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Abstract: This paper studies how to attain fairness in communication for omniscience that models
the multi-terminal compress sensing problem and the coded cooperative data exchange problem
where a set of users exchange their observations of a discrete multiple random source to attain
omniscience—the state that all users recover the entire source. The optimal rate region containing
all source coding rate vectors that achieve omniscience with the minimum sum rate is shown to
coincide with the core (the solution set) of a coalitional game. Two game-theoretic fairness solutions
are studied: the Shapley value and the egalitarian solution. It is shown that the Shapley value assigns
each user the source coding rate measured by their remaining information of the multiple source
given the common randomness that is shared by all users, while the egalitarian solution simply
distributes the rates as evenly as possible in the core. To avoid the exponentially growing complexity
of obtaining the Shapley value, a polynomial-time approximation method is proposed which utilizes
the fact that the Shapley value is the mean value over all extreme points in the core. In addition, a
steepest descent algorithm is proposed that converges in polynomial time on the fractional egalitarian
solution in the core, which can be implemented by network coding schemes. Finally, it is shown
that the game can be decomposed into subgames so that both the Shapley value and the egalitarian
solution can be obtained within each subgame in a distributed manner with reduced complexity.

Keywords: coalitional game; communication for omniscience; fairness; submodularity

1. Introduction

The communication for omniscience (CO) problem is formulated in [1]. It is as-
sumed that there are a finite number of users in a system that are indexed by the set V.
Each user i ∈ V observes a distinct component Zi of a discrete multiple random source
ZV = (Zi : i ∈ V) in private. The users are allowed to exchange their observations over
public authenticated broadcast channels so as to attain omniscience,the state where each
user recovers the observation sequence of the entire source ZV . Originally, the CO problem
was studied in [1] due to its dual relationship with the multi-terminal secret capacity
(Theorem 1 in [1]). The interactive data exchange process was also studied in other source
coding scenarios, e.g., the interactive function computation problem [2–4] (Refs. [2–4] stud-
ied the two-terminal |V| = 2 lossy source coding problem, where each user communicates
with the other to compute a function. The aim is to characterize the sum-rate-distortion
region. This paper considers lossless source coding, which, for |V| = 2, corresponds to
zero-distortion case (see Theorem 2 in [3], Section IV-B in [4]), but the focus is to find how
to distribute the sum-rate evenly among more than two users). More recently, CO was
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also cast into the coded cooperative data exchange (CCDE) problem [5–7], in which the users
are mobile clients broadcasting linear combinations of packets over noiseless peer-to-peer
(P2P) wireless channels and the communication rates are restricted to being integral.

One main optimization problem that arises in CO is how to minimize the overall source
coding rate to attain omniscience. We call it the minimum sum-rate problem and denote the
value of the minimum sum-rate by R∗. By utilizing submodular function minimization
(SFM) techniques, the value of R∗, along with an optimal rate vector, are determined
in O(|V|2 · SFM(|V|) time in [8] for the asymptotic model, where the communication
rates are real-valued (In an asymptotic model, the observation sequence is assumed to be
infinitely long. The CCDE corresponds to the finite linear source model, an example of
the non-asymptotic model. In the non-asymptotic model, each user only obtains a finite
length of observations, and the broadcasts are integer numbers of linear combinations of
observations (Section II in [8])), and in [9,10] for CCDE. Here, SFM(|V|) is the complexity
of a SFM algorithm and is polynomial (Chapter VI in [11]). A more efficient algorithm can
be found in [12] by simulating the communications based on the random linear network
coding scheme [13,14]. The complexity was further reduced to O(|V| · SFM(|V|)) in [15].

While [8–10,12] only determined one optimal rate vector, it is shown in (Section III-B
in [8]) that the optimal rate region is not a singleton in general. Thus, it is natural to
consider how to choose an optimal rate vector that also attains fairness, particularly when
the intention is to promote the mobile clients’ cooperation in CCDE or even out the battery
usage in a wireless sensor network (WSN). The problem of how to attain fairness has been
previously considered in [16,17] for CCDE. In [17], a multi-layer acyclic graph is proposed,
based on which, a constrained quadratic programming was formulated to determine the
Jain’s fairness solution [18]. The algorithm proposed in [16] is a greedy approach, where, in
each iteration, a unit rate is assigned to the user that optimizes a fairness measure, so that
the resulting solution converges on a fair and integer-valued optimal rate vector (The fair
solutions in [16,17] coincide with the egalitarian solution [19] in coalitional game theory
due to the equivalence between the submodular base polyhedron and the optimal rate
region (Section III-B in [8]), both of which, as will be shown in Section 3 in this paper,
coincide with the core of a coalitional game).

However, neither of them applies to systems where the communication rates are
non-integral, e.g., the asymptotic model, or where packet splitting (and hence fractional
transmission rates) is allowed in CCDE. The main purpose of this paper is to study how to
attain fairness in the optimal rate region for the CO problem, where the broadcast rates
are not constrained to be integer-valued. We start the study by showing the equivalence
between the optimal rate region and the core (the solution set) of a coalitional game. We
consider two fair solutions proposed in coalitional game theory: the Shapley value [20] and
the egalitarian solution [19]. We propose a steepest descent algorithm (SDA) for searching a
fractional egalitarian solution that can be implemented by packet splitting in CCDE. Finally,
we show that the game can be decomposed by the fundamental partition P∗ into subgames
(The fundamental partition P∗ is an optimizer that determines the minimum sum-rate
R∗ [8]. See also Section 2.1), each of which can attain fairness, either being the Shapley
value or the egalitarian solution, on its own. This decomposition leads to a distributed
computation method for fairness and reduces the complexity.

1.1. Summary of Main Results

Our main results are summarized as follows:
(1) We formulate the problem of attaining omniscience with the minimum sum-rate

R∗ by a coalitional game model, where the characteristic cost function, denoted by f̂R∗(X)
for all user groups X ⊆ V, quantifies the remaining randomness in ZX = (Zi : i ∈ X)
given the common randomness Λ = H(V)− R∗ shared by all users in V (The game model
is closely related to the dual relationship (Theorem 1 in [1,21]): R∗ = H(V)−Λ, where
H(V) is the entropy of ZV and Λ is the common randomness that is shared by all the users
in V [22,23]. The interpretation is that attaining omniscience by the minimum sum-rate
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R∗ is equivalent to determining how to let the users encode the remaining randomness in
ZV given the common randomness Λ). That is, f̂R∗ specifies the source coding rate/cost
upper bound to each user subset X ⊆ V. We show that (a) the core of the game coincides
with the optimal rate region containing all the solutions to the minimum sum-rate problem,
and (b) the game describes the users’ cooperation when they jointly encode the remaining
randomness in ZV to reach omniscience with the sum-rate exactly equal to R∗.

(2) We show that the Shapley value [20] assigns each user the expected marginal cost
f̂R∗(X ∪ {i}) − f̂R∗(X) over all X ⊆ V \ {i}. This value is fair in that it penalizes each
user according to the source coding rate he/she incurred in CO. While the complexity of
obtaining the exact Shapley value is exponentially growing in the number of users |V|, we
show that the Shapley value is the mean over all extreme points in the core. By randomly
generating an extreme point set of a desired size, an approximation of the Shapley value
can be obtained in polynomial time.

(3) The egalitarian solution [19] aims to equalize the rate/cost allocation in the optimal
rate region regardless of the marginal costs. We show that this solution is more suitable
for those systems with equally privileged users, e.g., CCDE and WSN. We propose a
steepest descent algorithm (SDA) for searching a fractional egalitarian solution that can be
implemented in CCDE by splitting each packet into |P∗| − 1 chunks, where |P∗| denotes
the number of user subsets in the fundamental partition P∗. Based on an optimality
criterion for the egalitarian solution stating that the local optimum implies the global
optimum, we show that the estimation sequence generated by the SDA converges in the
fractional egalitarian solution in O(|P∗| · L(V) · |V| · SFM(|V|)) time, where L(V) is the
maximum `1-norm over all pairs of points in the optimal rate region. In addition, the
steepest direction in each iteration of SDA can be computed in a distributed manner.

