R.; Kingma, D.P. Variational Recurrent Auto-Encoders. arXiv 2015, arXiv:1412.6581.
103. Razavi, A.; van den Oord, A.; Vinyals, O. Generating Diverse High-Fidelity Images with VQ-VAE-2. arXiv 2019, arXiv:1906.00446.
104. Tolstikhin, I.O.; Bousquet, O.; Gelly, S.; Schölkopf, B. Wasserstein Auto-Encoders. arXiv 2018, arXiv:1711.01558.
105. Bergeron, M.; Fung, N.; Poulos, Z.; Hull, J.; Veneris, A.G. Variational Autoencoders: A Hands-Off Approach to Volatility. Risk

Manag. Anal. Financ. Inst. 2021. [CrossRef]
106. Wilmott, P. Paul Wilmott Introduces Quantitative Finance, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007.
107. Ning, B.; Jaimungal, S.; Zhang, X.; Bergeron, M. Arbitrage-Free Implied Volatility Surface Generation with Variational Autoen-

coders. arXiv 2021, arxiv: 2108.04941.
108. Gunduz, H. An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders

and recursive feature elimination. Financ. Innov. 2021, 7, 28. [CrossRef]
109. Choudhury, A.R.; Abrishami, S.; Turek, M.; Kumar, P. Enhancing profit from stock transactions using neural networks. AI Commun.

2020, 33, 75–92. [CrossRef]
110. Zhang, C.; Liang, S.; Lyu, F.; Fang, L. Stock-Index Tracking Optimization Using Auto-Encoders. Front. Phys. 2020, 8, 388.

[CrossRef]
111. Ogunfunmi, T.; Ramachandran, R.P.; Togneri, R.B.; Zhao, Y.; Xia, X. A Primer on Deep Learning Architectures and Applications

in Speech Processing. Circuits Syst. Signal Process. 2019, 38, 3406–3432. [CrossRef]
112. Févotte, C.; Gribonval, R.; Vincent, E. BSS_EVAL Toolbox User Guide—Revision 2.0. 2005. Available online: https://gitlab.inria.

fr/bass-db/bss_eval (accessed on 31 October 2021).
113. Rix, A.W.; Beerends, J.G.; Hollier, M.; Hekstra, A.P. Perceptual evaluation of speech quality (PESQ)-a new method for speech

quality assessment of telephone networks and codecs. In Proceedings of the 2001 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; Volume 2, pp. 749–752.

114. Sübakan, Y.C.; Smaragdis, P. Generative Adversarial Source Separation. In Proceedings of the 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 26–30.

115. Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S.; Dahlgren, N.L. DARPA TIMIT Acoustic Phonetic Continuous
Speech Corpus CDROM; Linguistic Data Consortium: Philadelphia, PA, USA, 1993.

116. Do, H.D.; Tran, S.T.; Chau, D.T. Speech Source Separation Using Variational Autoencoder and Bandpass Filter. IEEE Access 2020,
8, 156219–156231. [CrossRef]

117. Karamatlı, E.; Cemgil, A.T.; Kırbız, S. Weak Label Supervision for Monaural Source Separation Using Non-negative Denoising
Variational Autoencoders. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference
(SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4. [CrossRef]

http://dx.doi.org/10.2307/2347441
http://dx.doi.org/10.1109/TIP.2020.2964429
http://www.ncbi.nlm.nih.gov/pubmed/31940538
http://dx.doi.org/10.2139/ssrn.3827447
http://dx.doi.org/10.1186/s40854-021-00243-3
http://dx.doi.org/10.3233/AIC-200629
http://dx.doi.org/10.3389/fphy.2020.00388
http://dx.doi.org/10.1007/s00034-019-01157-3
https://gitlab.inria.fr/bass-db/bss_eval
https://gitlab.inria.fr/bass-db/bss_eval
http://dx.doi.org/10.1109/ACCESS.2020.3019495
http://dx.doi.org/10.1109/SIU.2019.8806536

Entropy 2022, 24, 55 54 of 55

118. Grais, E.M.; Plumbley, M.D. Single channel audio source separation using convolutional denoising autoencoders. In Proceedings
of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November
2017; pp. 1265–1269.

