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Abstract: Entropy production in stochastic mechanical systems is examined here with strict bounds
on its rate. Stochastic mechanical systems include pure diffusions in Euclidean space or on Lie groups,
as well as systems evolving on phase space for which the fluctuation-dissipation theorem applies, i.e.,
return-to-equilibrium processes. Two separate ways for ensembles of such mechanical systems forced
by noise to reach equilibrium are examined here. First, a restorative potential and damping can be
applied, leading to a classical return-to-equilibrium process wherein energy taken out by damping can
balance the energy going in from the noise. Second, the process evolves on a compact configuration
space (such as random walks on spheres, torsion angles in chain molecules, and rotational Brownian
motion) lead to long-time solutions that are constant over the configuration space, regardless of
whether or not damping and random forcing balance. This is a kind of potential-free equilibrium
distribution resulting from topological constraints. Inertial and noninertial (kinematic) systems are
considered. These systems can consist of unconstrained particles or more complex systems with
constraints, such as rigid-bodies or linkages. These more complicated systems evolve on Lie groups
and model phenomena such as rotational Brownian motion and nonholonomic robotic systems. In all
cases, it is shown that the rate of entropy production is closely related to the appropriate concept of
Fisher information matrix of the probability density defined by the Fokker-Planck equation. Classical
results from information theory are then repurposed to provide computable bounds on the rate of
entropy production in stochastic mechanical systems.

Keywords: entropy; information; inequalities; Lie Group; statistical mechanics; fluctuation-dissipation
theory; covariance; stochastic modeling

1. Introduction

The second law of thermodynamics introduced the concept of entropy, and states that
at the macroscopic scale entropy is nondecreasing for a closed isolated system, i.e., one
for which no heat enters or leaves and on which no external work is performed. This law
was postulated in the mid 1800s, motivated in part by the desire for efficiency gains in
steam engines. A closed system could be an isolated container on a lab bench, or the whole
universe, leading to the famous phrase “the universe tends toward disorder” which is a
paraphrase of a statement made by Rudolf Clausius circa 1865.

Statistical mechanical arguments were developed to explain the second law at the
microscopic/molecular level and were established in large part by Ludwig Boltzmann’s
classical work for ideal gases involving deterministic collision models between particles. In
their famous H-theorem, Boltzmann proved that:

dH
— <
dt =0

where

H(t) = /R v, log f(v, 1) dv

with f(v, t) being the velocity distribution of gas particles in a container at a particular
value of time, ¢, under the assumption of isotropic spatial distribution. This expression is
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related to the more general Gibbs formula for entropy given later in this introduction, which
differs in sign and scale. As t increases, f(v,t) converges to an equilibrium distribution,
feo(V), known as the Maxwell-Boltzmann distribution, where H is minimized (or entropy
is maximized) for a given value of temperature.

A completely different approach to Boltzmann'’s is the stochastic mechanical system in
which each element in the statistical ensemble is a classical mechanical system which is
forced by a combination of conservative forces, random Brownian motion and viscous
damping. A stochastic mechanical system is modeled using stochastic differential equations,
and ensemble behavior is described by the corresponding Fokker—Planck equation. They
are not limited to particle systems, and can either be modelled as having inertia or can be
purely kinematic. They can be complex molecules or even systems with nonholonomic
kinematic constraints such as robots.

The main contributions of this paper are as follows:

(1) The recognition that stochastic mechanical models can be used in place of the original
deterministic collision models used to formulate statistical mechanics;

(2) The interpretation of these stochastic models as It6 or Stratonovich is irrelevant for
systems that have nonzero mass, but that these interpretations provide different results
as mass becomes zero—an effect almost never discussed in statistical mechanical
works;

(38) Conditions for a stochastic mechanical system with configuration-dependent noise
and damping to reach equilibrium (i.e., the time-independent probability distribution
on phase space) are established, generalizing the Einstein relations and providing a
statement that is new and different than those for detailed balance, and represents a
new observation in fluctuation-dissipation theory;

(4) The aforementioned stationary pdf to which a stochastic mechanical ensemble con-
verges is in fact the Boltzmann distribution from statistical mechanics, which is ob-
tained via a different path than it was in statistical mechanics;

(5) Novel solutions to diffusion equations on Lie groups are provided;

(6) Inequalities from information theory are extended beyond their original setting (e.g.,
to include diffusion processes on Lie groups in addition to Euclidean spaces) and used
to bound the entropy and rate of entropy production in stochastic mechanical systems
such as the rigid Brownian rotor and mobile robots, which are beyond the scope of
classical statistical mechanics.

Mixed in with these new results is a substantial amount of review material, since it
makes little sense to present intricacies about differences between It6 and Stratonovich
stochastic differential equations or to talk about diffusions on Lie groups to someone
familiar only with statistical mechanics or information theory. Moreover, despite the
similarities in the form of entropy in these fields, the inequalities of information theory
are rarely known in statistical mechanics, and the concept of Hamiltonian mechanics and
phase space which are essential in statistical mechanics may be unknown to those familiar
with information theory.

Stochastic mechanical models (i.e., stochastic differential equations and associated
Fokker-Planck equations) are examined here with the goal of establishing strict bounds
on the rate of entropy production. Individual stochastic trajectories can be generated
numerically from a stochastic differential equation, but it is an ensemble of such trajectories
that conveys important statistical information about the system. These ensembles can be
used to generate a family of histograms indexed by time, or the associated Fokker—Planck
equation can be solved to obtain the same family of probability densities. Regardless of
which approach is taken, each stochastic mechanical systems has an associated family
of probability density functions (indexed by time) from which entropy and its rate can
be computed.
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A probability density function (pdf) on a measure space (X, i) which is indexed by
time is a function f : X X R>y — R such that:

[ fxtduto = 1.

The entropy of f at each value of time is defined as:

5() = — [ fx1)log fx 1) du(x) . )

The choice of base of the logarithm amounts to a choice of measurement units for S, as a dif-
ferent base will result in a different scaling of S(¢). Throughout this article, log = log, = In.

When considering a statistical mechanical system, the entropy of a time-varying
probability density on phase space is defined using Gibb’s formula as:

Sp(t) = —ks /q /};f(P,q,t) log f(p,q,t)dpdq 2)

where q € Q C R" is a set of coordinates, and p € R” are the corresponding conjugate mo-
menta. The Lebesgue measure on the 2n-dimensional phase space, dp dq = dq...dqndp;...dpy,
is invariant under coordinate changes, though such changes do affect the bounds of integra-
tion Q, unless Q = R". The inclusion of the Boltzmann constant kp in (2) is for consistency
with the statistical mechanics literature.

It should be noted that this integral is an approximation of a sum over microstates,
the size of which is specified by the Planck scale. Whereas mathematically speaking
continuous entropy has no lower bound, for physical systems it does because discrete
entropy computed by summing over microstates is always nonnegative. As long as the
features of the probability density function (pdf) are coarser than the Planck scale, then
entropy differences using this continuous integral formula and the analogous entropy
formula computed by summing over discrete states will be the same. That is, Scont # Sgise,
but AS¢ont = ASgjs. for physical systems.

In information theory, entropy can also be over a continuous space (in which case it
is called “differential” entropy) or it can be defined over a discrete space, such as a set of
symbols. It is no coincidence that the same expression (without the factor of k) appears
with the same name in information theory. As the folklore goes, the founder of information
theory, Claude Shannon had not yet fixed the name ‘entropy’, and had a conversation with
mathematician John von Neumann, who suggested [1,2]:

“You should call it entropy, for two reasons. First, your expression has been used
in statistical mechanics under that name. Second, nobody really knows what
entropy is, so in a debate you will always have the advantage.”

These words are not exact because it was supposedly a phone conversation (if it ever
happened at all) subsequently relayed through other people.
The configurational probability density is the marginal distribution:

, 1
flqt) = \/W/Pf(p,qrt)dp 3)

which is defined in this way so that:

f(q,t)\/M(q)dq = 1.
q€Q

The corresponding configurational entropy is:

So() = — | flanlogf(a ) /Mla)da @
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where M(q) is the metric tensor for the configuration space, which is the mass matrix in
the case of a mechanical system with inertia.

