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Abstract: We explore a particular way of reformulating quantum theory in classical terms, starting
with phase space rather than Hilbert space, and with actual probability distributions rather than
quasiprobabilities. The classical picture we start with is epistemically restricted, in the spirit of a
model introduced by Spekkens. We obtain quantum theory only by combining a collection of restricted
classical pictures. Our main challenge in this paper is to find a simple way of characterizing the
allowed sets of classical pictures. We present one promising approach to this problem and show how
it works out for the case of a single qubit.
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1. Introduction

Much of Wojciech Zurek’s research, including his research on quantum Darwinism,
has been aimed at explaining the emergence of the classical world from the quantum world.
This is of course an important endeavor, partly because, as he has pointed out, quantum
theory and classical physics seem almost incompatible at first sight.

“The quantum principle of superposition implies that any combination of quan-
tum states is also a legal state. This seems to be in conflict with everyday reality:
States we encounter are localized. Classical objects can be either here or there,
but never both here and there” [1].

Indeed, it is an interesting fact that the standard formulation of quantum theory—with
state vectors in Hilbert space—looks as different as it does from the emergent classical
picture. In this paper, we take a step towards a reformulation of quantum theory that looks
more classical from the very beginning, being based on phase space rather than Hilbert
space. At the same time, we wish to avoid the negative probabilities of the Wigner-function
formulation, which is the most common phase-space formulation of quantum theory.

We are motivated largely by the general observation that it is good to have alternative
formulations of a well-established theory. Alternative formulations can provide novel
insights and new methods of analysis. In the present case, we can also hope that our
classical-like formulation will ultimately provide another perspective on the quantum-to-
classical transition.

Though we intend in future work to apply our methods to continuous quantum
variables such as position and momentum, in this paper, we restrict our attention to the
case of systems normally described with a finite-dimensional Hilbert space. For us, this
means that the phase spaces we use are discrete. Specifically, we use the discrete phase
space introduced in [2], which is simplest when the Hilbert-space dimension d is prime. In
that case, the phase space is a d× d array of points, with axes—analogous to position and
momentum axes—labeled by elements of the field Zd, that is, the integers mod d. As we
explain in the following section, in this phase space it makes sense to speak of “lines” and
“parallel lines”. Each line has exactly d points, and there are d + 1 ways of dividing the d2

points of phase space into d parallel lines.
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Our work is related to a construction due to Spekkens [3–6]. Starting with the same
discrete phase space, he defines an “epistemically restricted classical theory”: the points
of phase space are understood to be the actual, underlying states of the system, but an
observer cannot know this state. The most detailed description an observer can give is
a uniform probability distribution over one of the lines. Spekkens showed that many
qualitative features of quantum theory can be captured by this model, but the model cannot
fully imitate quantum theory because it is non-contextual.

In a recent paper, we showed how one can construct a picture that borrows some of
Spekkens’ ideas but that accommodates the full quantum theory of a d-state system [7].
Specifically, we found that one can decompose the quantum description of a complete
experiment—a preparation, a transformation (or a sequence of transformations), and a
measurement—into a collection of classical descriptions, each entailing certain epistemic
restrictions similar to but subtly different from the one imposed in Spekkens’ model. There
is one such classical description for each possible choice of what we call a “framework.”
The framework defines the epistemic restrictions placed on the classical model. Within each
framework, we can imagine a classical observer whose picture of the experiment is perfectly
compatible with an ontological model in which the system really does occupy a definite
phase-space point at every moment, and in which a transformation is represented by an
ordinary set of transition probabilities in phase space. Each classical observer will compute
their own prediction for the experiment, in the form of a probability assigned to each
possible outcome. We showed how to combine these classical predictions to reconstruct the
quantum prediction. In a slogan, we say the quantum prediction is obtained by “summing
the nonrandom parts”. The meaning of this slogan will become clear in the following
section, but essentially, the nonrandom part of a probability value is its deviation from
the value one would use under a condition of minimal knowledge. (Thus the expression,
“the nonrandom part,” is a kind of shorthand. We do not mean to imply that there is no
element of randomness in values of a probability that differ from the minimal-knowledge
value.) Intriguingly, the use of this unusual method of combining probability distributions
allows us to reproduce the operational statistics of the non-commutative theory of quantum
mechanics starting with ordinary (commutative) classical probability theory.

In [7], we were not able to come up with a simple set of criteria for determining
precisely what sets of classical descriptions are allowed—we did specify a set of criteria,
but it is not simple. Such criteria are desirable if our formulation of quantum theory is to
be self-contained, that is, not dependent on concepts from the Hilbert-space formulation.
The primary aim of the present paper is to identify such a set of criteria.

The rest of this paper is organized as follows. In the next section, we review the
formalism of [7]: how the frameworks are defined, how one decomposes the quantum
description of an experiment into epistemically restricted classical descriptions, and how
the predictions based on these classical descriptions are combined to recover the quan-
tum prediction. In Section 3, we write down four equations showing how any pair of
components of an experiment—the components being preparations, transformations, and
measurement outcomes—can be combined to obtain either other components or an ob-
servable probability. For example, a preparation followed by a transformation constitutes
another preparation, and for a preparation followed directly by a yes-or-no test, there is an
equation that yields the probability of the outcome “yes”. The basis of each of these four
equations is the principle that the nonrandom parts of the inputs should be summed to
obtain the nonrandom part of the output. At this point, we ask our main question: To what
extent do these four composition rules determine the allowed sets of classical descriptions?
That is, to what extent do these equations characterize the structure of quantum theory for
the d-state system? We find it useful to add a few auxiliary assumptions, but we do not
know whether all these assumptions are necessary. Conceivably, a more parsimonious set
of postulates is possible.

In Section 4, we specialize to the case of a single qubit and ask whether the composition
rules and auxiliary postulates of Section 3 determine the quantum theory of this simple
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system. We find that we recover either the standard quantum theory for a qubit or a theory
with a discrete set of transformations.

Of course, we would like to extend this approach to all possible Hilbert-space di-
mensions and to composite systems. We discuss the possibilities for doing this in the
concluding section.

For the remainder of this Introduction, we review briefly some of the earlier efforts
to reconstruct quantum theory from basic principles, as well as other work on quantum
theory in phase space and other approaches to representing quantum theory in terms of
probability distributions.