119. Kameoka, H.; Li, L.; Inoue, S.; Makino, S. Semi-blind source separation with multichannel variational autoencoder. arXiv 2018,
arXiv:1808.00892.

120. Kameoka, H.; Li, L.; Inoue, S.; Makino, S. Supervised Determined Source Separation with Multichannel Variational Autoencoder.
Neural Comput. 2019, 31, 1891–1914. [CrossRef]

121. Seki, S.; Kameoka, H.; Li, L.; Toda, T.; Takeda, K. Underdetermined Source Separation Based on Generalized Multichannel
Variational Autoencoder. IEEE Access 2019, 7, 168104–168115. [CrossRef]

122. Seki, S.; Kameoka, H.; Li, L.; Toda, T.; Takeda, K. Generalized Multichannel Variational Autoencoder for Underdetermined
Source Separation. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain,
2–6 September 2019; pp. 1–5. [CrossRef]

123. Li, L.; Kameoka, H.; Makino, S. Fast MVAE: Joint Separation and Classification of Mixed Sources Based on Multichannel
Variational Autoencoder with Auxiliary Classifier. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Brighton, UK, 2–17 May 2019; pp. 546–550. [CrossRef]

124. Inoue, S.; Kameoka, H.; Li, L.; Seki, S.; Makino, S. Joint Separation and Dereverberation of Reverberant Mixtures with Multichannel
Variational Autoencoder. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 2–17 May 2019; pp. 96–100. [CrossRef]

125. Chien, J.T.; Kuo, K.T. Variational Recurrent Neural Networks for Speech Separation. In Proceedings of the Conference of the
International Speech Communication Association (INTERSPEECH), Stockholm, Sweden, 20–24 August 2017.

126. Girin, L.; Roche, F.; Hueber, T.; Leglaive, S. Notes on the use of variational autoencoders for speech and audio spectrogram
modeling. In Proceedings of the DAFx 2019—22nd International Conference on Digital Audio Effects, Birmingham, UK, 2–6
September 2019.

127. Bando, Y.; Sekiguchi, K.; Yoshii, K. Adaptive Neural Speech Enhancement with a Denoising Variational Autoencoder.
In Proceedings of the Conference of the International Speech Communication Association (INTERSPEECH), Shanghai, China,
25–29 October 2020.

128. Fang, H.; Carbajal, G.; Wermter, S.; Gerkmann, T. Variational Autoencoder for Speech Enhancement with a Noise-Aware Encoder.
In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,
Canada, 6–11 June 2021; pp. 676–680.

129. Leglaive, S.; Alameda-Pineda, X.; Girin, L.; Horaud, R. A Recurrent Variational Autoencoder for Speech Enhancement. In Pro-
ceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8
May 2020; pp. 371–375.

130. Sadeghi, M.; Leglaive, S.; Alameda-Pineda, X.; Girin, L.; Horaud, R. Audio-visual Speech Enhancement Using Conditional
Variational Auto-Encoder. arXiv 2019, arXiv:1908.02590.

131. Introduction to ECG. Available online: https://www.healio.com/cardiology/learn-the-heart/ecg-review/ecg-interpretation-
tutorial/introduction-to-the-ecg (accessed on 31 October 2021).

132. Prasad, S.T.; Varadarajan, D.S. ECG Signal Processing Using Digital Signal Processing Techniques. Int. J. Sci. Eng. Res. 2013, 4,
1624–1628.

