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Abstract: For random walks on a complex network, the configuration of a network that provides
optimal or suboptimal navigation efficiency is meaningful research. It has been proven that a
complete graph has the exact minimal mean hitting time, which grows linearly with the network
order. In this paper, we present a class of sparse networks G(t) in view of a graphic operation, which
have a similar dynamic process with the complete graph; however, their topological properties are
different. We capture that G(t) has a remarkable scale-free nature that exists in most real networks
and give the recursive relations of several related matrices for the studied network. According to
the connections between random walks and electrical networks, three types of graph invariants
are calculated, including regular Kirchhoff index, M-Kirchhoff index and A-Kirchhoff index. We
derive the closed-form solutions for the mean hitting time of G(t), and our results show that the
dominant scaling of which exhibits the same behavior as that of a complete graph. The result could
be considered when designing networks with high navigation efficiency.

Keywords: complex network; graphic operation; random walk; mean hitting time; Kirchhoff index

1. Introduction

A complex network is recognized as a powerful tool for revealing the mysteries of
complex systems [1]. It is widely used in metabolic networks [2], software engineering [3],
ecosystems [4] and so on. In addition to some topological parameters, such as power-law
degree distribution, average path length and clustering coefficient of complex network, the
random walks also received widespread attention because the research of random walk
theory can disclose dynamic processes on complex networks. As a key quantity of random
walks, the hitting time is related to the mixing rate of an irreducible Markov chain, and
it is also considered when calculating the expected time of mixing the Markov chain [5].
The hitting time can be used to measure the navigation efficiency of the network [6,7], and
it has a core position in different disciplines, including mathematics, computer, biology,
physics, control science and engineering [8–12].

Most of the previous research on random walks about complex networks focuses
on two aspects: one is that the nodes of the studied network have identical walking
rules [13,14], and the other is to study random walks on heterogeneous networks that
set a trap on the node with the largest degree and have scale-free characteristics [15–17].
Since many real networks have a scale-free nature, every node in the network can be a
trap. Thus, we construct a deterministic network that satisfies the above restrictions to
approximate the real network, and it is more beneficial for us to evaluate the dynamic
process of the network.

It has been proven that the complete graph has the minimum mean hitting time among
all undirected networks, which shows that its propagation is quite efficient [18]. For the
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purpose of constructing a highly efficient network and controlling its trapping process, it is
necessary to explore and design some networks with a small mean hitting time. Since most
real networks are sparse networks, the average degree of these networks is much less than
that of a complete graph. In this paper, we design and analyze a class of sparse networks
with scale-free properties; their topological properties are different from the complete graph.
We prove that the dominant scaling of the mean hitting time exhibits the same behavior as
that of a complete graph, and they can also have high navigation efficiency.

The main contents in the other sections of this paper are as follows. In Section 2, we
propose a graphic operation and design a class of sparse networks, show their differences
in several topological parameters, including average degree, degree distribution, clustering
coefficient and diameter. In Section 3, we present some lemmas about electrical networks
and random walks. In Section 4, we analytically obtain the closed-form solution of the
mean hitting time according to the connections between the Kirchhoff index and the mean
hitting time. In Section 5, we conclude our work with a concise narrative.

2. Topological Characteristics of the Network

Before proceeding, we propose a graphic operation called the rhombus operation
and construct a network G(t) by iterating the rhombus operation. Then, we compare the
topological features of G(t) and the complete graph KNt with the same network order.

Rhombus operation: For a given edge ij with two endnodes i and j, add two new
nodes to both sides of this edge, denoted by u and v, and then connect edge ui, uj, vi, vj,
respectively. Figure 1a shows the operation process of a rhombus operation.

With the preparation of a graphic operation, we show the construction rule of networks
G(t) as follows. Initial state, t = 0, G(0) is only an edge. For t ≥ 1, G(t) can be born
from G(t− 1) by performing a rhombus operation on every edge in G(t− 1). Figure 1b,c
illustrate the topological structure of G(2) and G(3).

i j

u

v

i j

(a)

(b) (c)

rhombus 

operation

Figure 1. (a) The illustration of rhombus operation; (b) the network G(t) at time step t = 2; (c) the
network G(t) at time step t = 3.

The iterative construction allows us to precisely analyze relevant topological properties
of the network. Let V(t) and E(t) be the node set and edge set of G(t); in more detail, the
new node set and new edge set at time step t are denoted as V(t) and E(t), which means
V(t) = V(t− 1) ∪V(t), and the node belonging to V(t− 1) is called the old node. Then,
the number of nodes and edges of the network are denoted as Nt and Et, respectively. The
recursive relation Et = 5Et−1 is obviously established according to the rhombus operation,
and we can obtain Et = 5t due to E0 = 1. Additionally, we have Nt = Nt−1 + 2Et−1, so it
is easy to verify that Nt = N0 + 2 ∑t−1

i=0 Ei = (5t + 3)/2. Let k(t)i be the degree of node i in
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G(t) that was generated at iteration ti, which satisfies that the degree of node i at time step
t is 3 times the degree of the previous time step t− 1; that is, k(t)i = 3k(t−1)

i .

