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Abstract: Minimum Renyi’s pseudodistance estimators (MRPEs) enjoy good robustness properties
without a significant loss of efficiency in general statistical models, and, in particular, for linear
regression models (LRMs). In this line, Castilla et al. considered robust Wald-type test statistics in
LRMs based on these MRPEs. In this paper, we extend the theory of MRPEs to Generalized Linear
Models (GLMs) using independent and nonidentically distributed observations (INIDO). We derive
asymptotic properties of the proposed estimators and analyze their influence function to asses their
robustness properties. Additionally, we define robust Wald-type test statistics for testing linear
hypothesis and theoretically study their asymptotic distribution, as well as their influence function.
The performance of the proposed MRPEs and Wald-type test statistics are empirically examined for
the Poisson Regression models through a simulation study, focusing on their robustness properties.
We finally test the proposed methods in a real dataset related to the treatment of epilepsy, illustrating
the superior performance of the robust MRPEs as well as Wald-type tests.

Keywords: generalized linear model; independent and nonidentically distributed observations;
minimum Rényi’s pseudodistance estimators; robust Wald-type test statistics for GLMs; influence
function for GLMs; poisson regression model

MSC: 62F35; 62J12

1. Introduction

Generalized linear models (GLMs) were first introduced by Nelder and Wedder-
burn [1] and later expanded upon by McCullagh and Nelder [2]. The GLMs represent a
natural extension of the standard linear regression models, which enclose a large variety
of response variable distributions, including distributions of count, binary, or positive
values. Let Y1, . . . , Yn be independent response variables. The classical GLM assumes that
the density function of each random variable Yi belongs to the exponential family, having
the form

f (y, θi, φ) = exp
{

yθi − b(θi)

a(φ)
+ c(y, φ)

}
, (1)

for i = 1, . . . , n, where the functions a(φ), b(θi) and c(y, φ) are known. Therefore, the obser-
vations are independent but not identically distributed, depending on a location parameter
θi, i = 1, . . . , n, and a nuisance parameter φ. Further, we denote by µi the expectation of the
random variable Yi and we assume that there exists a monotone differentiable function, so
called link function g, verifying

g(µi) = xT
i β,

with β = (β1, . . . , βk) ∈ Rk (k < n) the regression parameter vector. The k × 1-vector
of explanatory variables, xi, is assumed to be nonrandom, i.e., the design matrix is fixed.
Correspondingly, the location parameter depends on the explanatory variables θ = θ

(
xT β

)
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the density function given in (1) can be written as fi(y, β, φ), empathizing its dependence
of β and xi.

The maximum likelihood estimator (MLE) and the quasilikelihood estimators were
well studied for the GLMs, and it is well known that they are asymptotically efficient but
lack robustness in the presence of outliers, which can result in a significant estimation bias.
Jaenada and Pardo [3] revised the different robust estimators in the statistical literature and
studied the lack of robustness of the MLE as well. Among others, Stefanski et al. [4] studied
optimally bounded score functions for the GLM and generalized the results obtained by
Krasker and Welsch [5] for classical LRMs. Künsch et al. [6] introduced the so-called
conditionally unbiased bounded-influence estimate, and Morgenthaler [7], Cantoni and
Ronchetti [8], Bianco and Yohai [9], Croux and Hesbroeck [10], Bianco et al. [11], and
Valdora and Yohai [12] continued the development of robust estimators for the GLMs based
on general M-estimators. Later, Ghosh and Basu [13] proposed robust estimators for the
GLM, based on the density power divergence (DPD) introduced in Basu et al. [14].

There are not many papers considering robust tests for GLMs. In this sense, Basu et al. [15]
considered robust Wald-type tests based on the minimum DPD estimator, but assuming ran-
dom explanatory variables for the GLM. The main purpose of this paper is to introduce new
robust Wald-type tests based on the MRPE under fixed (not random) explanatory variables.

Broniatowski et al. [16] presented robust estimators for the parameters of the linear
regression model (LRM) with random explanatory variables and Castilla et al. [17] consid-
ered Wald-type test statistics, based on MRPE, for the LRM. Toma and Leoni–Aubin [18]
defined new robustness and efficient measures based on the RP and Toma et al. [19]
considered the MRPE for general parametric models, and constructed a model selection
criterion for regression models. The term “Rényi pseudodistance” (RP) was adopted in
Broniatowski et al. [16] because of its similarity with the Rényi divergence (Rényi [20]),
although this family of divergences was considered previously in Jones et al. [21]. Fujisawa
and S. Eguchi [22] used the RP under the name of γ-cross entropy, introduced robust
estimators obtained by minimizing the empirical estimate of the γ-cross entropy (or the
γ-divergence associated to the γ-cross entropy) and studied their properties. Further,
Hirose and Masuda [23] considered the γ likelihood function to find robust estimation.
Using the γ-divergence, Kawashima and Fujisawa [24,25] presented robust estimators for
sparse regression and sparse GLMs with random covariates. The robustness of all the
previous estimators is based on density power weight, f (y, θ)l , which gives a small weight
to outliers observations. This idea was also developed by Basu et al. [15] for the minimum
DPD estimator and was considered some years ago by Windham [26]. More concretely,
Basu et al. [14] considered the density power function multiplied by the score function.

The outline of the paper is as follows: in Section 2, some results in relation to the MRPEs
for GLMs, previously obtained in Jaenada and Pardo [3], are presented. Section 3 introduces
and studies Wald-type tests based on the MRPE for testing linear null hypothesis for the
GLMs. In Section 4, the influence function of the MRPE as well as the influence functions
of the Wald-type tests are derived. Finally, we empirically examine the performance of the
proposed robust estimators and Wald-type test statistics for the Poisson regression model
through a simulation study in Section 5, and we illustrate its applicability with real data
sets for binomial and Poisson regression.