Reconstructions of quantum theory can be traced back to Birkhoff and von Neu-
mann [8]. In these initial forays, the focus was on mathematical axiomatizations [9–12].
However, it is appealing to think that quantum mechanics might be reconstructed by
stipulating a set of principles in the spirit of Einstein’s principles that lead to the theory of
special relativity. This more operationally oriented approach was ignited by Hardy [13].
In Hardy’s axiomatization, the addition of the key word “continuous” to one of his prin-
ciples differentiates quantum mechanics from classical probability theory. Although the
approach we describe here is different from Hardy’s, that same key word rears its head as
the distinguishing feature between quantum mechanics and a simpler theory, as we will
see in Section 4. Other important reconstruction efforts have likewise relied on operational
or information-theoretic principles [14–19]. Recently, diagrammatic postulates have been
used to reconstruct quantum theory [20].

In another vein, attempts to pinpoint essential quantumness have taken the tack
of augmenting classical physics with simple rules. As we mentioned, Spekkens and
collaborators have done this in a series of epistemically restricted classical theories used
to support an epistemic interpretation of the quantum state [3–5]. Spekkens’ model has
previously been provided with a contextual extension, but without fully capturing quantum
theory [21]. It has also been shown to hold strong similarities to stabilizer physics [22–24],
thereby providing a link to a subtheory of quantum mechanics that plays an important role
in quantum computing. Spekkens’ model is naturally set in phase space, which provides
the backbone for our work.

Quantum mechanics set in phase space has a history almost as long as quantum
mechanics itself [25,26]. Again, the most commonly used phase-space representation of a
quantum state is the Wigner function. An interesting complementary strategy is to invert
the definition of the Wigner function to make classical mechanics look more like quantum
theory [27,28]. A number of different discrete Wigner functions have been defined for
finite-dimensional quantum systems [2,29–33]. In this paper, although our aim is to go
beyond Wigner functions and use only nonnegative probabilities, we do use concepts from
the Wigner-function definition of [2].

There are numerous reasons to study quantum mechanics in phase space. In quantum
optics, the appearance of the negativity of the Wigner function signals the onset of quantum
behavior [34,35]. The negativity of the Wigner function has also been linked to contextuality,
which is another famous notion of nonclassicality [36–38], and to the power of quantum
computing [24,39–41].

The tomography of quantum states is closely tied to the Wigner function. We effectively
use tomographic representations of quantum states in this paper. For this reason, our work
is also closely related to the “classical” approach to quantum theory found in [42–44]. The
authors of these papers have successfully described a large number of quantum phenomena
from this perspective. Our approach diverges from theirs in that we treat every aspect of a
quantum experiment tomographically.

Certain subtheories of quantum mechanics have been proven to be nonnegative in
the Wigner-function representation. The stabilizer subtheory is one of them [31], and
sampling its nonnegative representation provides the basis for the classical simulation of
stabilizer physics [39]. Under certain assumptions, it has been shown that the full quantum
theory requires negativity in some aspect (preparation, transformation, or measurement)
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of a frame-theoretic generalization of the Wigner-function representation [45–47]. The
Pusey–Barrett–Rudolph theorem is another expression of the limitation on representing
quantum mechanics with classical probability theory [48]. Nonetheless, in the search
for new ways in which to simulate quantum systems, researchers have found positive
probabilistic representations of quantum theory by loosening certain assumptions upon
which the theorems are built [49–54]. In another setting, Fuchs and Schack have expressed
quantum states and transformations as probability distributions over the possible outcomes
of a SIC-POVM [55].

Again, our approach begins by decomposing the quantum description of an experi-
ment into a collection of classical probabilistic descriptions, as we explain more fully in the
following section.

2. A Quantum Experiment as a Collection of Classical Experiments

In this section, we briefly review the formalism developed in [7]. We begin with a bit
of notation and terminology.

Let us assume for now that the system we are studying has a Hilbert space with prime
dimension d. We use Greek letters to label the points of the d× d phase space. Each point
α can be specified by its horizontal and vertical coordinates, which we write as αq and
αp, respectively, to emphasize the analogy with position and momentum. Here αq and
αp both take values in Zd. A line is the set of points α satisfying an equation of the form
aαq + bαp = c for fixed a, b, c ∈ Zd with a and b not both zero. Two lines are parallel if they
can be specified by equations of this form differing only in the value of c. We refer to a line
passing through the origin as a ray.

A point in phase space is not a valid quantum state, but we find it extremely helpful
to associate with each point α a quasi-density matrix Âα, which we call a “phase point
operator.” This is a trace-one Hermitian matrix, but it is not a legitimate density matrix
because it can have negative eigenvalues. The matrices Âα that we use are the ones
introduced in [2] to define a discrete Wigner function (see below). The matrix Âα for any
odd prime d is written as follows in terms of its components:

(Âα)kl = δ2αq ,k+lω
αp(k−l), (1)

where ω = e2πi/d and the arithmetic in the subscript of the Kronecker delta is mod d. For
d = 2, there is a special formula:

Âα = 1
2
[
Î + (−1)αp X̂ + (−1)αq+αpŶ + (−1)αq Ẑ

]
, (2)

where X̂, Ŷ, Ẑ are the Pauli matrices and Î is the 2× 2 identity matrix. The Â matrices are
orthogonal in the Hilbert–Schmidt sense:

tr(Âα Âβ) = dδαβ, (3)

and because there are d2 of them, they serve as a basis for the space of all d× d matrices. In
particular, we can expand a density matrix ŵ as a linear combination of Â’s.

ŵ = ∑
α

Q(α|ŵ)Âα. (4)

The coefficients Q(α|ŵ) in this expansion constitute the discrete Wigner function representing
the given state.

The operators Âα also have the following special property, which we use immediately
in the following subsection. For any line `, the average of the Â’s over that line is a
one-dimensional projection operator:

1
d ∑

α∈`
Âα = |ψ`〉〈ψ`|, (5)
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where |ψ`〉 is a state vector associated with the line `. Since the Â’s are orthogonal to
each other, the |ψ〉’s associated with a complete set of parallel lines—we call such a set a
striation—constitute an orthonormal basis for the Hilbert space. Moreover, because any
two non-parallel lines intersect in exactly one point, Equation (3) guarantees that these
bases are mutually unbiased; that is, each basis vector is an equal-magnitude superposition
of the vectors of any of the other bases.

2.1. Defining the Frameworks

A “framework” is a mathematical structure that determines what epistemic constraint
one of our classical probability distributions must satisfy. The introduction of the concept
of a framework is one way in which our work differs from Spekkens’ model. In Spekkens’
model, there is just one classical world, and there is one epistemic constraint that applies to
it. In his model, for example, a uniform probability distribution over any line of the discrete
phase space counts as a legitimate epistemic state. By contrast, what we are doing, roughly
speaking, is to decompose this set of possibilities into distinct cases—one for each possible
slope of a line—and to associate each of these cases with a different classical world.

We now explain specifically what kind of mathematical structure constitutes a framework
for each component of an experiment—a preparation, a transformation, or a measurement—
and what epistemic restriction is associated with each of these frameworks.