(4) The game is decomposable such that the users in each subset C ∈ P∗ form a
subgame with the characteristic cost function f̂R∗(X) for all X ⊆ C. This is due to the
mutual independence between ZC and ZC′ for any two distinct subsets C, C′ ∈ P∗ given
the common randomness Λ. To attain fairness, it suffices to let the users within each
subgame C ∈ P∗ decide how to allocate the source coding rates fairly, which not only
reduces complexity, but also allows parallel computation.

1.2. Organization

The rest of the paper is organized as follows. The system model is described in
Section 2, where we also review existing results on the minimum sum-rate problem. In
Section 3, we formulate the coalitional game model and show that it can be decomposed
by the fundamental partition P∗. In Section 4, we show how to attain fairness in the
optimal rate region by the Shapley value and discuss how to approximate it to avoid
the exponentially growing complexity. In Section 5, we propose the SDA algorithm for
searching the fractional egalitarian solution. In both Sections 4 and 5, we also present
methods to obtain the Shapley value and egalitarian solution by the decomposition method.

2. Communication for Omniscience

Let V with |V| > 1 be a finite set that indexes the terminals in a discrete memoryless
multiple source ZV = (Zi : i ∈ V). Each component Zi is a discrete random variable that
takes its values in the finite alphabet Zi according to the joint probability mass function PZV .
Let there be |V| users. Each user i ∈ V observes an i.i.d. n-sequence Zn

i of the component
Zi in private. The users are allowed to exchange compressed versions of their observations
over noiseless broadcast channels. The purpose is to attain omniscience, the state where
all users recover the observation sequence Zn

V . This problem is called communication for
omniscience (CO) [1] (The CO problem was originally formulated in [1] based on a study on
the secret capacity in a more general setting where a set of users A ⊆ V serve as helpers
that assist the active users in generating the secret key. The CO problem considered in this
paper is the case when A = V).



Entropy 2022, 24, 109 4 of 21

2.1. Preliminaries

We review the existing results on minimum sum-rate and optimal rate region as
follows. For X ⊆ V, let H(X) be the amount of randomness in ZX measured by Shannon
entropy [24]. For a (source coding) rate vector rV = (ri : i ∈ V), each dimension ri denotes
the code rate at which user i encodes their observation Zn

i . Let r : 2V 7→ R+ be the sum-rate
function associated with rV such that r(X) = ∑i∈X ri, ∀X ⊆ V with the convention r(∅) = 0.
Here, r(X) denotes the rates at which the users in X jointly encode Zn

X. A source coding
rate vector rV at which omniscience is attainable satisfies the Slepian-Wolf (SW) constraints
r(X) ≥ H(X|V \ X), ∀X ( V [1]. The achievable rate region is

R(V) = {rV ∈ R|V| : r(X) ≥ H(X|V \ X), ∀X ( V}. (1)

The fundamental problem concerning the efficiency in CO is to minimize the sum-rate
for attaining omniscience

R∗ = min{r(V) : rV ∈ R(V)}. (2)

This minimum sum-rate problem has been studied and solved efficiently in [8,25] without
dealing with the exponentially large number of constraints in the linear programming (2).
We review some results in [8] as follows. They will be used in Section 3 to formulate the
game model.

For sum-rate α ∈ R+, define fα(X) = α− H(V \ X|X) for X 6= ∅ and fα(X) = 0
for X = ∅. Let Π(V) be the set containing all partitions of V. The Dilworth truncation of
fα is f̂α(X) = minP∈Π(X) ∑C∈P fα(C) for all X ⊆ V [26]. It is shown in (Theorem 4 and
Corollary 46 in [8]) that

R∗ = min{α : fα(V) = f̂α(V)}. (3)

The optimal rate region R∗(V) that contains all achievable rate vectors rV with sum-
rate r(V) = R∗ coincides with B( f̂R∗), the base polyhedron of f̂R∗ (Section 2.3 in [11] and
Definition 9.7.1 in [27]:

R∗(V) = {rV ∈ R(V) : r(V) = R∗}
= {rV ∈ P( f̂R∗) : r(V) = f̂R∗(V) = R∗}
= B( f̂R∗),

(4)

where P( f̂R∗) = {rV ∈ R|V| : r(X) ≤ f̂R∗(X), ∀X ⊆ V} is the polyhedron of f̂R∗ , which
coincides with P( fR∗) = {rV ∈ R|V| : r(X) ≤ fR∗(X), ∀X ⊆ V} (Theorems 2.5(i) and 2.6(i)
in [11]). Here, the polyhedron P( fR∗) is induced by the SW constraints: the inequality
r(X) ≥ H(X|V \X) in (1) is converted to r(V \X) ≤ R∗−H(X|V \X) under the constraint
r(V) = R∗ in B( f̂R∗).

Problem (3) can be solved in O(|V|2 · SFM(|V|)) time by the modified decomposition
algorithm (MDA) proposed in (Section V-A in [8]) (The efficiency of the MDA algorithm
relies on the submodularity of the entropy function H. SFM(|V|) denotes the complexity
of solving a submodular function. See Appendix A for the definition of the submodularity
and a brief note on SFM(|V|)), which also returns an optimal rate vector in R∗(V). Let P∗
be the finest minimizer that determines the Dilworth truncation:

f̂R∗(V) = min
P∈Π(V)

∑
C∈P

fR∗(C). (5)

We call P∗ the fundamental partition, which is also returned by the MDA algorithm.

2.2. Fairness

While the optimal rate region R∗(V) is not necessarily a singleton, the MDA algorithm,
as well as (Algorithm 3 in [9] and Appendix F in [10]) for solving the minimum sum-rate
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problem in CCDE determine an extreme point (a vertex) in R∗(V), as illustrated in the
following example.

Example 1. There are five users V = {1, . . . , 5} in Figure 1 observing, respectively,

Z1 = (Wb,Wc,Wd,Wh,Wi),

Z2 = (We,W f ,Wh,Wi),

Z3 = (Wb,Wc,We,Wj),

Z4 = (Wa,Wb,Wc,Wd,W f ,Wg,Wi,Wj),

Z5 = (Wa,Wb,Wc,W f ,Wi,Wj),

with Wj for all j ∈ {a, . . . , e} being an independent uniformly distributed random bit. In CCDE,
each Wj represents a packet and omniscience refers to the recovery of all packets in ZV by users’
broadcasting linear combinations of Zi’s over P2P channels [5].

By applying the MDA algorithm (Algorithm 1 in [8]), we determine the minimum sum-
rate R∗ = 13

2 and an optimal rate vector (1, 1
2 , 1

2 , 9
2 , 0), which is an extreme point in R∗(V)

(Corollary 10 in [8]), and also the fundamental partition P∗ = {{1, 4, 5}, {2}, {3}}, which is
the finest minimizer of (5). It is not difficult to see that we can improve the fairness of the returned
optimal rate vector in R∗(V). For example, (1, 1

2 , 1
2 , 4, 1

2 ) ∈ R∗(V) is fairer in that user 5 also
takes part in the CO instead of being a free rider.

user 1
Z1 = (Wb ,Wc ,Wd ,Wh ,Wi)

user 4
Z4 = (Wa ,Wb ,Wc ,Wd ,W f ,Wg ,Wi ,Wj)

user 5
Z5 = (Wa ,Wb ,Wc ,W f ,Wi ,Wj)

user 2
Z2 = (We ,W f ,Wh ,Wi)

user 3
Z3 = (Wb ,Wc ,We ,Wj)

Figure 1. The 5-user system with V = {1, . . . , 5} in Example 1. The users encode and broadcast Zis
so as to attain omniscience of the source ZV . In the corresponding CCDE problem, each Wj denotes a
packet that belongs to a field Fq, and each user i ∈ V broadcasts linear combinations of Zi to help
others recover all packets in ZV .

The fairness considered in Example 1 corresponds to the egalitarian solution [19,28],
which tries to make the users have an equal share of the coding rates. The purpose is to
motivate them to take part in the CO. In a system where the users’ contribution is unequal,
fairness could mean that each user should be penalized proportionally by the coding rates
he/she incurs in the CO. In Example 1, user 4 should transmit more since he/she incurs
the most coding rates for attaining omniscience, even if the overall coding rates can be
distributed to the users more evenly (see Section 5). This is another fairness metric called
the Shapley value in coalitional game theory. These two fairness metrics are both studied
in this paper.

