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Abstract: Deep learning, in general, was built on input data transformation and presentation, model
training with parameter tuning, and recognition of new observations using the trained model.
However, this came with a high computation cost due to the extensive input database and the length
of time required in training. Despite the model learning its parameters from the transformed input
data, no direct research has been conducted to investigate the mathematical relationship between the
transformed information (i.e., features, excitation) and the model’s learnt parameters (i.e., weights).
This research aims to explore a mathematical relationship between the input excitations and the
weights of a trained convolutional neural network. The objective is to investigate three aspects of
this assumed feature-weight relationship: (1) the mathematical relationship between the training
input images’ features and the model’s learnt parameters, (2) the mathematical relationship between
the images’ features of a separate test dataset and a trained model’s learnt parameters, and (3) the
mathematical relationship between the difference of training and testing images’ features and the
model’s learnt parameters with a separate test dataset. The paper empirically demonstrated the
existence of this mathematical relationship between the test image features and the model’s learnt
weights by the ANOVA analysis.

Keywords: CNN; causality; understandability; image features; excitation weights; ANOVA

1. Introduction

Recent advances in neural networks (NN) have enabled many strenuous tasks to be
accomplished by machines, sometimes surpassing human performance. Object recogni-
tion [1], biometric recognition [2,3], scene understanding [4,5], image super-resolution [6],
and image captioning [7] are a few of such machine intelligence tasks related to visual
perception. In supervised visual perception tasks, machines can learn from repeated mea-
surements of studied phenomena and the associated frequency of different event outcomes.
Such visual perception tasks are at the heart of artificial intelligence (AI). Different recogni-
tion techniques, such as classification, retrieval of temporal features from time series data,
and spatial information verification, require a measure of functional similarity between
temporal and/or spatial information included within the input data [8].

However, the human’ brain categorises things according to what the brain is “looking
for” when it sees the things [9]. In other words, the categorisation depends on what image
features the brain sees during its analysis or focusing process [10]. This “looking for”
mechanism enables humans to allocate a related recognition model effectively, although it
needs, sometimes, further information (features) for effective analysis. This need can be
noted when humans use other features, such as memory, smell, and location, in parallel with
the initial object image for a faster recognition procedure. In 1943, Walter Pitts et al. created
the first neural network computational model based on a mathematical algorithm known as
threshold logic [11]. This algorithm was the primary key in developing the machine’s ability
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to generate recognition models. As a result of these models, a unique implementation
was developed in convolutional neural networks (CNNs) during the last decade. The
CNN analyses visual images to prove a decisive success in various computer vision tasks,
such as video action recognition [10], image classification [12], image reconstruction [13],
and segmentation [14]. However, there is a significant concern about the need for human
interference in nearly all machine learning systems that deal with this technology field [15].

To address the gap in building a machine that can learn how to learn, we need to
investigate any hidden mathematical link between the learnt parameters of the recognition
system and the extracted features of a data point. Then the system can use this link at a
pre-processing stage to further analyse a new object. With this development, it is possible
to research new techniques for exploring the effects of image features on a model’s weight
algorithmically. However, this new paradigm comes with severe challenges in adapting
the current machine learning methods due to the many AI models, architectures, and
feature-extraction techniques developed so far.

Despite much research on the causality [16] and understandability of AI [17,18], rela-
tively little work has been performed to clarify the actual relationship between the extracted
features of a trained object and the learnt parameters of a trained model. We will use “fea-
tures” for the extracted features of an object and use “parameters” or “weights” for the
learnt parameters of a model for simplicity of description in the paper hereafter. We hy-
pothesise a relationship between the parameters and the features (i.e., excitation weights in
a neural network [19]), and investigate this relationship by applying the ANOVA analy-
sis [20]. This work is instrumental in increasing the recognition of objects in different classes
by widening the neural network analysis abilities to align with the rapid development of
big-data technology and high-performance computers.

2. Related Work

Humans identify unknown objects with their instinct to learn about these objects until
they build a corresponding knowledge at the end, incorporating a lifetime of experience [21].
It was noticed that CNN’s filter dimensions are relatively fixed, aligning with a dramatic
decrease in the number of the unique excitation weights along the CNN recognition
technology development during the last decade [22]. This reflects a practical link between
the number of the excitation weights and the model’s accuracy of performance with
developed computations techniques and physical resources. Hence, deep learning becomes
the best tool that yields good accuracy in image classification with large input compared
to traditional computer vision algorithms [23]. These findings encouraged Poojary and
Pai [24] to perform a comparative study of model optimisation techniques in fine-tuned
CNN models, which concluded that fine-tuned transfer learning CNN models are best for
building models with similar given tasks to the original task. However, they found that the
CNN recognition accuracy is highly affected by the model optimisation techniques tested
in their work.