A unimodular Lie group is one with an integration measure that is invariant under
shifts from the left and the right. In the case when q parameterizes a unimodular Lie group,
G, such as the group of rotations or the Euclidean motion group, then the entropy of a
time-indexed pdf f : G x R>g — R>qis:

S6(t) = — [ fls,1)1og f(3,1)dg ©

where the Haar measure dg takes on different appearances under changes of parametriza-
tion but the value of the integral is independent of parametrization and it is invariant under
shifts of the form ¢ — gog and ¢ — ggo for any fixed g9 € G.

The main topic of this article is to study the rate of entropy increase in stochastically
forced mechanical systems. That is, for any of the entropies defined above, to calculate or
bound S. In particular, by simply moving the time derivative inside the integral and using
the product rule from Calculus,

() = /X{aa{logf+ aa{}dy(x). ©)

However, since f(x, t) is a probability density function at each value of time, whose integral
isequal to 1,

/ %dy(x) = %/};f(x,t) du(x) =0,

X
and so the second term in the above braces integrates to zero. Consequently:

$() = — [ Ziog fan(x) 7)

It is also possible to bound the value of entropy itself. The function ®(x) = —logx is
a convex function. Consequently, Jensen’s inequality gives:

S = /Xf(x)q>(f(x))d;¢(x) > d>(||f||2)

or

©n
v

— 1o (1If1?) ®)
where

1712 = [ 1 00Pdu).

As a consequence of Parseval’s inequality, (8) can then be stated in Fourier space. This
is true not only for the case of Euclidean space, but for wide classes of unimodular Lie
groups [3].

Moreover, S(t) can be bounded from above in some contexts. For example, on Eu-
clidean spaces it is well known that Gaussian distributions have maximum entropy over all
pdfs with a given mean and covariance. Therefore, if f(x, t) is an arbitrary time-evolving
pdf on R? with mean #(t) and covariance X¢(t), and if p, 5 (x) denotes a Gaussian distri-
bution with mean g and covariance %, then:

S7(6) < Spy,z, (1)- ©)

On a compact space such as the circle or rotation group, the uniform distribution has the
absolute maximum entropy of all distributions on those spaces.
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2. Rate of Entropy Production for Stochastic Processes on Euclidean Space

The stochastic mechanical models addressed here are described as stochastic differ-
ential equations forced by Brownian noise (i.e., Gaussian white noise, or equivalently,
increments of Wiener processes).

2.1. Review of Stochastic Differential Equations

Stochastic differential equations (SDEs) are forced by Gaussian white noises dw;, which
are increments of uncorrelated unit-strength Weiner processes. These define Brownian
motion processes. That is, each dw;(t) can be viewed as an independent random draw from
a one-dimensional Gaussian distribution with zero mean and unit variance. Let d denote
the dimension of a Euclidean space on which the random process evolves. For systems
with inertia, d = 2n is phase space, and for noninertial systems d = n. The independent
uncorrelated unit strength white noises dw; form the components of a vector dw € R?. For
example, given the stochastic differential equation on R?

dx = Bdw

where B € R?*? is a constant full-rank matrix, the distribution f(x,t) describing the
ensemble of an infinite number of trajectories will satisfy:

of 1 ¢ 3% f
E N Eijngl]ax,‘ax]“

where D = [Djj] = BBT. The solution of this equation subject to initial conditions
f(x,0) = é(x — 0) is the time-varying Gaussian distribution:

f(X, t) = (Zn)d/leﬂl/zeXp(;xT(Dt)_lx) (10)

where |A| denotes the determinant of a square matrix A. The entropy for this can be
computed in closed form as: [4]

S(t) = 10g{(27‘ce)W2|Z(t)\1/2}. (11)

where %(t) = Dt in this context. More generally (11) can be used as the upper bound in (9)
with X = ¥ since entropy is independent of the mean.

As an example of (8), applying it to a Gaussian distribution on R¥ gives:
S(t) > 10g{(471)d/2|Dt\1/2}.

Comparing with the exact expression in (11) verifies this since 471 < 27te and log(x) is a
monotonically increasing function.

There are two major kinds of stochastic differential equations (SDEs), 1t6 and
Stratonovich. Both are forced by Gaussian white noises dw;. In the simple example
above, Itd and Stratonovich interpretations lead to the same result, but in more complex
cases where the coupling matrix B is configuration-dependent, the two intepretations will
differ. A brief review of the main features of these two different interpretations of SDEs is
given here based on the longer exposition in [5,6].

Historically, the It6 interpretation came first. If

dx;(t) = a;(x1(t), ..., x4(t), t)dt + i Bij(x1(t), .., xq(t),t) dw;(t) for i=1,..,d (12)
=1
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is an Itd SDE describing a random process on R4 , where now B € ]Rdxm, then the corre-
sponding Fokker-Planck equation governing the probability density of the ensemble of
states, f(x,t), is [5,6]

d 2
af ;;xtxt+1zm%(zaﬂt%@wuﬂ (13)

i,j=1

It6 SDEs are popular in mathematical statistics contexts, measurement and filtering theory,
and in finance, because of the ease with which expectations can be taken, and the associated
martingale properties. In engineering contexts when modeling physical processes the
Stratonovich interpretation of SDEs described below is more popular because standard rules
of Calculus can be used [7,8]. For this reason the Stratonovich interpretation is popular in
differential geometric contexts since moving between coordinate patches involves Calculus
operations. A Stratonovich SDE describing the exact same random process as the It6 SDE
given above is written as

dx;(t) = ai (x1(t), ..., x4(t), t)dt + i Bij(x1(t), ., x4(t), 1) @dwi(t) for i=1,...d (14)
j=1

where (9 is used to denote the Stratonovich interpretion of the SDE, which differs from the
Itd version. These interpretations are interchangeable with drift terems related as:

1 & ij
ai(x, t) = als-(x, t) + E Z Z WB](] . (15)

This illustrates that there is very simple way to interconvert between It6 and Stratonovich
by either adding or subtracting the last term in (15).
The Stratonovich form of the Fokker—Planck Equation (FPE) is written as [5,6]:

. 9
m ZM nif)+3 Zwlz%a

1]1

]kf)] (16)

When B is independent of the configuration variable x, Itd snd Stratonovich versions of the
FPE are always the same, as can be seen from (15) where the discrepancy between the two
versions of drift term vanishes as the partial derivatives of B with respect to x vanish. This
is a sufficient condition for Itd and Stratonovich SDEs to yield the same FPE, but is not a
necessary for this to be the case, as will be seen in later examples. Similar equations hold
for processes evolving on manifolds and Lie groups, as will be discussed later in the paper.
The main topic addressed here is the rate at which S(t) changes. This can be observed
by substituting the solution of the Fokker-Planck equations into the definition of S in (6).

2.2. Rate of Entropy Production
Using the Stratonovich form of the FPE in (16), we arrive at the following theorem:

Theorem 1. The rate of entropy production for f(x,t) governed by (16) evolving freely on Eu-
clidean space is positive and bounded from below by

S > %/]Rd trace[(B(x’ t)TVf)J(CB(x,t)TVf)T] dx (17)
when )
9 [ Bjx
ax,-<”" %Bikaxj> >0 (18)
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with equality holding when
0B;
ik
ﬂ? — kZBZkW = Ci (19)
J /
is constant for all values of i. In the case when B is a constant and D = BB, then
. 1
S = —trace[DF(t)]. (20)

2

where

T
rly - [, 0T,

is the Fisher information matrix of f(x, ).