For a fractional rate vector rV , if K ∈ Z+ is the least common multiple (LCM) of all
denominators of ri, i.e., KrV = (Kri : i ∈ V) ∈ Z|V|+ , this rate vector can be implemented
by K-packet-splitting in CCDE [9,10,17,29]: dividing each packet into K chunks and letting
the users broadcast linear combinations of packet chunks at rate KrV . In Example 1, both
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(1, 1
2 , 1

2 , 9
2 , 0) and (1, 1

2 , 1
2 , 4, 1

2 ) can be achieved by 2-packet-splitting. Therefore, in CCDE,
we are also interested in determining a fair fractional optimal rate vector.

3. Decomposable Coalitional Game

We formulate a coalitional game model (The coalitional game was first formulated to
propose the Shapley value as a fair rate allocation for CO. This paper introduces the decom-
position property and focuses on the mutual dependence, cooperation among the users
and distributed computation of fair solutions) in this section and show the equivalence of
the optimal rate region R∗(V) and the core of this game. The purpose is to introduce two
game-theoretic solutions, the Shapley value and egalitarian solution in Sections 4 and 5,
respectively, for attaining fairness in R∗(V). We also show the decomposition of this game
model, a property that will be utilized in Sections 4 and 5 to propose a decomposition
method for obtaining the Shapley value and egalitarian solution, respectively.

3.1. Coalition Game Model

Let the users in V be self-autonomous decision makers that take part in the CO, and
assume that, instead of being selfish, they may cooperate with others to form groups. We
call X ⊆ V a coalition and V the grand coalition. Consider the function fR∗(X) = H(X) +
R∗ − H(V). Here, R∗ − H(V) equals the common randomness Λ in ZV that is shared by
all users in V due to the dual relationship (Theorem 1 in [1]) [21]

R∗ = H(V)−Λ. (6)

Here, Λ is called the multivariate mutual information in [23], or shared information
in [22]. Assume that Λ is obtained by a random variable U, which does not need to be
broadcast over the public channels. Then, the problem is how to encode the remaining
randomness in ZX given U for all X ⊆ V that is measured by the Dilworth truncation [23]

H(X|U) = f̂R∗(X) = min
P∈Π(X)

∑
C∈P

fR∗(C). (7)

We call f̂R∗ the characteristic cost function in that f̂R∗(X) specifies the upper bound on
the (source) coding cost when the users in X form a coalition so as to jointly encode the
randomness in ZX given U. The coalitional game model is characterized by the user set V
and the characteristic cost function f̂R∗ . We denote it by Ω(V, f̂R∗). In this sense, the game
Ω(V, f̂R∗) formulates a multi-terminal data compression problem where the users jointly
encode the remaining randomness in ZV that is specified by the set function f̂R∗ .

Example 2. For the 5-user system in Example 1, the common randomness Λ = H(V) −
R∗ = 10− 13

2 = 7
2 is obtained by the random variable U. For users 1 and 2, we have

H({1, 2}|U) = f̂13/2({1, 2})
= min

{
f13/2({1}) + f13/2({2}), f13/2({1, 2})

}
= min

{
H({1}) + H({2})− 2H(U), H({1, 2})− H(U)

}
= H({1}) + H({2})− 2H(U) = 2,

being the remaining randomness in Z{1,2} given U. The interpretation is that, in order to attain
omniscience with sum-rate R∗, the rate for users 1 and 2 to jointly encode their observations is no
more than 2 bits. Alternatively, the maximum cost incurred by users 1 and 2 cooperating with each
other is 2 bits of coding rate. One can show that (7) holds for all X ⊆ V (An explanation of (7) can
be found in (Section IV-B in [23])).

3.2. Core

While f̂R∗ quantifies the maximum coding cost in each coalition, each rV denotes a
cost allocation method, with each ri being the source coding rate assigned to user i ∈ V.
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The solution set of the game Ω(V, fR∗) is called the core [30,31] which contains all rVs
distributing exactly the total cost R∗ to individual users such that r(X) ≤ f̂R∗(X) holds
for all coalitions X ⊆ V. It is not difficult to see from (4) that the core coincides with the
optimal rate region R∗(V), which is nonempty (Theorem 4 in [8]) (The nonemptiness of the
core R∗(V) can also be explained by the submodularity of f̂R∗ . See Appendix B). In the rest
of the paper, we will refer to R∗(V) as the core or the optimal rate region interchangeably.

The inequality r(X) ≤ f̂R∗(X) in the core R∗(V) also has an interpretation in coali-
tional game theory. If a cost allocation method rV results in r(X) > f̂R∗(X) for some X,
the users in X may break the coalition X and seek another rV such that r(X) ≤ f̂R∗(X).
This means the coalition X is not stable (This can also be explained by the definition of
stability (Section 4.3 in [32]) and the fact that the core is a stable set in (Theorem 8 in [32])).
On the other hand, if r(X) ≤ f̂R∗(X) holds for all X ⊆ V, then no user has the incentive
to break the coalition V and form a smaller one, i.e., the grand coalition V forms. In this
sense, the core contains all cost allocation methods rV that exactly distribute the sum-cost
r(V) = R∗ to all users in a way such that all of them would like to cooperate with others
for the purpose of attaining omniscience (Chapter 12 in [30]).

3.3. Decomposition

For any X, Y ( V such that X ∩ Y = ∅, let t denote the disjoint union and rX ⊕
rY = rXtY be the direct sum of rX and rY. For example, for r{1,3} = (r1, r3) = (3, 7)
and r{2,5} = (r2, r5) = (2, 4), r{1,3} ⊕ r{2,5} = r{1,2,3,5} = (3, 2, 7, 4). For X ⊆ V, let
χX = (ri : i ∈ V) be the characteristic vector of the subset X such that ri = 1 if i ∈ X and
ri = 0 if i /∈ X.

For the fundamental partition P∗, each C ∈ P∗ defines a subgame Ω(C, f̂R∗) with the
characteristic cost function f̂R∗(X) for all X ⊆ C. The core of the subgame Ω(C, f̂R∗) is

R∗(C) = {rC ∈ PC( f̂R∗) : r(C) = f̂R∗(C)},

where the polyhedron PC( f̂R∗) = {rC ∈ R|C| : r(X) ≤ f̂R∗(X), ∀X ⊆ C} is a reduc-
tion/projection of P( f̂R∗) on to C. The following lemma shows the decomposition property
of the game Ω(V, f̂R∗).

Lemma 1 (Theorem 38 and Lemma 39 in [8]). The game Ω(V, f̂α) can be decomposed by the
fundamental partition P∗ so that

(a) the dimension of R∗(V) is |V| − |P∗| and

R∗(V) =
⊕

C∈P∗
R∗(C)

=
{ ⊕

C∈P∗
rC : rC ∈ R∗(C), C ∈ P∗

}
.

(b) The following holds for any rV ∈ R∗(V):

(i) For any C, C′ ∈ P∗ such that C 6= C′, rV + ε(χi − χj) /∈ R∗(V), for all ε > 0,
i ∈ C and j ∈ C′;

(ii) For all C ∈ P∗, rV + ε(χi − χj) ∈ R∗(V) for some ε > 0 and i, j ∈ C.