The basic CNN computations are built on multi-dimensional dot products between the
feature vectors and the model’s weight vectors [25]. Hegde et al. [26] studied how weight
repetition during CNN inference could be used to improve the performance and saves
energy according to the weights’ sparsity. This repetition formed the primary purpose for
proposing the unique weight CNN accelerator (UCNN). By exploiting the repetition in
all zero weights, the UCNN improved the efficiency of memory and energy, speeding up
the computation processes to 3.7 times on three trendy CNNs. This approved the actual
relationship between the model’s performance of accuracy and the input features.

Moreover, Han et al. [27] researched the intensity of neural network computation pro-
cesses and memory usage to overcome the deployment difficulties on embedded systems.
To reduce the overall computation costs, they studied the relationship between the model’s
weights and the input training process. They addressed this issue by overcoming the fact
that the CNN architecture is fixed during training, and proposed a three-step method to
learn the essential connections by trimming the unimportant connections and retraining
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the network for weights fine-tuning. They decreased the number of weights by 9–13 times
for various CNN networks without suffering or affecting the accuracy.

The work in this paper was inspired by the idea that a mathematical relationship exists
between the resulting model’s parameters and the model’s featured input based on the
related work. We proposed an empirical approval for this assumption to further develop in
this area and to understand the model’s learning process better in the future.

3. Materials and Methods

We start our investigation by understanding the proposed assumption, the methodol-
ogy of the empirical proof and experiments setups of the mathematical linkages, and the
description of ANOVA analysis.

3.1. The Proposed Assumption

The CNN model’s learnable parameters are generally the weights and biases of any
standard fully connected layer considering the model’s architecture and the calculation
effects of different optimisation methods. Each layer’s parameters are generated, added
up, and multiplied by input weights to obtain the entire network’s learnable parameters.
These weights connect neural network variables similar to the coefficients of any standard
regression model, which describe the relationship between the variables. They dictate how
the related information influence is processed within the network such that the weights
suppress the non-relevant input variables to a response variable. However, the significant
difference between the regression and NN models is the number of excessive weights in
the NN models. This characteristic helps add flexibility to neural networks for modelling
non-linear functions through multiple interactions, with specific variables for interpreting
challenging effects. Then, in developing the recognition models used in deep learning, the
model is built upon bringing the prediction loss function to a minimum during the training
and validation processes. This goal was achieved by applying a dot-product between each
object’s features vector and the model’s weights vector, generating the model’s output (i.e.,
the predicted result).

The dot-product, denoted as (·), of two vectors A = [a1, a2, · · · , aN ] and
B = [b1, b1, · · · , bN ] is the sum of the products of corresponding elements [28], as shown
in (1):

A·B = ∑N
i=1ai × bi (1)

Learning the weights relies on many factors such as the number of weights related to
the CNN model’s architecture, the location of the weights within the model at the input of
different layers, the initialised weight values that the training procedure started from, and a
few other critical optimisation factors [29]. However, several algorithms were developed in
recent deep learning techniques, trading computation accuracy for computational efficiency
improvement. Some of these methods showed improvements in generalisation due to
the noise effects of low-precision computations [30]. The practical implementation for
an object prediction model is based upon applying the excitation operation according to
the features to generate the final output with the minimal overall loss value [31]. This
excitation operation is applied to generate the model’s weights for each feature channel
with parameters, where these parameters learn to model the effective correlation between
the feature channels. Therefore, the excitation operation must be flexible to learn the
non-linear interactions and the non-mutually exclusive relationship between channels to
capture the channel wise dependency [32]. Hence, during the development of deep learning
technology, it was proved that the updates on a model’s excitation weights are mainly
related to training the samples’ extracted feature values, assuming an overall mathematical
relationship between them. Therefore, the selection of image features primarily affects the
object’s retrieval performance [33].

This assumption raised the awareness of researching this mathematical relationship
to find potential computational savings without a trade-off in accuracy. Therefore, we
investigated this assumption and empirically proved it by: (1) building correlation values
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that reflect this relationship, and (2) applying the dot-product operation to different models’
parameters and different images’ features. Then we assessed the differences between
the means of the generated values, and evaluated the variances of the groups’ means in
different scenarios with the ANOVA analysis. The CNN models used in these scenarios
were built with known or unknown and related or unrelated datasets to the model. The
known datasets have been used in the model training or validation, and the unknown
dataset has never been used in either training or validation. A related dataset is a dataset
that belongs to the same domain as the training dataset, and an unrelated dataset does not
belong to the domain of the training dataset of a model.