Proof. The df /0t term in
. af
$ = /d o f ax
can be expressed in terms of spatial derivatives by substituting in the FPE. This is written

as two terms using integration by parts with the surface terms at infinity vanishing due to
the fact that the process evolves freely and the pdf must decay to zero at infinity. First,

/]Rd{ Zaxl Sf}logfdx——/ Zalaxl

Second,

- 1fa ). By (Bf) togfix = £ [ 25§ Bt (8| 2L ax
Rd 1 9% | (= lka B & S 2m f S Fox; I 0w T

Expanding

and recollecting terms gives
_/ Z{—a +ZJZ:1BZk8x]}8x 2/ fZ<ZB’kaxl><¥‘ ]kax]>

The second integral is always nonnegative, as it is a positive semi-definite quadratic form
and can be written as:

Lt [, B DBATINT, ).

The first term can have either sign. However, if

is constant, then the first integral will vanish, and if by integration by parts the derivative
in the first term is transferred over, the condition in the statement of the theorem will result
since f > 0. O

When (18) holds it is clear that a looser lower bound than (17) akin to (20) can be
obtained as:

$ > %trace[Do(t)P(t)] 1)
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by constructing positive definite matrix Dy(t) = D{ (t) such that the following matrix
inequality:
Do(t) < B(x,t)BT(x,t) ¥ x € RY

is satisfied. The reason why (21) then holds is because the trace is linear and the trace of the
product of positive semi-definite matrices is nonnegative, and both F and BBT — Dy are
positive semi-definite.

The condition (19) and result (20) are for diffusion processes with constant diffusion
tensor and drift. Given initial conditions f(x,0) = fy(x), the solution f(x, t) in this case
will be of the form:

fOxt) = (fo*psarppr)(X) (22)
where py 5 (x) is a multivariate Gaussian with mean pand covariance X. The convolution
of any two functions fi, f» € (L' N L2)(RY) is defined as:

()X = [ AWfAx=y)dy. )

Fisher information plays an important part in probability theory [9,10] and its connec-
tions to physics also have been recognized [11-13]. For a recent review of its properties
see [14].

Several inequalities from Information Theory can then be used to bound both entropy
and entropy rate by quantities that are easily computable. For example, it is known
that [15-17]:

1 S 1 L 1
t[F(fix f2)P] — t[F(f1)P]  tr[F(f2)P]
where P is any real positive definite symmetric matrix with the same dimensions as F.
When P = D this can then be used to give a lower bound on tr[FD], and hence on S.
Moreover, one reason for the significance of (24) in information theory is that it provides a
path for proving the entropy power inequality [15,16] described below.
The entropy power of a pdf f(x) on R? was defined by Shannon as [4,18]:

exp(25(f)/4)

27te

(24)

N(f) =
where S(f) denotes the entropy of f. The entropy power inequality is:

N(fi*f2) > N(f1) +N(fa). (25)

Since the logarithm is a strictly increasing function, this provides a lower bound on S( f1 * f2)
and hence can be used to bound the entropy of f(x,t) of the form in (22). In Section 3 lower
bounds on S will be derived.

It should be noted that (24) and (25) only apply for convolution on Euclidean spaces,
and do not even apply for diffusion processes on the circle. In contrast, other bounds on
non-Euclidean spaces and for processes that are not necessarily homogenoues diffusions
are presented later in this paper.

2.3. Examples
2.3.1. Brownian Motion in Euclidean Spaces

Brownian motion in d-dimensional Euclidean space with Dirac delta initial conditions
was already reviewed, with pdf (10) and entropy (11). From this, the rate of entropy
production can be computed explicitly as:

§ (d/z)(2n.e>d/2|D|l/2td/271 _ i
B (2rte)d/2|D|V/2pd/2 2t
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The version of the Fisher information matrix in the theorem for a Gaussian is the
inverse of the covariance, and hence:

F= (D) '=t1D1L.

Consequently, (20) gives:

.1 e d
= — t ]I = —,
S 2trace( ) %

2.3.2. Brownian Motion on the Torus/Circle

The stochatic differential equation
d6 = V'Ddw

with constant scalar D describing Brownian motion on the unit circle has an associated
Fokker-Planck equation

of _19f
ot 2 962

which is the same as the case on the line. However, the boundary condition 6(7r) = 6(—m)

is imposed rather than free boundary conditions.

Let:
1 22

e 2Dt

x,t) = ’
plx) V2nrDt
which is the solution of the heat equation on the real line subject to initial conditions

p(x,0) = 4(x).
The solution of the heat equation on the circle subject to initial condition f(6,0) = J(0)
is then [3,5,6]

f6,t) = i p(9—27‘[k;t):%+l

- Z e~ D12 o g (26)
k=—o0

n=1

The above two equalities represent two very different ways of describing the solution. In
the first equality, the Gaussian solution presented in the previous section is wrapped (or
folded) around the circle. The second solution is a Fourier series solution. The first is
efficient when kt is small. In such cases only k = 0 may be sufficient as an approximation.
When kt is large, truncating n = 1 in the Fourier expansion may be sufficient.

Statistical quantities such as the mean and variance can be computed in closed form
as:

u(t) = /j;()f((),t)de ~0

and

T 2 © [ 1\n
?(t) = [ @ fo,nd0 = 7 sy CV oz,
- n=1 n

In both expressions in (26) summations are present which makes the exact analytical
computation of logarithms, and hence entropy, problematic. However, Since the function
®(x) = —logx is a monotonically decreasing function, then when a,b > 0 we have
®(a+b) < O(a). Consequently, since p > 0 everywhere,

o (t)
2Dt

S(1) < —/_7; £(6,)10g (6, )0 = 3 log(27DF) + 27)

In the extreme case when the distribution reaches equilibrium fo,(0) = 1/(27), this is the
maximum entropy possible, and hence:

S(t) < Seo =log(2m). (28)
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It should be noted that all calculations here are done relative to the measure 46. For a
compact space like the circle, it is common to normalize the measure so that:

V:/ 14V = 1.
JV

In doing so for the heat kernel on the circle this would involve redefining dV = df /2 and
f/(6,t) =27 f(6,t). This has no effect on mean and covariance, but the value of entropy is
shifted such that the entropy of the uniform distribution is equal to zero and the entropy of
all other distributions are negative. Rewriting (28) in a way that does not depend on the
choice of normalization of measure is:

S(t) < log V(Sl) . (29)

In other words, the value of entropy not only depends on the base of the logarithm, but
also on the way that the integration measure is scaled.

2.3.3. Concentration of Species Transport in Inhomogeneous Compressible Flow

The concentration ¢(x, t) of a species in inhomogeneous compressible flow can be
modeled by the Equation [19-21]:

d d d d
a—i = 5 {D(x, t)a;j — a(u(x,t)c) (30)

where D(x,t) = Do(1 + xox)? and u(x,t) = ug(1 + xox). This is a FPE, and it is possible to
work backwards to find the corresponding SDE.

We see immediately from the above partial differential Equation (pde) that if c(x, 0)
is normalized to be a probability density function, then c(x, t) will preserve this property
because integrating both sides over x gives that the right side is zero, and the time derivative
on the left side commutes with the integral over x.

Equation (30) represents a one-dimensional example of what was presented in the
theorem, and the rate of entropy increase is:

. © 1 ac\?
S = / fD(x,t) (ax) dx + ugkg

—o0 C
since the drift term in the entropy rate computation simplifies as:

® Jdc " Ju "0
—/_wugdx = /_oo cadx = Upko / c(x, £)dx = ugxg -

—00

2.3.4. Homogeneous Transport in Couette Flow

As another example from classical fluid mechanics, consider 2D homogeneous trans-
port in Couette flow governed by Equation [22,23]:

ac 9%c 9% Uy dc
ot d9x%  9y? H " ox
where y € [0, H] and again c(x, 0) is normalized to be a probability density function, and
hence c(x, t) retains this property. In this case the region over which the equation holds is

an infinite slab with the concentration and its gradient vanishing aty = 0 and y = H.
We then arrive at:

. H reo 11 /9c\? ac\?
5= Do'/o ./_ooc[(ax> + (ay> 1dxdy+y-e2
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where

"H oo
u= / / xc(x, t)dx
JO J—o0
is the mean of ¢(x, t).