2. Asymptotic Distribution of the MRPEs for the GLMs

In this Section, we revise some of the results presented in Jaenada and Pardo [3] in re-
lation to the MRPE. Let Y1, . . . , Yn, be INIDO random variables with density functions with
respect to some common dominating measure, g1, . . . , gn respectively. The true densities gi
are modeled by the density functions given in (1), belonging to the exponential family. Such
densities are denoted by fi(y, β, φ) highlighting its dependence on the regression vector β,
the nuisance parameter φ and the observation i, i = 1, . . . , n. In the following, we assume
that the explanatory variables xi, are fixed, and therefore the response variables verify the
INIDO set up studied in Castilla et al. [27].
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For each of the response variables Yi, the RP between the theoretical density function
belonging to the exponential family, fi(y, γ), and the true density underlying the data, gi,
can be defined, for α > 0 as

Rα( fi(y, γ), gi) =
1

α + 1
log
(∫

fi(y, γ)α+1dy
)
− 1

α
log
(∫

fi(y, γ)αgi(y)dy
)
+ k, (2)

where

k =
1

α(α + 1)
log
(∫

gi(y)α+1dy
)

does not depend on γ = (βT , φ)T .
We consider (y1, . . . , yn) a random sample of independent but nonhomogeneous

observations of the response variables with fixed predictors (x1, . . . , xn). Since only one
observation of each variable Yi is available, a natural estimate of its true density gi is the
degenerate distribution at the the observation yi. Consequently, in the following we denote
ĝi the density function of the degenerate variable at the point yi. Then, substituting in (2)
the theoretical and empirical densities, yields to the loss

Rα( fi(y, γ), ĝi) =
1

α + 1
log
(∫

fi(y, γ)α+1dy
)
− 1

α
log fi(Yi, γ)α + k. (3)

If we consider the limit when α tends to zero we get

R0( fi(y, γ), ĝi) = lim
α↓0

Rα( fi(y, γ), ĝi) = − log fi(Yi, γ) + k. (4)

Last expression coincides with the Kullback–Leibler divergence, except for the constant k.
More details about Kullback–Leiber divergence can be seen in Pardo [28].

For the seek of simplicity, let us denote

Li
α(γ) =

(∫
fi(y, γ)α+1dy

) α
α+1

,

and

Vi(Yi, γ) =
fi(Yi, γ)α

Li
α(γ)

.

The expression (3) can be rewritten as

Rα( fi(y, γ), ĝi) = −
1
α

log

(
fi(Yi, γ)α

(
∫

fi(y, γ)α+1dy)
α

α+1

)
+ k = − 1

α
log Vi(Yi, γ) + k.

Based on the previous idea, we shall define an objective function averaging the RP
between all the the RPs. Since minimizing Rα( fi(y, γ), ĝi) in γ is equivalent to maximizing
log Vi(Yi, γ), we define a loss function averaging those quantities as

Tα
n (γ) =

1
n

n
∑

i=1

fi(Yi, γ)α

(
∫

fi(y, γ)α+1dy)
α

α+1
=

1
n

n
∑

i=1

fi(Yi, γ)α

Li
α(γ)

=
1
n

n
∑

i=1
Vi(Yi, γ). (5)

Based on (5), we can define the MRPE of the unknown parameter γ, γ̂α, by

γ̂α = arg max
γ∈Γ

Tα
n (γ), (6)

with Tα
n (γ) defined in (5)

T0
n(γ) =

1
n

n
∑

i=1
log fi(yi, γ)
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at α = 0. The MRPE coincides with the MLE at α = 0, and therefore the proposed family
can be considered a natural extension of the classical MLE.

Now, since the MRPE is defined as a maximum, it must annul the first derivatives
of the loss function given in (5). The estimating equations of the parameters β and φ are
given by 

1
n

n
∑

i=1

∂Vi(Yi ,γ)
∂β = 0k

1
n

n
∑

i=1

∂Vi(Yi ,γ)
∂φ = 0.

(7)

For the first equation, we have

∂Vi(Yi, γ)

∂β
=

1

Li
α(γ)

2

{
α fi(Yi, γ)α ∂ log fi(Yi, γ)

∂β
Li

α(γ)

−
[

α

(∫
fi(y, γ)α+1dy

) α
α+1−1 ∫

fi(y, γ)α+1 ∂ log fi(y, γ)

∂β
dy

]
fi(Yi, γ)α

}
.

The previous partial derivatives can be simplified as

∂ log fi(Yi, γ)

∂β
=

Yi − µi
Var(Yi)g′(µi)

xi = K1i(Yi, γ)xi

and
∂ log fi(Yi, γ)

∂φ
= − (Yiθi − b(θi))

a(φ)2 a′(φ) +
∂c(Yi, φ)

∂φ
= K2i(Yi, γ).

See Ghosh and Basu [13] for more details. Now using the simplified expressions, we can
write the estimating equation for β as

n
∑

i=1

xi

Li
α(γ)

{Mi(Yi, γ)− Ni(Yi, γ)} = 0k (8)

being
Mi(Yi, γ) = fi(Yi, γ)αK1i(Yi, γ)

and

Ni(Yi, γ) =
fi(Yi, γ)α∫

fi(y, γ)α+1dy

∫
fi(y, γ)α+1K1i(y, γ)dy.