The decomposition of the core R∗(V) in Lemma 1(a) interprets the decomposition
of the solution set of Ω(V, f̂R∗) and the fact that it makes no difference for the users to
cooperate in the grand coalition V or in subgames Ω(C, f̂R∗), ∀C ∈ P∗ (This fact can be
seen more clearly via the definition of the decomposable game in Appendix B). Lemma 1(b)
states that the costs, or source coding rates, can be exchanged within a subgame, but
not between subgames, which can be explained by the dependence relationship in the
remaining randomness as follows.
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Interpretation

Recall that f̂R∗(X) = H(X|U). Due to the fact that P∗ is the finest minimizer of (5),
we have ((8a) holds because P∗ is the minimizer of the Dilworth truncation; the strict
inequality (8a) holds because otherwise P∗ is not the finest minimizer)

I(C; C′|U) = f̂R∗(C) + f̂R∗(C′)− f̂R∗(C t C′) = 0, ∀C, C′ ∈ P∗ : C 6= C′; (8a)

I(X; C \ X|U) = f̂R∗(X) + f̂R∗(C \ X)− f̂R∗(C) > 0, ∀X ( C. (8b)

Here, (8a) means that given the common randomness, any two distinct coalitions
C and C′ in P∗ have ZC and ZC′ mutually independent. That is, to attain omniscience
with the minimum sum-rate R∗, the users in C and C′ must encode the exact randomness
H(C|U) and H(C′|U), respectively. In other words, the costs or the source coding rates
cannot transfer between any two users i ∈ C and j ∈ C′. This is the interpretation of
Lemma 1(b)-(i) and we call it zero exchange rate between i and j. On the other hand, (8b)
states that, given the common randomness, any two users i and j in the same coalition C
are mutually dependent. In this case, the information amount I(X; C \ X|U) that is mutual
to X and C \ X can be encoded by either i ∈ X or j ∈ C \ X, i.e., the costs or source coding
rates can be transferred between users i and j: they have nonzero exchange rate.

Example 3. For the 5-user system in Example 1, we have the fundamental partition P∗ =
{{1, 4, 5}, {2}, {3}}. The core R∗(V) has the dimension of |V| − |P∗| = 5− 3 = 2 and is
decomposed as

R∗(V) = R∗({1, 4, 5})⊕R∗({2})⊕R∗({3})

where R∗({1, 4, 5}), as shown in Figure 2, is a 2-dimensional plane and R∗({2}) and R∗({3})
are singletons containing single points r2 = 1

2 and r3 = 1
2 , respectively.

Given the common randomness Λ = H(V)− R∗ = 7
2 that is obtained by U, any two

distinct C, C′ ∈ P∗ are independent, e.g.,

I({1, 4, 5}; {2}|U) = f̂R∗({1, 4, 5}) + f̂R∗({2})− f̂R∗({1, 2, 4, 5}) = 0;

for any C ∈ P∗, any two disjoint X, Y ⊆ C such that X tY = C are mutually dependent; e.g.,

I({1, 4}; {5}|U) = f̂R∗({1, 4}) + f̂R∗({5})− f̂R∗({1, 4, 5}) =
5
2

;

i.e., in the fundamental partition P∗, we have zero exchange rate between coalitions and nonzero
exchange rate within a coalition.

0

1

0
1

2
3

4
5
0

1

2

r1

r4

r 5

R∗({1, 4, 5})
P{1,4,5}( f13/2)

Figure 2. The core R∗({1, 4, 5}) of the subgame Ω({1, 4, 5}, f̂R∗ ) of the 5-user system in Figure 1.
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The decomposition property in Lemma 1 is useful when considering the fairness.
Since there is no freedom for the users who belong to distinct coalitions in P∗ to negotiate
how to allocate coding costs fairly, it suffices to just study how to attain fairness within
each C ∈ P∗. This will be further summarized in Theorem 1 in Section 4 and Theorem 3
in Section 5 that allow distributed computation for attaining the two fair solutions, the
Shapley value and egalitarian solution, in the optimal rate region R∗(V).

4. Shapley Value

For an omniscience-achievable rate vector rV , it is worth discussing how fairly it
can distribute the source coding rates. In the game model Ω(V, f̂R∗), fairness is also an
important performance metric of a cost allocation method rV in that it promotes the users
incentives to cooperate with each other. In this section, we discuss how to attain fairness
by searching the Shapley value in the optimal rate region R∗(V).

The Shapley value r̂ is defined in (Theorem 7 in [20]) as a unique solution in the core
R∗(V), with each dimension being

r̂i = ∑
X⊆V\{i}

|X|!(|V| − |X| − 1)!
|V|!

(
f̂R∗(X t {i})− f̂R∗(X)

)
. (9)

Here, f̂R∗(X t {i})− f̂R∗(X) = H(X t {i}|U)− H(X|U) = H({i}|X ∪U) is the
remaining uniqueness in Zi given the ZX and the common randomness in U. The inter-
pretation is that, to attain the omniscience by the minimum sum-rate R∗, if the users in X
encode at the rate H(X|U) first, user i needs to encode at the rate H({i}|X ∪U).

In the game model Ω(V, f̂R∗), f̂R∗(X t {i}) − f̂R∗(X) is the marginal coding cost
incurred by user i when he/she joins the coalition X. Let Φ = (φ1, . . . , φ|V|) such that
φi ∈ V and φi 6= φj for all i 6= j be a permutation of V. Here, each Φ denotes the order
that the users join the grand coalition V, for which, the total cost R∗ can be assigned to
individual users by the Edmond greedy algorithm [33]: For i increasing from 1 to |V|, we
assign each user the marginal cost

ri := f̂R∗(Vi)− f̂R∗(Vi−1),

where V0 = ∅ and Vi = {φ1, . . . , φi} for all i ∈ {1, . . . , |V|}. The resulting rV satisfies
rV ∈ R∗(V). The Shapley value r̂V is based on the assumption that all the permutations
are equiprobable. For each X ⊆ V \ {i}, user i will be assigned the marginal coding cost
f̂R∗(X t {i})− f̂R∗(X) for |X|!(|V| − |X| − 1)! out of |V|! times. Then, r̂V assigns each user
the expected marginal coding cost he/she incurs over all permutations.

4.1. Decomposition

The fairness of r̂V can also be explained by its relationship with the extreme points in
the core R∗(V). Let EX(V) be the extreme point set containing all vertices of the core R∗(V).
For a particular permutation Φ, the optimal rate vector returned by the Edmond greedy
algorithm is an extreme point of R∗(V) and EX(V) can be constructed by applying the
Edmond greedy algorithm for all |V|! permutations of V (Section 3.2 in [11]). Based on the
definition (9), the Shapley value is the mean value of EX(V) [20] (In this sense, the Shapley
value is the gravity center of R∗(V) [20]):

r̂V =
∑rV∈EX(V) rV

|EX(V)| . (10)

Since the core R∗(V) is decomposed by the fundamental partition P∗ (Lemma 1(a)),
we have the extreme point set also decomposed as EX(V) =

⊕
C∈P∗ EX(C), which leads

to the decomposition of the Shapley value in Theorem 1 below (Theorem 1 is a special case
of Theorem 1 when the minimum sum-rate R∗ = H(V)).
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Theorem 1. For the Shapley value r̂V in the core R∗(V), we have r̂V =
⊕

C∈P∗ r̂C, where

r̂C =
∑rC∈EX(C) rC

|EX(C)| is the Shapley value in the core R∗(C) of the subgame Ω(C, f̂R∗).

Proof. For the fundamental partition P∗, since EX(V) =
⊕

C∈P∗ EX(C), we have

r̂V =
∑rV∈EX(V) rV

|EX(V)|

=
∑rV∈

⊕
C∈P∗ EX(C) rV

|⊕C∈P∗ EX(C)|

=

⊕
C∈P∗

(
∏C′∈P∗ : C′ 6=C |EX(C′)|∑rC∈EX(C) rC

)
∏C∈P∗ |EX(C)|

=
⊕

C∈P∗

∑rC∈EX(C) rC

|EX(C)|

=
⊕

C∈P∗
r̂C.

Theorem holds.

Example 4. In the core R∗(V) of the 5-user system in Example 1, the Shapley value by the
definition (9) is r̂V = ( 5

4 , 1
2 , 1

2 , 3, 5
4 ). We have four extreme points in

EX(V) =
{
(

3
2

,
1
2

,
1
2

, 4, 0), (
3
2

,
1
2

,
1
2

,
3
2

,
5
2
), (1,

1
2

,
1
2

,
9
2

, 0), (1,
1
2

,
1
2

, 2,
5
2
)
}

such that r̂V =
∑rV∈EX(V) rV

4 . Recall that we have the fundamental partition
P∗ = {{1, 4, 5}, {2}, {3}} that decomposes the game Ω(V, f̂R∗) as in Example 3. According to
Theorem 1, we have

r̂V = r̂{1,4,5} ⊕ r̂2 ⊕ r̂3,

where r̂{1,4,5} = ( 5
4 , 3, 5

4 ) =
∑r{1,4,5}∈EX({1,4,5}) r{1,4,5}

4 is the Shapley value of the subgame
Ω({1, 4, 5}, f̂R∗) as shown in Figure 3, r̂2 = 1

2 and r̂3 = 1
2 .