For either a preparation or a measurement, a framework is simply a striation of the
phase space—a complete set of parallel lines. We label such a striation with the symbol B,
since each striation is associated with an orthonormal basis. For a given framework B, the
classical probability function representing a given preparation or measurement outcome is
required to be constant along each line of the striation B—this is the epistemic restriction
associated with the framework B. We define these restricted probability functions in the
next subsection.

To define the framework for a transformation, we need to consider a special class of
linear transformations on the discrete phase space. Let us think of a point α as represented
by a column vector with components αq and αp. Then a linear transformation is represented
by a 2 × 2 matrix, with elements in Zd, acting from the left on this column vector. A
symplectic transformation is a linear transformation that preserves the symplectic product:

〈α, β〉 = αpβq − αqβp. (6)

For the case we consider, in which the phase space has just two discrete dimensions, the
symplectic transformations are the same as the transformations whose matrices have unit
determinant.

The number of symplectic matrices for any prime d is d(d2 − 1). Our formulation
is simplest if, among these symplectic matrices, there exists a set T of just d2 − 1 such
matrices that has the “nonsingular difference” property: the difference between any two
matrices in T has a nonzero determinant. It turns out that this condition allows for a
particularly simple reconstruction of a quantum transformation from the classical transition
probabilities, defined in the following section. In [7], the nonsingular difference is the
only property we require of the set T , and to our knowledge, it is not known whether
such a set of d2 − 1 matrices exists for all prime d. However, for our present purposes,
we also need T to constitute a group, that is, a subgroup of the symplectic group Sp(2,d).
It is known that such a special subgroup exists for the values d = 2, 3, 5, 7, 11 but not for
larger values [56]. We can develop our formalism so as to apply to every prime dimension,
regardless of whether there exists a special set T—indeed, we did this in [7]. (If no such
set exists, we use the full symplectic group and insert a factor of 1/d whenever we sum
over the symplectic matrices.) However, in the present paper, for simplicity, we restrict our
attention to those dimensions for which such a special subgroup exists. This makes the
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equations simpler. In Section 4, we specialize to the case of a single qubit, for which we
now write down explicitly the unique special subgroup of symplectic matrices:

I =

(
1 0
0 1

)
R =

(
0 1
1 1

)
L =

(
1 1
1 0

)
(7)

One can verify that the difference between any two of these matrices has a nonzero de-
terminant. The choice of symbols comes from the fact thatR permutes the three nonzero
points by rotating them to the right, whereas L rotates them to the left.

Now, finally, we can say what we mean by a framework for a transformation. Again,
let T be a group of d2 − 1 symplectic transformations with the nonsingular difference
property. Then a framework for a transformation is simply a symplectic matrix S chosen
from the set T . (When such a group does not exist, we let every symplectic matrix define
a framework.)

As we have said, for a preparation or a measurement outcome, the associated proba-
bility function—defined in the following subsection—will be required to be constant along
each line of the striation B serving as the framework. Something similar happens for a
transformation. However, instead of working in phase space per se, we now imagine
ourselves working in the set of all ontic transitions from one point to another. Let us label
such a transition as α→ β. There are d4 ontic transitions. Now, just as a striation B parti-
tions the d2 points of phase space into d sets of d points each, we can regard a symplectic
transformation S as partitioning the d4 ontic transitions into d2 sets, each comprising d2

transitions.
Here is how this partitioning happens. For a fixed symplectic matrix S and a given

ontic transition α → β, let the displacement δ be defined by δ = β − Sα. That is, δ is
the extra displacement one needs to arrive at β, once one has applied S to α. Keeping S
fixed, we define the “displacement class” associated with δ to be the set of all the ontic
transitions α→ β such that β− Sα = δ. For any given S, there are d2 displacement classes,
each consisting of d2 ontic transitions. The framework S entails the following epistemic
restriction: the classical transition probabilities characterizing a given transformation must
be constant within each displacement class. In the following subsection, we show how such
a set of transition probabilities is to be defined.

Consider now an entire experiment consisting of a preparation, a transformation,
and a measurement. A framework for the whole experiment is obtained by choosing a
framework for each component of the experiment. We express a framework F for this
experiment as the ordered triple F = (B′, S, B), where B and B′ are the frameworks for the
preparation and measurement, respectively. (We read the ordered triple from right to left,
because in our equations, this is the order in which the associated probability functions
will appear.)

As it turns out, we need to consider only a subset of the possible combinations
(B′, S, B), namely those for which the striation B′ is precisely the striation obtained by
applying S to the striation B. We call such a combination a coherent framework for the
experiment. We may use other frameworks—ones that are not coherent—but it turns out
that such frameworks will contribute nothing to our predictions for the outcome of the
experiment. Similarly, if the experiment includes two or more successive transformations,
so that we have a framework (B′, Sn, . . . , S1, B), we need to consider only those frameworks
for which B′ = Sn . . . S1B.

We are now ready to show how the quantum description of a preparation, a trans-
formation, or a measurement outcome can be replaced by a set of epistemically restricted
classical descriptions.

2.2. Decomposing the Quantum Description of an Experiment into Classical Descriptions

We begin with the case of a preparation. The standard quantum description of a
preparation is given by a density matrix ŵ. We replace this single quantum description
with d + 1 classical descriptions RB(α|ŵ), one for each striation B. Each of these classical
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descriptions is simply a probability distribution over phase space, and each of these
probability distributions satisfies the epistemic constraint associated with B: the distribution
must be constant along each line of B.

The definition of RB(α|ŵ) in terms of the density matrix ŵ is simple:

RB(α|ŵ) =
1
d
〈ψ`|ŵ|ψ`〉, (8)

where ` is the unique line in B that contains the point α. Again, |ψ`〉 is the state vector
associated with the line `. It is not hard to show that R is a properly normalized probability
distribution over phase space—that is,

∑
α

RB(α|ŵ) = 1, (9)

and it is clear that R is constant over each line in B. It is possible to reconstruct ŵ from the
whole set of R’s, but in this paper, our ultimate aim is to work wholly with the classical
descriptions. Therefore, we would like to think of the R’s as the primary description of
the preparation.

We now move on to the case of a measurement (saving the more complicated case of a
transformation for later in this subsection). We are interested just in the probabilities of the
outcomes of a measurement, not in any change in the system caused by the measurement.
A measurement in this sense is represented in quantum theory by a POVM, that is, a set of
positive semidefinite operators on the d-dimensional Hilbert space that sum to the identity.
Let Ê be one element of such a POVM, corresponding to a particular outcome of the
measurement. We now show how to replace Ê with a set of classical probability functions
RB(Ê|α), one for each striation B. In keeping with the associated epistemic restriction, the
function RB(Ê|α) will be constant along each line of B.

