
entropy

Article

A Probabilistic Re-Intepretation of Confidence Scores in
Multi-Exit Models

Jary Pomponi * , Simone Scardapane and Aurelio Uncini

����������
�������

Citation: Pomponi, J.; Scardapane, S.;

Uncini, A. A Probabilistic

Re-Intepretation of Confidence Scores

in Multi-Exit Models. Entropy 2022,

24, 1. https://doi.org/

10.3390/e24010001

Academic Editors: Tokunbo

Ogunfunmi, David Luengo, Nithin V.

George and Danilo Comminiello

Received: 15 November 2021

Accepted: 18 December 2021

Published: 21 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Engineering, Electronics and Telecommunications (DIET),
Sapienza University of Rome, 00139 Rome, Italy; simone.scardapane@uniroma1.it (S.S.);
aurelio.uncini@uniroma1.it (A.U.)
* Correspondence: jary.pomponi@uniroma1.it

Abstract: In this paper, we propose a new approach to train a deep neural network with multiple
intermediate auxiliary classifiers, branching from it. These ‘multi-exits’ models can be used to reduce
the inference time by performing early exit on the intermediate branches, if the confidence of the
prediction is higher than a threshold. They rely on the assumption that not all the samples require
the same amount of processing to yield a good prediction. In this paper, we propose a way to train
jointly all the branches of a multi-exit model without hyper-parameters, by weighting the predictions
from each branch with a trained confidence score. Each confidence score is an approximation of the
real one produced by the branch, and it is calculated and regularized while training the rest of the
model. We evaluate our proposal on a set of image classification benchmarks, using different neural
models and early-exit stopping criteria.

Keywords: branch neural networks; deep learning; deep neural networks; adaptive computation;
fast inference

1. Introduction

Neural networks models are becoming deeper and more complex each year, following
the goal of improving the accuracy. For this reason, the training and the inference time are
growing, as well. These models, usually designed as sequence of functions, implemented
as differentiable layers, are trained by using back-propagation techniques from the last
layer inwards. Combining these aspects, some problems can arise when going deeper
by adding more layers. In addition, when using deeper architectures, a phenomenon
called over-thinking can arise [1,2], where images that are correctly predicted using shallow
models can become incorrectly classified with progressively deeper architectures. Many
methods proposed to overcome these problems aim to build models that are less linear, e.g.,
models that use residual connections [3], in a way that the backward information is better
propagated, but phenomena, such as overfitting, vanishing gradients, and over-thinking,
can still happen [4].

Over-thinking aside, a deeper model usually can extract and learn high-level fea-
tures better than a shallower one. In fact, going deeper works because it improves the
performances by fixing the mistakes made by shallow models [5]. This trend, started with
Reference [6], allowed for achieving breakthroughs in many problems, imposing neural
networks as state of the art methods in many tasks. However, in recent years, a rich number
of contributions, e.g., References [7–9], have shown that many of the patterns present in a
dataset are repeated, and some samples can be correctly classified also using a shallower
architecture. This means that the added capacity is redundant for those samples. This
observation has motivated research of models that have some adaptive mechanism, so
that the computational graph can be adapted based on the complexity of the input sample.
One of these input adaptive mechanisms is called multi-exit strategy [2,10,11], in which the
networks are endowed, in addition to the final classifier, of multiple intermediate branches,

Entropy 2022, 24, 1. https://doi.org/10.3390/e24010001 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3236-3941
https://orcid.org/0000-0003-0881-8344
https://orcid.org/0000-0002-5793-0917
https://doi.org/10.3390/e24010001
https://doi.org/10.3390/e24010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e24010001
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010001?type=check_update&version=1


Entropy 2022, 24, 1 2 of 14

each one ending with the associated classifier. Multi-exit strategy methods fall into an
adaptive category called dynamic depth because the depth reached by each sample is
decided using an halting process. Others similar approaches exist, such as dynamic width,
where all the layers are used, but the units are selectively activated based on the input
sample [12–14], or dynamic routing, where a model has multiple inner inference paths,
and performs dynamic routing to adapt the computational graph to each sample [15–17].
Instead, using a Multi-exit approach, the inference phase is faster and requires less compu-
tational power because each auxiliary branch can be used to halt the decision process for a
given sample, as opposed to other adaptive models where a sample is passed through all
the layers. In this way, samples containing patterns that can be correctly classified in early
stages of the network do not require a complete forward process, saving computational
resources.