2.1. Average Degree

Theorem 1. For the network G(t) with Nt nodes and Et edges, the solution of the average degree
of network G(t) is

〈k〉 = 2Et

Nt
=

4× 5t

5t + 3
≈ 4. (1)

When t → ∞, the condition Et � Nt(Nt−1)
2 is clearly established, so our network

model is a sparse network according to literature [19]. However, the complete graph is not
sparse. For a complete graph KNt with the same number of nodes, the average degree of
KNt is Nt − 1 due to the degree of each node is Nt − 1.

2.2. Cumulative Degree Distribution

In real life, there are few fully connected networks like a complete graph. Most real
networks exhibit scale-free nature, and their nodes with a large degree are fewer, but nodes
with a small degree are the majority of the network. A network is said to be scale-free
when its cumulative degree distribution obeys Pcum(k) ∼ k1−γ, where 2 < γ < 3, and the
cumulative degree distribution Pcum(k) = ∑∞

k′=k P(k′) represents the probability that the
degree of a node is equal to or greater than k, where P(k) is a probability of a randomly
selected node with k neighbors in the network G(t).

Theorem 2. The cumulative degree distribution of the sparse network G(t) obeys the following
power law distribution,

Pcum(k) = k−
ln 5
ln 3 , γ = 1 + ln 5/ ln 3. (2)

Proof. The degree of node i will increase by a factor 3, that is, k(t+1)
i = 3k(t)i , which shows

that the degree spectrum of G(t) is discrete. In Table 1, we enumerate the degree k and the
number n(k) of nodes with degree k, then the cumulative degree distribution of G(t) is
calculated by

Pcum(k) =
∞

∑
k′=k

n(k′)
Nt

=
5ti + 3
5t + 3

≈ k−
ln 5
ln 3 , (3)

where ti = t− ln k−ln 2
ln 3 has been substituted into the above formula, and for large t, the

cumulative degree distribution follows a power law k1−γ with exponent γ = 1 + ln 5
ln 3 .

Therefore, we have proven that the network G(t) is a scale-free network. On the other
hand, the degree of all nodes in the complete graph KNt is the same, so KNt is not a scale-
free network. It can be seen that our network is more suitable for simulating scale-free
real networks.

Table 1. The degree and clustering coefficient of node in G(t).

t k n(k) c(k)

0 3t 2 2/3t

1 2× 3t−1 2× 50 1/3t−1

2 2× 3t−2 2× 51 1/3t−2

· · · · · · · · · · · ·
ti 2× 3t−ti 2× 5ti−1 1/3t−ti

· · · · · · · · · · · ·
t− 1 2× 31 2× 5t−2 1/31

t 2× 30 2× 5t−1 1/30
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2.3. Clustering Coefficient

The clustering coefficient is used to describe the tightness of clumps between nodes in
the graph. Specifically, it is a measure of the dense or sparse connection between neighbors
of each node. The clustering coefficient ci of each node i is the ratio between the number
ei of edges that actually exist in all ki nearest neighbors and the number ki(ki − 1)/2 of
all possible edges between them, and it is expressed as ci = 2ei/ki(ki − 1). The whole
clustering coefficient C of the network is the average value of ci over all nodes in the
network, which can be written as C = ∑i∈V(G) ci/Nt.

Theorem 3. For the network G(t) with Nt nodes, the solution of whole clustering coefficient of
network G(t) is

C =
2× 5t − 10× 3t−2

32t−2(5t + 3)
→ 0, when t→ ∞. (4)

Proof. Since the clustering coefficient of each node with the same degree in G(t) is also
the same, let n(k) be the number of nodes with degree k, and c(k) represents the clustering
coefficient of each node with degree k. For each degree k, we can calculate the clustering
coefficient c(k) and the corresponding number n(k) of nodes with degree k, as shown in
Table 1, so the whole clustering coefficient C of network G(t) can be calculated as follows:

C = ∑
k

c(k)× n(k)
Nt

=
2
3t ×

4
5t + 3

+
4

5t + 3

t

∑
ti=1

5ti−1

3t−ti

=
2× 5t − 10× 3t−2

32t−2(5t + 3)
,

(5)

we have C → 0 when t → ∞, and G(t) is not a highly clustered network. However, the
clustering coefficient of the complete graph KNt is equal to 1, and there is a significant
difference between G(t) and KNt on this topological parameter.

