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Abstract: The present study addresses the discrete simulation of the flow of concentrated suspensions
encountered in the forming processes involving reinforced polymers, and more particularly the
statistical characterization and description of the effects of the intense fiber interaction, occurring
during the development of the flow induced orientation, on the fibers’ geometrical center trajectory.
The number of interactions as well as the interaction intensity will depend on the fiber volume
fraction and the applied shear, which should affect the stochastic trajectory. Topological data analysis
(TDA) will be applied on the geometrical center trajectories of the simulated fiber to prove that a
characteristic pattern can be extracted depending on the flow conditions (concentration and shear
rate). This work proves that TDA allows capturing and extracting from the so-called persistence
image, a pattern that characterizes the dependence of the fiber trajectory on the flow kinematics and
the suspension concentration. Such a pattern could be used for classification and modeling purposes,
in rheology or during processing monitoring.

Keywords: topological data analysis (TDA); reinforced polymers; concentrated suspensions; flow
induced orientation; discrete numerical simulation

1. Introduction

Reinforced polymers are widely used in industry for enhancing mechanical and
functional performances while keeping the cost reasonable. The main issue related to the
use of fiber-based reinforced polymers for elaborating short fiber composites is due to the
difficulty of accurately predicting the flow induced orientation, with the final properties
becoming strongly dependent on the final orientation state of fibers in the formed part.

The orientation evolution of an ellipsoidal fiber immersed in a flow characterized by
a gradient of velocity can be computed by using the so-called Jeffery equation [1]. However,
as soon as the fiber concentration increases, intense interactions between the rotating fibers
takes place and the orientation kinematics of each fiber will differ from the one predicted
by the Jeffery model.

At the population level (ensemble of fibers in a representative volume in which
the velocity gradient is assumed almost identical) the interactions can be described as
a diffusion term acting on the fiber orientation probability distribution Ψ, whose evolution
is governed by the so-called Fokker-Planck equation [2], and more concretely the so-called
Folgar-Tucker model [3]. Due to the fact that the orientation distribution depends on the
physical coordinates (space and time) and also on the configurational ones (the orientation
p defined on the surface of the unit sphere), Ψ(x, t, p), descriptions based on the moments
of the orientation distribution are preferred [2,4]. Thus, the second order moment of the
orientation distribution function reads:

a(x, t) =
∮

p⊗ pΨ(x, t, p) dp, (1)
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where ⊗ refers to the tensor product.
When considering a description based on the orientation tensors (orientation distribu-

tion moments), the diffusion term describing fiber interaction within the Folgar & Tucker
formulation, results in a sort of randomizing term that tends, to evolve the orientation
towards the isotropic state, that is a→ I/3 (in 3D), with I the identity tensor [2,4].

However, many hypotheses were introduced when deriving the models describing the
fiber interaction, fact that limits their validity and accuracy. Discrete simulations consider
a population of fibers, subjected to two main actions, the hydrodynamic ones induced by
the fluid flow, flow that is assumed unperturbed by the fibers presence and their orientation
state, and the forces that apply when two neighbor fibers approach mutually activating,
first hydrodynamics forces and then contact forces for avoiding interpenetration.

Discrete simulations are extremely expensive because of the high number of fibers to
be considered for representing the different concentration regimes, and because of the ex-
tremely small time steps that the small length scales involved by the fibers interaction imply.

When fibers enter in contact, having a non-null relative velocity, the interaction will
affect the orientation kinematics from one side, but it will also affect the fibers geometrical
center trajectory. Thus, it is postulated that this trajectory will depend on the number and
intensity of the fiber interaction, both expected scaling with the flow gradient of velocity,
the fiber concentration and the orientation state.

Thus, the analysis of those erratic trajectories that the fiber follow, should provide
a very valuable information on the orientation state (difficult to measure in 3D flows
of concentrated suspensions), the local concentration that could differ from one point to
another in the flow, or even the effective velocity gradient that could differ from the nominal
one, that as previously indicated is assumed the one unperturbed by the fibers presence.