133. Isın, A.; Ozdalili, S. Cardiac arrhythmia detection using deep learning. Procedia Comput. Sci. 2017, 120, 268–275. [CrossRef]
134. Cejnek, M. Signalz: Synthetic Data Generators in Python. 2017. Available online: https://matousc89.github.io/signalz/ (accessed

on 14 November 2021).
135. Andreotti, F.; Behar, J.; Zaunseder, S.; Oster, J.; Clifford, G.D.; Oster, J.; Clifford, G.D. An Open-Source Framework for Stress-Testing

Non-Invasive Foetal ECG Extraction Algorithms. Physiol. Meas. 2016, 37, 627–648. [CrossRef]
136. Ong, Y.Z.; Chui, C.K.; Yang, H. CASS: Cross Adversarial Source Separation via Autoencoder. arXiv 2019, arXiv:1905.09877.
137. Chen, S.; Meng, Z.; Zhao, Q. Electrocardiogram Recognization Based on Variational AutoEncoder. In Machine Learning and

Biometrics; Intechopen: London, UK, 2018. [CrossRef]
138. Introduction to Pathology. Available online: https://www.animalnexus.com.pk/uploads/documents/Pathology.pdf

(accessed on 31 October 2021).
139. Liu, H.; Zhao, Z.; Chen, X.; Yu, R.; She, Q. Using the VQ-VAE to improve the recognition of abnormalities in short-duration

12-lead electrocardiogram records. Comput. Methods Programs Biomed. 2020, 196, 105639. [CrossRef] [PubMed]
140. Cho, Y.H.; myoung Kwon, J.; Kim, K.H.; Medina-Inojosa, J.R.; Jeon, K.H.; Cho, S.; Lee, S.Y.; Park, J.; Oh, B.H. Artificial intelligence

algorithm for detecting myocardial infarction using six-lead electrocardiography. Sci. Rep. 2020, 10, 20495. [CrossRef] [PubMed]
141. Steenkiste, T.V.; Deschrijver, D.; Dhaene, T. Generating an Explainable ECG Beat Space With Variational Auto-Encoders. arXiv

2019, arXiv:1911.04898.
142. Kuznetsov, V.V.; Moskalenko, V.A.; Gribanov, D.V.; Zolotykh, N.Y. Interpretable Feature Generation in ECG Using a Variational

Autoencoder. Front. Genet. 2021, 12, 638191. [CrossRef] [PubMed]
143. Bacoyannis, T.; Krebs, J.; Cedilnik, N.; Cochet, H.; Sermesant, M. Deep Learning Formulation of ECGI for Data-Driven Integration

of Spatiotemporal Correlations and Imaging Information. In Proceedings of the Functional Imaging and Modeling of the Heart:
10th International Conference (FIMH), Bordeaux, France, 6–8 June 2019.

http://dx.doi.org/10.1162/neco_a_01217
http://dx.doi.org/10.1109/ACCESS.2019.2954120
http://dx.doi.org/10.23919/EUSIPCO.2019.8903054
http://dx.doi.org/10.1109/ICASSP.2019.8682623
http://dx.doi.org/10.1109/ICASSP.2019.8683497
https://www.healio.com/cardiology/learn-the-heart/ecg-review/ecg-interpretation-tutorial/introduction-to-the-ecg
https://www.healio.com/cardiology/learn-the-heart/ecg-review/ecg-interpretation-tutorial/introduction-to-the-ecg
http://dx.doi.org/10.1016/j.procs.2017.11.238
https://matousc89.github. io/signalz/
http://dx.doi.org/10.1088/0967-3334/37/5/627
http://dx.doi.org/10.5772/intechopen.76434
https://www.animalnexus.com.pk/uploads/documents/Pathology.pdf
http://dx.doi.org/10.1016/j.cmpb.2020.105639
http://www.ncbi.nlm.nih.gov/pubmed/32674047
http://dx.doi.org/10.1038/s41598-020-77599-6
http://www.ncbi.nlm.nih.gov/pubmed/33235279
http://dx.doi.org/10.3389/fgene.2021.638191
http://www.ncbi.nlm.nih.gov/pubmed/33868375

Entropy 2022, 24, 55 55 of 55

144. Krishna, G.; Tran, C.; Carnahan, M.; Tewfik, A.H. Constrained Variational Autoencoder for improving EEG based Speech
Recognition Systems. arXiv 2020, arXiv:2006.02902.