The definition of RB(Ê|α) is similar to the one in Equation (8).

RB(Ê|α) = 〈ψ`|Ê|ψ`〉, (10)

where ` is again the unique line in B that contains α. Informally, we think of RB(Ê|α) as
the probability of the outcome Ê when the system is at the point α (an illegal quantum
state). Note that this function has a different normalization from the classical probability
distributions describing a preparation. We can think of the uniform distribution over phase
space—with the value 1/d2 for each point α—as representing the completely mixed state.
(This interpretation comes from the discrete Wigner function). Therefore, we expect the
following normalization:

∑
α

[
RB(Ê|α)× 1

d2

]
= tr

[
Ê( Î/d)

]
=

1
d

trÊ

=⇒ ∑
α

RB(Ê|α) = d trÊ.
(11)

One can see from Equation (10) that the function is indeed normalized in this way.
We now turn our attention to the case of a transformation. In general, the quantum

description of a normalization-preserving transformation is given by a completely positive,
trace-preserving map, which in turn can be specified by a set of Kraus operators. We
will replace this description by a set of classical probability distributions. We restrict our
attention to operations that preserve the Hilbert-space dimension, and we restrict our
attention to unital transformations, that is, transformations that leave the completely mixed
state unchanged.
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We begin by defining a set of transition quasiprobabilities that characterize a given
transformation. For an operation E , these are defined by:

QE (β|α) = 1
d

tr
[
ÂβE(Âα)

]
. (12)

In particular, if E is a unitary transformation, we have:

QE (β|α) = 1
d

tr
[

ÂβÛÂαÛ†
]
. (13)

In a discrete-Wigner-function formulation, we can interpret QE (β|α) as the quasiprobability
that a system at the point α will move to the point β when the transformation E is applied.
Thus, if the transformation is applied to a system described by the Wigner function Q(α|ŵ),
the resulting Wigner function Q(β|E(ŵ)) is given by:

Q(β|E(ŵ)) = ∑
α

QE (β|α)Q(α|ŵ). (14)

Though QE (β|α) plays the role of a probability in this equation, it is not a probability since
it can take negative values [57]. It is, however, normalized as a probability distribution:
∑β QE (β|α) = 1. Because our transformations are unital, QE is also normalized over its
second argument: ∑α QE (β|α) = 1.

We use QE (β|α) to define our classical transition probabilities (which are indeed
nonnegative). Again, the framework for a transformation is specified by a symplectic
transformation S chosen from the set T defined above. In the framework S, the probability
that a system at point α will move to β is given by:

RS
E (β|α) = 1

d2 ∑
µ

QE (Sµ + δ|µ), (15)

where δ = β − Sα. That is, we obtain RS
E (β|α) simply by averaging QE (β|α) over the

displacement class δ in which the ontic transition α→ β lies. By definition, then, RS
E (β|α)

is constant over each displacement class.
What is much less obvious is that RS

E (β|α) is always nonnegative. This was proven
in [7], and we do not repeat the proof here. (For the special case d = 2, the nonnegativity
depends on using the special subgroup T of symplectic matrices. For odd primes, RS

E is
nonnegative for any symplectic S). We also showed in that paper how to reconstruct the
quantum operation E from the entire set of RS

E ’s.
We now have all the ingredients we need for a classical description of a whole ex-

periment, within a specified framework. Let us suppose the experiment consists of a
preparation, followed by a transformation, followed by a measurement. In terms of stan-
dard quantum mechanical concepts, we can compute the probability of a particular outcome
via the equation:

P(Ê|E , ŵ) = tr
[
ÊE(ŵ)

]
, (16)

where ŵ is the initial density matrix, E is the transformation, and Ê is the POVM element
representing the outcome.

Within the classical framework (B′, S, B), we can try to compute the same probability
by writing:

P(Ê|E , ŵ)
?
= ∑

αβ

RB′(Ê|β)RS
E (β|α)RB(α|ŵ). (17)

Note that we are combining the probabilities in the standard way. Again, every function
inside the sum is nonnegative and properly normalized, so the resulting probability is at
least a legitimate probability. However, it is not the correct value. This is largely because
the classical story associated with a specific framework is by no means the whole story.
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We need the predictions obtained from all the coherent frameworks in order to recover the
quantum prediction. We show how this is done in the following subsection.

2.3. Recovering the Quantum Prediction: Summing the Nonrandom Parts

The formula for reconstructing the quantum prediction from the whole set of classical
predictions is quite simple. As we noted in the Introduction, it depends on the concept of
the “nonrandom part” of a probability, which we now explain.

For a probability distribution R(α) over the discrete phase space, we define the non-
random part ∆R(α) to be the deviation from the uniform distribution:

∆R(α) = R(α)− 1
d2 . (18)

For the probability of a measurement outcome Ê, we define the nonrandom part by sub-
tracting the probability we would assign to the outcome Ê if we were starting with the
completely mixed state, or in phase-space language, if we were starting from the uniform
distribution over phase space. Thus, we have:

∆RB(Ê|α) = RB(Ê|α)− 1
d2 ∑

γ

RB(Ê|γ), (19)

or, for an expression using standard quantum mechanical terms,

∆P(Ê|ŵ) = P(Ê|ŵ)− 1
d

trÊ. (20)

For all these cases, “∆” means that we are subtracting the “random part” of the given
probability, that is, the value we would assign to the probability under a condition of
minimal knowledge.

Let us now consider an experiment consisting of a preparation ŵ, a transformation
E , and a measurement, one of whose possible outcomes is Ê. We showed in [7] that
we recover the quantum mechanically predicted probability of the outcome Ê via the
following formula:

∆P(Ê|E , ŵ) = ∑
F

∆PF (Ê|E , ŵ), (21)

where the sum is over all coherent frameworks F = (B′, S, B), and:

PF (Ê|E , ŵ) = ∑
αβ

RB′(Ê|β)RS
E (β|α)RB(α|ŵ). (22)

That is, within each framework, we compute the probability of Ê in an utterly standard
way. What is nonstandard is that we then combine these various classical predictions by
summing the nonrandom parts.

One component of the derivation of Equation (21) is the formula that inverts Equation (15),
which was also proven in [7]:

∆QE (β|α) = ∑
S

∆RS
E (β|α). (23)

We will find this equation useful in Section 4 below.