0

1

0
1

2
3

4
5
0

1

2

3

r1

r4

r 5

R∗({1, 4, 5})
P{1,4,5}( f̂13/2)

path to (1, 9
2 , 0)

EX({1, 4, 5})
r̂{1,4,5}
approximation to r̂{1,4,5}
approximation to r̂{1,4,5}

Figure 3. For the core R∗({1, 4, 5}) of the subgame Ω({1, 4, 5}, f̂R∗ ), the extreme point set is
EX({1, 4, 5}) = {( 3

2 , 4, 0), ( 3
2 , 3

2 , 5
2 ), (1, 9

2 , 0), (1, 2, 5
2 )}, the mean value of which is the Shapley

value r̂{1,4,5} = ( 5
4 , 3, 5

4 ). We apply the random permutation method twice as in Example 5. We
randomly generate 3 permutations of 1, 4 and 5 each time and get the two approximations of r̂{1,4,5}.
In this figure, the path to (1, 9

2 , 0) shows an example of how the Edmond algorithm (Algorithm 3
in [8]) finds the vertex (1, 9

2 , 0) corresponding to the permutation (4, 5, 1).
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4.2. Complexity and Approximation

The complexity of computing the Shapley value is exponentially large in the problem
size |V|, since the values of f̂R∗(X) for all X ⊆ V are required to be calculated to get r̂V in (9).
What makes the situation worse is that determining the value of the Dilworth truncation
f̂R∗(X) for a given X requires calling SFM algorithms and their complexity is O(|X| ·
SFM(|X|)). Therefore, it is impractical to obtain the exact value of r̂V in large systems.

One alternative approach is to utilize the decomposition property in Theorem 1 to
allow distributed and parallel computation. For each coalition C in the fundamental
partition P∗, let the users in C obtain the Shapley value r̂C in the subgame Ω(C, f̂R∗)
by themselves; All r̂C are combined to form the Shapley value r̂V of the entire game
Ω(V, f̂R∗). By doing so, the complexity is determined by the subgame of maximum size
Ĉ = argmax{|C| : C ∈ P∗}. However, the complexity to obtain the Shapley value r̂Ĉ in
the subgame Ω(Ĉ, f̂R∗) is again exponentially growing in |Ĉ|.

While the high computational complexity is an intrinsic problem of the Shapley value,
there are various approximation algorithms proposed in the literature to alleviate this
complexity problem. For example, the random permutation method in [34] utilizes the
fact that the Shapley value is the mean value over the extreme point set in (10). The
idea is to randomly generate a set of permutations of V of a desired size, e.g., |V| or |V|2
permutations, and apply the Edmond greedy algorithm to determine the corresponding
extreme points, the mean of which is an approximation of the Shapley value r̂V . This
approximation method can also be used in combination with the decomposition method in
Theorem 1.

Example 5. For the 5-user system in Example 1, we first decompose the game into subgames
Ω({1, 4, 5}, f̂R∗), Ω({2}, f̂R∗) and Ω({3}, f̂R∗). For the subgame Ω({1, 4, 5}, f̂R∗), we randomly
select |{1, 4, 5}| = 3 permutations. For example, for Φ = (1, 4, 5), (1, 5, 4) and (4, 1, 5), we can
generate three extreme points:{

(
3
2

, 4, 0), (
3
2

,
3
2

,
5
2
), (1,

9
2

, 0)
}
( EX({1, 4, 5}),

respectively, so that the mean value ( 4
3 , 10

3 , 6
5 ) is an approximation of the Shapley value r̂{1,4,5}

in R∗({1, 4, 5}). Note, different permutations might result in different approximations. For
example, if we choose three permutations Φ = (1, 4, 5), (1, 5, 4) and (5, 1, 4), we would have the
approximation ( 3

2 , 11
4 , 5

4 ). See the two approximations in Figure 3.
By combining the approximation of r̂{1,4,5} with the ones obtained in other subgames, we have

the approximation of the Shapley value r̂V of the game Ω(V, f̂R∗). For example, the above two
approximations generate ( 4

3 , 1
2 , 1

2 , 10
3 , 6

5 ) and ( 3
2 , 1

2 , 1
2 , 11

4 , 5
4 ), which are the two approximations

to r̂V .

In Example 5, we chose no more than |C| permutations for each subgame C ∈
P∗, where the extreme point corresponding to each permutation can be determined by
Algorithm 3 in [8] (The algorithm (Algorithm 3 in [8]) can be considered as a modified
Edmond greedy algorithm. See Appendix B in [8] for the explanation. In Figure 3, the path
towards the extreme point (1, 9

2 , 0) is generated by Algorithm 3 in [8] for the permutation
Φ = (4, 5, 1)) in O(|C| · SFM(|C|)) time. Therefore, the overall complexity for approxi-
mating the Shapley value r̂V is determined by the subgame Ω(Ĉ, f̂R∗) of maximum size
as polynomial time O(|Ĉ|2 · SFM(|Ĉ|)). Accordingly, if we choose |C|2 permutations for
each subgame C ∈ P∗, the complexity would be O(|Ĉ|3 · SFM(|Ĉ|)). We also remark that
the approximation algorithm is not unique. In fact, there are many other existing methods,
e.g., [34–36], that can be implemented to approximate the Shapley value r̂V .

5. Egalitarian Solution

The Shapely value r̂V is fair in that it penalizes each user based on the expected
marginal cost he/she incurs in game Ω(V, f̂R∗). For example, in the 5-user system in
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Figure 1, user 4 incurs the most expected marginal cost f̂R∗({4} t X)− f̂R∗(X) over all
X ⊆ V \ {4}, the Shapley value r̂V = ( 5

4 , 1
2 , 1

2 , 3, 5
4 ) in Example 4 assigns him/her the most

coding cost.
However, this fairness suggested by the Shapley value might not be the desired one

in some practical systems. For example, in CCDE where mobile clients are considered
as equally privileged peers, it is desirable to find a rV ∈ R∗(V) that allocates the source
coding rate as evenly as possible without considering users’ prior knowledge of the source
ZV . Another example is a WSN containing a large number of battery-powered sensors with
equal initial energy budget, where the even allocation of the source coding rate prolongs
the overall lifetime of the WSN. In these cases, it might be more suitable to consider the
egalitarian solution r∗V [19,28], the minimizer of min{∑i∈V r2

i : rV ∈ R∗(V)}. In this section,
we consider a more general quadratic programming [37,38]:

min
{

g(rV) : rV ∈ R∗(V)
}

, (11)

where g(rV) = ∑i∈V
r2

i
wi

and wV ∈ R|V|++ is a positive weight vector which could have
some interpretations in practical scenarios. For example, wi could denote the quality of the
wireless transmission of user i in CCDE or the remaining battery energy of sensor node i in
a WSN.

It is shown [39,40] that, if the function value of f̂R∗ can be obtained directly, problem (11)
can be solved in O(|V| · SFM(|V|)) time (In the case when wV = 1 = (1, . . . , 1),
the minimizer of (11) is also called the minimum-norm point in R∗(V), which can be
searched by the algorithm in [41] by polynomial time calls of the Dilworth truncation f̂R∗ ).
However, determining the Dilworth truncation f̂R∗(X) for a given X has the complexity
O(|X| · SFM(|X|)). In addition, the minimizer of (11) may not be fractional or, if it is
fractional, may require splitting each packet into more than |P∗| − 1 chunks in CCDE.
Since |P∗| ≤ |V| and it is shown in (Corollary 28 in [8]) that there exists an optimal rate
vector in R∗(V) with an LCM |P∗| − 1, it would be of interest to see if we can find a fair
optimal rate vector in R∗(V) still with LCM |P∗| − 1.