2.4. Diameter

The diameter is defined as the maximum of the shortest distances between all pairs of
nodes in network G(t), denoted as D(G(t)), and it is often used to characterize the longest
communication delay in complex network.

Theorem 4. For t ≥ 0, the diameter of the sparse network G(t) is D(G(t)) = t + 1.

Proof. When G(t) is a small network, we can easily enumerate its diameter, such as t = 0,
D(G(0)) = 1. At time step t = 1, the distance between two new nodes is the longest, and
the path through them must contain an old node, so D(G(1)) = 2. For t > 1, we can find
that the diameter refers to the distance between a pair of new nodes. For simplicity of
description, we denote the newly generated node at time ti as ti; therefore, we only need to
consider the maximum value of the shortest distance between two nodes t. According to
the structure of G(t), when t = 2, the shortest path between new nodes must be the path
P2 = 2 → 1 → 0 → 2, which contains nodes generated at time step 0, 1, 2. For t ≥ 3, the
shortest path between two new nodes must be a path Pt = t→ t− 1→ t− 2→ · · · → 3→
1→ 0→ 2→ t. Hence, D(G(t)) = t + 1 is true for t ≥ 0, which shows that the diameter
scales logarithmically with the network order. For a complete graph KNt with the same
number of nodes, it is well known that its diameter is equal to 1, which means that the
diameter of G(t) is larger than that of KNt .

3. Random Walks and Electrical Networks

In this section, we aim to show the closed-form solution for the mean hitting time of
our networks. Firstly, we introduce several notions and lemmas about electrical networks
and random walks, then we provide the relationships between the mean hitting time and
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Kirchhoff index. The electrical network corresponding to a graph G(t) can be constructed
by replacing each edge in G(t) with a unit resistor, but we still denote the resulting electrical
network as G(t). The effective resistance Ωij between any two distinct nodes i, j ∈ V(t) is
defined as the potential difference between them when a unit current from i to j is kept;
when i = j, we set Ωij = 0.

Lemma 1 ([20]). For an electrical network G(t) with Nt nodes, the sum of effective resistances
between all pairs of adjacent nodes can be written as

∑
i<j,(i,j)∈E(t)

Ωij = Nt − 1. (6)

Lemma 2 ([21]). For any pair of distinct node i and j in an electrical network G(t), ki and N(i)
represent the degree of node i and its neighbors set, then the degree and effective resistance satisfy
the following relationship:

kiΩij + ∑
s∈N(i)

(Ωis −Ωjs) = 2. (7)

According to [22], the regular Kirchhoff index K(G(t)) of a network G(t) is defined as
the sum of the effective resistances of all pairs of disordered nodes in G(t):

K(G(t)) = ∑
i,j∈V(t)

Ωij. (8)

Taking into account the influence of degree on the Kirchhoff index, the M-Kirchhoff
index K∗(G(t)) and the A-Kirchhoff index K+(G(t)) have been proposed in [23,24], respec-
tively, and they are interpreted by the formula as

K∗(G(t)) = ∑
i,j∈V(t)

(didj)Ωij, (9)

and
K+(G(t)) = ∑

i,j∈V(t)
(di + dj)Ωij. (10)

The unbiased discrete time random walks means that the particle starting from the
current location jumps to each of its neighboring nodes with equal probability at every
time step [25]. The hitting time Tij of network G(t) is a key quantity pertaining to random
walk, and it is defined as the expected time taken by a particle jumping to the ending node
j from the starting node i for the first time. The mean hitting time T(G(t)) is the average of
hitting times over all node pairs [26], and it can be solved by the K(G(t)) and the network
order and size of G(t).

Lemma 3. For a network G(t) with Nt nodes and Et edges, K(G(t)) represents its regular
Kirchhoff index, then the mean hitting time T(G(t)) can be expressed as

T(G(t)) =
Et · K(G(t))
Nt(Nt − 1)

. (11)

Proof. The Kirchhoff index K(G(t)) can be represented in terms of the Nt − 1 non-zero
eigenvalues of the Laplacian matrix Lt for network G(t) as K(G(t)) = 2Nt ∑Nt

i=2
1
λi

[24].
The mean hitting time T(G(t)) of network G(t) is the average of hitting times over all
Nt(Nt − 1) node pairs, and it is expressed as T(G(t)) = 1

Nt(Nt−1) ∑Nt
i=1,i 6=j ∑Nt

j=1 Hij, where

Hij is the hitting time from node i to another node j. In addition, T(G(t)) can be expressed
in terms of the non-zero eigenvalues of the Laplacian matrix Lt [18], that is T(G(t)) =
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2Et
Nt(Nt−1) ∑Nt

i=2
1
λi

, then we can obtain the equation T(G(t)) = 1
Nt(Nt−1)Et · K(G(t)) by com-

bining the above equations.