3. The Composition Rules and Their Role as Foundational Postulates

In the preceding section, we started with the standard quantum mechanical description
of each component of an experiment and then defined our classical probability functions
in terms of the associated quantum concepts. Our ultimate aim, though, is to develop a
self-contained formulation of quantum theory, in which the basic objects are epistemically
restricted classical probability functions. This means that we cannot rely on the standard
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concepts of quantum theory to determine which sets of classical probability functions are
allowed. We must find criteria that are independent of the vectors and operators of Hilbert
space. It is to this aim that we now turn our attention. In this section, therefore, we switch
to an operational understanding of the symbols w, E , and E. We use those symbols to refer
to a preparation, a transformation, and a measurement outcome—processes and events
one can observe in a lab—and not to any particular mathematical objects. The absence of
hats on the symbols is a notational indication of this switch.

Again, the calculation in Equation (22), in which we compute the probability of the
outcome E from the perspective of one of our classical observers, is quite ordinary—all
the probabilities are being used in the standard way. It is only when we combine the
classical predictions, via Equation (21), that we combine probabilities in a way that we
would never do classically—by summing the nonrandom parts. We are inclined, then,
to regard the summing of the nonrandom parts as the essentially quantum mechanical
component of our formulation. We do not claim to fully understand the significance of
this procedure. However, it does seem to capture what is quantum mechanical about
our formalism, just as the superposition principle can be understood as the quintessential
quantum mechanical feature of the usual formulation. We do not mean to imply that our
rule is in any way an expression of the superposition principle, but only that we are giving
our rule a fundamental status in the mathematical formalism. (The superposition principle
is quite foreign to our approach, since we are working only with probabilities and not with
amplitudes).

This circumstance leads us to ask whether the procedure of summing nonrandom parts
can be used as a foundational principle, which could determine which sets of probability
distributions are permitted.

To that end, let us consider the following four equations—the “composition rules”—all
of which follow from the definitions of the preceding section, but all of which also make
sense without reference to any Hilbert-space concepts. In these equations, the symbol ∆ is
consistently used to indicate the nonrandom part of whatever follows it:

1. Combining a preparation with a transformation to obtain another preparation:

∆RB′(β|E(w)) = ∑
{(S,B)|SB=B′}

∆

[
∑
α

RS
E (β|α)RB(α|w)

]
; (24)

2. Combining two transformations in sequence to obtain another transformation:

∆RS
E2◦E1

(γ|α) = ∑
{(S2,S1)|S2S1=S}

∆

[
∑
β

RS2
E2
(γ|β)RS1

E1
(β|α)

]
; (25)

3. Combining a transformation with a measurement outcome to obtain another mea-
surement outcome:

∆RB′(E′|α) = ∑
{(B,S)|S−1B=B′}

∆

[
∑
β

RB(E|β)RS
E (β|α)

]
, (26)

where E′ is the measurement outcome that is equivalent to applying E and then
obtaining the outcome E;

4. Combining a preparation w with a measurement outcome E to obtain the probability
P(E|w) of the outcome E given the preparation w:

∆P(E|w) = ∑
B

∆

[
∑
α

RB(E|α)RB(α|w)

]
. (27)
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We can summarize all of these equations by saying that in any combination of the compo-
nents of an experiment, one always sums the nonrandom parts of the classically expected
results, the sum being over all frameworks that are consistent with the framework of the
resulting classical probability function (or, in the last case, all frameworks that are coherent).

The equations listed above are all correct as statements within quantum theory, but
our question now is whether they are sufficient to pick out the allowed sets of R functions.

They may not be fully sufficient. These equations set conditions on the whole system
of probability distributions, describing all the components of an experiment, and there
could be trade-offs among these components. It is conceivable, for example, that by being
more restrictive in what we allow for measurements, we can be more generous in what we
allow for preparations. In this paper, we avoid some of this worry by making the following
three auxiliary assumptions, but we are not certain whether all these auxiliary assumptions
are necessary:

A. For each preparation w with probability functions RB(α|w), there is a corresponding
measurement outcome E with probability functions RB(E|α) = dRB(α|w), and the
random part of RB(E|α) is 1/d;

B. For an invertible transformation E with probability functions RS
E (β|α), the probability

functions of the inverse are RS
E−1(β|α) = RS−1

E (α|β);
C. Every preparation consistent with Equation (27) and Assumption A is physically

possible. Moreover, the complete system of preparations, transformations, and
measurement outcomes must be maximal. That is, it should not be possible to add
any other transformation or measurement outcome without violating Equations (24)–
(27) or one of our assumptions.

Assumption A minimizes the likelihood of precisely the kind of trade-off we described
above. Assumption B gives the most natural definition of the inverse in our formalism.
The spirit behind Assumption C is that we are starting with a picture in which all properly
normalized probability functions are allowed. The composition rules and the auxiliary
assumptions are intended simply to restrict the set of such functions, and we do not want
to restrict it more than necessary.

To see how a proposed set of R functions might run afoul of the composition rules and
the auxiliary assumptions, suppose that for a single qubit, we were to say that there exists
a preparation w such that for each striation B,

RB(α|w) =

{ 1
2 if α lies on the ray in B
0 otherwise

(28)

Then, by Assumption A, there exists a measurement outcome E such that:

RB(E|α) =
{

1 if α lies on the ray in B
0 otherwise

(29)

These functions are perfectly consistent with the epistemic constraint—each is constant
along each line of its striation B—but they are not consistent with Equation (27): the com-
puted probability for the outcome E, given the preparation w, comes out to be two, which
is not a legitimate value for a probability. Our question is whether similar considerations
will rule out all other sets of R’s that do not correspond to legitimate quantum states
and processes.

We have by no means answered this question in general, but we do have some answers
for the special case of a single qubit. They are the subject of the following section.

4. The Case of a Single Qubit

Here, we show how Equations (24)–(27) and Assumptions A, B, and C apply to the
case d = 2.
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4.1. The Allowed Preparations and Measurements

For now, let us continue to take d as any prime number. Let the functions RB(α|w)
describe a preparation w. Then, by Assumption A, there is a measurement outcome E
described by RB(E|α) = dRB(α|w). Inserting this w and E into Equation (27), we obtain:

∆P(E|w) = ∑
B

∆

[
∑
α

RB(E|α)RB(α|w)

]
. (30)

Each term in this equation that is preceded by ∆ is a probability assigned to the outcome E.
Therefore, the ∆ tells us to subtract 1/d (as is also specified in Assumption A). Collecting
the constant terms on the right-hand side, we have:

P(E|w) = ∑
B,α

[
RB(E|α)RB(α|w)

]
− 1. (31)

Now, we replace RB(E|α) with dRB(α|w) to obtain:

P(E|w) = d ∑
B,α

RB(α|w)2 − 1. (32)

In order to prevent P(E|w) from being larger than one, we need to insist that:

∑
B,α

RB(α|w)2 ≤ 2
d

. (33)

This condition must hold for every prime d. As we now show, for the case of a single qubit,
it completely defines the set of allowed preparations.