Adding one or two intermediate branches is a known technique for improving gradi-
ent propagation in deep networks [6]. Multi-exit networks, however, add many exits and
generally train all branch at the same time, using the intermediate branches to perform early
exit during the inference phase. Training these models can be difficult due to the multiple
losses produced (one for each branch), that must be weighted accordingly to some prior
given by the user; this is feasible when working with small networks but becomes more
difficult with deeper models. In addition, during the inference phase, separate thresholds
must be set for the intermediate exits that depend on their confidence and their accuracy.

In this paper, we propose a training method for multi-exit networks that simplifies
the design of these models (in particular, setting all the thresholds relative to the separate
auxiliary classifiers) and, simultaneously, improves the computational resources saved
during the inference phase.

Notation

We use calligraphic letters (e.g., F , C) to denote functional blocks, such as sequences
of layers in a deep network. Lower-case letters (e.g., x, y) denote n-dimensional arrays,
while upper-dimensional letters (e.g., E, L) denote constants.

2. Deep Networks with Early Exits

In this section, we describe the generic neural network model we consider in this work.
For a more in-depth overview, we refer to Reference [18]. Denote by (x, y) an input-output
pair (e.g., an image and its corresponding label), and, by F (x), a deep network or any
other differentiable model. Given a dataset {(xi, yi)}i=0,...N of N elements, we train the
parameters w of the model by minimizing an empirical cost over a given loss function l(·, ·)
using stochastic gradient descent:

L(w) =
1
N ∑

i
l(yi,F (xi)) . (1)

The idea of multi-output networks is to improve training by considering a sequence
of intermediate predictions ‘branching’ from mid-points of F . As mentioned in Section 1,
this is motivated by the fact that a subset of the model can be sufficient for successfully
classifying certain inputs, and intermediate outputs can also provide additional training
signals that significantly improve the gradient flow.

To this end, suppose that the original model is decomposed into a sequence of E
sub-blocks L1, . . . ,LE:

F = LE ◦ LE−1 ◦ . . . ◦ L1 , (2)

where ◦ denotes function composition. Most deep networks admit a natural decomposition
of this form. In particular, note that (2) is assumed to be a sequence of blocks, but the
processing inside each block does not have this restriction (e.g., residual connections are



Entropy 2022, 24, 1 3 of 14

allowed as long as a residual connection does not span more than a single block). For
readability, we also define Le as the output of the e-th block as:

Le =

{
L1 if e = 1
Le ◦ Le−1 otherwise

. (3)

After each non-terminal sub-block, e = 1, . . . , E− 1, we apply a small classifier to
obtain an intermediate prediction:

Fe(x) = Ce ◦ Le(x). (4)

Ce is designed to be as compact as possible to reduce the computational overhead, e.g., a
single linear projection, followed by an element-wise nonlinearity. The result is a sequence
F1(x), . . . ,FE−1(x),F (x) of E predictions for each input x. While it is reasonable to assume
that the average accuracy of a branch is higher that the preceding branches, different
branches can mistake separate subsets of the original dataset. For this reason, adaptively
combining and using the entire set of exits can significantly improve the performance.

A common way to train these models is to optimize over the joint set of losses with
respect to all exits:

Ljoint(w) = L(w) +
E−1

∑
e=1

λe ·
[

1
N ∑

i
l(yi,Fe(xi))

]
︸ ︷︷ ︸

Loss for the e-th branch

, (5)

where λe is a hyper-parameter balancing the contribution of the e-th loss. A major strength
of multi-output networks is that they provide a reasonable way to early-exit the model, and
to reduce computational time, by selecting for each input the earliest possible prediction
which is assumed to be correct. A common way, popularized by Reference [10], is to
compute the entropy of each intermediate prediction. Denoting by ŷe = Fe(x), we compute
its entropy as:

H[ŷe] = −∑
c

ŷe,c log(ŷe,c) , (6)

where ŷe,c denotes the c-th output (the probability for the c-th class) of the e-th intermediate
exit. Then, we consider the prediction correct if its entropy is lower than a user-defined
threshold γe, H[ŷe] < γe.

Note that an input early exiting at the beginning of the network can significantly
speedup the computational cost of the inference procedure. However, the procedure
described up to this point has a number of shortcomings. Notably, deep networks are
notoriously miscalibrated, making the entropy computation potentially misleading (e.g., if
a network is over-confident of its own prediction). As a consequence, setting the per-exit
thresholds γe is difficult because a user needs to take into consideration both the accuracy
and the calibration of each exit [10]. In addition, the inference phase tend to be disjointed
from the training phase, potentially creating further mismatches in term of performance.