Subsequently, the estimating equation for φ, is given by

∂Vi(Yi, γ)

∂φ
=

1

Li
α(γ)

2

{
α fi(Yi, γ)α ∂ log fi(Yi, γ)

∂φ
Li

α(γ)

−
[

α

(∫
fi(y, γ)α+1dy

) α
α+1−1 ∫

fi(y, γ)α+1 ∂ log fi(y, γ)

∂φ
dy

]
fi(Yi, γ)α

}

=
1

Li
α(γ)

2

{
α fi(Yi, γ)α ∂ log fi(Yi, γ)

∂φ
Li

α(γ)

−
[

α
Li

α(γ)∫
fi(y, γ)α+1dy

∫
fi(y, γ)α+1 ∂ log fi(y, γ)

∂φ
dy
]

fi(Yi, γ)α

}
.

and thus, the estimating equation for φ is given by

n
∑

i=1

1
Li

α(γ)
{M∗i (Yi, γ)− N∗i (Yi, γ)} = 0 (9)

being
M∗i (Yi, γ) = fi(Yi, γ)αK2i(Yi, γ),
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and

N∗i (Yi, γ) =
fi(Yi, γ)α∫

fi(y, γ)α+1dy

∫
fi(y, γ)α+1K2i(y, γ)dy.

Under some regularity conditions, Castilla et al. [27] established the consistency and
asymptotic normality of the MRPEs under the INIDO setup. Before stating the consistence
and asymptotic distribution of the MRPEs for the GLM, let us introduce some useful
notation. We define

Si
α =

∫
fi(y, β, φ)α+1dy

mjli(γ) =
1∫

fi(y, γ)α+1dy

∫
fi(y, γ)α+1Kji(y, γ)Kli(y, γ)dy,

mji(γ) =
1∫

fi(y, γ)α+1dy

∫
fi(y, β, φ)α+1Kji(y, γ)dy,

ljli(γ) =
∫ fi(y, γ)2α+1

Li
α(γ)

2

(
Kji(y, γ)−mji(γ)

)
(Kli(y, γ)−mli(γ))dy,

(10)

for all j, l = 1, 2 and i = 1, . . . , n.

Theorem 1. Let Y1, . . . , Yn be a random sample from the GLM defined in (1). The MRPE γ̂α =

(β̂
T
α , φ̂α)T is consistent and its asymptotic distribution is given by

√
nΩn(γ)

− 1
2 Ψn(γ)

(
(β̂α, φ̂α)− (β, φ)

)
L→

n→∞
N(0k+1, Ik+1),

where X denotes the design matrix, Ik is the k-dimensional identity matrix and the matrices Ψn
and Ωn are defined by

Ωn(γ) =
1
n

(
XT D11X XT D121
1T D12X 1T D221

)
,

Ψn(γ) =
1
n

 XT
(

D∗11 − (D∗1)
T D∗1

)
X XT

(
D∗12 − (D∗1)

T D∗2
)

1

1T
(

D∗12 − (D∗1)
T D∗2

)
X 1T

(
D∗22 − (D∗2)

T D∗2
)

1

,

with
Djk = diag

(
ljki(γ)

)
i=1,...,n,j,k=1,2

D∗jk = diag
(

mjki(γ)
)

i=1,...,n

and
D∗j = diag

(
mji(γ)

)
i=1,...,n, , j.k = 1, 2.

Proof. The consistency is proved for general statistical models in Castilla et al. [27] and the
asymptotic distribution of the MRPEs for GLM is derived in Jaenada and Pardo [3].

3. Wald Type Tests for the GLMs

In this section, we define Wald-type tests for linear null hypothesis of the form

H0 : MTγ = m vs H1 : MTγ 6= m (11)

being γ = (βT , φ)T , M a (k + 1)× r full rank matrix and

m = (m1, . . . , mr)
T (12)

a r-dimensional vector (r ≤ k + 1). If the nuisance parameter φ is known, as with logistic
and Poisson regression, the matrix M = Lk×r. Additionally, choosing

M = (Lk×r, O1×r)
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gives rise to a null hypothesis defined by a linear combination of the regression coefficients,
β, with φ known or unknown. Further, the simple null hypothesis is a particular case when
choosing M as the identity matrix of rank k,

H0 : β = β0 vs H1 : β 6= β0

with m = β0 =
(

β0
1, . . . , β0

k
)T .

In the following we assume that there exist a matrix Aα(γ) verifying

lim
n→∞

Ψn(γ)Ωn(γ)
−1Ψn(γ) = Aα(γ).

Definition 1. Let γ̂α = (β̂
T
α , φ̂α)T be the MRPE of γ = (βT , φ)T for the GLM. The Wald-type

tests, based on the MRPE, for testing (11) are defined by

Wn(γ̂α) = n
(

MTγ̂α −m
)T(

MTΨn(γ̂α)
−1Ωn(γ̂α)Ψn(γ̂α)

−1M
)−1(

MTγ̂α −m
)

. (13)

The following theorem presents the asymptotic distribution of the Wald-type test
statistics, Wn(γ̂α).

Theorem 2. The Wald-type test Wn(γ̂α) follows asymptotically, under the null hypothesis pre-
sented in (11), a chi-square distribution with degrees of freedom equal to the dimension of the vector
m in (12)

Under the null hypothesis given in (11) the asymptotic distribution of the Wald-type test
statistics is a chi-square distribution with r degrees of freedom.

Proof. We know that
√

n
(
(β̂

T
α , φ̂α)

T − (βT , φ)T
)

L→
n→∞

N(0k+1, Aα(γ)
−1).

Therefore,

√
n
(

MTγ̂α −m
)
=
√

nM(γ̂α − γ)
L→

n→∞
N(0k+1, MT Aα(γ)

−1M).