However, extracting information from those erratic trajectories seems difficult, needing
the use of adequate metrics to compare them, that apparently seem very different even
when the flow conditions remain identical. Moreover, the usual statistical descriptors
(widely considered for describing roughness for instance) seem insufficient for describing
the trajectory richness. Thus, robust metrics for describing in a concise, compact and
rich enough way, with the suitable invariance properties, are needed for making possible
unsupervised clustering and supervised classification of the different trajectories. For that
purpose, the present work considers topological data analysis for analyzing the stochastic
time-series induced by the fiber interactions, at the level of the movement of the fiber
geometrical center.

The paper is organized as follows. Section 2 describes the discrete simulation of flows
involving concentrated fiber suspensions. Then, in Section 3, the so-called Topological
Data Analysis (TDA) will be revisited. Finally, the numerical results will be reported in
Section 4, before addressing some final concluding remarks in Section 5.

2. Discrete Simulation

The main assumptions considered in the the modelling and simulation framework
are [5,6]:

1. The suspending fluid is Newtonian, incompressible and the flow is laminar;
2. The fluid velocity gradient is assumed being homogeneous in the considered represen-

tative volume where the calculations are performed, with the velocity field assumed
unperturbed by the particles presence and their orientation;

3. The mass of the fibers is negligible, thus the inertia of the fibers is neglected;
4. Fibers are considered to have the same length, but they could have different length;
5. The long-range hydrodynamic interactions are considered along with short-range

hydrodynamic interactions between fibers;
6. Initially and before the simulation starts, the fibers are homogeneously and almost

isotropically distributed in the considered volume, with interpenetration prevented.
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The position of the geometrical center G of fiber (α), r(α), is given by

r(α) = x(α)x + y(α)y + z(α)z, (2)

where x, y and z represent respectively the three unit vectors related to the three
space coordinates.

Fibers are assumed having an ellipsoidal shape, with length l and diameter d (taken
at the axis center). Thus, the aspect ratio of the fibers r reads:

r =
l
d

. (3)

In the numerical simulations described later, the considered fibers have an aspect
ratio of 20. Thus, the fibers will be represented by elongated ellipsoids, whose orientation
will be described by a unit vector p aligned with the ellipsoid longest axis. Moreover, the
considered aspect ratio allows assuming the fibers rigid, as experimental observations
prove for usual materials, as for example glass fibers.

Since the suspensions are considered concentrated, with the fiber volume fraction
noted by φ, the following inequality applies:

φ ≥ 1
r

. (4)

The higher r (i.e., long fibers), the more the system is considered concentrated for a
fixed fibers concentration φ. In what follows, the fibers are supposed to be sufficiently long
(i.e., r � 1), approaching the cylindrical shape.

The fixed frame is defined from (O, x, y, z), whereas another frame is attached to each
fiber: (G, x′, y′, z′). A shear flow is applied, with the velocity field expressed from

VT(x) = (V1, V2, V3) = (γ̇y, 0, 0), (5)

with γ̇ the applied shear rate and y the y-coordinate of the fiber geometrical center. This
expression allows defining the velocity gradient ∇V as well as its symmetric and skew-

symmetric parts, D and W respectively, with Ω =
1
2
(∇×V).

The fiber orientation is defined by the unit vector p(α) such as p(α) = p(α)1 x + p(α)2 y +

p(α)3 z. The relative fluid/particle velocity at G reads

q̇(α) = ṙ(α) −V(r(α)) = ṙ(α) − γ̇y(α)x. (6)

2.1. Fiber Motion Equations: Translation

The net force that the fluid transfer to the fiber scales with the relative velocity at
G from the so-called resistance tensor ζ, and then the force balance with the acting force
F, reads

F(α) + ζ(α) · q̇(α) = 0, (7)

where the friction tensor expression is given in [7], and depends on the fluid viscosity, the
fiber geometry and its orientation.

2.2. Fiber Motion Equations: Rotation

First we consider the dilute case where fiber interaction cans be neglected. The fluid
deformation induces on the fiber the torque H(α) : D (with H a third order resistance
tensor) and the fluid/fiber relative rotary velocity ω(α) induces the torque ξ(α) ·ω(α), with
ξ(α) a second order resistance tensor. Both resistance tensors [7] depend again on the fluid
viscosity, fiber geometry and fiber orientation.
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When neglecting inertia effects, the torque balance (in absence of fiber interactions) reads

ξ(α) ·ω(α) +H(α) : D = 0, (8)

from which the fiber rotary velocity can be extracted,

ṗ(α) = −p(α) ×
(

ω(α) −Ω
)

, (9)

that for infinite aspect ratio fibers leads to

ṗ(α) = ṗ(α)
J = W · p(α) +

[
D · p(α) −

(
D : p(α) ⊗ p(α)

)
p(α)

]
, (10)

that coincided with the Jeffery equation [1].
When the suspension becomes concentrated enough, fiber-fiber interactions occur.