3.1. Related Matrices

All the nodes of a given network G(t) are marked as 1, 2, 3, · · · , Nt, respectively, and
the adjacency relations between all nodes and edges are implicit in an adjacency matrix
At = (aij)Nt×Nt , where aij = 1 if node i and j are connected by an edge in the network, and
aij = 0 if there is no edge between i and j. Let Dt be the diagonal degree matrix of G(t).

Its i-th diagonal entry is the degree k(t)i of node i, and the remaining entries are zero. The
Laplacian matrix of G(t) is defined as Lt = Dt − At.

Use α = V(t− 1) and β = V(t) to abbreviate the old node set and the new node set
in network G(t + 1), and the number of new nodes is |V(t + 1)| = 2× 5t. The network
G(t + 1) is generated iteratively by G(t), then we show the recursive relationship between
two consecutive time steps of these matrices. The adjacency matrix At+1 can be written in
block form as

At+1 =

(
Aα,α

t+1 Aα,β
t+1

Aβ,α
t+1 Aβ,β

t+1

)
=

(
At Aα,β

t+1
Aβ,α

t+1 0

)
, (12)

where Aβ,α
t+1 = (Aα,β

t+1)
T is obvious according to the definition of adjacency matrix, and

Aβ,β
t+1 is the zero matrix with order |V(t + 1)| × |V(t + 1)|. On the other hand, the diagonal

matrix Dt+1 satisfies

Dt+1 =

(
Dα,α

t+1 Dα,β
t+1

0 Dβ,β
t+1

)
=

(
3Dt 0

0 2I

)
, (13)

where the symbol I represents the identity matrix with order |V(t + 1)| × |V(t + 1)|.
Equation (13) is based on the fact that the nodes contained in set β are 2 degree nodes, the
degree of every node in set α increases by a factor 3. Thus, the Laplacian matrix Lt+1 of
network G(t + 1) can be expressed as

Lt+1 =

(
3Dt − At −Aα,β

t+1
−Aβ,α

t+1 2I

)
. (14)

Theorem 5. For the sparse network G(t + 1) after t + 1 time steps, we have Aα,β
t+1 Aβ,α

t+1 = 2Dt +
2At.

Proof. The left side and right side of equation Aα,β
t+1 Aβ,α

t+1 = 2Dt + 2At are denoted by Mt
and Mt, respectively; thus, the entries of Mt are

Mt(i, j) =

{
2k(t)i , i = j;
2At(i, j), i 6= j.

Our main task is to verify that the entries Mt(i, j) of Mt are equivalent to those of Mt.
Matrix Aβ,α

t+1 can be partitioned into Nt column vectors xi = (xi,Nt+1, xi,Nt+2, · · · , xi,Nt+1)
T

for i = 1, 2, · · · , Nt, that is Aβ,α
t+1 = (x1, x2, · · · , xNt), and we have Aα,β

t+1 = (x1, x2, · · · , xNt)
T

due to Aα,β
t+1 = (Aβ,α

t+1)
T , and we can calculate the product of the two matrices as Aα,β

t+1 Aβ,α
t+1 =

(xT
i xj)Nt×Nt .
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The entries Mt(i, j) of Mt can be determined by distinguishing two cases. (a) When
i = j, the diagonal entry is Mt(i, i) = xT

i xi, and we can obtain Mt(i, i) = 2k(t)i = Mt(i, i).
(b) When i 6= j, the non-diagonal entry of matrix Mt is equal to

Mt(i, j) = xT
i xj = ∑

s∈β

(xi,sxj,s) = ∑
At+1(i,s)=1
At+1(j,s)=1

At(i, j)

= 2At(i, j) = Mt(i, j).

(15)

Before going on, we introduce a concept about {1}-inverse of a matrix [27]. Matrix M
is called a {1}-inverse of X if XMX = X holds, let X† be one of the {1}-inverses of X. A
lemma about the {1}-inverse of a block matrix is shown below.

Lemma 4 ([18]). Let matrix P =

(
X Y

YT Z

)
be a block matrix, and Z is nonsingular if there

exists a {1}-inverse D† for D = X − YZ−1YT , then the {1}-inverse of matrix P is a matrix

P† =

(
D† −D†YZ−1

−Z−1YT D† Z−1YT D†YZ−1 + Z−1

)
.

3.2. Effective Resistances

For a connected network G(t), the effective resistance Ω(t)
ij between any pair of nodes

can be obtained from the elements of any {1}-inverse of its Laplacian matrix, and we can
refer to the following lemma.