3.2. Methodology of Empirical Proof of the Assumption

This approach proves a mathematical relationship between the images’ features and
the trained CNN model’s weights. We started with building correlation values between the
features and the weights by applying the dot-product operation on them for each input
image’s features.

Let’s denote, F r
i,kn

as the nth element of feature vector F r
i,k for image, i, of the Model k,

within test dataset r, and denote Wkn as the nth element of the weight vector Wk of Model k.
The dot-product of the equal-sized vectors features, F r

i,k, and the weights, Wk is shown in (2):

F r
i,k ·Wk = ∑N

n=1(F
r
i,kn
·Wkn), (2)

where N is the total number of elements in the vectors and equals 25,088.
We extract three different sets of weights, Wx,kn , for x ∈ [1, 3], from the learnt weights

of Model k. Then we obtain a single value Vr
i,k of feature-weight (FW) component by

calculating the average of the three dot-product values,
(
F r

i,k ·Wkx

)
for each image i in

test set r for Model k, as shown in (3):

Vr
i,k =

∑3
x=1 F r

i,k·Wx,k

x
(3)

Then, we assess these component values for each tested dataset through seven different
scenarios arranged in three categories to better understand the possible causality. These
scenarios have been summarised in Table 1, which lists all experiments conducted.

In the first category, we assess whether the FW value is affected by the training dataset
size using the ANOVA analysis. As shown in Figure 1, the FW values are built with
11 different models’ weights and their related (known to the model) input images’ features
in the first scenario. The models are trained with a small size dataset of only 20 images.
Then we apply the ANOVA one-way analysis on the FW values to examine whether they
have similar mean values between the 11 different models. Three different models, Model 1
(M1), Model 2 (M2), and Model 3 (M3), are then trained with three large training datasets in
the second scenario. This is used to test the null hypothesis of having similar mean values
between the three different models’ FW values [20].
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Table 1. Summary of all experiments conducted in three categories (Cat.). Cat. 1 and 2 test the effects
of the training dataset (TrDset) sizes and test dataset (TsDset) types on the learnt weights. Cat. 3 is for
testing the mathematical difference between the training and testing datasets on the weights learnt
during the model’s learning process.

Cat. Scenario Purpose TrDset Size No. of
Models TsDset Type No. of

TsDsets TsDset Size

1

1
Effect of

TrDset sizes

20 11 Known-Related 11 20

2
10,000 for M1
8000 for M2
1300 for M3

3 Known-Related 3 400

2

3
Effect of

TDset types

10,000 for M1 1 Unknown-Unrelated 3 200

4 10,000 for M1
8000 for M2
1300 for M3

3
Unknown-Related 3 400

5 Unknown-Unrelated 3 400

3

6 Effect of
training and
test datasets

10,000 for M1
8000 for M2
1300 for M3

3

Known-Related,
Unknown-Related 3 200

7 Known-Related,
Unknown-Unrelated 6 200
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Figure 1. Diagram of Category 1 for the effect of training dataset sizes on the weights of models.
In scenario 1, the small training dataset has 20 images, the number of test images n = 20, and the
number of models k = 11. In scenario 2, n = 400, k = 3, and the size of training datasets are 10,000,
8000, and 1300, respectively. The generated FW vectors are [n × 1] in size.

In the second category, we assess if the FW variance is affected by the types of tested
datasets. As shown in Figure 2, we train model M1 with a large training dataset that
contains 10,000 images in the third scenario. In this scenario, the FW values for comparison
are generated with three different test sets of images that are unrelated to the training
classes and not used in training. Then we test whether the mean values between the FW
components of the three tested unrelated datasets were similar or not. Moreover, we train
three models, M1, M2, and M3, with three large datasets, and generate FW values with
three related-unknown test datasets in the fourth scenario and three unrelated-unknown test
datasets in the fifth scenario. Then, we apply the ANOVA one-way analysis in scenarios 4 and
5 to examine whether the FW values have similar mean values between the three models.
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Figure 2. Diagram of Category 2 for the effect of unknown-unrelated and unknown-related datasets
on the models’ weights. Models 1, 2, and 3 were trained with a large training dataset of 10,000, 8000,
and 1300 images, respectively. The test dataset size n = 200 in the third scenario with Model 1, and
n = 400 with the three models in the fourth and fifth scenarios. The generated FW vectors are [n × 1]
in size.