Example 6. Consider the minimizer r∗V of (11) for the 5-user system in Example 1, we have
r∗V = ( 3

2 , 1
2 , 1

2 , 2, 2) for wV = 1 = (1, . . . , 1) and r∗V = ( 3
2 , 1

2 , 1
2 , 12

5 , 8
5 ) for wV = (6, 1, 1, 3, 2).

While the former can be implemented by 2-packet-splitting, the latter requires dividing each packets
into 10 chunks.

In fact, not only the minimizer of (11), but also the Shapley value have the prob-
lem of incurring more than (|P∗| − 1)-packet-splitting. For example, the Shapley value
( 5

4 , 1
2 , 1

2 , 3, 5
4 ) in Example 4 requires 4-packet-splitting, where 4 > |P∗| − 1 = 2, and its

approximation ( 4
3 , 1

2 , 1
2 , 10

3 , 6
5 ) in Example 5 even requires 30-packet-splitting. Such dividing

and reconstructing of packets could be cumbersome or even very impractical. In the next
subsection, we consider how to search for an egalitarian solution in R∗(V) that can be
implemented by (|P∗| − 1)-packet-splitting.

5.1. Steepest Descent Algorithm

For K = |P∗| − 1, let QK = Z
K be the set containing all rational numbers that are

divisible by K. Consider the problem

min
{

g(rV) : rV ∈ R∗(V) ∩Q|V|K

}
. (12)

The purpose is to search for a fractional egalitarian solution r∗V with an LCM |P∗| − 1.
The objective function in (12) is a separable convex function, for which local optimality w.r.t.
the elementary exchange χi − χj implies the global optimality. See Lemma 2 below. Here,
χi − χj denotes the cost/rate exchange between users i and j in the game Ω(V, f̂R∗) (The
optimization criterion in Lemma 2 is related to the discrete convexity: The problem in (11)
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exhibits M-convexity on the real number set (Section 1.4.2 in [42]), which also leads to the
M-convexity on the fractional number set of (12). This is essentially due to the M-convexity
of a submodular base polyhedron (Theorem 4.12 and Proposition 4.13 in [42]). See also
Appendix A for the definition of the submodular base polyhedron).

Lemma 2. In CCDE, r∗V is the minimizer of (12) if and only if, for all i, j ∈ V and positive integer
ζ ∈ Z++ such that r∗V + ζ

K (χi − χj) ∈ R∗(V),

g(r∗V) ≤ g
(
r∗V +

ζ

K
(χi − χj)

)
,

where K = |P∗| − 1.

Proof. The proof is based on a necessary and sufficient condition for the minimizer of (11)
for any convex function g in (Theorem 20.3 in [11]): r∗V is the minimizer of (11) if and
only if, for all i, j ∈ V and positive integer ε > 0 such that r∗V + ε(χi − χj) ∈ R∗(V),
g(r∗V) ≤ g(r∗V + ε(χi − χj)). In CCDE, the entropy function H is integer-valued and
R∗(V) is fractional with denominator K = |P∗| − 1 so that the value of f̂R∗(X) has the
denominator K = |P∗| − 1 for all X ⊆ V. Furthermore, all extreme points in EX(V) have
the LCM K = |P∗| − 1 (Corollary 10 in [8]). Therefore, for any rV ∈ R∗(V) ∩Q|V|K , if

rV + ε(χi − χj) ∈ R∗(V), then rV + 1
K (χi − χj) ∈ R∗(V) ∩Q|V|K . So, Lemma 2 is the result

of Theorem 20.3 in [11] on the set R∗(V) ∩Q|V|K .

Algorithm 1: Steepest descent algorithm (SDA)

input :a positive integer K = |P∗| − 1 and an initial point r(0)V ∈ R∗(V) ∩Q|V||P∗ |−1

output : r(n)V , the minimizer of (12)

1 begin
2 n← 0;
3 repeat
4 forall i ∈ V do
5 dep(r(n)V , i)← the minimal minimizer of

min{ fR∗ (X)− r(n)(X) : i ∈ X ⊆ V}; (13)

6 end

7 (i∗, j∗)← argmin{g(r(n)V + 1
K (χi − χj)) : i, j ∈ V, j ∈ dep(r(n)V , i) \ {i}};

8 if g(r(n)V + 1
K (χi∗ − χj∗ )) < g(r(n)V ) then

9 r(n+1)
V ← r(n)V + 1

K (χi∗ − χj∗ );
10 n← n + 1;
11 else
12 r(n+1)

V ← r(n)V ;
13 endif

14 until r(n+1)
V = r(n)V ;

15 return r(n)V ;
16 end

Lemma 2 directly suggests the steepest descent algorithm (SDA) in Algorithm 1 (The
SDA algorithm is also based on a discrete convex minimization algorithm in (Section
10.1.1 in [42]), which has been adopted in (Algorithm 1) for determining an integer-valued
egalitarian solution for CCDE. The difference is that we use a dependence function dep to
search the steepest descent direction, which is more efficient than the brute-force search
in (Algorithm 1). Furthermore, note that (Algorithm 1) only determines a real-valued
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egalitarian solution, which may be unable to be implemented in some practical systems,
e.g., CCDE).

Furthermore, note that, as an input to the SDA, the initial point r(0)V ∈ R∗(V) ∩
Q|V||P∗ |−1 can be searched by the MDA algorithm at the same time when the minimum
sum-rate problem is solved (Corollary 28(a) in [8]). The optimality of the SDA algorithm is
stated below.

Theorem 2. For CCDE, the SDA algorithm generates an estimation sequence {r(n)V } that converges
on the minimizer r∗V of (12).

Proof. Consider the recursive process

r(n+1)
V = r(n)V +

1
K
(χi∗ − χj∗),

where (i∗, j∗) = argmin{ f (r(n)V + 1
K (χi − χj)) : r(n)V + 1

K (χi − χj) ∈ R∗(V), i, j ∈ V}. This

is a steepest descent approach: in each iteration n, we move from the current estimation r(n)V
in the steepest elementary exchange χi∗ − χj∗ by a constant step size 1

K . Based on Lemma 2,

starting with any initial r(0)V ∈ R∗(V) ∩Q|V|K , the minimum of (12) is reached when this

recursion converges, i.e., when r(n+1)
V = r(n)V .

For rV ∈ R∗(V) ∩Q|V|K , consider the dependence function (Sections 2.2 and 2.3, Equa-
tions (2.14), (2.15), (2.18) and (2.19) in [11])

dep(rV , i) = {j ∈ V : max{ε : rV + ε(χi − χj) ∈ R∗(V)} > 0}
=

⋂
argmin{ fR∗(X)− r(X) : i ∈ X ⊆ V}. (14)

The last equality (14) states that dep(rV , i) is the minimal minimizer of min{ fR∗(X)−
r(X) : i ∈ X ⊆ V} (The last equality (14) is shown in (Equations (2.14) and (2.15) in [11]) due
to the min-max theorem (Corollary 3.4 in [11]). The minimizers of min{ fR∗(X)− r(X) : i ∈
X ⊆ V} form a set lattice and the smallest/minimal is the intersection of all minimizers.
See Sections 2.2 and 2.3 in [11] for details). A trivial case is that i ∈ dep(rV , i). Based
on (14), we have rV + 1

K (χi − χj) /∈ R∗(V) ∩Q|V|K for all i, j ∈ V : j /∈ dep(rV , i) \ {i}. So,

for all iterations n of the recursion above, r(n)V ∈ R∗(V) ∩Q|V|K and

(i∗, j∗) = argmin
{

f (r(n)V +
1
K
(χi − χj)) : i, j ∈ V, j ∈ dep(rV , i) \ {i}

}
.

Therefore, theorem holds.

Remark 1. According to the proofs of Lemma 2 and Theorem 2, if K 6= |P∗| − 1, we could have
r(n)V /∈ R∗(V) for some iteration n in the SDA algorithm, or the estimation sequence converges on,

but may not reach exactly, the minimizer of (12), i.e., the output vector r(n)V can be a suboptimal
solution of (12).