Now, the result follows taking into account that γ̂α is a consistent estimator of γ0.

Based on the previous convergence, the null hypothesis in (11) is rejected, if

Wn(γ̂α) > χ2
r,α (14)

being χ2
r,α the 100(1− α) percentile of a chi-square distribution with r degrees of freedom.

Finally, let γ1 be a parameter point verifying MTγ1 6= m, i.e., γ1 is not on the null
hypothesis. The next result establishes that the Wald-type tests given in (14) are consistent
(see Fraser [29]).

Theorem 3. Let γ1 be a parameter point verifying MTγ1 6= m. Then the Wald-type tests given in
(14) are consistent, i.e.,

lim
n→∞

Pγ1

(
Wn(γ̂α) > χ2

r,α

)
= 1.

Proof. See Appendix A.

Remark 1. In the proof of the previous Theorem was established the approximate power function of
the Wald-type tests defined in (13),

πWn(γ̂α)
(γ1) ≈ 1− φN (0,1)

(
1

σ(γ1)

(
χ2

r,α√
n
− Wn(γ1)√

n

))
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where

σ2(γ1) =

(
∂lγ̂α

(ζ)

∂ζT

)
γ=γ1

Aα(γ1)
−1
(

∂lγ̂α
(ζ)

∂ζ

)
γ=γ1

and
lγ̂α

(ζ) =
(

MTγ̂α −m
)T(

MT Aα(ζ)
−1M

)−1(
MTγ̂α −m

)
.

From the above expression, the necessary sample size n for the Wald-type tests to have a predeter-
mined power, π0, is given by n = [n∗] + 1, with

n∗ =
A + B +

√
A(A + 2B)

2l2
γ1
(γ1)

being

A = σ2(γ1)
(

φ−1(1− π0)
)2

, B = 2χ2
r,αlγ1(γ1)

and [·] the integer part.

In accordance with Maronna et al. [30], the breakdown point of the estimators γ̂α of a
parameter γ is the largest amount of contamination that the data may contain such that γ̂α

still gives enough information about γ. The derivation of a general breakdown points it is in
general not easy, so it may deserve a separate paper where it may be jointly considered the
replacement finite-sample breakdown point introduced by Donoho and Huber [31]. Although
breakdown point is an important theoretical concept in robust statistics, perhaps is more useful
the definition of breakdown point associated to a finite sample: replacement finite-sample
break down point. More details can be seen in Section 3.2.5 of Maronna et al. [30].

4. Influence Function

We derive in this section the IF of the MRPEs of the parameters γ = (βT , φ)T and
Wald-type statistics based on these MRPEs, Wn(γ̂α). The influence function (IF) of an
estimator quantifies the impact of an infinitesimal perturbation in the true distribution
of the data on the asymptotic value of the resulting parameter estimate (in terms of the
corresponding statistical functional). An estimator is said to be robust if its IF is bounded.
If we denote G = (G1, . . . , Gn) the true distributions underlying the data, the functional
Tα(G) and associated to the MRPE for the parameters γ is such that

1
n

n

∑
i=1

Rα( fi(y, Tα(G)), gi(y)) = min
γ

1
n

n

∑
i=1

Rα( fi(y, γ), gi(y)).

The IF of a estimator is defined as the limiting standardized bias due to infinitesimal
contamination. That is, given a contaminated distribution at the point (yt, xt), Gε =
(1− ε)G+ ε∆(yt ,xt) with ∆(yt ,xt) the degenerate distribution at (yt, xt), the IF of the estimator
γ̂α in terms of its associated functional Tα(G) is computed as

IF((yt, xt), Tα(G)) = lim
ε→0

Tα(Gε)− Tα(G)

ε
.

In the following, let us denote Tα(G) =
(

Tβ
α (G), Tφ

α (G)
)

, where Tβ
α (G) and Tφ

α (G)

are the functionals associated the parameters β and φ, respectively. Then, they must satisfy
the estimating equations of the MRPE given by

n

∑
i=1

xi

Li
α

(
(Tβ

α(G), Tφ
α(G))

){Mi

(
yi, (T

β
α(G), Tφ

α(G))
)
− Ni

(
yi, (T

β
α(G), Tφ

α(G))
)}

= 0k

n

∑
i=1

1

Li
α

(
(Tβ

α(G), Tφ
α(G))

){M∗i
(

yi, (T
β
α(G), Tφ

α(G))
)
− N∗i

(
yi, (T

β
α(G), Tφ

α(G))
)}

= 0
(15)
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where the quantities Lαi(γ), Mi(yi, γ), Ni(yi, γ), M∗i (yi, γ) and N∗i (yi, gamma) are defined
in Section 2. Now, evaluating the previous equation at the contaminated distribution Gε,
implicitly differentiating the estimating equations in ε and evaluating them at ε = 0, we
can obtain the expression of the IF for the GLM.

We first derive the expression IF of MRPEs at the i0 − th direction. For this purpose,
we consider the contaminated distributions

Gi0,ε =
(
G1, . . . , Gi0−1, Gi0,ε, Gi0+1, . . . , Gn

)
,

with Gi0,ε = (1− ε)Gi0 + ε∆(yi0 ,xi0 )
. Here, only the i0-th component of the vector of distri-

butions is contaminated. If the true density function gi of each variable belongs to the
exponential model, we have that

gi(y) =

{
fi(y, γ) i 6= i0
(1− ε) fi(y, γ) + ε∆(yi0 ,xi0 )

(y) i = i0.