Differentiable Branching

Before introducing our method, we briefly describe the training method developed in
Reference [11], which we use as starting point. The main idea is that we can let the network
itself select the best early exit for a given input, by associating to each auxiliary classifier
an additional output value:

Fe(x) =
[

ŷe(x)
ce(x)

]
, (7)



Entropy 2022, 24, 1 4 of 14

where ŷe is the auxiliary prediction (as in the previous section), and ce is a confidence score
in [0, 1] denoting the confidence the network has that exit e is correct. We can use these
values to soft-combine all auxiliary prediction as:

ỹe(x) = ce(x) · ŷe(x) + (1− ce(x)) · ỹe+1(x), (8)

where we define cE(x) = 1 to stop the recursion at the end. We can train the network
by minimizing (1) over ỹE instead of the original output. During inference, the network
early exits whenever the confidence is higher than a pre-defined threshold, generally 0.5,
i.e., ce ≥ 0.5. Although this method can provide significant gains in performance in some
scenarios [11], it can still happen that the confidence values are not precise, requiring to
fine-tune the exit threshold for each branch. The main idea of this work is to reinterpret the
output of the network probabilistically, to provide more precise uncertainty quantification
during training.

3. Our Proposal

We propose a different optimization schema, which requires no hyper-parameters and,
therefore, works without having to manually balance the training of the branches. It also
incorporate an exploration strategy of the intermediate exits, that leads to higher accuracy
scores, as well as a drastic reduction of inference steps, during the inference phase. This is
achieved by using, for each branch, an approximation of the classification’s certainty, using
a confidence score also produced by the model, which is regularized during the training.

Starting from (7), we use each confidence score as a parameter for a continuous relax-
ation of the Bernoulli distribution, called BinConcretee(τ, ce(x)) [19,20], with temperature
value τ. We use this distribution, instead of the Bernoulli distribution, because the repa-
rameterization trick cannot be applied to a discrete random variable, due to the lacking
of differentiable function to transform a base distribution into a discrete distribution. The
BinConcrete is a continuous relaxation of the Bernoulli distribution, with support in (0, 1),
that can be reparameterized, and its sampling procedure can be described, in our case, as:

(1) U ∼ Uni f orm(0, 1)

(2) l =
log(U)− log(−U + 1) + log(ce)− log(−ce + 1)

τ

(3) we,x =
1

1 + exp(−l)

. (9)

As the temperature τ converges to 0, the random variable we,x converges to a Bernoulli
with parameter ce; as the the temperature goes to ∞, the distribution of the weight becomes
degenerate at 0.5. During the training, we use these distributions to sample the weights
associated to the branches, as we,x ∼ BinConcretee(τ, ce(x)), for e = 1. . . . E− 1. By using
this sampling technique, we are forcing the model to have an exploratory behavior during
the training, in such a way that all the branches are used and trained. These weights are
also used to create a distribution for each sample x, as:

we,x = we,x

e−1

∏
i=1

(1− wi,x) , (10)

which is a valid distribution, having ∑ we,x = 1, since the last weight is always 1. This
formulation is known as the stick-breaking process [21]. We notice that the resulting
distribution does not require the complete forward process to be computed (as opposed, for
example, to the softmax function) and can be calculated branch by branch. These weights
are used to create the final output of the model, as:

y f (x) =
E−1

∑
e=1

we,xi ŷe(xi) . (11)



Entropy 2022, 24, 1 5 of 14

The resulting vector is a combination of all the intermediate branches of a model. In
this way, each branch’s prediction is weighted using a normalized version of the confi-
dence score ce, produced by the branch itself. The overall procedure to produce y f (x) is
graphically visualized in Figure 1. The final loss is given by:

lbinary =
1
N ∑

i
l(yi, y f (x)) + l(yi, yE(x)) . (12)

We divide the loss of the intermediate branches and the one associated to the last
layer to avoid that the weight associated to the latter, which can be smaller if the model
confidence is high in the early stages of the model, which overshadows its training.

Figure 1. The image shows the overall proposed approach, for the first three branches of a generic
model. The modules and the associated operations, with the exceptions of modules ŷi(·) and ci(·),
are all introduced in this paper.

In addition to the exposed procedure, to avoid unexpected behaviors and to force the
model to correctly understand when to halt the inference phase, we also want to regularize
the confidence scores. To this end, during training, we add a regularization factor to the
loss as described in the following section.