The pdf for concentration in both of the above examples can be solved in closed form
using the methods in [23] in which inhomogeneous processes on Euclidean space are recast
as homogeneous processes on an appropriately chosen Lie group. However, the purpose of
these examples is to illustrate the relationship between entropy rate and Fisher information.
In the next section, a classical result of information theory is used to bound the Fisher
information with covariance. Covariance can be propagated without explicit knowledge of
the pdf, which will be demonstrated.

3. Bounding Rate of Entropy Production with Covariance

The version of the Fisher information matrix that appears in entropy rate computations
in general is not easy to compute. An exception to this statement is when the pdf is a
Gaussian and
F gauss — Zgaluss :

For other exponential families closed form expressions are also possible. However, in
general computing the time-varying Fisher information matrix for a pdf satisfying a Fokker—
Planck equation will not be easy to compute.

However, it is possible to bound the Fisher information matrix with the covariance of
the pdf, and covariance can be propagated as an ordinary differential equation even when
no explicit solution for the time-varying pdf is known.

In this section, the Cramér-Rao Bound [24,25], a famous inequality in Euclidean
statistics and information theory, is reviewed. Recently it has been extended to manifolds
and Lie groups [26-31]. A second kind of inequality for compact spaces such as tori,
spheres, and rotation groups was introduced in [32]. Then examples where covariance
is propagated directly from the FPE are given in which the aforementioned inequalities
can be put to use in bounding the rate of entropy generation. An outline of the general
procedure is given here.

Let pand X respectively denote the mean and covariance of a pdf f(x; u X). Then:

o [ ssnmis
or equivalently
| x=m fxm)ax = o, (31)

and
L= [ =mx—m fomE) dx.

When presented with a FPE of the form:

of _
o = Pf

where D is as in the right hand side of (16), an ordinary differential equation describing the
evolution of y(t) and X(t) can be defined as:

1 = Dfd
,u/Rnxfx

and

£ [ (x=mx—pmDfdx
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where integration by parts can be used in some cases to obtain explicit closed-form ex-
pressions for the integrals on the right hand side of both equations. Once X(f) is obtained,
it can be used to bound entropy from above using (gaussianentropy) the rate of entropy
production from below using the results given in the next section.

3.1. The Cramér-Rao Bound

The Cramér-Rao Bound (or CRB) is a way to bound the covariance of an estimated
statistical quantity [24,25]. Here it will not be used in its most general form. Here it will
only be used in the unbiased estimation of the mean of a probability density function on R".

In the standard derivation of the CRB, as given in [18,33] for the case of estimation
of the mean, the gradient of this expression with respect to pis computed, where df /du
denotes the gradient as a column vector, and 9f /du’ = [0f /ou|T.

Differentiation of both sides of (31) with respect to ' gives:

0 : - g af B
W/Rn[x—ﬂ}fdx—./H[X—y]ﬁdx—]l_@,

Here the derivative is taken under the integral. The product rule for differentiation then
is used with the fact that f is a pdf in x. O denotes the m x m zero matrix resulting
from computing 90/9u’ . That is, since the zero vector is a constant quantity, each partial
derivative with respect to y; is zero as well, resulting in an array of zero vectors, O.

The above equation can be written as [18,24,25]

I= /R" a(x, p)bT (x, p)dx € RP*™ (32)
where .
alpu) = [f]2[x =4
and 3
blxp) = 11145

Using the fact that f(x;#,X) = f(x — #,0,X) means that:

blos) = —[f] 3L

Then it becomes clear that:
F= [ bmlb(xm]"dx (33)

and
£ = [ atomlatom)ax 4

Following the logic in [33], two arbitrary vectors are introduced: v € R? and w € R™.
Then (32) is multiplied on the left by v! and on the right by w to give:

vTI[w:/IR via(x, u)bT (x, p)yw dx. (35)
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Regrouping terms in the resulting expression, squaring, and using the Cauchy-Schwarz
inequality, then gives [24,25,33]:

( / n vT(abT)wdx>2 _ ( / (v"a) (bTw)dx>2
(/n(vTa)zdx> (/ ) (wa)zdx>
_ ( / vlaalv dx) ( /R wbbTw dx>.

From the Equations (33)—(35), this can be written as:

IN

(vIIw)? < (vIZv)(wlFw).
Making the choice of w = F~1v yields:
(VT F71V>2 < (vizv) (VT F71V> .
This simplifies to:
vl (Z - F_l)v >0 for arbitrary veR" (36)

Consequently, the term in parenthesis is a positive definite matrix, or as a matrix
inequality [18,24,25,33]:

> F1, (37)

which is the famous Cramér-Rao Bound (for the special case of an unbiased estimator of
the mean). This is equivalently:
< F. (38)

Then, for example, in all of the equations for entropy production in time-varying pdfs on
Euclidean space presented earlier, it is possible to bound from below using a cascade of
inequalities such as:

tr[DF] > Apin(D) tr[F] > Apin(D) tr[Z_l}.

3.2. An Example

Returning to the example of species transport in a compressible 1D flow outlined in
Section 2.3.3, this section illustrates how the entropy rate can be bounded from below using
the CRB even when a closed-form solution for the pdf is not known.

From the FPE itself, it is possible to propagate the mean and covariance. Multiplying
both sides of (30) and integrating by parts gives the following ordinary differential Equation
(ODE) for the mean p(t)

]/'l = (ZdoKo + Mo)(l + Ko}i)

subject to initial conditions, 3#(0) = po. This ODF can be solved in closed form for u(t).
However, even if it could not be, it could be solved by numerical integration, which is
much easier than solving the FPE. Similarly, since:

o = / (x — p)%c(x, t)dx = —p? +/ x2c(x, t)dx,



Entropy 2022, 24,19

14 of 32

multiplying (30) by x? and integrating by parts gives a way to propagate the covariance

with an ODE of the form: i

dt

which can be solved either analytically or numerically subject to initial conditions ¢ (0) = 2.

It is worth noting that even in cases where such propagation of moments by FPE is not
possible (for example, when higher moments creep into the equations so that there is not
form closure), it is still possible to numerically generate a large ensemble of sample paths
from the SDE corresponding to the FPE and compute variance (or covariance in multi-dof
systems). Covariance estimation is much more stable than pdf estimation, and so using
the CRB as a lower bound is more reliable than directly attempting to compute entropy,
entropy rate, or Fisher information when the pdf is not known explicitly.

(0%) = F(u,0?)

4. Classical Statistical Mechanics as Stochastic Mechanics

Classical statistical mechanics, as developed by Boltzmann, Maxwell, and Gibbs, states
that entropy increases. For an introduction to phase space and equilibrium statistical
mechanics see [34]. Nonequilibrium statistical mechanics has been studied extensively
over a long period of time starting with Boltzmann and summarized in a number of books
including [35-39]. Important results continue to be developed in modern time, e.g., [40].
An alternative to the classical Boltzmann—Gibbs formulation is stochastic mechanics [41-44].
The difference is that in Boltzmann's original formulation of statistical mechanics the model
describing collisions between gas molecules was deterministic. At the beginnning of the
twentieth century Einstein’s formulation of Brownian motion also did not explicitly model
random forces, though Langevin did. In all of those early works on Brownian motion there
was no concept of Wiener process or It6 or Stratonovich stochastic calculus. These are mid
twentieth century constructs that came after. Consequently, revisiting results in statistical
mechanics using more modern stochastic modeling techniques sheds light on some old
problems and provides a basis for building connections between statistical mechanics,
stochastic modeling, and information theory.

Here a Hamiltonian formulation of stochastic mechanics is used. The Hamiltonian of
a mechanical system is defined as the total system energy written in terms the conjugate
momenta p and generalized coordinates q:

.1 -
H(p,q) = 5p'M'(q)p + V(a). (39)
Here M(q) is the configuration-dependent mass matrix and

p = M(q)q.