For a qubit, Equation (33) becomes simply:

∑
B,α

RB(α|w)2 ≤ 1. (34)

Suppose we have a set of functions RB(α|w) satisfying this inequality. Let us define the
quantities rx, ry, and rz as follows:

rx = ∑
α

(−1)αp RX(α|w)

ry = ∑
α

(−1)αq+αp RY(α|w)

rz = ∑
α

(−1)αq RZ(α|w),

(35)

where X, Y, and Z are the horizontal, diagonal, and vertical striations, respectively. These
equations can be inverted to give:

RX(α|w) = 1
4 [1 + (−1)αp rx]

RY(α|w) = 1
4
[
1 + (−1)αq+αp ry

]
RZ(α|w) = 1

4 [1 + (−1)αq rz].

(36)

One can see from Equation (36) that:

∑
B,α

RB(α|w)2 = 3
4 + 1

4

(
r2

x + r2
y + r2

z

)
. (37)

Therefore, Equation (34) is equivalent to the condition that the vector~r = (rx, ry, rz) has
length no greater than one.
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From the definition of RB(α|w) in Section 2, one can show that the R’s given in
Equation (36) correspond to the density matrix ŵ = 1

2 (I +~r ·~̂σ), where ~̂σ is the vector of
Pauli matrices. We see, then, that the condition (34) is indeed sufficient to restrict the set of
R’s to their proper range (that is, to the range |~r| ≤ 1). Assumption C then tells us that the
entire set of such preparations is allowed. In this way, we recover the Bloch sphere.

Do our assumptions also pick out the valid measurement outcomes? In the standard
quantum formalism, we can characterize the allowed POVM elements Ê by the following
condition: an operator Ê is a valid POVM element if and only if the quantity:

P(E|w) = tr(Êŵ) (38)

lies in the interval [0, 1] for every density matrix ŵ. Now, Equation (27) is simply an
expression of Equation (38) in our formalism. Therefore, the condition that the P(E|w)
appearing in Equation (27) must be in the range [0, 1] is equivalent to the quantum condition
we have just stated. Equation (27) thus picks out the valid measurement outcomes, as long
as we know what the valid preparations are. This we do know, as we have seen in the
preceding paragraph.

4.2. The Allowed Invertible Transformations

Here, we aim to determine what set or sets of invertible transformations on a qubit are
consistent with our assumptions.

We begin by noting that for any invertible transformation E , we can derive from
Assumption B that RS

E (β|α) is normalized over its second index, as well as its first. (As we
noted earlier, the same is true for any unital transformation, a concept that still makes sense
in our phase-space setting). We use this fact a few times in what follows.

Our next step is to derive the representation of the identity transformation RS
I (β|α).

For d = 2, there is a valid preparation given by the following probability distributions:

RX(α|w) = RY(α|w) =
1
4

1 1

1 1
, RZ(α|w) =

1
2

1 0

1 0
. (39)

(The bottom left box of such a phase-space diagram corresponds to phase-space point
α = (0, 0), and the appropriate index increases by one when moving either up or right.)
This corresponds to the spin-up state in the z-direction for a qubit. From the instance of
Equation (24) that results from this preparation and the identity channel:

∆RZ(β|w) = ∑
{(S,B)|SB=Z}

∆

[
∑
α

RS
I (β|α)RB(α|w)

]
. (40)

Applying the normalization rule ∑α RS
I (β|α) = 1 to the terms with B = X and B = Y, for

which RB is uniform, yields a null contribution. What remains is:

∆RZ(β|w) = ∆

[
∑
α

RII (β|α)RZ(α|w)

]
. (41)

For this to hold true, the transitions of RII (β|α) must not take either of the points on the
nonzero line of RZ(α|w) away from that line. However, this same argument can be made
for a preparation corresponding to any other line and the form of RII (β|α) should not
change. This implies:

RII (β|α) = δαβ. (42)

Therefore, whenever the identity transformation is inserted into Equation (24), the LHS of
the equation will always equal the term on the RHS that includes RII (β|α). The other two
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terms—corresponding to the symplectic matricesR and L—must sum to zero, which can
only be possible for all preparations when:

RRI (β|α) = RLI (β|α) = 1
4

. (43)

Equations (42) and (43) thus give us the representation of the identity transformation.
We now make use of Equation (25) specialized to the case of a transformation being

combined with its inverse. Leveraging Assumption B, we find:

∆RS
I (γ|α) = ∑

S′
∆

[
∑
β

RSS′
E (γ|β)RS′

E (α|β)
]

. (44)

We again use the fact that the sum of RE over its second argument is unity. From this, it
follows that we can move the ∆ on the right-hand side of Equation (44) to the factors inside
the sum over β (see Appendix B of [7]):

∑
S′

∆

[
∑
β

RSS′
E (γ|β)RS′

E (α|β)
]
= ∑

S′ ,β
∆RSS′
E (γ|β)∆RS′

E (α|β). (45)

From Equation (23), we have that:

QE (γ|β) =
1
4
+ ∑

S
∆RS
E (γ|β). (46)

Combining Equations (44)–(46) with the inverse rule and the form of RII (β|α), one can
show that the transition quasiprobabilities for any invertible transformation can be thought
of as an orthogonal matrix:

∑
β

QE (γ|β)QE (α|β) = ∑
β

(
1
4
+ ∑

S
∆RS
E (γ|β)

)(
1
4
+ ∑

S′
∆RS′
E (α|β)

)
(47)

=
1
4
+ ∑

S,S′
∆

[
∑
β

RSS′
E (γ|β)RS′

E (α|β)
]

(48)

=
1
4
+ ∑

S
∆RS

I (γ|α) (49)

= δαγ. (50)

Although we ultimately want to know what sets of transition probabilities RS
E are

allowed in our theory, the argument is less cumbersome if we work with the quasiprobabil-
ities QE temporarily. They are of course well defined in terms of the transition probabilities
RS
E (by Equation (23)).