Thus, short-range forces will appear on the fibers as they interact.
There are two types of interactions considered via two types of forces: A lubrication

force Flb occurs when two fibers approach one another; and a contact force Fc when they
touch, that when neglecting friction (the roughness of the fiber surface is very small,
fact that enables neglecting the induced friction force), the contact force, as well as the
lubrication one, is assumed acting in the normal direction.

The resulting interaction force on fiber (α) reads:

F(α) = ∑
β 6=α

F(α,β)
c n(α,β) + ∑

µ 6=α

F(α,µ)
lb n(α,µ), (11)

that will induce a torque T(α) on the considered fiber, leading to the torque balance

T(α) + ξ(α) ·ω(α) +H(α) : D = 0, (12)

from which
ω(α) = −ξ(α)

−1 ·
(

T(α) +H(α) : D
)

, (13)

leading to the fiber rotary velocity ṗ(α).
Thus, knowing the resulting force applied on fiber (α) one can compute the relative

velocity at G, q̇(α) (that allows updating the fiber center position), and the fiber rotary
velocity ṗ(α).

The calculation of the distance between two fibers and the calculation of the lubrication
forces depending on the approaching velocity Θ̇(α,β), were detailed in [8].

Contact forces are assumed to occur if the gap between two close fibers is equal to
zero and if F(α,β)

c 6= 0. The condition employed in the present work reads [9]

d
dt

[(
r(α) − r(β)

)
· n(α,β)

]
= Θ̇(α,β) = 0, (14)

with Θ(α,β) ≈ 0. It physically means that two fibers in contact cannot penetrate one another.
For solving the problem, fibers are grouped. Imagine that fibers (α) and (β) are in

contact. The first group is composed by all the fibers in interaction with fiber (α). The
second group is all the fibers in interaction with fiber (β). There is one unknown force
for each pair of fibers, because the forces acting on the two fibers are equal in magnitude
but opposite in direction. All forces for these two groups are coupled and should be
solved together with all the interactions in the suspension by enforcing the kinematic
constraints (14) at each contact level. For additional details the interested reader can refer
to [5] and the references therein.
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3. Topological Data Analysis

Data is generated by considering a population of fibers inside a computational box,
that represents the so-called representative volume. The number of fibers depends on
the considered fibers volume fraction (fibers concentration). Then, a simple shear flow
is assumed taking place inside, with the velocity given by VT = (γ̇y, 0, 0). As discussed
above, the flow is assumed unperturbed by the fibers presence and orientation. In absence
of interactions, the geometrical center of each fiber will follow a rectilinear trajectory,
traversing the computational box, until leaving it from its right boundary. Instead of
increasing the box size, fully periodic boundary conditions are enforced. Thus, as soon as
a fiber leaves the box from its right boundary it is re-injected into the box through its left
boundary. The computational cell perfectly represents the bulk flow conditions, as soon
as the analyzed flow is not affected by the physical walls (e.g., the mould walls). Here,
we assume that the flow cell (representative volume) is far enough (with respect to the
fiber length) from the physical walls for ignoring the effects of those walls.

In the absence of interactions, the orientation of each fiber describes the so-called
Jeffery orbit. When concentration increases, Jeffery orbits intersect one another and then
lubrication and contact forces appear when fibers interact. The number of interactions will
scale with the fiber concentration, while the interaction intensity scales with the applied
shear rate. Thus, the higher the fibers’ concentration and the applied shear rate, the more
intense and frequent the interactions occurring in the flow, creating a strong perturbation in
the orientation kinematics (fiber rotary velocity) as well as in the erratic trajectory described
by the fiber centers.

The interactions (lubrication and contacts) occur inside the box, but due to the assumed
and enforced periodic boundary conditions, fibers located in the neighborhood of the right
boundary can interact with the ones located in the neighborhood of the left one, and those
close to the bottom boundary with the ones close to the top one, and similarly for the front
and rear sides of the box.