The beauty of the Hamiltonian formulation is that the volume in phase space (i.e., the joint
P-q space) is invariant under coordinate changes.

4.1. Properties of Phase Space

As is well known and explained in [5,6], if q and q’ are two different sets of coordinates,
then kinetic energy is expressed as:

1, . . .
T =24"M(q)q = 54"M(q)q.

Then with the Jaccobian relating rates of change,

it is clear that:
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From the above, and the definition of conjugate momenta, p; = 9T/9dq;,

P =7""(q)p. (40)

Therefore, the two phase spaces have volume elements that are related as:

J7T(a) o(J""(a)p)/oq
dp'dq = dpdq.
0 J(q)

The determinant of the upper-triangular block matrix in the above equation is equal to 1,
illustrating the invariance:
dpdq = dp’dq’. (41)

The key to this result is how p transforms in (40). A similar result holds in the Lie group
setting wherein the cotangent bundle of a Lie group can be endowed with an operation
making it unimodular even when the underlying group is not [45]. This is analogous to
why (4) requires the metric tensor weighting and is coordinate dependent and (41) is not.

4.2. Hamilton’s Equations for a System Forced by External Noise and Damping

Hamilton’s equations of motion are:

@ = ag h (42)
dqi o JH
G - ap (43)

where F; are generalized external forces. In the case in which the mechanical system is
forced by noise and viscous damping, then after multiplication by dt, these equations of
motion become:

1 oM

_ 1% T -1 T
dp; = —5p aqipdt 5 dt — e/CM 'pdt + e/ Bdw (44)

and
dg; = el M lpt (45)

where e; is the i’ natural unit basis vector. Note that the configuration-dependant mass
matrix M = M(q), noise matrix B = B(q), and damping C = C(q) appear prominently in
these equations.

Equations (44) and (45) can be written together as:

w )= (5 )7 (0 i ) ()
= dt + . 46
( dp 1(p,q) O B(q) dw (46)
(Here dw’ multiplies zeros and hence is inconsequential).

The vector-valued function « and -y are defined by their entries:

K = eiTMflp
. 1 oM avV 7
Vi = TP P g e CM™'p.

The Fokker—Planck corresponding to (46), which together with an initial distribution
f(q,p,0) = fo(q, p) defines the family of time-evolving pdfs f(q, p;t), is

n

5 nog 9 1m0
a{-l—i_zla%(aif)-l—lx 3, (vif E; 2: ( kbk]f) 47)

1
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where b;j = e] Be; is the i, j' entry of B.
Note that for any mechanical system with inertia the diffusion is the same regardless
of Itd or Stratonovich interepretation, as:

82 d 7 o O%f

That is, even though B is configuration dependent, the structure of the FPE equations
in the case of mechanical systems with inertia places partial derivatives with respect to
momenta in the diffusion terms, and such partial derivatives pass through the configuration-
dependent B matrix. For this reason in mechanical systems with inertia, it does not matter
if Itd or Stratonovich interpretations of SDEs are used. This freedom allows the modeler
to take the best of both worlds. However, when approximations are made in modeling
the initial equations of motion, such as assuming that the inertia is negligible, then the
above Hamiltonian formulation no longer applies and one must be very careful as to the
interpretation of the SDE as It6 or Stratonovich.

4.3. The Boltzmann Distribution

The Boltzmann distribution is defined as:

feola,p) = % exp(~pH(p,q)) (48)

where B = 1/kpT with kg denoting Boltzmann’s constant and T is temperature measured
in degrees Kelvin.
The partition function is defined as:

Z=/q/pe><p(—ﬁH(p,q))dpdq- (49)

The reason for using the subscript co in defining (48) is the following theorem.

Theorem 2. If q € R" globally parameterizes the configuration manifold of a mechanical system,
then the solution of the Fokker—Planck Equation (47) will satisfy

lim f(p,q,t) = fo(p,q)

if and only if

_ Bppr
C_EBB ) (50)

Proof. We begin by noting that (47) can be simplified a bit. First,

8041 of

(lf) f+ laql

and

5 (if) = Szt

It is not difficult to show that:

Y {5 ) = (o).

aql api
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Using this, and considering the equilibrium condition when df /9t = 0 then reduces (47) to

tr(CM )f+ 2{"‘18% T3 }— - Z ap,ap]( BBT)l-jf) =0, (51)

where the substitution

(BBT);; ): bixbf;
has been made.
Note that: a7 — BM
o 1 T
o ﬁ(aq 2P >f°°'
Ofco _
U~ pelMpfu = —pai fo,
pi

and hence significant cancelation results in:

T

Moreover,
azfoo _ -1 2
opidp; (7ﬁmi}' +B lxilxj) foo

Substituting into (51) therefore gives:

tr(CM™) + Ba’Ca gtr<M*1BBT> - %zaTBBTa = 0.

This shows that fe(p, q) is in fact a solution of (51), if (50) holds. The necessary condi-
tions for the above equality to hold boil down to the necessary conditions for the two
independent statements:

tr((C — !;BBT)M_1> =0

and
o (C - gBBT):x =0

to hold. The independence of these follows from the fact that some terms depend on a« and
others do not, and the main equality must hold for all values of a.

The only way that both of the above can hold is if C — gBBT is skew symmetric.
However, damping matrices, like stiffness and mass matrices, are symmetric, as is BBT.
Hence (50) must hold. [

Note that the necessary and sufficient conditions in (50) for the Boltzmann distribution
to be the equilibrium/stationary solution holds even when B and C are dependant on q.
As such, this is a generalization of the fluctuation dissipation theorem (which is stated for
particles) to the case of complex mechanical systems that can be modeled as a collection of
rigid bodies (e.g., biological macromolecules).

4.4. Marginal Densities and the Conundrum as Mass Becomes Zero

Marginal densities of f(p, q,t) can be defined as:

flp,t) = /,;1 £(p,q t) | det M(q)[/2dq
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and

Flqt) = |detM(q)| 12 /P F(p,at)dp, (52)

which is consistent with (3).
In the equilibrium case it is always possible to compute f(q) in closed form as:

fola) = e PV (53)

where
Z. = /e’ﬁ"(q)ldetM(qﬂ”qu
q

is the configurational partition function. Then,

/q foo(q) | det M(q)|/2dq = 1.

In contrast, in general fo(p) can only be computed easily in closed form when M(q) = M
is constant. In this case:

p? P Ty
= exp| —=p My
fOO(P) (27T)d/2|detM0|d/2 p( 2P 0 p)

is a Gaussian distribution in the momenta.

Though (53) degenerates as the inertia goes to zero, it does so gracefully since both
| det M|'/2 and Z, approach zero in the same way as the system mass goes to zero. We can
then use it as the baseline truth to compare approximations in which inertia is neglected.
For example, consider the spring-mass-damper with noise:

mi + c(x)xX + kx = b(x)n

where c(x) and b(x) are nonlinear functions satisfying the condition 2c(x) = Bb(x)?. If
ndt = dw, then as m — 0, we have a conundrum unless ¢ = ¢y and b = bj are constant.
Namely, which of the following interpretations is correct?

dx; = —kc(x)) L xqdt 4+ 287 b(xy) Hdw

or
dxy = —kc(xa) L xodt + 287 0(xp) T @ dw?

It did not matter when there was inertia, as both gave the same FPEs in the case, but
making the approximation that the mass is zero creates a situation where a choice now
must be made.

The answer can be informed by comparing the corresponding pdfs that solve the
associated Fokker—Planck equations, fi(x,t) and f(x, t), with f(x, t) in (52). Short of that,
we can examine the behavior of the mean as a function of time, and the behavior of the
equilibrium distributions as compared with (52).