Accordingly, we define

γi0
ε = Tα

(
G1, . . . , Gi0−1, Gi0,ε, Gi0+1, . . . , Gn

)
the MRPE when the true distribution underlying the data is Gi0,ε. Based on Remark 5.2
in Castilla et al. [27] the IF of the MRPE at the i0 − th direction with (yi0 , xi0) the point of
contamination is given by

IF((yi0 , xi0), Tα, G) =

(
∂Tα

(
Gi0,γε

)
∂ε

)
ε=0

= Ψn(γ)
−1 fi0(yi0 , γ)α∫

fi0(y, γ)α+1dy

(
K1i
(
yi0 , γ

)
− fi0(yi0 , γ)−αNi0

(
yi0 , γ

)
K2i
(
yi0 , γ

)
− fi0(yi0 , γ)−αN∗i0

(
yi0 , γ

) )(xi0 0
0 1

)
.

In a similar manner, the IF in all directions (i.e., all components of the vector of distributions
are contaminated) has the following expression

IF((y1, x1), . . . , (yn, xn), Tα, G) =

(
∂Tα

(
Gγε

)
∂ε

)
ε=0

= Ψn(γ)
−1

n

∑
i=1

(
fi(yi, γ)α∫

fi(y, γ)α+1dy

(
K1i(yi, γ)− fi(yi, γ)−αNi(yi, γ)
K2i(yi, γ)− fi(yi, γ)−αN∗i (yi, γ)

)(
xi 0
0 1

))
,

with (y1, x1), . . . , (yn, xn) the point of contamination. We next derive the expression of the
IF for the Wald-type tests presented in Section 3. The statistical functional associated with
the Wald-type tests for the linear null hypothesis (11) at the distributions G = (G1, . . . , Gn),
ignoring the constant n, is given by

Wα(G) =
(

MTTα(G)−m
)T(

MT Aα(Tα(G))−1M
)−1(

MTTα(G)−m
)

. (16)

Again, evaluating the Wald-type test functionals at the contaminated distribution Gε

and implicitly differentiating the expression, we can get the expression of it IF. In particular,
the IF of the Wald-type test statistics at the i0-th direction and the contamination point
(yi0 , x0) is given by

IF1
(
(yi0 , x0), Wα, G

)
=

(
∂Wα

(
Gi0,ε

)
∂ε

)
ε=0

= 2
(

MTTα(G)−m
)T(

MT Aα(Tα(G))−1M
)−1

MT IF((yi0 , x0), Tα, G).
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Evaluating the previous expression at the null hypothesis, MTTα(G) = m, the IF becomes
identically zero,

IF1
(
(yi0 , xi0)Wα, G

)
= 0k+1.

Therefore, it is necessary to consider the second order IF of the proposed Wald-type tests.
Twice differentiating in Wα(Gε), we get

IF2
(
(yi0 , xi0), Wα, G

)
=

(
∂2Wα

(
Gi0,ε

)
∂ε2

)
ε=0

= 2IF((yi0 , xi0), Tα, Fβ)
T M

(
MT Aα(Tα(G))−1M

)−1
MT IF((yi0 , xi0), Tα, G).

Finally, the second order IF of the Wald-type tests in all directions is given by

IF2((y1, x1), . . . , (yn, xn), Wα, G) =

(
∂2Wα(Gε)

∂ε2

)
ε=0

= 2IF((y1, x1), . . . , (yn, xn), Tα, G)T M
(

MT Aα(Tα(G))−1M
)−1

MT

· IF((y1, x1), . . . , (yn, xn), Tα, G).

To asses the robustness of the MRPEs and Wald-type test statistics we must discuss
the boundedness of the corresponding IF. The boundedness of the second order IF of
the Wald-type test statistics is determined by the boundedness of the IF of the MRPEs.
Further, the matrix Ψn(γ) is assumed to be bounded, so the robustness of the estimators
only depend on the second factor of the IF. Most standard GLMs enjoy such properties for
positives values of α, but the influence function is unbounded at α = 0, corresponding with
the MLE. As an illustrative example, Figure 1 plots the IF of the MRPEs for the Poisson
regression model with different values of α = 0, 0.5 at one direction. The model is fitted
with only one covariate, the parameter φ is known for Poisson regression (φ = 1) and the
true regression vector is fixed β = 1. As shown, the IF of the MRPEs with positives values
of α are bounded, whereas the IF of the MLE is not, indicating it lack of robustness.

Figure 1. IF of MRPEs with α = 0 (left) and α = 0.5 (right) of Poisson regression model.

5. Numerical Analysis: Poisson Regression Model

We illustrate the proposed robust method for the Poisson regression model. As pointed
out in Section 1 the Poisson regression model belongs to the GLM with known shape
parameter φ = 1, location parameter θi = xT

i β and known functions b(θi) = exp(xT
i β) and

c(yi) = − log(yi!). Since the nuisance parameter is known, for the seek of simplicity in the
following we only use β = γ. In Poisson regression, the mean of the response variable is
linked to the linear predictor through the natural logarithm, i.e., µi = exp(xT

i β). Thus, we
can apply the previous proposed method to estimate the vector of regression parameters β
with objective function given in Equation (5).
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The results provided are computed in the software R. The minimization of the ob-
jective function is performed using the implemented optim() function, which applies the
Nelder–Mead iterative algorithm (Nelder and Mead [32]). Nelder–Mead optimization
algorithm is robust although relatively slow. The corresponding objective function Tα

n (γ)
given in (5) is highly nonlinear and requires the evaluation of nontrivial quantities. Further,
the computation of the Wald-type test statistics defined in (13) requires to evaluate the co-
variance matrix of the MRPEs, involving nontrivial integrals. Some simplified expressions
of the main quantities defined throughout the paper for the Poisson regression model, such
as Li

α(β), K1i(y, β), Ni(y, β), m1i(β), m11i(β) or l11i(β), are given in the Appendix B. There
is no closed expression for these quantities, and they need to be approximated numerically.
Since the minimization is iteratively performed, computing such expressions at each step
of the algorithm and for each observation may entail an increased computational burden.
Nonetheless, the complexity is not significant for low-dimensional data. On the other hand,
the optimum in (5) need not to be uniquely defined, since the objective function may have
several local minima. Then, the choice of the initial value of the iterative algorithm is
crucial. Ideally, a good initial point should be consistent and robust. In our results the MLE
is used as initial estimate for the algorithm.