3.1. Regularization of the Confidence

Given the confidence score of a branch e for a given input sample x, and a function
that returns the most probable class produced by the branch e, pe(x) = softmaxFe(x), the
regularization term is calculated as a Binary Cross Entropy between the confidence score
and the output of the function 1(·, ·):

R(x, y) =
E−1

∑
e=1
−ce,x log(1(y, pe(x))− (1− ce,x) log(1(y, pe(x)) , (13)

where 1(y, pe(x)) is a function that returns 1 if the label predicted by the branch e is equals
to the ground truth label y (pe(x) = y); otherwise, it returns 0. Since the function is not
differentiable, its outputs are calculated before each training step, without interfering with
the gradient computations. The final loss is given by:

lbinary =
1
N ∑

i
l(yi, y f (x)) + l(yi, yE(x)) + βR(xi, yi) , (14)

where β is a scalar that balances the classification loss and the regularization loss during
the training. This is the only hyper-parameter of the proposed approach, but, as we will
see in the experimental section, it requires only a small amount of manual tuning.



Entropy 2022, 24, 1 6 of 14

3.2. Inference Phase

During the inference phase, multiple algorithms can be used. Firstly, as exposed
before, we can halt the inference at a given branch if the classification entropy is lower
than a certain threshold. Secondly, we can exit to a branch that has ce higher than a certain
confidence threshold; the latter approach is preferable in our case, assuming that the scores
reflect the real confidence of a prediction. Here, both of the approaches can be used, but,
to better reflect the proposed training procedure, we introduce a new halting method.
Following how the weights are calculated in the Equation (10), we halt the inference phase
at the branch e if:

ce,x

e−1

∏
i=1

(1− ci,x) ≥ ε, (15)

where ε is a threshold value bounded in [0, 1]. The equation means that we halt the
inference process if the cumulative confidence score, calculated using all the confidence
scores up to the branch e, exceeds a confidence threshold. A similar halting process has
been proposed in Reference [22], where a model, called PonderNet, is reused multiple a
variable number of times, until the halting criterion is met.

4. Experimental Evaluation
4.1. Experimental Setup

We evaluate our proposal on three image classification datasets with various number
of architectures, from small ones to deeper models. The datasets are: SVHN [23] (it contains
10 classes, and it is composed by 73,257 training samples and 26,032 images used for testing),
CIFAR10, and CIFAR100 [24] (these contain, respectively, 10 and 100 classes, and both
have 50,000 training images and 10,000 testing images). As architectures, we use AlexNet,
VGG11 [25], and ResNet20 [3]. To better understand the impact of our proposal, we train
all the combinations dataset-architecture. For each of these combinations, we firstly train
the baseline model without intermediate branches. The resulting backbones are used as a
starting point for the models with multiple branches. Concerning where to position the
branches in the model, we add an intermediate branch after each layer for AlexNet and
VGG11, resulting in, respectively, 5 and 8 classifiers (including the last one), while the
branches in ResNet20 are placed after each block, resulting in a total of 10 branches. Each
branch is composed by a convolutional layer of 128 filters, followed by a max pooling
operation, if the dimensions of the image are big enough. This block is followed by a
ReLU activation function and a classification linear layer, producing ŷe(x). Regarding our
method, in addition to the aforementioned branch architecture, the classification layer also
produces a scalar value, that is processed using a sigmoid activation function; this scalar is
the confidence score ce(x).

All the models are trained using the SGD optimizer, with learning rate equals to
0.01 and momentum set to 0.9. The datasets are augmented only during the training
of the base model. For each training procedure, we use 10% of the training dataset as
development set, and the accuracy score calculated on it is used to save the best model
(this is also used as early stopping criteria, when the development score does not increases
for 5 consecutive epochs).

We compare our proposal to the joint method [10], that minimizes the sum of the
branches losses. For this purpose, following the original paper, we performed a hyper-
parameters search to find the best set of weights to balance the losses.

Regarding our proposal, we keep β, in (14), fixed to 1. The temperature is annealed
from 20 to 5 exponentially, and then it remains fixed. The temperature scaling, combined
with confidence scores sampling, is crucial because it avoids that intermediate branches are
ignored during the initial stages of the training process (being their scores close to zero), by
forcing the exploration.