Lemma 5 ([28]). For a given G(t), let L†
ij be the (i, j)-th element of any {1}-inverse L†

t of its

Laplacian matrix Lt. For any two nodes i, j ∈ V(t), the effective resistance Ω(t)
ij can be expressed in

terms of the elements of L†
t as Ω(t)

ij = L†
ii + L†

jj − L†
ij − L†

ji.

Next, we show that the effective resistance between any two nodes in G(t + 1) can
be represented in terms of effective resistances of node pairs in G(t). In the following
calculation process, we divide the nodes into the old node and the new node to investigate
the effective resistance between them. To achieve this goal, we introduce some variables
and define Ω(t)

X,Y = ∑i∈X,j∈Y Ω(t)
ij for any two subsets X and Y of set V(t) on G(t). Then,

for a node i ∈ V(t + 1) in G(t + 1), we define Ω(t)
∆i

= Ω(t+1)
ab , where ∆i = {a, b} is the

neighbors set of node i and a, b ∈ V(t).

Lemma 6. For the effective resistance between the node pairs in the network G(t+ 1), the following
propositions are established for t ≥ 0,

(1) Let i, j ∈ V(t) be a pair of old nodes in G(t + 1), then Ω(t+1)
ij obeys the relation

Ω(t+1)
ij =

1
2

Ω(t)
ij . (16)

(2) Let i ∈ V(t + 1) be a new node in network G(t), then

Ω(t+1)
i,∆i

= 1 +
1
2

Ω(t+1)
∆i

. (17)

(3) Let i ∈ V(t + 1) and j ∈ V(t) be a new node and an old node in network G(t + 1),
respectively, then the following equation holds

Ω(t+1)
ij =

1
2
(1− 1

2
Ω(t+1)

∆i
+ Ω(t+1)

j,∆i
). (18)
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(4) Let i, j ∈ V(t + 1) be a pair of distinct new nodes in network G(t + 1), then Ω(t+1)
ij obeys

Ω(t+1)
ij = 1− 1

4
(Ω(t+1)

∆i
+ Ω(t+1)

∆j
) +

1
4

Ω∆i ,∆j . (19)

The detailed proof of Lemma 6 is given in Appendix A.

4. Mean Hitting Time

Based on the above preparations, we determine the mean hitting time for network G(t)
using the connection between the mean hitting time and the Kirchhoff index. Firstly, we
calculate the exact solutions of three auxiliary variables, including KX,Y(t) = ∑i∈X,j∈Y Ω(t)

ij ,

K∗X,Y(t) = ∑i∈X,j∈Y k(t)i k(t)j Ω(t)
ij , and K+

X,Y(t) = ∑i∈X,j∈Y(k
(t)
i + k(t)j )Ω(t)

ij for two subsets X
and Y of set V(t) in network G(t), and give the relationships between them. The following
lemmas can support our main result.

Lemma 7. For network G(t + 1), i ∈ V(t + 1) is a new node and j ∈ V(t) is an old node,
Y ⊆ V(t), ∆i is the set of all neighbors of node i, then the following two summation formulas hold:

(a) ∑i∈V(t+1) Ω(t+1)
∆i

= Nt − 1.

(b) ∑i∈V(t+1) Ω(t+1)
∆i ,Y

= 2k(t)j ∑j∈V(t) Ω(t+1)
j,Y .

Proof. (a) Since each edge of network G(t) can generate two new nodes of network G(t+ 1),
then we have

∑
i∈V(t+1)

Ω(t+1)
∆i

= 2 ∑
(s,t)∈E(t)

Ω(t+1)
s,t = 2 ∑

(s,t)∈E(t)

1
2

Ω(t)
s,t

= Nt − 1.

(20)

(b) For any old node j ∈ V(t), there are k(t+1)
j − k(t)j = 2k(t)j new nodes in V(t + 1) that are

adjacent to j, so Ω(t+1)
j,Y is summed 2k(t)j times.

Lemma 8. The M-Kirchhoff index and the A-Kirchhoff index of our network G(t) are equal to

K∗Vt ,Vt
(t) = −38

15
(

25
2
)t +

14
5
× 52t +

26
15
× 5t, (21)

and
K+

Vt ,Vt
(t) =

19
9
(

5
2
)t − 19

15
(

25
2
)t +

161
90
× 52t +

13
15
× 5t +

1
2

. (22)

The proof of Lemma 8 is given in Appendix B.

Theorem 6. The solution of regular Kirchhoff index of our network G(t) is

KVt ,Vt(t) =
95
72

(
1
2
)t +

19
36

(
5
2
)t − 19

120
(

25
2
)t +

49
180
× 52t +

13
45
× 5t − 1

4
. (23)
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Proof. Through the two types of Kirchhoff indexes obtained by Lemma 8, we deduce the
relationship between the regular Kirchhoff index and them. Divide all the nodes in the
network G(t + 1) into new node and old node, then KVt+1,Vt+1(t + 1) is equal to

Kα,α(t + 1) + 2Kα,β(t + 1) + Kβ,β(t + 1)

=
1
2

KVt ,Vt(t) + 2Kα,β(t + 1) +
1
4

K∗β,β(t + 1)

=
1
2

KVt ,Vt(t) +
1
2

K+
Vt ,Vt

(t) +
1
2

K∗Vt ,Vt
(t) +

35
8
× 52t − 3

8
.