We analyze the performance of the proposed methods in Poisson regression through a
simulation study. We asses the behavior of the MRPE under the sparse Poisson regression
model with k = 12 covariates but only 3 significant variables. We set the 12-dimensional
regression parameter β = (1.8, 1, 0, 0, 1.5, 0, . . . 0) and we generate the explanatory variables,
xi, from the standard uniform distribution with variance-covariance matrix having Toeplitz
structure, with the (j, l)-th element being 0.5|j−l|, j, l = 1, . . . , p. The response variables are
generated from the Poisson regression model with mean µi = xT

i β, Yi ∼ P(µi). To evaluate
the robustness of the proposed estimators, we contaminate the responses using a perturbed
distribution of the form (1− b)P(µi) + bP(2µi), where b is a realization of a Bernoulli
variable with parameter ε so called the contamination level. That is, the distribution of the
contaminated responses lies in a small neighbourhood of the assumed model. We repeat
the process R = 1000 for each value of α.

Figure 2 presents the mean squared error of the estimate (MSE), MSE = ||β̂α −
β||2, (left) and the MSE on the prediction (right) against contamination level on data for
different values of α = 0, 0.1, 0.3, 0.5 and 0.7. The sample size is fixed at n = 200 and the
MSE on the prediction is calculated using n = 200 new observations following the true
model. As shown, greater values of α correspond to more robust estimators, revealing
the role of the tuning parameter on the robustness gain. Most strikingly, the MSE grows
linearly for the MLE, while the proposed estimators manage to maintain a low error in all
contaminated scenarios.

Figure 2. Mean Squared Error (MSE) on estimation (left) and prediction (right) against contamination
level on data.
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Furthermore, it is to be expected that the error of the estimate decreases with larger
samples sizes. In this regard, Figure 3 shows the MSE for different values of α = 0, 0.1, 0.3, 0.5
and 0.7, against the sample size in the absence of contamination (left) and under 5% of con-
tamination. Our proposed estimators are more robust than the classical MLE with almost all
contaminated scenarios, since the MSE committed is lower for all positives values of α than
for α = 0 (corresponding to the MLE), except for too small sample sizes. Conversely, the
MLE is, as expected, the most efficient estimator in absence of contamination, closely to our
proposed estimators with α = 0.1, 0.3, highlighting the importance of α in controlling the
trade-off between efficiency and robustness. In this regard, values of α about 0.3 perform
the best taking into account the low loss of efficiency and the gain in robustness. Finally,
note that small sample sizes adversely affect to greater values of α.

Figure 3. MSE in estimation of β in absence of contamination (left) and under 5% of contamination
level in data (right) with different values of α against sample size for Poisson regression model.

On the other hand, one could be interested on testing the significance of the selected
variables. For this purpose, we simplify the true model and we examine the performance of
the proposed Wald-type test statistics under different true coefficients values. In particular,
let us consider a Poisson regression model with only two covariates, generated from the
uniform distribution as before, and the linear null hypothesis

H0 : β2 = 0. (17)

That is, we are interested in assessing the significance of the second variable. The sample
size if fixed at n = 200 and the true value of the component of the regression vector
is set β1 = 1. We study the power of the tests under increasing signal of the second
parameter β2 and increasing contamination level. Here, the model is contaminated by
perturbing the true distribution with (1− b)P(µi) + bP(µ̃i), where µi = xT

i β is the mean
of the Poisson variable in the absence of contamination, µ̃i = xT

i β̃ is the contaminated
mean, with β̃ = (1, 0), and b is a realization of a Bernoulli variable with probability of
success ε. Table 1 presents the rejection rate of the Wald-type test statistics for different true
values of β2 under different contaminated scenarios. As expected, stronger signals produce
higher power for all Wald-type test. Moreover, the power of the Wald-type test statistics
based on the MLE decreases when increasing the contamination, whereas the power of
the statistics based on the MRPEs with positives values of α keeps sufficiently high. Then,
our proposed robust estimators are able to detect the significance of the variable even in
heavily contaminated scenarios.
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Table 1. Rejection rate of Wald-type test statistics based on MRPEs with different true values of β2

and contamination levels.