145. Li, X.; Zhao, Z.; Song, D.; Zhang, Y.; Pan, J.; Wu, L.; Huo, J.; Niu, C.; Wang, D. Latent Factor Decoding of Multi-Channel EEG for
Emotion Recognition Through Autoencoder-Like Neural Networks. Front. Neurosci. 2020, 14, 87. [CrossRef] [PubMed]

146. Hagad, J.L.; Kimura, T.; ichi Fukui, K.; Numao, M. Learning Subject-Generalized Topographical EEG Embeddings Using Deep
Variational Autoencoders and Domain-Adversarial Regularization. Sensors 2021, 21, 1792. [CrossRef] [PubMed]

147. Vereshchaka, A.; Yang, F.; Suresh, A.; Olokodana, I.L.; Dong, W. Predicting Cognitive Control in Older Adults using Deep
Learning and EEG Data. In Proceedings of the 2020 International Conference on Social Computing, Behavioral-Cultural Modeling
& Prediction and Behavior Representation in Modeling and Simulation (SBP-BRiMS 2020), Washington, DC, USA, 19–22 October
2020; pp. 19–22.

148. Electromyography (EMG). Available online: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/
electromyography-emg (accessed on 31 October 2021).

149. Teh, Y.; Hargrove, L.J. Using Latent Representations of Muscle Activation Patterns to Mitigate Myoelectric Interface Noise.
In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Event, Italy,
4–6 May 2021; pp. 1148–1151.

150. Farshchian, A.; Gallego, J.A.; Cohen, J.P.; Bengio, Y.; Miller, L.E.; Solla, S.A. Adversarial Domain Adaptation for Stable Brain-
Machine Interfaces. arXiv 2019, arXiv:1810.00045.

http://dx.doi.org/10.3389/fnins.2020.00087
http://www.ncbi.nlm.nih.gov/pubmed/32194367
http://dx.doi.org/10.3390/s21051792
http://www.ncbi.nlm.nih.gov/pubmed/33806712
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electromyography-emg
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/electromyography-emg

	Introduction
	Background
	Distances and Information-Theoretic Measures
	Shannon's Entropy
	Shannon's Joint Entropy
	Shannon's Conditional Entropy
	Kullback–Leiber (KL) Divergence
	Mutual Information
	Cross-Entropy
	Jensen–Shannon (JS) Divergence
	Renyi's Entropy
	Renyi's Cross-Entropy
	Renyi's -Divergence
	Euclidean Divergence
	Cauchy–Schwarz Divergence

	Monte Carlo
	Autoencoders
	Bayesian Networks
	Generative Models vs. Discriminative Models
	Latent Variable Models
	Neural Autoregressive Models
	Generative Adversarial Networks (GANs)
	Gradient Estimation
	REINFORCE Estimator/Score Function
	Pathwise Gradient Estimator

	Variational Inference
	The Variational Autoencoder
	Problems/Tradeoffs with the VAE
	Variance Loss and Image Blurriness
	Disentanglement
	The Balancing Issue
	Variational Pruning and Posterior Collapse
	Origin Gravity Effect
	Hidden Score Function
	Curse of Dimensionality
	GANs vs. VAEs

	Variations of the VAE
	VAE Using an STL Estimator
	-VAE
	Importance Weighted Autoencoder (IWAE)
	Importance Sampling
	Importance Sampling for a Latent Variable Model
	IWAE Variance Reductions

	Mixture-of-Experts Multimodal VAE (MMVAE)
	 VR- Autoencoder and VRmax Autoencoder
	INFOVAE
	-VAE
	PixelVAE
	HyperSpherical VAE/S-VAE
	-VAE
	Conditional Variational Autoencoder
	VAE-GAN
	Adversarial Autoencoders (AAE)
	Information-Theoretic Learning Autoencoder
	Other Important Variations

	Applications
	Financial Applications
	Speech Source Separation Applications
	BioSignal Applications
	ECG Related Applications
	EEG Related Applications
	EMG Related Applications

	Experiments
	Experiment Setup and Data
	Results
	Hyperparameter Tuning
	Final Results

	Conclusions
	References