=
1
2

KVt ,Vt(t) +
19
18

(
5
2
)t − 19

10
(

25
2
)t +

2401
360
× 52t +

13
10
× 5t − 1

8
.

(24)

Considering KV0,V0(0) = 2, plugging Equations (21) and (22) into Equation (24) yields
the solution of Kirchhoff index of network G(t), as shown in Equation (23). Figure 2 shows
a schematic diagram of the three types of Kirchhoff indexes of network G(t). We are ready
to show the result for the mean hitting time T(G(t)) of G(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 Time step
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0.5
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1.5

2

2.5

3

 K
ir

ch
ho

ff
 in

de
x

107

 K*(t)

 K+(t)
 K(t)

Figure 2. The schematic diagram of the three types of Kirchhoff indexes.

Theorem 7. For t ≥ 0, the closed-form solution for the mean hitting time of network G(t) is

T(G(t)) =
1

52t + 4× 5t + 3
[
95
18

(
5
2
)t +

19
9
(

25
2
)t − 19

30
(

125
2

)t

+
49
45

53t +
52
45

52t − 5t],
(25)

then T(Gt) ≈ Nt for t→ ∞.

Proof. Since Lemma 3 and the total number of edges of whole network is Et = 5t = 2Nt− 3,
we have

T(G(t)) =
2Nt − 3

Nt(Nt − 1)
KVt ,Vt . (26)

It is easy to obtain the result in Equation (25) by substituting Equation (23) into
Equation (26). We continue to express T(G(t)) as a function of the network order Nt, it
can be observed that t = ln(2Nt−3)

ln 5 from the exact value of Nt; hence, the mean hitting time
T(G(t)) of G(t) can be expressed in terms of network order as

T(G(t)) =
2Nt − 3

Nt(Nt − 1)
[
95
72

(2Nt − 3)−
ln 2
ln 5 +

19
36

(2Nt − 3)
ln 5−ln 2

ln 5

− 19
120

(2Nt − 3)
ln 25−ln 2

ln 5 +
49

180
(2Nt − 3)2 +

13
45

(2Nt − 3)− 1
4
].

(27)
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Therefore, when t→ ∞, for a large network, we have

T(G(t)) ≈ 98
45

Nt, (28)

which shows T(G(t)) increases linearly with the total number of nodes in our network; the
mean hitting time of the random walks shown is similar to that of the complete graph; and
they all have high transmission efficiency.

5. Conclusions

In this paper, we have presented a class of a sparse network G(t) and have pointed out
the differences between G(t) and the complete graph KNt with the same order in several
topological characteristics. The main differences are G(t) has a scale-free property, while
KNt does not. The scale-free feature is a shock discovery in real complex systems. KNt

is not sparse, but G(t) is sparse; it is rare to achieve a tight connections like a complete
graph in a real network. It has been proven that the mean hitting time of the complete
graph is minimal and increases linearly with the network order. Based on the relationship
between the mean hitting time and the Kirchhoff index, we have calculated a closed-form
solution to the mean hitting time of our network, and the result shows that the dominant
scaling of which exhibits the same behavior as that of a complete graph. We hope that
our work will be instructive for the design and construction of complex networks with
efficient navigation.
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Appendix A. The Proof of Lemma 6

In Appendix A, we give the proofs of the four propositions in Lemma 6.
(1) The nodes are divided into two parts; the new node set is abbreviated as β, and

the old node set is denoted as α, then any {1}-inverse L†
t+1 of Laplacian matrix Lt+1 can be

written as the form of the block matrix

L†
t+1 =

(
L†

α,α L†
α,β

L†
β,α L†

β,β

)
. (A1)

By Equation (14) and Lemma 4, applying the conditions in Theorem 5, we can clearly obtain
the relationship between block L†

α,α of matrix L†
t+1 and matrix L†

t ,

L†
α,α = (3Dt − At − (−Aα,β

t+1)(2I)−1(−Aβ,α
t+1))

†

= (3Dt − At −
1
2
(2Dt + 2At))

† =
1
2

L†
t .

(A2)
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According to Lemma 5 and Equation (A2), for i, j ∈ V(t), we reveal the relationship between
the effective resistance at two consecutive iterations for any pair of old nodes in network
G(t + 1),

Ω(t+1)
ij = L†

α,α(i, i) + L†
α,α(j, j)− L†

α,α(i, j)− L†
α,α(j, i)

=
1
2
(L†

t (i, i) + L†
t (j, j)− L†

t (i, j)− L†
t (j, i))

=
1
2

Ω(t)
ij .