Finally, in the third category, we assess if the variance of the FW differences is affected
by the types of test datasets and training datasets. As illustrated in Figure 3, we developed
a different deviation tendency measure for this category. In the sixth scenario, we generated
the FW values between the three models’ weights and the features of both the known-
related and unknown-related test datasets. Then we calculated the differences between these
FW values for the ANOVA analysis. In the seventh scenario, and similar to the deviation
tendency measure in the sixth scenario, we generated the FW values between the three models’
weights and features of both the known-related and unknown-unrelated test datasets. Then
we calculated the differences between these FW values for the ANOVA analysis.
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1300 images, respectively, and tested with n = 200 images per dataset. The generated FW vectors are
[n × 1] in size.

3.2.1. Experiment Setup

The empirical proof has been implemented with Python 3.8.5 and TensorFlow 2.3.1
on a PC with an Nvidia Quadro M4000 GPU card. In all experiments, we used the same
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CNN model architecture with kernel size (1, 1), stochastic gradient descent (SGD) optimiser,
categorical cross-entropy loss function, and rectified linear unit (ReLU) activation function.
We also used the same CNN/VGG16 algorithm for feature initialisation and extraction. The
experiments were applied with three different datasets. The first model, M1, was adapted
to distinguish between cats and dogs from the Dogs vs. Cats dataset of 25,000+ images
available on the Kaggle website [34]. We selected 20 images randomly for the small-sized
dataset and 10,000 images for the large-sized dataset. However, the second model, M2,
distinguishes between two types of facial emotions (happy and sad) using the AFEW2.0
dataset after cropping each image frame’s faces [34,35]. We selected 8000 images randomly
for training and validation from this face dataset. The third model, M3, was trained with
1300 images to classify cars and flowers. The images were extracted from the Natural
Images-Kaggle dataset of 6899 images from 8 distinct classes [36]. The Python code for the
experimentation is published in GitHub [37].

As described in the following sections, we built the experiments through seven differ-
ent setup scenarios in three categories.

• In the first category, we assessed the FW values of small size training datasets of
20 images applied to 11 identical CNN models in scenario 1, and large size datasets
of 10,000, 8000, and 1300 images for training model M1, M2, and M3, respectively,
in scenario 2. We built the FW components in the first scenario by applying the
dot-product operation upon the features ExcK of eleven known-related test sets of
20 images and the weights Wk of eleven models. In the second scenario, the FW
components were built by applying the dot-product operation upon the features Exck
of 400 randomly selected known-related test images and the weights Wk of three
different models trained with the three large datasets. The two scenarios are illustrated
in Figure 1.

• In the second category, we assessed the effect of different test set types on the FW
values. We used a large training dataset of 10,000 images for training Model 1 in the
third scenario. However, we used 10,000, 8000, and 1300 images for training Model 1,
2 and 3, respectively, in the fourth and fifth scenarios. In the third scenario, the dot-
product operation was applied to model M1 with three unknown-unrelated test sets of
200 images. In the fourth scenario, the dot-product operations were applied with three
unknown-related test sets of 400 images. Finally, the dot-product operations were
applied in the fifth scenario with three unknown-unrelated test sets of 400 images. The
three scenarios in Category 2 are shown in Figure 2.

• In the third category, we assessed the closeness between the FW values according to the
mathematical difference tendency measure developed in this paper. In this measure,
we used large training datasets to train three CNN models, with 10,000 for Model
1, 8000 for Model 2, and 1300 for Model 3. The difference measure was generated
on two different scenarios for the ANOVA analysis. First, in the sixth scenario, the
mathematical difference was calculated between the dot-product values that were
generated on two cases: (1) between the features of the known-related test sets and the
weights of the trained models, and (2) between the features of the unknown-related
test sets and the weights of the trained models. Second, the mathematical difference
was calculated between the dot-product values that were generated on another two
levels: (1) between the features of known-related test sets and the weights of the
trained models, and (2) between the features of unknown-unrelated test sets and the
weights of the trained models, in the seventh scenario. The sixth and seventh test
scenarios are shown in Figure 3.