We can express the Wigner function Q(α|w) for a qubit as a four-component column
vector ~Qw on which a transition quasiprobability matrix QE acts. Thus, Equation (14)
becomes:

~Qw′ = QE ~Qw , (51)

where w′ = E(w). We also know that QE and its inverse both preserve normalization,
which means that each row and each column of QE sums to unity. Because of this, we
can write:

∆~Qw′ = QE∆~Qw , (52)
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where ∆~Q is defined through our usual ∆ notation, that is, by subtracting 1/4 from each
component. Now, define the following orthogonal matrix:

M = 1
2


1 1 −1 −1
1 −1 −1 1
1 −1 1 −1
1 1 1 1

. (53)

Then, we have: (
M∆~Qw′

)
= MQEMT

(
M∆~Qw

)
. (54)

Note that the last component of either M∆~Qw or M∆~Qw′ is zero due to normalization.
Therefore, these vectors are confined to three dimensions. Meanwhile, the matrix MQEMT

is still orthogonal. Moreover, it is block diagonal, consisting of a 3× 3 block in the upper left
and the number 1 in the lower right. Consequently, it is effectively a 3× 3 orthogonal matrix
acting on the three-dimensional space in which M∆~Qw can have nonzero components.
Let us define ŵ to be ∑α Q(α|w)Âα. This matrix has unit trace, so we can express it as
ŵ = (1/2)(I +~r ·~̂σ) for some real vector~r. Then, one can show from the definition of Âα

that the three nonzero components of M∆~Qw are the components r1, r2, r3 of~r. Thus, the
fact that QE is orthogonal implies that every reversible transformation can be thought of as
a rotation of the Bloch sphere, possibly combined with a reflection.

We now have a set of invertible transformations that is more permissive than that of a
qubit, since it includes the possibility of reflection. That is, it includes transformations rep-
resented by 3× 3 orthogonal matrices with determinant −1. (In standard quantum terms,
it includes antiunitary transformations.) However, not all of the negative-determinant
transformations are allowed, as we now show.

One can always decompose a negative-determinant orthogonal transformation of
the sphere into an inversion through the center followed by a rotation. We denote the
inversion operation as Ω. To find RS

Ω, note that the phase point operators are defined using
an expansion of Pauli operators and have unit trace, so they can be represented by points
in the same three-dimensional space in which~r lives. For example, Â(0,0) =

1
2 (I +~r ·~̂σ),

where~r = (1, 1, 1), and more generally, we can write Âα = 1
2 (I +~rα · ~̂σ). Therefore, the

inversion operation Ω(Âα) is well defined: extra minus signs appear before the X̂, Ŷ, and
Ẑ terms. We can then use Equations (12) and (15) to find:

RIΩ(β|α) = 1
2 − δαβ,

RRΩ(β|α) = RLΩ(β|α) = 1
4 .

(55)

RIΩ has negative values and, therefore, is not compatible with our formalism.
This does not yet rule out any of the other negative-determinant transformations.

(It does, however, rule out the possibility of including even a single such transformation
if all the rotations are allowed, since we could then construct Ω.) Again, all negative-
determinant transformations can be written as an inversion followed by a rotation E , and
we can use the combination rule in Equation (25) to show that:

RS
E◦Ω(β|α) = 1

2 − RS
E (β|α). (56)

It follows that we can only allow transformations described by E ◦Ω, if the rotation E is
represented by transition probabilities that never exceed 1/2. In Appendix A, we show that
this leaves us with only twelve possible rotations that can be composed with inversion to
give legal transition probabilities. Let us call them Ej. These include 90 degree right-hand
rotations around each of the six cardinal directions and 180 degree rotations around each
axis that forms a 45 degree angle with a pair of cardinal axes.

The twelve operations Ej ◦Ω effect the permutations of the four vectors~rα. (Recall that
these vectors correspond to the four phase point operators and thus to the four points of



Entropy 2022, 24, 137 16 of 20

phase space.) Composing these operations, we obtain a set of twelve rotations of the form
Ej ◦ Ek. Altogether, this gives us a set of positive- and negative-determinant transformations
that correspond to the twenty-four ways one can permute the four phase point operators.
Although this set of twenty-four is quite different from the set of reversible transformations
of a qubit, it is intriguing that it is a nontrivial set of transformations that can easily be
understood classically.

We thus have two possibilities for the set of transformations: (i) a continuous set
consisting of all the rotations of the Bloch sphere—the set we were aiming for—or (ii) a
finite set that can be understood as comprising all possible permutations of the four ontic
states. Both sets are maximal in the sense that they cannot be augmented with any other
transformations.

To summarize, it appears that our composition rules and auxiliary assumptions do not
uniquely lead to qubit physics. Nonetheless, our simple setup does bring us remarkably
close. At this point, the best we can do is to include another assumption such as the
continuity of the set of transformations that would eliminate the finite set.

5. Conclusions

For a quantum system with a prime Hilbert-space dimension, we have a way of
decomposing the quantum description of an experiment into a set of classical, epistemically
restricted descriptions. For each of these classical descriptions, which consist of nothing
but probability functions, we can imagine an observer using these functions to compute
the probability of any given outcome of the experiment. For any given classical observer,
this prediction will be a bad prediction, but we know how to combine the predictions of all
the classical observers to recover the correct quantum mechanical probability: we sum the
nonrandom parts.

However, this picture begins with the standard formulation of quantum theory. Our
aim is to develop an alternative, self-contained formulation of quantum theory in which the
classical descriptions are the primary mathematical entities. The formulation we seek would
thus be based entirely on actual probability functions defined on phase space. To create
such a formulation, we need a set of criteria for determining when a given probabilistic
description of a preparation, a transformation, or a measurement outcome is legitimate. In
this paper, we have presented and begun to explore a set of equations that might serve as
the basis for such criteria. These equations—our four composition rules—can all be placed
under the heading, “sum the nonrandom parts.” We have been led to this approach by the
fact that this intriguing prescription is the only non-classical element of our formalism. We
are wondering whether summing the nonrandom parts is a key to what is characteristically
“quantum” about quantum theory, and we have speculated that it may play a fundamental
role loosely analogous to that of the superposition principle in the standard formulation.

Summing the nonrandom parts is a strange way to combine probability distributions.
It could easily lead to illegal probabilities if there were not some constraints on the proba-
bility distributions being combined. Therefore, simply by insisting that the probabilities
computed via this prescription are legitimate, we are implicitly placing constraints on
our classical probability distributions. This fact has led us to ask the question: Are those
constraints, along with a set of intuitively plausible auxiliary assumptions, sufficient to
define the structure of quantum theory?

We addressed this question for the case of a single qubit, with only reversible transfor-
mations, and we found that we can recover the usual quantum rules that determine what
states are allowed and what transformations are allowed. (For the case of transformations,
we need an assumption such as continuity to rule out a particular finite set of unitary and
antiunitary transformations that is consistent with our other assumptions.)

However, the case of a single qubit is relatively simple. In our formalism, the set of
allowed states is determined entirely by the condition that:

∑
B,α

RB(α|w)2 ≤ 1. (57)
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For a general qudit, we have an analogous equation:

∑
B,α

RB(α|w)2 ≤ 2
d

. (58)

However, for d > 2, this is not the only condition required for a state to be legitimate.
Therefore, any argument from our composition rules is not likely to be as simple as the one
we were able to use for a single qubit.