(A3)

(2) For i ∈ V(t + 1) and its neighboring node set ∆i = {a, b}, we can obtain the
following two equations 2Ω(t+1)

ia + Ω(t+1)
i,∆i

−Ω(t+1)
a,∆i

= 2 and 2Ω(t+1)
ib + Ω(t+1)

i,∆i
−Ω(t+1)

b,∆i
= 2

by applying Lemma 2 to the two old neighboring nodes of node i. Then, we add the results
of these two equations together to give

2Ω(t+1)
i,∆i

+ 2Ω(t+1)
i,∆i

−Ω(t+1)
∆i ,∆i

= 4, (A4)

the final result of the above equation simplification is shown as

Ω(t+1)
i,∆i

= 1 +
1
4

Ω(t+1)
∆i ,∆i

= 1 +
1
2

Ω(t+1)
∆i

. (A5)

(3) For a given new node i ∈ V(t + 1) and an old node j ∈ V(t), we also have
d(t+1)

i Ω(t+1)
ij + Ω(t+1)

i,∆i
−Ω(t+1)

j,∆i
= 2 with the help of Lemma 2, and considering k(t+1)

i = 2
and proposition (2), we have

Ω(t+1)
ij =

1
2
(1− 1

2
Ω(t+1)

∆i
+ Ω(t+1)

j,∆i
). (A6)

(4) For two new nodes i, j ∈ V(t + 1), i 6= j, we can write d(t+1)
i Ω(t+1)

ij + Ω(t+1)
i,∆i

−

Ω(t+1)
j,∆i

= 2 with the support of the Lemma 2, combining condition k(t+1)
i = 2 and Proposi-

tions (2) and (3), we obtain the following derivation process,

Ω(t+1)
ij =

1
2
(2−Ω(t+1)

i,∆i
+ Ω(t+1)

j,∆i
) =

1
2
(2−Ω(t+1)

i,∆i
+ ∑

s∈∆i

Ω(t+1)
j,s )

=
1
2
[1− 1

2
Ω(t+1)

∆i
+ ∑

s∈∆i

1
2
(1− 1

2
Ω(t+1)

∆j
+ Ω(t+1)

k,∆j
)]

= 1− 1
4
(Ω(t+1)

∆i
+ Ω(t+1)

∆j
) +

1
4

Ω(t+1)
∆i ,∆j

.

(A7)

As shown above, the four propositions in the Lemma 6 have been proved.

Appendix B. The Proof of Lemma 8

As defined above, α and β are the old node set and new node set in network G(t + 1),
the M-Kirchhoff index can be calculated by K∗Vt+1,Vt+1

(t + 1) = K∗α,α(t + 1) + K∗α,β(t + 1) +
K∗β,α(t + 1) + K∗β,β(t + 1). Because K∗α,β(t + 1) and K∗β,α(t + 1) are equal to each other, we
only evaluate the three terms other than K∗β,α(t + 1) on the right side of above equation.
According to Lemma 6 (1), we can write the first term as

K∗α,α(t + 1) = ∑
i∈V(t),j∈V(t)

k(t+1)
i k(t+1)

j Ω(t+1)
i,j

= 32 × 1
2 ∑

i∈V(t),j∈V(t)
k(t)i k(t)j Ω(t)

i,j =
9
2

K∗Vt ,Vt
(t).

(A8)
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Refer to the expression of the effective resistance between the new node and old node
given in Lemma 6 (3), and the second term can be investigated by a similar derivation method,

K∗α,β(t + 1) = ∑
i∈V(t+1),j∈V(t)

k(t+1)
i k(t+1)

j Ω(t+1)
i,j

= ∑
i∈V(t+1),j∈V(t)

2(3k(t)j )
1
2
(1− 1

2
Ω(t+1)

∆i
+ Ω(t+1)

∆i ,j
)

= ∑
i∈V(t+1)

(1− 1
2

Ω(t+1)
∆i

)( ∑
j∈V(t)

3k(t)j )

+ 3 ∑
i∈V(t+1),j∈V(t)

k(t)j Ω(t+1)
∆i ,j

,

(A9)

for a node i ∈ V(t + 1), we note that k(t+1)
i = 2 and the transformation equation given by

Lemma 7, and Equation (A9) is reformulated as

K∗α,β(t + 1) = 3× 2× Et(|V(t + 1)| − 1
2
(Nt − 1))

+ 3 · 2 ∑
i,j∈V(t)

k(t)i k(t)j Ω(t+1)
i,j

= 3K∗Vt ,Vt
(t) +

21
2
· 52t − 3

2
· 5t.