3.2.2. ANOVA Test Setup and the Null Hypothesis

With the ANOVA analysis, we assess the variance between two or more sets of values
by splitting the observed aggregated variables in each test dataset into systematic and
random factors. The systematic factors have a statistical effect on the tested dataset, while
the other random factors do not. The null hypothesis (Null-H) is that all the observations
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have the same mean. This assessment can be performed by testing if the ANOVA probability
value, p, is more than the cut-off acceptance value α, and the calculated F_Score is less than
the ANOVA’s critical value F_Factor according to the given α [38]. Moreover, the α value
is usually selected in the confidence intervals in the ANOVA test, as the lower the value
of α, the wider the confidence interval. In our experiments, the minimum achieved p was
0.07 for failing to reject the null hypothesis in place. Therefore, we selected the value of
α = 0.05 due to its accepted result in the coherence of the tested results that we conducted.

In the first category, the null hypothesis is that the means between the FW values are
similar. Failing to reject (i.e., accepting) the null hypothesis means a recognised resemblance
between the FW values. This proves the existence of a mathematical relationship between
the features of any known images and the weights of each related model, regardless of the
model being trained with a large or small dataset.

However, with the second category, the ANOVA one-way test was built on the FW
components between each model’s weights and the features of unknown test images. We
explored the FW relationship linking one model’s weights and unknown-unrelated test sets
in the third scenario. However, in the fourth and fifth scenarios, we explored the FW values
between three trained models’ weights and unknown-related and unknown-unrelated test
sets, respectively. This analysis enabled us to assess the null hypothesis of same FW means
between the trained models and unknown test datasets. Rejecting the Null-H means no
actual weights-features mathematical relationship, between any unknown test set and the
model’s learnt weights.

With the third category, the ANOVA analyses whether the mean values of differences
between all tested FWs are close to each other. In the sixth scenario, the differences are
calculated between the FW values of known-related and unknown-related test datasets.
In this case, accepting the null hypothesis proves a correlation in the mathematical differ-
ence between the FW values of known-related images and the unknown-related images.
However, in the seventh scenario, the differences are calculated between two correlated
FW values: (1) the FW values of large test sets presented to the models during the training
and related to the domain of the trained model, and (2) the FW values of large test sets that
have never been presented to the models during training or validation and unrelated to
the domain of the trained model. In this case, the rejection of the null hypothesis proves
no correlation in the differences between the FWs of the known-related images and the
unknown-unrelated images.

4. ANOVA Test Results and Analysis

Here, we will describe the obtained results. We will start with the results obtained with
the ANOVA analysis related to each test category. Then, we will go deeper into analysing
the results to understand them better.

4.1. Results

All models are first trained according to the experiment conditions listed in Table 1.
As an example, Figure 4 shows the performance of the Model 1 in accuracy and loss in
training and validation for 30 epochs, with the model being trained with 10,000 images
from the Kaggle Dogs vs. Cats dataset [34].



Entropy 2022, 24, 132 9 of 15

Entropy 2022, 24, x FOR PEER REVIEW 9 of 15 
 

 

training and related to the domain of the trained model, and (2) the FW values of large 
test sets that have never been presented to the models during training or validation and 
unrelated to the domain of the trained model. In this case, the rejection of the null hypoth-
esis proves no correlation in the differences between the FWs of the known-related images 
and the unknown-unrelated images. 

4. ANOVA Test Results and Analysis 
Here, we will describe the obtained results. We will start with the results obtained 

with the ANOVA analysis related to each test category. Then, we will go deeper into an-
alysing the results to understand them better. 

4.1. Results 
All models are first trained according to the experiment conditions listed in Table 1. 

As an example, Figure 4 shows the performance of the Model 1 in accuracy and loss in 
training and validation for 30 epochs, with the model being trained with 10,000 images 
from the Kaggle Dogs vs. Cats dataset [34]. 

  
(left) (right) 

Figure 4. Performance of accuracy (left) and loss (right) for Model 1 in training and validation. 
Model 1 was trained with 1000 images from the Kaggle Dogs vs. Cats dataset. 

The ANOVA test results are shown in Table 2, where the calculated F_Score, the crit-
ical F_Factor, and the ANOVA test output are listed for all scenarios for the three test 
categories. In the first category, we have researched the effect of the training dataset size 
on the FWs. In the first scenario, the experiment results are organised according to the 
ANOVA results with all known-related 20 images features correlated with each tested 
model’s learnt weights. However, in the second scenario, we explored the FW compo-
nents generated between 200 images (known-related) per class and the models’ parame-
ters. 