Fibers are initially located randomly into the box, while avoiding interpenetration. Thus,
at the end of the box filling an almost isotropic orientation state is obtained, i.e., a ≈ I/3.

A test fiber is considered close to the center of the box, and its trajectory is recorded, in
particular the three components of the fluctuating vector q̇ acting on it, that will represent
the three time series Sx, Sy, Sz: Sx = {q̇1

x, q̇2
x, ...} and similarly for the other two times series.

In these time series and for comparison purposes, the exponent refers to the quantity of
applied strain, i.e., •n refers to •(γ̇tn).

The kinematics of the test particle is followed a certain time, in order to almost cover
the three main regimes that it is experiencing:

1. The first regime is the one taking place at the very beginning when the flow starts,
where the initial fiber distribution evolves in absence of interactions, until fibers ap-
proaching ones another induce the expected fiber interaction (lubrication and contact);

2. The second regime is the one when the orientation of the fibers in the population
evolve, trying to align with the flow direction (induced by the applied shear) but in
presence of numerous and intense interactions;

3. The third region is an almost stablished regime, when fibers are quite aligned with the
preferential orientation direction (the x-coordinate in the case here studied). In this
case the number of interaction reduces because when fibers are almost aligned in the
same direction, interactions are much less probable and much less intense. However,
as the fibers are ellipsoids, they cannot align in a stable manner in the flow direction,
the rotary velocity never vanishes, even in absence of interactions. The rotary velocity
becomes very small when ellipsoids align along the flow direction, and consequently
the fiber spend a lot of time aligned in the flow direction, but it continues its rotation,
and the rotary velocity increases when the orientation moves apart form the flow
direction, reaching its maximum velocity when the y-coordinate reaches its maximum
value. Then, the rotary velocity decreases again when the fiber orientation approaches
again the flow direction, and the cycle repeats and rotation continues. Thus, the fiber
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spend long periods almost aligned with the flow, and rotate very fast outside this
most stable direction (the local orientation with the flow). During this fast rotation
the interactions are numerous and intense, because of the fact that each fiber rotates
at different instants.

In order to compare the just referred time series, we must consider appropriate metrics
able to find the similarity of times series, neither identical nor superposable. Topological
Data Analysis [10–12] inherits the invariance properties of topology, and then it is an
appealing candidate for analyzing, describing and finally classifying time series with
respect to the concentration regime and the applied shear rate.

For the sake of clarity, we will consider a generic time series S = {s1, s2, ..., sk, ...}.
To extract the topology of the data composing the time series, first the extremum points
(local minimums and local maximums) are identified, and then we proceed to the one-
to-one local-minimum/local-maxixum neighbors pairing. In the pairing process, when
multiple alternatives exist, the one maximizing the max to min distance is retained.

Now, we assume that P min-max pairs have been constructed: (b1, d1), ..., (bP, dP),
where b refers to the minimum, also referred as birth, and d refers to the maximum, or the
death. Each one of these pairs results in a point in the so-called persistence diagram, with
the birth component reported in its horizontal axis and the deaths in the vertical one. Being
the maximum always greater (or equal) than the minimum, points will group in the upper
part with respect to the bisector (diagonal of the square birth/death representation).

Instead of representing on the vertical axis the deaths, an alternantive derived repre-
sentation consists of representing the lifetime, that is, dk − bk. Thus, the points reported
into the so-called life-time diagram are the P data points: (b1, d1 − b1), ..., (bP, dP − bP), that
now appear distributed everywhere in the 2D representation.

Calculating distances between clouds of points is possible when using an adequate
metrics. One possibility consists of using the Wasserstein metrics usually employed in
optimal transport [13], that first matches the points of all the considered sets, in order to
minimize the cost related to the distance among them, and then compute the Euclidian
distance between the matched points-sets.

However, using this kind of data representation in usual artificial intelligence and
machine learning techniques for clustering, classifying and modeling (i.e., constructing
regressions) remains its trickiest issue. For that reason, a step forward consists of transform-
ing the life-time diagram into the so-called persistence image, defined in a vector space
facilitating its post-processing for a diversity of purposes.

For that purpose, and as described in our former works [14–16], we associate to each
data-point in the life-time diagram a bivariate normal distribution, weighted and then
integrated in different patches on a square domain covering the support of the regularized
life-time diagram, leading to the so-called persistence images.