(A10)

Considering the effective resistance between the new node, we need to calculate the
last term K∗β,β(t + 1) by Lemma 6 (4), then K∗β,β(t + 1) is equal to

∑
i,j∈V(t+1),i 6=j

d(t+1)
i d(t+1)

j Ω(t+1)
i,j

= 4 ∑
i,j∈V(t+1),i 6=j

[1− 1
4
(Ω(t+1)

∆i
+ Ω(t+1)

∆j
) +

1
4

Ω(t+1)
∆i ,∆j

]

= 4|V(t + 1)|(|V(t + 1)| − 1)− 2(|V(t + 1)| − 1) ∑
i∈V(t+1)

Ω(t+1)
∆i

+ ( ∑
i,j∈V(t+1)

Ω(t+1)
∆i ,∆j

− ∑
i∈V(t+1)

Ω(t+1)
∆i ,∆i

).

(A11)

At the same time, according to the definition of equation Ω(t)
X,Y = ∑i∈X,j∈Y Ω(t)

ij ,

the equation ∑i∈V(t+1) Ω(t+1)
∆i ,∆i

= 2 ∑i∈V(t+1) Ω(t+1)
∆i

can be easily obtained. Refer to the
Lemma 7, we obtain

K∗β,β(t + 1) = 4|V(t + 1)|(|V(t + 1)| − 1)− 2(Nt − 1)|V(t + 1)|

+ 4 ∑
x,y∈Vt

d(t)x d(t)y Ω(t+1)
x,y

= 2K∗Vt ,Vt
(t) + 4|V(t + 1)|(|V(t + 1)| − 1)

− 2|V(t + 1)|(Nt − 1).

(A12)

Taking Equation (A12) into consideration and inserting the results of the three equa-
tions Equations (A8), (A10) and (A12) into K∗Vt+1,Vt+1

(t + 1) = K∗α,α(t + 1) + K∗α,β(t + 1) +
K∗β,α(t + 1) + K∗β,β(t + 1) yields

K∗Vt+1,Vt+1
(t + 1) =

25
2

K∗Vt ,Vt
(t) + 35× 52t − 13× 5t, (A13)
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the above calculation process shows a recursive formula about K∗Vt+1,Vt+1
(t + 1). By adding

a simple condition K∗V0,V0
(0) = 2, we obtain the desired result about K∗Vt ,Vt

(t), as shown in
Equation (21).

On the other hand, we consider the A-Kirchhoff index of network, and we also
have the following recursive relation governing K+

Vt+1,Vt+1
(t + 1) and K+

Vt ,Vt
(t). Obviously,

K+
Vt+1,Vt+1

(t + 1) = K+
α,α(t + 1) + 2K+

α,β(t + 1) + K+
β,β(t + 1), so we can deduce the following

relations for the three terms of this equation,

K+
α,α(t + 1) =

3
2

K+
α,α(t), K+

β,β(t + 1) = K∗β,β(t + 1)

2K+
α,β(t + 1) = 2 ∑

i∈V(t+1),j∈V(t)

(2 + k(t+1)
j )Ω(t+1)

i,j

= 4Kα,β(t + 1) + K∗α,β(t + 1).

(A14)

We have calculated the precise values of K∗β,β(t + 1) and K∗α,β(t + 1) above, so the focus
of the following calculation is to calculate Kα,β(t + 1). By using Lemma 6 (3), we have

Kα,β(t + 1) = ∑
i∈V(t+1),j∈V(t)

1
2
(1− 1

2
Ω(t+1)

∆i
+ Ω(t+1)

j,∆i
)

= ∑
i∈V(t+1),j∈V(t)

1
2
(1− 1

2
Ω(t+1)

∆i
) +

1
2 ∑

i,j∈V(t)
k(t)i Ω(t)

i,j

=
1
4

K+
Vt ,Vt

(t) +
1
2

Nt(|V(t + 1)| − 1
2
(Nt − 1)),

(A15)

where equation ∑i,j∈V(t) k(t)i Ω(t)
i,j = 1

2 ∑i,j∈V(t)(k
(t)
i + k(t)j )Ω(t)

i,j = 1
2 K+

Vt ,Vt
(t) is used in the

above equation, and combining the three obtained term expressions leads to

K+
Vt+1,Vt+1

(t) =
5
2

K+
Vt ,Vt

(t) + 5K∗Vt ,Vt
(t) +

105
4
× 52t − 13

2
× 5t − 3

4
, (A16)

Equation (21) gives the exact value of K∗Vt ,Vt
(t). Considering a initial value K+

V0,V0
(0) = 4,

we can obtain the solution of K+
Vt ,Vt

(t) shown in Equation (22).
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