The Fokker—Planck equations corresponding to the above SDEs are, respectively:

9 d 02
D kg () + 26255 (072 )

and
% = k%(flxﬁ) + 2[5*2% (blai(blfz)> :

Expanding and considering equilibrium conditions gives
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Alzk%( Leh) + 26720 ( 3abf +b” Z%f;)

and

ox

where an exact solution would give A; = 0.
The exact configurational marginal from the Hamiltonian formulation is

foo(x) = <ff[> %e_ﬁkxz/Z,

Azzka(c_le2)+2/3_zaax< b™ 3abf +b” 23f2>

and it has the property

% = —Bkxfo .

Substituting into the above, and observmg that

k%( xfeo) +2872 J <b 28;;) =0

due to the relationship between b and c, then

0 b
A =28 28x< b3 foo> = 2A,.

This means that neither interpretation gives the true answer at equilibrium, but the
magnitude of the discrepancy in the Stratonovich model is half that of the Itd . For this
reason, unless modeling systems in phase space, or if there are physical grounds for
choosing a particular SDE (e.g., working backwards from Fick’s Law), it is safest to consider
diffusions with constant diffusion tensors, as will be the case throughout the remainder of
this paper.

5. Stochastic Systems on Unimodular Lie Groups

A stochastic mechanical system that has a Lie group as its configuration space can
be studied in a coordinate-free way [5,6]. These systems can be purely kinematic, or can
have inertia. Concrete examples are used here to illustrate, and then general theorems
are provided to quantify the rate of entropy production. Different connections between
Lie groups and thermodynamics than what is presented here have been made in the
literature [46-49].

5.1. Review of Unimodular Matrix Lie Groups with SO(3) and SE(2) as Examples

The use of geometric (and particularly Lie-theoretic) methods in the control of me-
chanical systems and robots has been studied extensively over the past half century [50-54].
The material and notation in this section summarizes more in-depth treatments in [3,5,6].

A matrix Lie group is a group with elements that are matrices, for which group
multiplication is matrix multiplication, and for which the underlying space is an analytic
manifold with the operations of group multiplication and inversion of elements being
analytic also. Intuitively, matrix Lie groups are continuous families of invertible matrices
with structure that is preserved under multiplication and inversion. The dimension of a
matrix Lie group is the dimension of its manifold, not the dimension of the square matrices
describing its elements.
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For example, the group of rigid-body displacements in the Euclidean plane, SE(2),
can be described with elements of the form:

cosf —sinf «x
g(x,y,0) = | sin@ cosf® y |. (54)
0 0 1

The dimension is 3 because there are three free parameters (x,y, 6). This group is not
compact as x and y can take values on the real line.
The group of pure rotations in 3D can be described by the rotation matrices:

SO(3) = {Re R¥3|RRT =1, detR = +1}.

SO(3) is a compact 3-dimensional manifold. Again, the fact that the dimension of the
matrices is also 3 is coincidental.

A unimodular Lie group is defined by the property that a measure dg can be con-
structed such that the integral over the group has the property that

/Gf(g) dg = /Gf(gog) dg = /Gf(ggo)dg (55)

for any fixed gy € G and any function f € L!(G). It can also be shown that as a consequence
of (55):

/Gf(g) dg = /Gf(g’l)dg. (56)

These properties are natural generalizations of those familiar to us for functions on Eu-
clidean space.
As we are primarily concerned with probability density functions for which

/Gf(g)dgzl,

these clearly meet the condition of being in L!(G).

In the case of SO(3) the bi-invariant measure expressed in terms of Z — X — Z Euler
angles (a, B, ) is dR = sin fdadpdry. In the case of SE(2), the bi-invariant measure is
dg = dxdydo.

The convolution of probability density functions on a unimodular Lie group is a
natural operation, and is defined as:

()@ = [ A f0g) dh. 7)

The convolution of two probability density functions is again a probability density.

In addition to being natural spaces over which to integrate probability density func-
tions, natural concepts of directional derivatives of functions exist in the matrix Lie group
setting. This builds on the fact that associated with every matrix Lie group is a matrix
Lie algebra.

In the case of SO(3), the Lie algebra consists of 3 x 3 skew-symmetric matrices of

the form
0 —x3 x 3
X = X3 0 —X1 = Z xl-El-. (58)
i=1

—X2 X1 0

The matrices {E; } form a basis for the set of 3 x 3 skew-symmetric matrices. The coefficients
{x;} are all real. The notation relating the matrix X and the vector x = [x1, X2, x3] Tis [51,52]

x = XV and X =%. (59)
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This is equivalent to identifying E with e;.
For SE(2) the basis elements are different, and are of the form

00 1 000 0 -1 0
EE=loo0oo0|; E=|001];, E=[1 0 0
00 0 000 0 0 0

Every element of the Lie algebra associated with SE(2) can be written as a linear combina-
tion of these, and the notation (59) is still used to identify these matrices with natural unit
basis vectors e; € R3. For example, X' = x| E{ + x,E} + x4 E}. (Here the primes are used
so as not to confuse the Lie algebra elements for SE(2) with those for SO(3), but when
working with a single Lie group and Lie algebra the primes will be dropped, as in the
discussion below which is for the generic case.)

For an arbitrary unimodular matrix Lie group, a natural concept of directional deriva-
tive is

(RF)(s) = DAz op(tx)| (60)

t=0

Here the argument of the function f is read as the product of g and exp(¢X), which are each
in G, as is the product. If X = Y_; x;E; for constants {x;}, this derivative has the property

= Y x(Eif)(s)

Such derivatives appear in invariant statements of Fokker—Planck equations on unimodular
Lie groups. Moreover, these derivatives can be used together with integration to state
results such as integration by parts

L A@ER) s = — [ Lo)(Ef) ()

There are no surface terms because either group is infinite in its extent (and so the functions
must decay to zero at the boundaries), or it is compact (in which case the functions must
match values when arriving from different directions), or both for a group such as SE(2).

5.2. The Noisy Kinematic Cart

The stochastic kinematic cart has been studied extensively in the robotics
literature [5,6,55-58]. In this model (which is like a motor-driven wheelchair) the two
wheels each have radii r, and the wheelbase (distance between wheels) is denoted as L.
The nonholonomic equations of motion are

X 5cosf 7cosf
$1

y = 5sinf  5sind . (61)
$2

0 P

When the wheel rates consist of a constant deterministic part and a stochastic part, then

dpy = wdt+VDdw (62)
dpp = wdt+VDdw, (63)

and multiplying (61) by dt and substituting in (63) results in an SDE. This is an example
where it does not matter whether the SDE is of It6 or Stratonovich type, even though B
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is not constant. The corresponding Fokker-Planck equation for the probability density
function f(x,y, 6;t) with respect to measure dxdyd® is [58]:

of of of

Fri —rwcos@a—rwsm9@+
D(r* 5 0% r* 0 r* . , Pf  2r20%f
2<2COS 9@+ES11129W+551H Ga:y2+12892>,

which is subject to the initial conditions f(x,y,6;0) = 5(x — 0)d(y — 0)5(6 — 0).

The coordinates (x, Y, 6) that define the position and orientation of the cart relative to
the world frame are really parameterizing the group of rigid-body motions of the plane,
SE(2). Each element of this unimodular Lie group can be described as homogeneous trans-
formation matrices of the form in (54) in which case the group law is matrix multiplication.

Then (61) can be written in coordinate-free notation as:

de\V r 1 1
(g—ldf) = Ap where A=_ 0o 0o |. (64)
2/L —2/L

Here the notation V is used as in [3,5,6,51] in analogy with (59), but for the case of SE(2)
rather than SO(3).

The coordinate-free version of the above Fokker-Planck equation can be written
compactly in terms of these Lie derivatives as [58]:

) - ’D -, ’D -,
I = robf+ D2 B+ TR (B (65)

with initial conditions f(g;0) = 4(g). The resulting time-evolving pdf is denoted as f(g; )
with respect to the natural bi-invariant integration measure for SE(2), which is dg = dxdyd6.
Solutions for (65) can be obtained in different regimes (small Dt and large Dt) either using
Lie-group Gaussian distributions or Lie-group Fourier expansions, as in [58,59]. That is
not the goal here. Instead, the purpose of this example is to provide a concrete case for the
derivations that follow regarding rate of entropy production.