Example 7. For the 5-user system in Example 1, we first apply the MDA algorithm in [8] and get
the minimum sum-rate R∗ = 13

2 , the fundamental partition P∗ = {{1, 4, 5}, {2}, {3}} and an
extreme point (1, 1

2 , 1
2 , 9

2 , 0) ∈ EX(V) in the core R∗(V). By setting K = |P∗| − 1 = 2 and

wV = 1, we start the SDA algorithm with the initial point r(0)V = (1, 1
2 , 1

2 , 9
2 , 0).
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At the first iteration n = 1, we have

dep(r(0)V , 1) = {1, 4}, dep(r(0)V , 2) = {2},

dep(r(0)V , 3) = {3}, dep(r(0)V , 4) = {4},

dep(r(0)V , 5) = {4, 5}.

(15)

Then, {(i, j) : j ∈ dep(r(0)V , i) \ {i}} = {(1, 4), (4, 5)}. For r(0)V + 1
2 (χ1 − χ4) =

( 3
2 , 1

2 , 1
2 , 4, 0) and r(0)V + 1

2 (χ4 − χ5) = (1, 1
2 , 1

2 , 4, 1
2 ), we have g(r(0)V + 1

2 (χ4 − χ5)) < g(r(0)V +
1
2 (χ1 − χ4)) and, therefore, (i∗, j∗) = (4, 5). Since g(r(0)V + 1

2 (χ4 − χ5)) < g(r(0)V ), we assign

r(1)V = r(0)V + 1
2 (χ4 − χ5) = (1, 1

2 , 1
2 , 4, 1

2 ) and continue the iteration.

By repeating the same procedure in each iteration, we get the estimation sequence {r(n)V } that
results in the update path

(1,
1
2

,
1
2

,
9
2

, 0)→ (1,
1
2

,
1
2

, 4,
1
2
)→ (1,

1
2

,
1
2

,
7
2

, 1)

→ (
3
2

,
1
2

,
1
2

, 3, 1)→ (
3
2

,
1
2

,
1
2

,
5
2

,
3
2
)→ (

3
2

,
1
2

,
1
2

, 2, 2).

The recursion converges at n = 6, where we have r(6)V = r(5)V = ( 3
2 , 1

2 , 1
2 , 2, 2), which is the

minimizer r∗V = ( 3
2 , 1

2 , 1
2 , 2, 2) of (12) for |P∗| − 1 = 2 and wV = 1. Here, r∗V = ( 3

2 , 1
2 , 1

2 , 2, 2)
is a fractional egalitarian solution, a fair optimal rate vector in R∗(V), that can be implemented by
2-packet-splitting in CCDE.

5.2. Dependence Function

Based on (14), Lemma 1(b) and the discussion in Section 3.3, it is not difficult to see
that, for all rV ∈ R∗(V), if j ∈ dep(rV , i) for any i, j ∈ V, then Zi and Zj are mutually
dependent given the common randomness Λ = H(V)− R∗ in U, i.e., I({i}; {j}|U) 6= 0,
hence the name dependence function. Moreover, due to the fact that j ∈ dep(rV , i), we can
transfer arbitrarily small, but nonzero, coding cost from user j to user i for encoding the
mutually shared information between users i and j, which is consistent with the nonzero
exchange rate in Section 3.3.

In addition, we must have dep(rV , i) ⊆ C for the coalition C ∈ P∗ such that i ∈ C,
e.g., (15). This is because I({i}; {j}|U) = 0 for all i ∈ C, j ∈ C′ such that C 6= C′ and
I({i}; {j}|U) 6= 0 for all i, j ∈ C, i.e., given the common randomness in U, any Zi is only
mutually dependent on any other Zj in the same coalition C ∈ P∗. This will be formally
stated as the decomposition of r∗V in Theorem 3.

5.3. Complexity and Distributed Implementation

The SDA algorithm requires oracle calls of fR∗ , instead of f̂R∗ , which is equivalent to
the entry of the entropy function H and avoids the complexity of calculating the Dilworth
truncation. We derive the worst-case complexity of SDA as follows. For any initial point

r(0)V , the total number of iterations of the SDA algorithm is K·‖r(0)V −r∗V‖1
2 . Let

L(V) = max
{
‖rV − r′V‖1 : rV , r′V ∈ R∗(V) ∩Q|V|K

}
denote the `1-size of the core R∗(V). The maximum number of iterations of the SDA
algorithm is K·L(V)

2 . The minimization problem (13) in step 5 in the SDA algorithm is a
SFM due to the intersecting submodularity of fR∗ (Lemma 3 in [8]). Thus, each iteration
of the SDA algorithm completes in O(|V| · SFM(|V|)) time and the overall complexity is
O(K · L(V) · |V| · SFM(|V|)) (The reason that the `1-size determines the upper bound on
the number of iterations is explained in detail in (Section 10.1.1 in [42])).
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Example 8. For the estimation sequence {r(n)V } generated in Example 7 by the SDA algorithm, we

show the error of the estimation r(n)V in terms of the `1-norm ‖r(n)V − r∗V‖1 in Figure 4. Since in

each iteration of the SDA algorithm, the estimation r(n)V is updated along the steepest elementary

exchange χi∗ − χj∗ by step size 1
K = 1

2 toward the optimizer r∗V , we necessarily have ‖r(n)V − r∗V‖1

decreased by 2
K = 1 each time. As in Figure 4, we have the error ‖r(n)V − r∗V‖1, a linearly decreasing

curve. In this case, there are K·‖r(0)V −r∗V‖1
2 = 5 iterations in the SDA algorithm so that we incur

5 · |V| calls of O(SFM(|V|)). In general, since the `1-size of R∗(V) is L(V) = 6, the worst-case
complexity of the SDA algorithm when applied to the 5-user system in Figure 1, is 6 · |V| calls of
O(SFM(|V|)).

0 1 2 3 4 5 6
0

2

4

iteration index n

Er
ro

r
‖r

(n
)

V
−

r∗ V
‖ 1

Figure 4. The error measured by the `1-norm ‖r(n)V − r∗V‖1 of the estimation sequence {r(n)V } generated
by the SDA algorithm in Example 7 to determine the fractional egalitarian solution in R∗(V), the

minimizer of min
{

∑i∈V r2
i : rV ∈ R∗(V) ∩ Q|V||P|∗−1

}
. The error linearly decreases to zero with

gradient −1; i.e., the `1-norm ‖r(n)V − r∗V‖1 is reduced by 2
|P∗ |−1 = 1 in each iteration.

The SDA algorithm can also be implemented in a decentralized manner: let each user
i obtain the dependence function dep(r(n)V , i), a set of mutually dependent users given the
common randomness in U, by him/herself in steps 4 to 6; the steps 7 to 13 can be completed
by users’ communications over the broadcast channels. By doing so, the computational
complexity incurred at each user is O(K · L(V) · SFM(|V|)).

5.4. Decomposition

Similar to the decomposition of the Shapley value in Theorem 1, we also have the
decomposition property of the egalitarian solution in Theorem 3. We omit the proof since
it is a direct result of Corollary 42 in [8], Lemma 1 and Lemma 2(b).

Theorem 3. With r∗V as the egalitarian solution, the minimizer of (11), or the fractional egalitarian
solution, the minimizer of (12), r∗V =

⊕
C∈P∗ r∗C, where r∗C is the egalitarian solution or fractional

egalitarian solution, respectively, in the core R∗(C) of the subgame Ω(C, f̂R∗).

Theorem 3 states that the egalitarian solution r∗V can be determined by allowing the
subgames Ω(C, f̂R∗) for all C ∈ P∗ to obtain their own r∗C. This decomposition method
can be used in combination with the SDA algorithm so that the complexity is reduced to
O(K · L(Ĉ) · |Ĉ| · SFM(|Ĉ|)), where L(Ĉ) is the `1-size of the core R∗(Ĉ) of the subgame
Ω(Ĉ, f̂R∗) of maximum size. In addition, the users in each subgame can run the SDA
algorithm in a distributed manner as discussed in Section 5.3 and therefore the complexity
incurred at each user is O(K · L(Ĉ) · SFM(|Ĉ|)).