The ANOVA results of the effect of the test dataset types on the FWs between the test 
images’ features and the model’s weights are listed in the second category in Table 2. In 
Scenario 3, the ANOVA one-way analysis results are obtained with 200 unknown-unre-
lated images and each model’s weights. In Scenario 4, the results are generated between 
400 known-unrelated images and the model’s weights. For Scenario 5, the results are gen-
erated between 400 unknown-unrelated images and the model’s weights. As it showed in 
the table, the null hypothesis is rejected in all scenarios in the second category by the 
ANOVA analysis. 

We further researched the mathematical differences between different types of test 
sets to analyse the relationship between different FW components in the third category. 
The sixth scenario has generated the FWs between 200 images (unknown-related) and the 
model’s weights. As a result of this test in Scenario 6, the ANOVA analysis failed to reject 

Figure 4. Performance of accuracy (left) and loss (right) for Model 1 in training and validation.
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The ANOVA test results are shown in Table 2, where the calculated F_Score, the critical
F_Factor, and the ANOVA test output are listed for all scenarios for the three test categories.
In the first category, we have researched the effect of the training dataset size on the FWs. In
the first scenario, the experiment results are organised according to the ANOVA results with
all known-related 20 images features correlated with each tested model’s learnt weights.
However, in the second scenario, we explored the FW components generated between
200 images (known-related) per class and the models’ parameters.

The ANOVA results of the effect of the test dataset types on the FWs between the
test images’ features and the model’s weights are listed in the second category in Table 2.
In Scenario 3, the ANOVA one-way analysis results are obtained with 200 unknown-
unrelated images and each model’s weights. In Scenario 4, the results are generated between
400 known-unrelated images and the model’s weights. For Scenario 5, the results are generated
between 400 unknown-unrelated images and the model’s weights. As it showed in the table,
the null hypothesis is rejected in all scenarios in the second category by the ANOVA analysis.

We further researched the mathematical differences between different types of test
sets to analyse the relationship between different FW components in the third category.
The sixth scenario has generated the FWs between 200 images (unknown-related) and the
model’s weights. As a result of this test in Scenario 6, the ANOVA analysis failed to reject
the null hypothesis. Finally, in Scenario 7, we assessed the mathematical difference of the
FW values when the dot-product operation was applied to the model’s learnt weights and
the features of unknown-unrelated and known-related images. The ANOVA test rejected
the null hypothesis for this scenario.

As shown in Table 2, regardless of whether the related images were known or unknown
to the models in the test, the ANOVA analysis of Scenario 1, 2, and 6 failed to reject all null
hypotheses, reflecting a mathematical relationship between the training dataset features
and the model’s learnt weights. However, in the other scenarios, we achieved that the
ANOVA’s analysis rejected the null hypothesis, reflecting no mathematical relationship
between the learnt weights and any dataset unrelated to the trained model’s domain.
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Table 2. ANOVA test results of seven scenarios in three categories. It shows the effect of the training
dataset sizes and the test set types on the FW relationship, and the closeness of FWs between the
related and unrelated test sets to the known training dataset.

Cat. Scenario Trained Model TrDset
Size TsDset Type TsDset

Size F_Score Critical
F_Factor

Null Hypothesis
(Accept or Reject)

1

1 Model_K
(K = 1, . . . ,11) 20 Known-Related 20 1.51 1.87 Accepted

2
Model_1
Model_2
Model_3

10 k
8 k

1.3 k
Known-Related 400 2.07 2.22 Accepted

2

3 Model_1 10 k Unknown-Unrelated 200 77.10 3.01 Rejected

4
Model_1
Model_2
Model_3

10 k
8 k

1.3 k
Unknown-Related 400 7.82 2.22 Rejected

5
Model_1
Model_2
Model_3

10 k
8 k

1.3 k
Unknown-Unrelated 400 12.96 2.22 Rejected

3

6
Model_1
Model_2
Model_3

10 k
8 k

1.3 k

Known-Related
vs.

Unknown-Related
200 1.84 2.22 Accepted

7
Model_1
Model_2
Model_3

10 k
8 k

1.3 k

Known-Related
vs.

Unknown-Unrelated
200 9.76 1.79 Rejected

4.2. Analysis of Results

Throughout the assessed scenarios in the first category, all experiments generated
overall p values larger than the cut-off acceptance value of α = 0.05, and F_Score values
smaller than the F_Factor value. Failure to reject the null hypothesis approves the FW rela-
tionship in the case of known-related test data sets due to no significant difference between
the FW values. This finding proves that the trained model’s weights are mathematically
related to and affected by the features of the known trained dataset, regardless of the size
of the dataset.