It should be noted that degenerate diffusions on SE(2) occur not only in this problem,
in models of the visual cortex [60-65]. Phase noise is a problem in coherent optical com-
munication systems that has been identified in the literature [66—70]. The Fokker—Planck
equations describing phase noise have been developed and solved using various methods
[71-73]. Remarkably, these FPEs are the same kind as those for the kinematic cart, inpaint-
ing, visual cortex modeling, etc. Moreover, the natural extension of (64) and (65) to SE(3)
has found applications in modeling DNA (as reviewed in [3,5,6]) and flexible steerable
needles for robotic surgery [57,74-76].

5.3. Rotational Brownian Motion

Starting with Perrin [77], various efforts at mathematical modeling of rotational
Brownian motion has been undertaken over the past century [78-82]. These include
both inertial and noninertial theories. A major application is in the spectroscopy of
macromolecules [83,84]. Essentially the same mathematics is applicable to modeling the
time-evolving uncertaintly in mechanical gyroscopes [85].

Brownian motion on Riemannian manifolds and Lie groups also has been studied
over a long period of time in the mathematics literature [86-91], with the rotation group
and three-sphere being two very popular objects [92-94]. In addition to forcing by white
noise, forcing by Lévy processes (white noise with jumps) has also been investigated [95].
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5.3.1. Inertial Theory

Euler’s equation of motion for a rotating rigid body subjected to an external potential,
noise, and damping can be written as:

Ipdw+ w x (lpw) dt = —(EV)(R)dt — Cowdt + Bydw (66)
where .
i (E1V)(R)
(EV)(R) = | (E2V)(R) |.
(EsV)(R)

Here wis the body-fixed description of angular velocity, which is related to a time-evolving
rotation matrix (using the hat notation in (59)) as:

R = R&. (67)

The moment of inertia matrix, Iy, damping matrix, Cy, and noise matrix By are all constant.
Equations (66) and (67) define a stochastic process evolving on the tangent bundle of SO(3).
This can be re-written using angular momentum, 7t = [yw, as

drr = mtx (I ') dt — (EV)(R)dt — Coly ' redt + Bodw . (68)
Equations (68) and
R=RI'm

define a stochastic process on the cotangent bundle of SO(3).
Note that p # 7. To see this, expand angular velocity and kinetic energy in coordinates
as w=J(q)q and

1
T = EqT](Cl)TIOJ(Cl)Q-

Consequently M(q) = J(q)"IoJ(q) and p = M(q)q. In contrast, 7t = Iy](q)q. Therefore,
in order to use the general results from statistical mechanics, the interconversion

p=Jq"n

must be done. Moreover, Cy in the above equations is not the same as C in the Hamiltonian
formulation. A Rayleigh dissipation function will be of the form

1 1
R = E TCOw = EqT](q)TCOI(CDq,

indicating that C(q) = J(q)"CoJ(q). Then converting (68) to the Hamiltonian form, the
viscous and noise terms become:

J(@)"[~Coly ' et + Bodw] = —](q)" Coly 'oJ (q)dq + ] (q)" Bodw
IfC(q) = J(q)"CoJ(q) and B(q) = J(q)TBo, and if ] is invertible, then the condition in (50)
then becomes completely equivalent to:

Co = gBoBg (69)

The structure of the Cy matrix for a rigid body is a function of its shape. For example, the
viscous drag on an ellipsoid was characterized in [96]. Given Cy, it is possible to define
By = Cy/%
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When I =Tand V = 0 (68) becomes
_ _Bpopr
dr = 5 ByByy rtdt + Bodw . (70)

This is an Ornstein-Uhlenbeck process, and the corresponding Fokker-Planck equation can
be solved for f(7,t) in closed form as a time-varying Gaussian if the initial conditions are
f(m,0) = (7). The equilibrium solution is the Boltzmann distribution

flm) = clp) exp(~E 1P

where c(pB) is the usual normalizing constant for a Gaussian distribution.

5.3.2. Noninertial Theory

When the inertia is negligible, as it is in the case of rotational Brownian motion of
molecules, then (69) and (66) give

wdt = Bydw where B; = /?;BO_T.. (71)

This can be expressed in coordinates as a Stratonovich equation:

q=7"(q)Biw, (72)

or it can be kept in the invariant form (71). The corresponding Fokker—Planck equation is
of the form: X

of I

5 = L DyEiEif

i,j=1
where D = BlBlT and each E; is as in (60) with X = E;.
The short-time solution of this equation subject to Dirac delta initial conditions is the

Gaussian in exponential coordinates. Hence, for short times, entropy and entropy rate can

be computed in closed form using the results from the Euclidean case.
In noninertial theory a special case is isotropic diffusions. Let:

V2 = E}+E5+E.
An isotropic driftless diffusion on SO(3) is one of the form
of 2
= =K . 7
S =KV 73)

The heat kernel for SO(3) is the solution of this subject to the initial condition f(R,0) = §(R).
Rotation matrices can be expressed in terms of the axis and angle of rotation using
Euler’s formula:

R(8,v,A) = exp[fi(v,A)] = T+sinfn(v,A) + (1 —cosf) [A(v,A)]?

where fi(v, A) is a skew symmetric matrix such that for arbitrary vector v € R? and vector
cross product x,
A(v,A)v=n(v,A) xv
and
sinv cos A
n(v,A) = | sinvsinA
cosv



Entropy 2022, 24,19

25 of 32

There are several different ways to choose the ranges of these coordinates to fully param-
eterize SO(3). One way is to view these coordinates as a solid ball of radius 7t in which
6 € [0, 7t] serves as the radius and v € [0, 7r] and A € [0,27), are the usual spherical angles.
Another way is to let 6 € [0,27) and cut the range of one of the other variables in half.
For example, v € [0, 77/2] and A € [0,271) would restrict n to the upper hemisphere and
v € [0, ] and A € [0, r) would be like the western hemisphere (if the initial datum is cho-
sen appropriately). In these hemispherical boundary models, the great circle that bounds
the hemisphere will be half open and half closed so as not to redundantly parameterize.

There are benefits to each of these parameterizations. For example, allowing the [0, 277)
range for 0 reflects that for fixed n rotations around a fixed axis bring back to the same
location. That is the ‘little group’ of rotations around n isomorphic to SO(2) is the ‘maximal
torus” in SO(3). Likewise parameterizing the whole sphere has value. For this reason, the
best of both worlds can be achieved by double covering rotations by allowing both ranges
to be expanded. Moreover, each range [0,277) can be replaced with [—7, 7). Then when
performing integration all that needs to be done is to divide by 2 afterwards.

Using these parameters, the integration measure dR such that the volume of SO(3) is
normalized to 1 is

1 :
dR = 1,2 Sin (0/2)sinvdodArdv . (74)

When computing integrals,

1 T 27 T ) )
/50(3) FR)AR = 5 / / /9 F(R(8,v, 7)) sin?(8/2) sinv dédAdv

1 /2 2m
- o2 / / f(R(6,v,7))sin*(0/2) sinvdodAdv
v A=0JO0=—-m

- i/ﬂ /; _ ) F(R(B,v,A))sin?(8/2) sinvdodAdv

Doubling the range gives

- .2 .
/50(3)f(R)dR - M/V o/ / 771 R(6,v,A))sin"(0/2) sinvdfdAdv (75)

and when f(R(0,v,A)) = f(0) = f(—

2 ‘
/50(3)f(R)dR = - Q:Of(e)smz(@/Z)dG

— LT He)sin2(0/2) do. (76)

7T JO=—11

All normalizations are such that:

/ 1dR = 1.
$0(3)

The Laplacian operator for SO(3) in this axis-angle parameterization is [3,97,98]

92 1 92 d 1 9?2
2= S — 77
v a92+cot9/ 4s1n 9/2< + cotv 8v+ . ya)\z) (77)

It can be shown that the isotropic solution does not depend on v or A, and so all that
needs to be solved is [99,100]:

2
Z:K<§)6J;+C0t6/2 f> (78)
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subject to initial condition f(R,0) = §(R).