Remark 2. Theorems 1 and 3 justify the exchange rate resulted from the mutual dependence in
Section 3.3 when the game Ω(V, f̂R∗) is decomposed by the fundamental partition P∗ into the
subgames Ω(C, f̂R∗) for all C ∈ P∗: since the exchange rate, or mutual dependence, is only nonzero
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inside each subgame Ω(C, f̂R∗), we just need to let the users cooperating in the same Ω(C, f̂R∗)
decide how to attain fairness.

Example 9. For the 5-user system in Example 1, consider searching the fractional egalitarian
solution w.r.t. wV = 1 in Example 7 by the decomposition method in Theorem 3. We first
decompose Ω(V, f̂R∗) into subgames Ω({1, 4, 5}, f̂R∗), Ω({2}, f̂R∗) and Ω({3}, f̂R∗). For the
subgames Ω({2}, f̂R∗) and Ω({3}, f̂R∗), we can directly assign r∗2 = 1

2 and r∗3 = 1
2 , respectively.

For the subgame Ω({1, 4, 5}, f̂R∗), we apply the SDA algorithm and get the following update path
to the fractional egalitarian solution r∗{1,4,5} = ( 3

2 , 2, 2):

(1,
9
2

, 0)→ (1, 4,
1
2
)→ (1,

7
2

, 1)→ (
3
2

, 3, 1)→ (
3
2

,
5
2

,
3
2
)→ (

3
2

, 2, 2).

See Figure 5. Then, we get r∗V = r∗2 ⊕ r∗3 ⊕ r∗{1,4,5} = ( 3
2 , 1

2 , 1
2 , 2, 2), the fractional

egalitarian solution w.r.t. wV = 1 in R∗(V) ∩Q5
2.

In this case, we still have 5 iterations in the SDA algorithm and the convergence performance
is exactly the same as in Figure 4. However, the complexity reduces to 5 · |{1, 4, 5}| calls of
O(SFM(|{1, 4, 5}|)). In general, since L({1, 4, 5}) = 6, the complexity of the SDA algorithm
when applied to the subgame Ω({1, 4, 5}, f̂R∗), is 6 · |{1, 4, 5}| calls of O(SFM(|{1, 4, 5}|)).

0

1

0
1

2
3

4
5
0

1

2

3

r1

r4

r 5

R∗({1, 4, 5})
P( f {1,4,5}

13/2 )
EX({1, 4, 5})
path to r∗{1,4,5}
r∗{1,4,5}

Figure 5. By applying the SDA algorithm to the subgame Ω({1, 4, 5}, f̂R∗ ) of the 5-user sys-

tem in Example 1 with the initial point r(0){1,4,5} = (1, 9
2 , 0), we get the estimation sequence

{r(n){1,4,5}} resulting an update path toward the fractional egalitarian solution r∗{1,4,5}, the minimizer of

min
{

∑i∈{1,4,5} r2
i : r{1,4,5} ∈ R∗({1, 4, 5}) ∩Q3

|P∗ |−1

}
.

6. Conclusions

We established the equivalence between the optimal rate region of CO and the core
of a coalitional game with the characteristic cost function being the Dilworth truncation
f̂R∗ measuring the remaining information H(X|U) in ZX for all subsets X ⊆ V given
the common randomness in U. For attaining fairness in the optimal rate region, we
considered the Shapley value and the egalitarian solution. The Shapley value differs from
the egalitarian solution in that the fairness is attained if each user i is penalized by the
expected marginal cost or source coding rate H(X t {i}|U)− H(X|U) he/she incurs if in
coalition X. By utilizing the fact that the Shapley value is the average over all extreme
points in the core, we showed that an approximation, instead of the exact Shapley value,
can be obtained by taking the mean over a desired number of randomly generated extreme
points. We also proposed the SDA algorithm for obtaining the egalitarian solution in the
core that can be implemented in CCDE by (|P∗| − 1)-packet-splitting. We showed that the
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game is itself decomposable by the fundamental partition P∗ so that, given the common
randomness, ZC and ZC′ for any two distinct C, C′ ∈ P∗ are mutually independent, while
Zi and Zj for all i, j ∈ C are mutually dependent. This dependence relationship leads
to a decomposition method for obtaining the fair solutions: the Shapley value and the
egalitarian solution can be obtained independently within each subgame.

The methods for searching the Shapley value and the egalitarian solution in this paper
require the solutions to the minimum sum-rate problem, the value of R∗ and P∗ and also
an optimal rate vector in R∗(V) to initiate the SDA. To further improve the efficiency of
attaining fairness in CO, it is worth studying whether we can directly attain the fairness in
the optimal rate region without solving the minimum sum-rate problem first. On the other
hand, apart from the fact that the egalitarian solution is more suitable to CCDE and WSN,
it is worth understanding to which scenarios the fairness suggested by the Shapley value
applies. Finally, the fractional egalitarian solution only determines a fair rate assigned to
each user in CCDE. We still need a complete network coding scheme that also specifies the
coefficients in the linear combination of chunks in each transmission.
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Appendix A. Preliminaries

A set function f : 2V 7→ R is submodular if

f (X) + f (Y) ≥ f (X ∩Y) + f (X ∪Y) (A1)

holds for all X, Y ⊆ V (Section 2.3 in [11]). A set function f is intersecting submodular if the
submodular inequality (A1) holds for all X, Y ⊆ V such that X ∩Y 6= ∅ (Section 2.3 in [11]).
B( f ) = {rV ∈ P( f ) : rV = f (V)} is a submodular base polyhedron if f is submodular. For a
submodular function f : 2V 7→ R,

min{ f (X) : X ⊆ V} (A2)

is called submodular function minimization (SFM) problem. We assume that the value of
f (X) for any X ⊆ V can be obtained by an oracle call and δ refers to the upper bound on
the computation time of this oracle call. It is shown in [41,43–47] that an SFM problem
can be solved in time polynomial in δ. The SFM algorithms proposed in [34–39] vary in
computational complexity. The exact completion time of an SFM depends on the size
of the ground set V. For example, the SFM algorithm proposed in [48] completes in
O(|V|5 · δ + |V|6) time. With O(SFM(|V|)), we denote the computational complexity of
solving the SFM problem (A2).

A set function f is a a polymatroid rank function if it is (a) normalized: f (∅) = 0;
(b) monotonic: f (X) ≥ f (Y) for all X, Y ⊆ V such that Y ⊆ X; and (c) submodular
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(Section 2.2 in [11]). It is shown in (Section 4.2 in [49]) that the entropy function H is a
polymatroid rank function.

Appendix B. Background on Coalitional Game

Due to the submodularity of f̂R∗ , the game Ω(V, f̂R∗) is a convex game, for which the
core is always nonempty (Section 2 in [32]). This also explains the nonemptiness of the core,
or the optimal rate region, R∗(V). The decomposition property is originally defined for the
convex games in [32], which is consistent with the definition of disconnected submodular
system in [11,50].

Definition A1 (Decomposable Convex Game (Theorems 3.32 and 3.38, Lemma 3.37 in [11])
(This definition is based on the concept of the separator of a disconnected submodular sys-
tem in [11,50])). A convex game Ω(V, f ) with the characteristic cost function f is decomposable if

f (X) = ∑
C∈P

f (X ∩ C), X ⊆ V, (A3)

for some decomposer P ∈ Π(V) such that P 6= {V}; Otherwise, Ω(V, f ) is indecomposable. For
a decomposable convex game Ω(V, f ), the subgame Ω(C, f ) is convex for each C ∈ P .

Since (A3) always holds for P = {V}, an indecomposable game can be considered
as convex game with the only decomposer being {V} so that the core R∗(V) has the full
dimension |V| − 1 (Theorem 6(a) in [32]). If a game is decomposable, it must have at least
one decomposer other than {V} and all decomposers form a partition lattice, where the
finest and coarsest partitions uniquely exist [32,51]. It is shown in (Theorem 38 in [8]) that
the fundamental partition P∗ is the finest decomposer of the game Ω(V, f̂R∗).
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