Furthermore, out of the second category of tests where the unrelated test datasets
are applied to the models, all ANOVA analysis return the results of p value being smaller
than the cut-off acceptance value of α = 0.05, and the F_Score values being larger than
the F_Factor value. These results support rejecting the null hypothesis due to the significant
difference between the assessed FW values. These rejections proved there was no mathematical
relationship between the trained model’s weights and any unrelated test dataset’s features.

In Category 3, the ANOVA analysis first assesses the FW difference between the
known-related and unknown-related test datasets, returning p values larger than the cut-
off acceptance value of α = 0.05, and F_Score values smaller than the F_Factor values.
This finding showed the difference’s similarity between the FW values of datasets that
were related to the same domain of the model, regardless of whether the datasets were
presented to the model during training. However, for the difference of FW values between
the known-related and unknown-unrelated test sets in Scenario 7, the p value was smaller
than the cut-off acceptance value of α = 0.05, and the F_Score value larger than the F_Factor
value. Therefore, the null hypothesis is rejected, meaning there is no FW mathematical
relationship when the test dataset is unknown and unrelated to the model.

A summary of the ANOVA analysis results is given in Table 3:
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Table 3. Description of ANOVA analysis results for seven scenarios in three categories.

Cat. Scenario Null Hypothesis
(Reject or Accept) ANOVA Result Interpretation of the ANOVA Result

1

1 Accepted

No significant difference
between the FW values with

small training and
known-related test datasets.

(a) Similar mathematical relationship
exists between the features of
known-related training datasets and
trained model’s weights, regardless of
whether the model is trained with a
large or small training dataset.

2 Accepted

No significant difference
between the FW values with

large training and
known-related test datasets.

2

3 Rejected

Significant difference exists
between the FW values for a

model with large training and
unknown-unrelated test

datasets.

(b) No similar mathematical relationship
exists between the features of test
dataset and weights of trained model
as long as the test dataset is unknown
to the model.

4 Rejected

Significant difference exists
between the FW values for

three models with large
training and unknown-related

test datasets.

5 Rejected

Significant difference exists
between the FW values for

three models with large
training and

unknown-unrelated test
datasets.

3

6 Accepted

No significant difference in the
FW difference between

known-related and
unknown-related test datasets.

(c) The FW difference between known
and unknown test datasets is similar
as long as the test dataset is related to
the model.

(d) No similarity in the FW difference
between the related and unrelated test
datasets.

7 Rejected

Significant difference exists in
the FW difference between

known-related and
unknown-unrelated test

datasets.

Based on the results of all conducted experiments and the ANOVA analysis, we could
establish the following points:

1. Scenarios 1, 2, and 6 indicate that there is a mathematical relationship between the
weights of a model and the features of datasets that are related to the model, regardless
of whether the datasets were used or not used in training the model.

2. Scenarios 3, 4, and 5 show that there is no relationship between the weights of a model
and the features of datasets that are unrelated to the model.

3. Scenarios 6 and 7 reveal that the behaviours of FW difference between related datasets
are similar, but no similarity of FW difference behaviours is observed between related
and unrelated datasets.

5. Discussion

Here, we interpret the FW relationships in the ANOVA test, as shown in Table 3,
according to the three tested categories.

Firstly, we started with researching the effect of the size of the training dataset on the
assumed mathematical FW relations between the model’s weights and the features of the
training datasets. We linked the features of the training datasets with the model’s weights
to obtain the FW values. As a result, we found that the null hypotheses failed to be rejected
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in both scenarios. That reflected the assumption that a relationship exists between the
trained model’s weights and the features of any input dataset as long as it was presented to
the model during the training process.

Secondly, we investigated the effect of the tested dataset’s types on the assumed
relationship. The FW values are generated with test datasets that were never presented
to the model earlier during the training process. The assessment was applied throughout
the three scenarios in Scenario 3, 4, and 5, which showed the effect of unknown-related
and unknown-unrelated test datasets on the FW values. As a result, we found that the
null hypotheses were rejected in all three scenarios. Hence, the mathematical relationship
between the trained model’s weights and the features of the test dataset does not exist as
long as the test dataset is never presented to the model during the training process.