The resulting persistence images have an important property, the one of be invariant
for time-series having similar topologies, even when they cannot be perfectly matched
when using their time-representations.

Thus, persistence images enable efficient unsupervised clustering or supervised classi-
fication, and can be used also as input in regressions, by considering convolutional neural
networks –cNN– directly applied on them, or nonlinear polynomial regression applied on
the coefficients of their PCA decomposition [17].

4. Results

According with the rationale described at the beginning of Section 3, different time
series related to the movement of a test fiber in different flow conditions, the last character-
ized by the fibers volume fraction (%) and the applied shear rate s−1, were generated. The
considered design of experiments –DoE– is given in Table 1.

The initial orientation is almost isotropic, that is, there are fibers pointing in any
direction of the unit sphere, with an almost a uniform distribution. Thus, one expects that
when the flow starts, the flow induced orientation, trying to align all the fibers along the
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flow direction (as discussed before), will create frequent and intense fiber-fiber interactions,
scaling with the shear rate and the concentration. These interactions will induce significant
displacements of the fibers geometrical centers. When the fibers align along the flow
direction, i.e., with the velocity field, they remain most of the time aligned with the flow.
However the alignment with the flow is never permanent because of two main reasons.

Table 1. Design of Experiments.

Case Concentration (%) Shear Rate (s−1)

1 14 5
2 18 5
3 22 5
4 18 1
5 18 3
6 18 7

First, when considering fibers modeled by ellipsoids (as it is the case here) the local
alignment is not a steady solution (no steady solution exists). The rotary velocity reaches
its smallest value when the fiber is aligned with the flow, but it is not exactly zero. Thus,
the fiber moves apart from the alignment with the flow, to make a turn, coming back to
the alignment with the flow, where again it spends a long period before starting another
rotation, and so on.

The second advocated reason is, that even if the interaction is much less intense when
fibers are globally quite aligned with the flow, the sporadic rotations just described create
fiber-fiber interactions that induce the displacement of the fibers geometrical centers, while
the orientation also deviate from the local alignment with the flow.

Moreover, as fibers are rotating according to the applied shear, in the clockwise
direction in our case, the displacement of the fibers geometrical center is expected exhibiting
an asymmetric behavior.

For confirming the previous expectations, we consider Cases 4 and 6 in Table 1,
related to the minimum and maximum applied shear rates, both having the same fiber
concentration, and compares the displacement of the test fiber geometrical center along
the y-direction (the shear direction), both cases represented respectively in Figures 1 and 2.
These two figures prove that the larger is the shear rate, the higher is the fiber-fiber
interaction intensity, and consequently the displacement induced on the fibers along the
shear direction (y-direction—with the flow occurring along the x-direction).

Figure 1. Time series related to displacement on the y-direction in Case 4: Minimum shear rate.
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Figure 2. Time series related to displacement on the y-direction in Case 6: Maximum shear rate.

To evaluate the effect of the concentration while keeping constant the applied shear,
we consider Case 1 and Case 3, with respectively the minimum and maximum fibers
concentration (both subjected to the same applied shear rate). Figures 3 and 4 represent
the associated displacement along the shear direction (y-coordinate). As it can be noticed
from the observation of these figures, for the lower concentration, after the numerous
interactions that follow the flow initiation, a plateau corresponding to the fibers alignment
along the flow direction, where interactions almost disappear, is noticed. As discussed
previously, fibers move apart form the local alignment for performing a full rotation before
coming back again to the orientation with the flow, in which it stays for a long period
(the rotary velocity is minimum when fibers are almost aligned with the flow). For the
maximum concentration, fiber-fiber interactions persist after the transient regime, and the
permanent regime continues exhibiting intense fluctuations induced by the interactions.
It can be stressed that the concentration mainly affects the number of interactions, but their
intensity seems more influenced by the shear rate than by the fiber concentration.

Figure 3. Time series related to displacement on the y-direction in Case 1: Minimum concentration.
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Figure 4. Time series related to displacement on the y-direction in Case 3: Maximum concentration.

To better appreciate the number and distribution of the topological events, Figures 5–8
show the persistence diagrams related respectively to Figures 1–4, where each blue dot
represents a topological event, with its appearance reported in the x-coordinate axis and its
death in its y-coordinate axis, being the vertical distance to the diagonal a representation of
its persistence (its lifetime).