The code, including the configuration files used to run the experiments, is available on-
line https://github.com/jaryP/ConfidenceBranchNetwok (accessed on 17 December 2021).

https://github.com/jaryP/ConfidenceBranchNetwok


Entropy 2022, 24, 1 7 of 14

4.2. Results and Discussions

We start by analyzing if our proposal can improve the base accuracy obtained by
base models without auxiliary classifiers. Table 1 contains the results obtained on all
the combination of datasets and architectures. It shows that our approach is capable of
improving the results on all the experiments, as opposed to the joint training, which fails
to do it with some combination of dataset-architecture. Joint training struggles to achieve
better accuracy when the dataset becomes more complex and the architecture deeper. In
fact, it is capable of achieving better scores on all the experiments involving SVHN, but
starts to fail even on CIFAR10, when the architecture is deep. This is more evident when
looking at the results obtained on CIFAR100. This also happens because finding the right
hyper-parameters for joint training is hard and computationally expensive, while our
method is capable to regularize itself during the training, thanks to the regularization term.

Table 1. Test accuracy of the three datasets being compared. The best results for each combination of
dataset and architecture are highlighted in bold.

Dataset
AlexNet VGG11 ResNet20

Baseline Joint Ours Baseline Joint Ours Baseline Joint Ours

SVHN 93.44 94.17 95.49 94.53 95.04 95.40 94.44 95.02 95.13

CIFAR10 88.24 86.27 90.21 86.04 85.67 86.27 83.89 84.61 85.11

CIFAR100 59.57 54.03 61.43 35.01 34.51 38.37 58.62 57.44 58.63

Next, we compare our proposal with joint training when it comes to reducing the
inference steps performed. Since the halting process in joint training can be done only using
the entropy of the classification, we study how varying a threshold over the prediction’s
entropy changes the final results for both the approaches.

To give a complete overview of the gain obtained during the inference phase, that is
also independent of the time complexity, we use a novel gain score. To calculate it, firstly,
we calculate the normalized cost Ce ∈ [0, 1] (CE = 1), in terms of operations, required to
reach each branch e of the model (this cost calculation is based on the one proposed in
Reference [11]). Then, given also the percentage of how many samples halted at a given
branch e, as he, we have the overall gain:

G =
E

∑
e=1

(1−Ce) · he. (16)

We use this value, which is bounded G ∈ [0, 1], to visualize how the halting process
affects the computational cost required by the inference phase: it is 0 when all the samples
reach the final layer, and it is near to zero when all the samples exit at the first layer.
Combining this score with various threshold helps us to choice the right one.

To study the gain, firstly, we compare our proposal against the joint training approach,
following the halting techniques exposed in Section 2. To do this, we apply a threshold over
the classification entropy of each intermediate classifier, and, if the normalized entropy
is lower than, or equal to, the threshold, we halt the inference, and the selected branch is
used, without further going deeper; otherwise, we pass to the next branch. If a sample is
not halted in any intermediate branch, the last one is used. Then, we study how our halting
proposal works. Figures 2 and 3 show, respectively, how the scores and the counters vary
for the joint training and our proposal, when a threshold on the entropy is applied on
AlexNet trained using CIFAR100.



Entropy 2022, 24, 1 8 of 14

0.0001 0.01 0.1 0.2 0.4 0.5 0.6 0.7 0.8
Threshold

0

20

40

60

80

100

Br
an

ch
 c

ou
nt

er
s (

%
)

0.0001 0.01 0.1 0.2 0.4 0.5 0.6 0.7 0.8
Threshold

0

20

40

60

80

100

Br
an

ch
 a

cc
ur

ac
y 

(%
)

Branch 1
Branch 2
Branch 3
Branch 4
Branch 5
Model final accuracy

(a) (b)

Figure 2. The images show the results obtained by the Joint Training approach on AlexNet trained
on CIFAR100, while varying the threshold applied on the entropy. (a) Exit counters for each branch
of the model. (b) Exit accuracy for each branch of the model.

0.0001 0.01 0.1 0.2 0.4 0.5 0.6 0.7 0.8
Threshold

0

20

40

60

80

100

Br
an

ch
 c

ou
nt

er
s (

%
)

0.0001 0.01 0.1 0.2 0.4 0.5 0.6 0.7 0.8
Threshold

0

20

40

60

80

100

Br
an

ch
 a

cc
ur

ac
y 

(%
)

Branch 1
Branch 2
Branch 3
Branch 4
Branch 5
Model final accuracy

(a) (b)

Figure 3. The images show the results obtained by ours proposal on AlexNet trained on CIFAR100,
while varying the threshold applied on the entropy. (a) Exit counters for each branch of the model.
(b) Exit accuracy for each branch of the model.