Once we permit ourselves the extra assumption that the set of transformations is
continuous, the reversible transformations on a single qubit are also relatively simple. They
are equivalent to the rotations in three dimensions. Therefore, we mainly needed to show
that the matrix of transition quasiprobabilities, QE (β|α), is an orthogonal matrix. In higher
dimensions, this matrix is again orthogonal, but other conditions must also be met in order
to arrive at the unitary transformations.

However, we have by no means used all the information available in our composition
rules (Equations (24)–(27)). Therefore, one can hope that these equations constitute a
sufficient or nearly sufficient set of restrictions for arbitrary prime d.

Ultimately, we would like to extend our work to all Hilbert-space dimensions. In
the analysis of [2], a system with composite dimension d is treated as a composite system.
It would be natural for us to use the same strategy here. Thus, the phase space for a
system with dimension six would be a four-dimensional space, the Cartesian product of
Z2

2 and Z2
3. A framework for a preparation or a measurement outcome would consist of a

striation B2 of Z2
2 and a striation B3 of Z2

3. In future work, we plan to use this factorization
scheme to extend our treatment of preparations and measurements to arbitrary composite
dimensions and, indeed, to arbitrary composite discrete systems. We see no obstacles there.
The treatment of transformations, on the other hand, is more challenging. One can show that,
if S ranges over all the 2× 2 symplectic matrices with entries in Zd, where d is composite,
then the whole set of probability distributions RS

E (β|α), defined in the natural way, does
not contain the information needed to reconstruct the transition quasiprobabilities QE (β|α).
(Moreover, factoring the group of symplectic transformations into groups associated with
the prime factors of d does not change the information content of the R’s.) This fact does
not imply that our formalism cannot be extended to composite dimensions, but it does
mean that new ideas will be needed.

Of course we would also like to extend our “classical” treatment of quantum theory to
the case of continuous phase space, the realm that is truly the domain of classical mechanics.
The concepts of striations, displacements, and symplectic transformations are all sensible
concepts for such a phase space. However, we anticipate challenges in finding the proper
analogue of our notion of the sum of the nonrandom parts. For example, whereas the
“random part” of a probability distribution over a discrete phase space is simply the uniform
distribution, there is no such thing as a normalized uniform distribution over an infinite
phase space. We plan to address this and related issues in future work.

Finally, it is interesting to ask whether our formalism lends itself to an ontological
account of a quantum experiment. Each of our imagined classical observers would have
no problem finding a realistic interpretation of their description of the experiment: the
system is always at some location in phase space, and when a transformation occurs, the
system jumps probabilistically to some other point. It is much more difficult, though, to
find an ontological account that incorporates all the classical descriptions. This is not to say
it cannot be done. If it is possible, it will certainly require expanding the picture beyond
that of a stochastic process on phase space. It would also require making physical sense of
the mathematical prescription to sum the nonrandom parts.
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Appendix A

Here, we prove that there is one possible set of transformations allowed within our
scheme that includes a finite set of negative-determinant orthogonal transformations of the
Bloch sphere.

Recall that we started with only our set of rules and assumptions and made no
reference to Hilbert space. Using these, we found that the legal transformations can be
understood as orthogonal transformations of the Bloch sphere. We now wonder what
the possible rotations are that can be composed with the inversion operations Ω without
generating a negative probability. We have seen that such a rotation must itself never
generate a probability greater than 1/2 for any of its R values. We could compute the
R values for the orthogonal transformation QE directly from Equation (15). However,
since we have established a correspondence between rotations of the sphere and unitary
transformations, it is legitimate to use Equation (13), together with Equation (15), to
compute these values.

The virtue of this strategy is that any unitary operation on a qubit can be expressed in
a simple way:

Û = u0 Î + iu1X̂ + iu2Ŷ + iu3Ẑ, (A1)

where ~u = (u0, u1, u2, u3) is a real four-vector with unit length. The set of functions RS
E

(where E refers to this unitary transformation) holds twelve values that we can calculate
using Equations (13) and (15). (For each of the three S’s, RS

E has sixteen entries, but remem-
ber that these are partitioned into four displacement classes, each of which holds a single
value of RS

E .) These values are listed in the following phase-space diagrams, where the
label on the left is the symplectic transformation S and the phase-space points correspond
to the value δ = β− Sα.

I :
u2

3 u2
2

u2
0 u2

1

R :
1
4
×

(u0 − u1 + u2 − u3)
2 (u0 + u1 − u2 − u3)

2

(u0 + u1 + u2 + u3)
2 (u0 − u1 − u2 + u3)

2

L :
1
4
×

(u0 − u1 + u2 + u3)
2 (u0 + u1 + u2 − u3)

2

(u0 − u1 − u2 − u3)
2 (u0 + u1 − u2 + u3)

2

(A2)

Suppose for now that all the uj’s are nonnegative. Again, we have already seen in the
main text that in order to be composed with the inversion operator Ω, a transformation
can have no value of RS

E (β|α) greater than 1/2. Therefore, we must have the following
three relations:

u2
0 + u2

1 + u2
2 + u2

3 = 1,

uj ≤
1√
2

,

u0 + u1 + u2 + u3 ≤
√

2,

(A3)
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where the second line is from RIE and the third line is from RRE . The argument is easier to
see if we define vj =

√
2 uj. Then, the conditions on vj are:

v2
0 + v2

1 + v2
2 + v2

3 = 2,

vj ≤ 1,

v0 + v1 + v2 + v3 ≤ 2.

(A4)

Because each vj is no larger than one, v2
j ≤ vj. However, then, the only way to satisfy the

first and third conditions is to make each v2
j equal to vj. This means each vj must be either

zero or one. Then, the first equation tells us that exactly two vj’s are equal to one and the
other two are equal to zero. Therefore, exactly two of the uj’s are equal to 1/

√
2 and the

other two are equal to zero.
Of course, we also have to deal with the possibility that one or more of the uj’s is

negative. However, looking at the values of R in Equation (A2), we see that all possible
combinations of the plus and minus signs appear in RRE and RLE . Therefore, we can replace
the last v condition with |v0|+ |v1|+ |v2|+ |v3| ≤ 2. The middle equation can be |vj| ≤ 1.
Then, the same argument applies.

The only option we are left with is to form four-vectors where only two entries are
±1/
√

2 and the other two are zero. There are twenty-four ways to do this, but one-half
of that set of vectors is just the negative of the other half. Mapping back from ~u to Û, this
minus sign is just a phase that can be ignored. We are left with twelve possible rotations
compatible with the inversion operator.
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