Finally, we compared the mathematical difference of FWs between the known and
unknown images in the third category. The comparison was achieved by assessing the
difference between two sets of FW values generated with the training dataset and an un-
known dataset. The unknown dataset and the training dataset belong to the same labelled
class in the sixth scenario, and not the same class in the seventh scenarios. Comparing
the two FW values indicates how close the images’ features are to each other. This can
be understood on the logic that two images that belong to the same classified label must
share similar features [33]. We assessed the means of differences in the FW values of
similar featured images in the sixth scenario. The ANOVA analysis failing to reject the null
hypothesis proved that the FW difference throughout all trained model’s related classes
is within the same mathematical range. This can be further interpreted as showing that
those images belonging to the same classified, labelled class share similar features in FW
mathematical ranges. However, the rejection of the null hypothesis in the seventh scenario
supported the assumption that unknown-unrelated image’s FW values do not lie in the
same mathematical ranges as that of the known-related images used in training.

Based on the experiments in the second category, we conclude that the relationship
between the model’s weights and any unknown tested images’ features does not exist by
rejecting all related null hypotheses. Moreover, the experiment results confirm a relation-
ship between the model’s weights and the known-related training images’ CNN/VGG16
features as noted in the first category. Hence, the results support our assumption that a
mathematical relationship exists between the model’s weights and the features of known-
related images. In addition, the difference in FW values between the known-related and
unknown-related test datasets to the related models show a similar close mathematical
range in the sixth scenario. These findings indicate that the learning processes run similarly
and generate values related only to each dataset used in training and validation. However,
in the seventh scenario, a significant mismatch is recognised between the FW difference of
dataset that is used in training and dataset that is both not used in training and not related
to the same domain. This emphasises that the model’s weights are precisely related only
to the known trained dataset, regardless of the size of the dataset. Finally, it approves the
assumption that the weights are learnt from, particularly, the specifically related training
dataset. We also find that any unknown dataset that belongs to the same domain of the
model will generate FW values within a similar range as that of known datasets. How-
ever, the ranges are significantly different for all models when applied with datasets not
belonging to the same domains of the training datasets.

A model’s learnt weights have been produced based on the features of each training
dataset. Applying this to images with similar features allows the model to recognise this
similarity when the model’s learnt weights are developed to recognise a particular set of
features. However, in model evaluation, the model’s accuracy depends on its classification
ability of new objects. Therefore, a model’s recognition ability depends on the closeness of
features between the training and testing objects. Applying a dot-product operation to the
test object’s features and the model’s weights can specify the uniqueness of each model.
Calculating the differences between the FW values (of trained and new datasets) can be used
to evaluate how much the images’ features are close to each other. The model’s weights
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are generated according to the images’ features of a particular training dataset. Therefore,
linking the weights with the new related object’s features may determine the closeness
between those features. As a result, the model can sense this closeness by applying this
concept even before the actual prediction process.

One of the applications of this assumed mathematical FW relationship is to speed
up the training and prediction in a complex multi-model system based on CNNs. For
example, a pre-processing step using the FW relationship could decide which sub-model
a new object should be applied to for training and prediction, without being tried on all
models. It could also be used potentially to simplify the network training significantly if
we could determine the actual mathematical relationship between the features of objects
and the weights of the model. We have not investigated the actual FW relationship itself
in this research, as the work we described in the paper is only an empirical proof of the
assumption. It will be our next target in future research.

It is noteworthy to raise the awareness of the overfitting problem that would usually
affect the prediction process when performing training on a small-sized training dataset [39].
As we have used small-sized datasets for training in the first category of experiments, it
could result in the models being overfitted potentially. Therefore, it is important to avoid
overfitting by tuning the hyperparameters in training carefully. However, we concentrate on
proving the FW relationship assumption in this study, not generating a practical recognition
model. Therefore, model overfitting is a less concern for us.

6. Conclusion and Future Work

This paper proved the assumption of an existing mathematical relationship between
an input image’s extracted features (excitations) and a related CNN model’s learnt weights
empirically. This relationship was generated based on the extracted features of all input images
used in training and the trained model’s learnt weights. This approval may be considered the
first pre-processing step in building an accurate recognition model in the future.

Moreover, we confirmed the resemblance in the ranges of FW mathematical differences
between the images related to the same distinguished class as the images used in training
the model. This supports the existence of a mathematical relationship overall between the
features of images belonging to the same class as that of the training dataset and the trained
model’s excitation weights. This resemblance will be potentially very useful in machine
learning applications, for example, in developing feature vector comparison techniques or
algorithms that support recognition based on the distance of the FW vectors. This distance
analysis approach may offer clues in improving the model’s learning techniques to enforce
multi-modality learning instead of performing full dataset training.

Our next step will be searching for possible learnt parameter patterns in a trained
model according to the input images’ features. These patterns would significantly reduce
the needed computations for performing the training from scratch whenever new classes
are added to the image recognition system.
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