We notice that, when using a very restrictive threshold, our proposal is able to halt
many samples in the intermediate branches, while using joint training almost all samples
reach the last layer. This happens because the joint training does not use any information
about the certainty of the intermediate classifications, as opposed to out method, that
uses a regularization term based on it. When increasing the threshold, the results become
similar, both in terms of exit counters and branches scores. The results obtained by the two
approaches are very different when it comes to evaluating the overall accuracy and the
gain achieved.

Figure 4 shows the overall accuracy obtained by the model while varying the threshold,
as well as the gain, calculated as exposed before; as comparison, the accuracy obtained
by the models at the end of the training is also shown (which is higher for our proposal).
We can see that the accuracy scores start both around the final accuracy obtained by each
approach, but the gain is near zero using joint training, while it is 30% using our proposal.
When the lines intersect, we have that both our gain and score are around 55%, while,
using joint training, both of the values are less than 50%.



Entropy 2022, 24, 1 9 of 14

Next, we study the scores obtained by our proposal when using the proposed halting
process. To this end, we select the most interesting result obtained across all the experiments.
As before, we evaluate multiple thresholds, to understand how the choice affects the final
results, in term of accuracy, branches counter and gain. Firstly, we compare the results
obtained using our halting process with the others approaches. To this end, we compare
the three halting process in Figure 5. The images show that a result near to the optimum
is possible using all the approaches. Looking at the entropy threshold, it happens when
using a low threshold on the entropy, while, looking at the other two, it happens using
high values. However, in the first case, we reach a gain near 50%, while, using our halting
proposal, we have a gain around 70%. This behavior is expected, since, using the proposed
halting process, we explicitly use the regularization information also during the inference
phase, speeding it.. The binary approach reaches an accuracy score slightly higher than our
proposed approach, but the gain drops faster. A downside of our approach, in this case, is
that it does not reach a the maximum gain because, during the training, all the branches
are explored based on the expected confidence score.

We can see that the halting process based on the cumulative threshold hurts the
accuracy score a little (around 5% of accuracy points are lost), but the gain vantage is
remarkable: it goes from 30%, when using the entropy, to 85% using our halting process.
More interesting results are shown in Figures 6 and 7. We see that the gain is near the
maximum while using low thresholds without hurting the performances substantially,
and decreases until it reaches around 75% of gain, while the score is very close to the
one obtained by the model. So, if the lost of some accuracy points is acceptable, the gain
achieved can be very high.

For completeness, in Figure 8, we report the distribution of cumulative confidence
scores for three branches from VGG11 trained on CIFAR10.

0.0001 0.01 0.1 0.2 0.4 0.5 0.6 0.7 0.8
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

0.0001 0.01 0.1 0.2 0.4 0.5 0.6 0.7 0.8
Threshold

0

20

40

60

80

100 Gains
Model final accuracy
Accuracy

(a) (b)

Figure 4. The images show the results, in terms of gain and accuracy, obtained using AlexNet trained
on CIFAR100, while varying the threshold applied on the entropy. The dashed lines show the final
accuracy reached by the model at the end of the training phase. (a) The results obtained by our
proposal, while varying the threshold on the entropy. (b) The results obtained by Joint trainer, while
varying the threshold on the entropy.



Entropy 2022, 24, 1 10 of 14

0.0001 0.01 0.1 0.2 0.4 0.5 0.6 0.7 0.8
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

(a) (b) (c)

Figure 5. The images show the results, in terms of gain and accuracy, obtained using VGG11 trained
on SVHN, while varying the threshold and the halting procedure. The dashed lines show the final
accuracy reached by the model at the end of the training phase. (a) The results obtained by our
proposal, while varying the threshold on the entropy. (b) The results obtained by our proposal,
while varying the threshold on the confidence scores. (c) The results obtained by our proposal, while
varying the cumulative threshold.

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Br
an

ch
 c

ou
nt

er
s (

%
)

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Br
an

ch
 a

cc
ur

ac
y 

(%
)

Branch 1
Branch 2
Branch 3
Branch 4
Branch 5
Branch 6
Branch 7
Branch 8
Model final accuracy

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

(a) (b) (c)

Figure 6. The images show the results obtained by ours proposal on VGG11 trained on CIFAR10,
while varying the threshold applied on the cumulative confidence of the model. (a) Exit counters
for each branch of the model. (b) Exit accuracy for each branch of the model. (c) Gain and accuracy
obtained while varying the cumulative threshold.