β2 α
Contamination Level

0 5% 10% 15% 20% 25%

0.3

0 0.332 0.264 0.227 0.187 0.157 0.141
0.1 0.435 0.376 0.328 0.285 0.251 0.223
0.3 0.557 0.511 0.483 0.416 0.390 0.360
0.5 0.617 0.563 0.533 0.493 0.467 0.427
0.7 0.638 0.590 0.568 0.536 0.513 0.476

0.5

0 0.756 0.730 0.683 0.621 0.551 0.493
0.1 0.833 0.798 0.775 0.736 0.681 0.622
0.3 0.885 0.870 0.864 0.829 0.792 0.752
0.5 0.895 0.891 0.886 0.867 0.842 0.814
0.7 0.901 0.897 0.893 0.879 0.854 0.832

0.7

0 0.971 0.979 0.968 0.948 0.915 0.862
0.1 0.980 0.988 0.983 0.973 0.962 0.932
0.3 0.988 0.995 0.992 0.987 0.985 0.969
0.5 0.989 0.995 0.995 0.992 0.992 0.977
0.7 0.989 0.995 0.993 0.995 0.990 0.983

6. Real Data Applications
6.1. Example I: Poisson Regression Regression

We finally apply our proposed estimators in a real dataset arising from Crohn’s disease.
The data were first studied in Lô and Ronchetti [33] to asses the adverse events of a drug.
The clinical study included 117 patients affected by the disease, for whom information was
recorded for 7 explanatory variables: BMI (body mass index), HEIGHT, COUNTRY (one of
the two countries where the patient lives), SEX, AGE, WEIGHT, and TREAT (the drug taken
by the patient in factor form: placebo, Dose 1, Dose 2), in addition to the response variable
AE (number of adverse events). Lô and Ronchetti [33] considered a Poisson regression
model for the Crohn data and determined that only variables Dose 1, BMI, HEIGHT, SEX,
AGE, and COUNTRY may be essentially significant. Further, they flagged observations
23rd, 49th, and 51st to be highly influential on the classical analysis. Table 2 presents the
estimated coefficient of the explanatory variable when fitting the Poisson regression model.
Robust methods suggest higher coefficients for the variables BMI and AGE, whereas fewer
values for the coefficients of the categorical variables COUNTRY, SEX, Dose 1.

Table 2. Estimated coefficients for Crohn’s disease data for different values of α with original data
and clean data (after removing influential observations).

Intercept BMI Height Age Country Sex Dose 1

Original Data

MLE (α = 0) 6.261 0.026 −0.037 0.012 −0.394 −0.646 −0.533
α = 0.1 5.197 0.037 −0.033 0.014 −0.489 −0.800 −0.469
α = 0.3 4.798 0.058 −0.036 0.021 −0.545 −1.284 −0.832
α = 0.5 4.391 0.067 −0.037 0.028 −0.557 −1.535 −1.036
α = 0.7 5.699 0.067 −0.047 0.036 −0.737 −1.759 −1.157
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Following the discussion in Lô and Ronchetti [33], classical tests may not select variable
AGE to be significant. Then, we propose testing the significance of that variable using
Wald-type test statics based on different values α. Table 3 shows the p-values of the
corresponding tests with null hypothesis H0:AGE = 0, with the original data and after
removing the outlying observations.

Table 3. p-values of test with null hypothesis H0:AGE = 0 with original and clean data (after removing
influential observations).

Original Data Clean Data

MLE (α = 0) 0.059 0.011
α = 0.1 0.018 0.004
α = 0.3 0.001 0.000
α = 0.5 0.000 0.000
α = 0.7 0.000 0.000

The MLE rejects the significance of the variable AGE when the original data are used,
whereas the Wald-type test statistics with positives values of α indicate strong evidence
against the null hypothesis. In contrast, if the influential observations are removed, all
Wald-type test statistics agree in the significance of the variable. This example illustrates
the robustness of the proposed statistics.

6.2. Example II: Binomial Regression

We finally illustrate the applicability of the MRPE for robust inference in the binomial
regression model. We examine the damaged carrots dataset, first studied in Phelps [34] and
later discussed by Cantoni and Ronchetti [8] and Ghosh and Basu [13] to illustrate robust
procedures for binomial regression. The data contain 24 samples, among which the 14th
observation was flagged as an outlier in the y-space but not a leverage point. The data are
issued from a soil experiment and give the proportion of carrots showing insect damage in
a trial with three blocks and eight dose levels of insecticide. The explanatory variables are
the logarithm transform of the dose (Logdose) and two dummy variables for Blocks 1 and 2.

Binomial regression is a natural extension of the logistic regression when the response
variable Y does not follow a Bernoulli distribution but a Binomial distribution counting
the number of successes in a series of m independent Bernoulli trials. Binomial regression
model belongs to the GLM with known shape parameter φ = 1, location parameter
θi = xT

i β and functions b(θi) = m log
(
1 + exp(xT

i β)
)

and c(yi) = log((m
yi
)). The mean of

the response variable is then linked to the linear predictor through the logit function, i.e.,

log
(

µi
m− µi

)
= xT

i β.

Table 4 presents the estimated coefficients of the regression vector for the carrots data
using the MLE and robust MRPEs when the model is fitted with the original data and the
model fitted without the outlying observation. The results provided are computed in the
same manner as in Section 5, adapting the corresponding quantities in Equation (5) for
the binomial model. All integrals involved were numerically approximated, and the MLE
is used as initial estimate for the optimization algorithm. The influence of observation
14 stands out when using the MLE; the estimated coefficients are remarkably different
when fitting the model with and without observation 14. In contrast, all methods estimate
similar coefficients after removing the outlying observation, coinciding with the robust
estimates for moderately high values of the tuning parameter α.
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Table 4. Estimated coefficients for damaged carrots data for different values of α with original data
and clean data (after outliers removal).