Figures 5 and 6 clearly reveal that the topology becomes more persistent when in-
creasing the shear rate, with the associated topological event appearance asymmetrically
distributed with respect to the zero value. High shear rates induce strong interactions
(as observed in Figure 2) that result in highly fluctuating dynamics, with large amplitudes,
that result in persistent topology. On the contrary, when the shear rate decreases the
fluctuations are much less intense (smaller amplitudes) inducing an ephemeral topology,
with the topological events closer to the diagram diagonal.

Figure 5. Persistence diagram related to displacement on the y-direction in Case 4: Minimum
shear rate.
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Figure 6. Persistence diagram related to displacement on the y-direction in Case 6: Maximum
shear rate.

Now, focusing on the effect of concentration, from Figures 7 and 8 it can be stressed that
in the dilute regime, represented by Figure 3, the largest persistent topology is associated
with the transient regime, with ephemeral events occurring as soon as fibers almost align
with the flow.

Figure 7. Persistence diagram related to displacement on the y-direction in Case 1: Minimum
concentration.
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Figure 8. Persistence diagram related to displacement on the y-direction in Case 3: Maximum
concentration.

When the concentration increases nothing changes significantly, as expected, concern-
ing the most persistent topology, however, the ephemeral one becomes more abundant and
erratic than the one related to the dilute case. It is important to notice that the scale of rep-
resentation is impacted by an isolated negative displacement that induces a displacement
along the x-axis, and that could be considered as an outlier. These findings confirm that
the concentration affects more the ephemeral events that the persistent topology.

Thus, two main scales can be differentiate, the one related to the transient regime,
involving more persistent topology, and the one related to long-time regime exhibiting
more ephemeral events.

The main issue, previously discussed, is the way of using a compact, concise and
complete descriptor of the time series depicted in the previous figures (Figures 1–4), more
easy to manipulate than the discrete persistence diagrams reported in Figures 5–8.

The use of persistence images is a valuable route for accomplishing it, because they
allow extracting and differentiating micro and macro events, inducing ephemeral or per-
sistent topology. Persistence images are defined in a vector space and can be easily ma-
nipulated by most of the state-of-the-art artificial intelligence and machine learning tech-
niques. These images contain a rich multi-scale information able to represent the amount
of topology and its persistence, expected describing the fibers trajectories depending on
the concentration and shear rate, the former induing the amount of topological events and
the last their persistence.

Figure 9 schematizes the persistence image content, where the horizontal axis refers
to the value at which the topological event appears, while the vertical one refers to its
persistence. Thus, Figures 10–13 represent the persistence images associated respectively
to Figures 1–4, that describe the findings just discussed when referring to the associated
persistence diagrams (Figures 5–8).

To sum up the effect of the concentration and the applied shear rate on the persis-
tence image, Figure 14 represents the images corresponding to q̇y in the different con-
centration/shear rate conditions, where a clear evolution of the topological pattern can
be appreciated.
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Figure 9. Persistence images reader code.

Figure 10. Persistence image related to displacement on the y-direction in Case 4: Minimum
shear rate.
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Figure 11. Persistence image related to displacement on the y-direction in Case 6: Maximum
shear rate.

Figure 12. Persistence image related to displacement on the y-direction in Case 1: Minimum
concentration.
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Figure 13. Persistence image related to displacement on the y-direction in Case 3: Maximum
concentration.

Figure 14. q̇y persistence images in different fibers volume fraction/shear rate conditions.

5. Conclusions

This paper proved that interactions affect, in a very precise way, the trajectory followed
by the geometrical center of the interacting particles. Because of the high variability, a
robust metric was chosen for comparison purposes, concretely topological data analysis.
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Thus, the time-series related to the erratic perturbation of the nominal trajectories, reflecting
the interactions (lubrication and contact) allows to extract a sort of topological pattern, the
so-called persistence image, that characterizes in a stable manner (invariant description)
all the trajectories related to the same flow conditions, in particular same values of the
fiber concentration and flow shear rate, both effecting the number and intensity of the
interactions, and then having a noticeable effect on the trajectory topology.

This work opens numerous perspectives, in particular the one related to the flow moni-
toring, to infer, from the recorded trajectory, local quantities, like the the effective shear rate,
concentration and ensemble orientation (moments of the orientation distribution function).
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