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Br
an

ch
 c

ou
nt

er
s (

%
)

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Br
an

ch
 a

cc
ur

ac
y 

(%
)

Branch 1
Branch 2
Branch 3
Branch 4
Branch 5
Model final accuracy

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

(a) (b) (c)

Figure 7. The images show the results obtained by ours proposal on AlexNet trained on SVHN, while
varying the threshold applied on the cumulative confidence of the model. (a) Exit counters for each
branch of the model. (b) Exit accuracy for each branch of the model. (c) Gain and accuracy obtained,
while varying the cumulative threshold.



Entropy 2022, 24, 1 11 of 14

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

600

800

1000

1200

1400

1600

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

250

500

750

1000

1250

1500

1750

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

500

1000

1500

2000

2500

(a) (b) (c)

Figure 8. Early-exit cumulative confidence for the first three branches from VGG11 trained on
CIFAR10. For each bin, the bottom part is the cumulative confidence of correctly classified samples,
and the upper part is associated to the wrongly classified samples. (a) Branch 1. (b) Branch 2.
(c) Branch 3.

4.3. Ablation Studies

In this section, we study how the various choices affect the final results achieved by
our proposal. Firstly, we start by studying if the regularization term is necessary, and then
we check how the results change when we do not sample from the distributions of the
confidence scores, and, in the end, we remove both of the techniques. The experiments are
based on ResNet20 trained using CIFAR10, and we used our proposed process as halting
technique.

Figure 9 shows the results obtained. The worst results are achieved when both
sampling and regularization methods are neglected. In fact, the accuracy reaches a result
near to the optimal one only when the gain is close to zero; similar results are obtained
when no sampling is performed. When the regularization term is neglected, the results
achieved are better then the ones already exposed, but without reaching the one achieved
by the standard training procedure, with the gains being damaged more than the score.

In Table 2, the final accuracy scores for each branch are shown. As expected, the results
associated to NR are very close to the one obtained by the standard training procedure. This
highlights the fact that the regularization term does not hurt the performances of the model,
while it is necessary to achieve a good gain. In addition, as expected, the training without
sampling does not explore all the branches because many of them achieve low results.

Table 2. The table shows the accuracy results for each branch obtained using different training
techniques. Standard is the training exposed before, while NS and NR mean, respectively, that
sampling of the weights is not performed during the training procedure and that the regularization
term is neglected while training.

Method
Branch Number

1 2 3 4 5 6 7 8 9 10

Standard 63.67 66.25 68.30 69.72 74.98 77.3 75.56 79.92 82.92 85.11

NS 10.26 14.79 10.32 32.30 41.58 38.26 36.90 16.61 24.74 84.36

NR 63.22 65.19 64.33 66.81 69.43 69.92 72.78 76.71 77.8 85.06

NR + NS 12.23 10.00 10.00 14.47 18.30 32.04 12.06 10.36 83.99 84.36



Entropy 2022, 24, 1 12 of 14

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

(a) (b)

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.95 0.98
Threshold

0

20

40

60

80

100

Gains
Model final accuracy
Accuracy

(c) (d)

Figure 9. The images show the ablation results, in term of gain and accuracy, while varying the
threshold of the halting process proposed. The results are based on ResNet20 trained on CIFAR10.
Standard is the training exposed before, while NS and NR mean, respectively, that sampling of the
weights is not performed during the training procedure and that the regularization term is neglected
while training. (a) Standard training. (b) NS training. (c) NR training. (d) NS + NR training.

5. Conclusions

In this article, we proposed a novel method to train neural models that have multiple
intermediate classifiers, branching off from the main network, with a minimal number of
hyper-parameters. The training strategy we proposed is capable of correctly training all
the classifiers, reaching higher scores than the plain model with only a classifier in the end.
Moreover, our method is capable of speeding up the inference phase without hurting the
performances significantly, due to the high number of samples that are correctly classified
in the early stages of the models.

In the future, we plan to extend our training method, by designing additional regular-
ization techniques that can help in speeding up the inference phase even more. Moreover,
another extension to be considered is to also speed up the training process by halting each
sample at an intermediate branch, instead of propagating it through all the neural network,
as the current approaches do. We also plan to investigate branching networks on different
benchmarks beyond image classification.