A basis for all functions on SO(3) that depend only on 6 are the functions
{xi1(0) |1 € Z>o} where
sin(l + 1)0

:o 0
smz

xi(6) =
These are eigenfunctions of the Laplacian:
Vi = —I(I+1)x.

Consequently, the Fourier series solution of the isotropic heat equation on SO(3) is known
to be:

© -1
FRO,v,A),t) = Y (21 +1)x(6) e 'IFDKE = <sin i) Y (20 +1)sin((1 +1/2)0) e DKL, (79)
1=0 =0
Note that:
tlggf(R(G,v,)t),t) =1
and

/50(3)f(R,t) dR = 1.

When t = 0, the above becomes the Fourier series for the Dirac delta function
f(R,0) = 6(R).

As with the case of the heat equation on the circle, an alternative solution exists,
analogous to a folded Gaussian. Denote this solution as p(6, t), and

-1
F(R(B,v,A),t) = eKt/4 (sin z> Y p(6+2mk,t). (80)
keZ

This can be derived in two steps. First, let

FIR(O,v,0), 1) = (sin §> o).

Substituting in to (78) and simplifying then gives

oh ?h 1
at_K(BQZ+4h>. (81)

Then substituting (6, t) = e"q(6,t) and simplifying gives that when a = K/4

9 _ 9

ot~ Kag (82)

The fundamental solution of this heat Equation (the 1D heat kernel) is

1 2
0,t) = —— T0/aKt
7(0,1) 2/ Kt

However, this solution is not a satisfactory choice for p(6, t) for several reasons. First, SO(3)
is a 3D space, and so the normalization is not correct, as the normalization factor should be
proportional to 1/t3/2. However, to arbitrarily change the temporal dependence will cause
the result to no longer be a solution of (82). Secondly, whereas division by sin(6/2) is fine
in the definition of x;(0) because zeros are balanced by zeros in the numerator, that is not
the case here.
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There is a way to solve both problems. That is by realizing that if 4(6, t) solves (82),
then so too does Cdq /96 for arbitrary constant C. Consequently, we take as a candidate
solution [99,100]:

0(0,8) = Co—__get2/4Kt (83)
(7Kt)3/2

The choice of normalizing factor C is made such that (80) is a pdf. This is a constant, hence
independent of t. Choosing a relatively small value of ¢, the summation in (80) reduces to a
single term and (76) becomes

1 eKt/4 T 2

—C—rrs fe~/*Klsin(0/2)do = 1.

7 (RKE)32 /e: o sin(8/2)

Moreover, for small  the integral over [—7t, 7] can be replaced with an integral over the
whole real line. Consequently, since

/ B~ /4K 5in(0/2) d0 = 2y/7T(Kt)?/ 2 Kt/4

then
C=n%/2

and

-1
g (sin g) Y (6 + 27k) e (O-+27K)? /4Kt (84)
keZ

FRO,,2),0) = ' (e

Since f(R,t) > 0 and integrates to 1 it is a valid pdf. What needs to be tested is

lim f(R,t) =1

t—00

and
%ii%f(R, f) = 6(R).

If these conditions hold, then the solution is valid.
This provides a way to bound entropy in a way similar to the case of the circle. The
next section makes more general exact statements for all values of time.

5.4. Rate of Entropy Production under Diffusion on Unimodular Lie Groups

The entropy of a pdf on a Lie group is defined in (5). If f(g, t) is a pdf that satisfies a
diffusion equation, then some interesting properties of S¢(t) that are independent of initial
conditions result. For example, if S = ds f /dt, then differentiating under the integral gives

S = /{a]tclogf+a{}dg

Moreover, since f is a pdf,

of .. _ 4 _
cor 8= a/Gf(g,t)dg—O-

and so the second term in braces in the expression for S ¢ integrates to zero.
Substituting the diffusion equation

a n
a{ ; Y. DiEE;f - ZakEkf (85)

ij=1
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into the expression for S £ gives [5,6,31]

§ = /{ Y DyEEf - Zakékf}logfdg

ij=1

= ZD,]/ (EiEjf)log f dg + i: / (Exf) log f dg

1]1

= ,IJZ‘H DZ]/ ]f )(Eilog f)d i‘, / f(Exlog f)d
- i / Eif)(Eif)dg — Zak/ Exf dg
i

1
-2 / %
- lypp

2

where F = [F;j] is the Lie-group version of the Fisher information matrix with entries

By = [ (BB ds.

Consequently,

%/\min(D)tr[F] <S< %/\max(D)tr[F]'

The above result is an extension of one presented in [5,6,31].

5.5. The Generalized de Briujn Identity

Here a theorem derived in [5,6,31] is restated.

Theorem 3. Let the solution of the diffusion Equation (85) with constant a = [ay, ..., an]|" subject
to the initial condition f(g,0;D,a) = 6(g) be denoted as fp.:(g) = f(g, t;D,a). Let a(g) be
another differentiable pdf on the group. Then

d 1
L S(@x foar) = pelDF(@ fpa)] 86)
Proof. The solution of the diffusion equation

o 1
ET’; 3 Z D;EiEjp — Z a Erp 87)
i,j=1

subject to the initial conditions p(g,0) = a(g) is p(g,t) = (a * fp 4 +)(g). Then computing
the derivative of S(p(g,t)) with respect to time yields

d d
7500 = —ﬁ/cp(g,f) logp(g,1)dg = —/ {aﬁ logp+ 5, }dg (88)

By substituting in (87), the partial with respect to time can be replaced with Lie derivatives.
However,

/G}S"kpdg:/cﬁ,ﬂjpdgzo.
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Consequently, the second term on the right side of (88) completely disappears. Using the
integration-by-parts formula (There are no surface terms. As with the circle and real line,
each coordinate in the integral either wraps around or goes to infinity.)

/Gfl Exfodg = —/sz Erf1dg,

with f; =logp and f, = p then gives

1 - N
Dy [ o o B foan) Blen foa) dg

N =
:M:

d
ES(D( % fD,a,t) = )

L

=
Il

1
DjiFj(a* fpat) = ﬁtr[DF(“*fD/arf)]'

.M:

1
- i
24

<
[

This means that:

1 [k
S(a foas) = S fpan) = 5 [ 6IDF(ax foar)dt
1

O

Whereas some inequalities of Information Theory generalize to the Lie group setting,
as demonstrated above, others do not. For example, under convolution on a Lie group
(24) and (25) do not hold in general. As for the CRB, there are versions for Lie groups
applicable to small values of Dt or with different concepts of covariance, but not in a way
that is directly applicable to the scenarios formulated here.

6. Conclusions

Stochastic mechanical systems can describe individual representatives of a statistical
mechanical ensemble (as in a rotor in rotational Brownian motion), or can be a stand-alone
system subjected to noise, such as a kinematic cart robot. When these systems have mass,
Itd and Stratonovich SDEs lead to the same Fokker-Planck equation. Even in the case of
inertia-free kinematic systems evolving on Lie groups, these can be the same. From the
Fokker-Planck equation, the rate of entropy can be computed. For diffusion processes
(with or without drift), the rate of entropy increase is related simply to the diffusion
matrix and the Fisher information matrix. This result holds both in Euclidean spaces and
on unimodular Lie groups (including cotangent bundle groups), which are a common
configuration space for mechanical systems. As systems approach equilibrium, the entropy
rate approaches zero. Two different ways to approach equilibrium are discussed: (1) when
there is a restoring potential; (2) when the configuration space is bounded. By using the
monotonicity and convexity properties of the logarithm function together with inequalities
from information theory, computable bounds on entropy and entropy rate are established.
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