Intercept Logdose B1 B2

Original Data

MLE (α = 0) 1.480 −1.817 0.542 0.843
α = 0.1 1.729 −1.949 0.527 0.755
α = 0.3 2.017 −2.100 0.479 0.652
α = 0.5 2.090 −2.134 0.386 0.625
α = 0.7 2.150 −2.161 0.258 0.615

Clean Data

MLE (α = 0) 2.141 −2.179 0.546 0.636
α = 0.1 2.126 −2.167 0.529 0.633
α = 0.3 2.105 −2.149 0.479 0.627
α = 0.5 2.108 −2.144 0.385 0.621
α = 0.7 2.154 −2.163 0.257 0.614

7. Conclussions

In this paper, we presented the MRPE and Wald-type test statistics for GLMs. The
proposed MRPEs and statistics have appealing robustness properties where the data are
contaminated due to outliers or leverage points. MRPEs are consistent and asymptotically
normal and represent an attractive alternative to the classical nonrobust methods. Addi-
tionally, robust Wald-type test statistics, based on the MRPEs, were developed. Through
the study of the IFs and the development of an extensive simulation study, we proved their
robustness from a theoretical and practical point of view, respectively. In particular, we
illustrated the superior performance of the MRPEs and the corresponding Wald-type tests
for the Poisson regression model.
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Abbreviations
The following abbreviations are used in this manuscript:

DPD Density Power Divergence
IF Influence Function
GLM Genelarized Linear Model
LRM Linear Regression Model
MLE Maximum Likelihood Estimator
MRPE Minimum Rényi Pseudodistance Estimator
RP Rényi Pseudodistance

Appendix A. Proof of Theorem 3

Let us define

lη(ζ) =
(

MTη−m
)T(

MT Aα(ζ)
−1M

)−1(
MTη−m

)
so the Wald-type test statistic is such that

nlγ̂α
(γ̂α) = Wn(γ̂α).

We know that γ̂α
P→

n→∞
γ1 and therefore lγ̂α

(γ1) and lγ1(γ1) have the same asymptotic

distribution. A first order Taylor expansion of g(ζ) = lγ̂α
(ζ) at γ̂α around γ1 gives,

lγ̂α
(γ̂α) = lγ̂α

(γ1) +

(
∂lγ̂α

(ζ)

∂ζT

)
γ=γ1

(γ̂α − γ1) + op(‖γ̂α − γ1‖).

Based on the asymptotic distribution of γ̂α we have
√

nop(‖γ̂α − γ1‖) = op(1)

therefore

√
n
(

lγ̂α
(γ̂α)− lγ1(γ1)

)
and
√

n
(

∂lγ̂α
(ζ)

∂ζT

)
γ=γ1

(γ̂α − γ1)

have asymptotically the same distribution, i.e.,

√
n
(

lγ̂α
(γ̂α)− lγ1(θ1)

)
L→

n→∞
N

(
0k+1,

(
∂lγ̂α

(ζ)

∂ζT

)
γ=γ1

Aα(γ1)
−1
(

∂lγ̂α
(ζ)

∂ζ

)
γ=γ1

)
.

Now, we shall denote,

σ2(γ1) =

(
∂lγ̂α

(ζ)

∂ζT

)
γ=γ1

Aα(γ1)
−1
(

∂lγ̂α
(ζ)

∂ζ

)
γ=γ1

.

Then, we have,

Pγ1

(
Wn(γ̂α) > χ2

r,α

)
= Pγ1

(
Wn(γ̂α)− nlγ1(γ1) > χ2

r,α − nlγ1(γ1)
)

= Pγ1

( √
n

σ(γ1)

(
lγ̂α

(γ̂α)− lγ1(γ1)
)
>

1
σ(γ1)

(
χ2

r,α√
n
−
√

nlγ1(γ1)

))

≈ 1− φN(0,1)

(
1

σ(γ1)

(
χ2

r,α√
n
−
√

nlγ1(γ1)

))
,
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where φN(0,1)(t) represents the distribution function of a standard normal distribution
evaluated at t. Finally,

lim
n→∞

Pγ1

(
Wn(γ̂α) > χ2

r,α

)
= 1.

Appendix B. Poisson Regression Model

We derive here some explicit expression for the particular case of the Poisson regres-
sion. Following the discussion in Section 5, we denote here γ = β since the nuisance
parameter is known, φ = 1. The Poisson distribution with parameter exT

i β is given by

fi(y, β) =
1
y!

e−exT
i β

eyxT
i β, y = 0, 1, . . . .

Differentiating its logarithm with respect to the regression vector, we get

∂ log fi(y, β)

∂β
= (y− exT

i β)xT
i .

so we can write
K1i(y, β) = y− exT

i β.

Further, we have that

Ni(y, β) =
fi(y, β)α

∞
∑

y=0
fi(y, β)α+1

∞
∑

y=0
fi(y, β)α+1

(
y− exT

i β
)

.

so the estimating equations of the Poisson regression model are given by

n
∑

i=1

1
Li

α(β)

(
fi(yi, β)α

(
yi − exT

i β
)
− Ni(yi, β)

)
xi = 0k. (A1)

For α = 0, we have
Ni(yi, β) = 0 and Li

α(β) = 1

so the estimating equations are given by

n
∑

i=1

(
yi − exT

i β
)

xi = 0k,

yielding to the maximum likelihood estimating equations.
On the other hand, the asymptotic distribution of β̂α is given by

√
n
(

XT D11X
)− 1

2 1
n

XT
(

D∗11 − (D∗1)
T D∗1

)
X
(

β̂α − β
)

L→
n→∞

N(0k, Ik)

being
D11 = diag(l11i(β)),

with
l11i(β) =

1

Li
α(β)2

∞
∑

y=0
fi(y, β)2α+1(K1i(y, β)−m1i(β))

and
m1i(β) =

1
∞
∑

y=0
fi(y, β)α+1

∞
∑

y=0
fi(y, β)α+1

(
y− exT

i β
)

.
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Finally

D∗11 = diag(m11i((β))) =
1

∞
∑

y=0
fi(y, β)α+1

∞
∑

y=0
fi(y, β)α+1

(
y− exT

i β
)2

.
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