Entropy 2022, 24, 1 13 of 14

Author Contributions: Methodology, software, validation, formal analysis, writing—original draft,
review and editing, J.P.; conceptualization, formal analysis, writing—original draft, review and
editing, S.S.; supervision, A.U. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, W.; Shen, J. Deep visual attention prediction. IEEE Trans. Image Process. 2017, 27, 2368–2378. [CrossRef] [PubMed]
2. Kaya, Y.; Hong, S.; Dumitras, T. Shallow-deep networks: Understanding and mitigating network overthinking. In Proceedings of

the 2019 International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 3301–3310.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
4. Jastrzębski, S.; Kenton, Z.; Arpit, D.; Ballas, N.; Fischer, A.; Bengio, Y.; Storkey, A. Three factors influencing minima in sgd. arXiv

2017, arXiv:1711.04623.
5. Huang, G.; Chen, D.; Li, T.; Wu, F.; van der Maaten, L.; Weinberger, K.Q. Multi-scale dense networks for resource efficient image

classification. arXiv 2017, arXiv:1703.09844.
6. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

7. Wang, G.; Xie, X.; Lai, J.; Zhuo, J. Deep Growing Learning. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE Computer Society: Piscataway, NJ, USA, 2017; pp. 2831–2839.

8. Marquez, E.S.; Hare, J.S.; Niranjan, M. Deep cascade learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5475–5485.
[CrossRef] [PubMed]

9. Belilovsky, E.; Eickenberg, M.; Oyallon, E. Greedy layerwise learning can scale to imagenet. In International Conference on Machine
Learning; PMLR: Cambridge, MA, USA, 2019; pp. 583–593.

10. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Branchynet: Fast inference via early exiting from deep neural networks. In
Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 2464–2469.

11. Scardapane, S.; Comminiello, D.; Scarpiniti, M.; Baccarelli, E.; Uncini, A. Differentiable branching in deep networks for fast
inference. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4167–4171.

12. Hua, W.; Zhou, Y.; De Sa, C.; Zhang, Z.; Suh, G.E. Channel gating neural networks. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 1886–1896.

13. Lin, J.; Rao, Y.; Lu, J.; Zhou, J. Runtime Neural Pruning. Advances in Neural Information Processing Systems; Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017;
Volume 30.

14. Davis, A.; Arel, I. Low-rank approximations for conditional feedforward computation in deep neural networks. arXiv 2013,
arXiv:1312.4461.

15. Odena, A.; Lawson, D.; Olah, C. Changing model behavior at test-time using reinforcement learning. arXiv 2017, arXiv:1702.07780.
16. Frosst, N.; Hinton, G. Distilling a neural network into a soft decision tree. arXiv 2017, arXiv:1711.09784.
17. Ioannou, Y.; Robertson, D.; Zikic, D.; Kontschieder, P.; Shotton, J.; Brown, M.; Criminisi, A. Decision forests, convolutional

networks and the models in-between. arXiv 2016, arXiv:1603.01250.
18. Scardapane, S.; Scarpiniti, M.; Baccarelli, E.; Uncini, A. Why should we add early exits to neural networks? Cogn. Comput. 2020,

12, 954–966. [CrossRef]
19. Maddison, C.; Mnih, A.; Teh, Y. The concrete distribution: A continuous relaxation of discrete random variables. In Proceedings

of the International Conference on Learning Representations. International Conference on Learning Representations, Toulon,
France, 24–26 April 2017.

20. Jang, E.; Gu, S.; Poole, B. Categorical reparameterization with gumbel-softmax. arXiv 2016, arXiv:1611.01144.
21. Paisley, J.W. A Simple Proof of the Stick-Breaking Construction of the Dirichlet Process; Princeton University: Princeton, NJ, USA, 2010.
22. Banino, A.; Balaguer, J.; Blundell, C. Pondernet: Learning to ponder. arXiv 2021, arXiv:2107.05407.
23. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature

Learning. 2011. Available online: http://ufldl.stanford.edu/housenumbers/ (accessed on 17 December 2021).

http://doi.org/10.1109/TIP.2017.2787612
http://www.ncbi.nlm.nih.gov/pubmed/29990140
http://dx.doi.org/10.1109/TNNLS.2018.2805098
http://www.ncbi.nlm.nih.gov/pubmed/29993618
http://dx.doi.org/10.1007/s12559-020-09734-4
http://ufldl.stanford.edu/housenumbers/


Entropy 2022, 24, 1 14 of 14

24. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.
toronto.edu/~kriz/cifar.html (accessed on 17 December 2021).

25. He, Y.; Zhang, X.; Sun, J. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Deep Networks with Early Exits
	Our Proposal
	Regularization of the Confidence
	Inference Phase

	Experimental Evaluation
	Experimental Setup
	Results and Discussions
	Ablation Studies

	Conclusions
	References

