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Abstract: In the present paper, the statistical responses of two-special prey–predator type ecosystem
models excited by combined Gaussian and Poisson white noise are investigated by generalizing
the stochastic averaging method. First, we unify the deterministic models for the two cases where
preys are abundant and the predator population is large, respectively. Then, under some natural
assumptions of small perturbations and system parameters, the stochastic models are introduced.
The stochastic averaging method is generalized to compute the statistical responses described
by stationary probability density functions (PDFs) and moments for population densities in the
ecosystems using a perturbation technique. Based on these statistical responses, the effects of
ecosystem parameters and the noise parameters on the stationary PDFs and moments are discussed.
Additionally, we also calculate the Gaussian approximate solution to illustrate the effectiveness of the
perturbation results. The results show that the larger the mean arrival rate, the smaller the difference
between the perturbation solution and Gaussian approximation solution. In addition, direct Monte
Carlo simulation is performed to validate the above results.

Keywords: statistical responses; predator saturation; predator competition; stochastic averaging
method; stationary PDF; combined Gaussian and Poisson white noise

1. Introduction

The Lotka–Volterra (LV) model [1] is a classic model for describing the interaction
between the prey and predator in ecosystems with predator–prey relations [2,3]. Since
the introduction of this model, several improved LV models have been investigated with
consideration of different factors. Among those studies, the ones considering predator
saturation and predator competition terms, respectively, have been introduced to charac-
terize two special cases of the evolution of the ecosystems. The model with the predator
saturation term describes a case where the preys are abundant, while the one with the
predator competition term considers another case in which the predator population is very
large compared with the prey population. The dynamics of these two models have been
discussed in [1,4].

Moreover, the evolution of real-world biological systems usually suffers from unavoid-
able random perturbations in the natural environment [5–9]. Many investigations on the
dynamics of predator–prey models with predator saturation and predator competition
terms excited by stochastic perturbations have been reported [8–14]. In these studies, the
stochastic perturbation is introduced as continuous stochastic excitations to disturb the
birth rate of the prey and the death rate of the predator.

Nevertheless, in the environmental fluctuations, there are some drastic changes, in-
cluding floods, earthquakes, tornados, or forest fires, which indicates that the evolutions
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of the ecosystem can be affected by unavoidable, sparse, discrete random jumps. Con-
sequently, it is not appropriate to characterize the environmental effects by using only
continuous random excitations. The combinations of continuous random processes and
random jumps are viewed as more appropriate model for this case [15–18]. The ecosys-
tem models excited by stochastic excitations with random jumps have been attracting
increasing interests, and many reliable results have been obtained. In these studies, the
Lévy process or jump-diffusion processes are commonly used in mathematical models to
describe environmental perturbations with random jumps [19–22]. Most of them focus
on the mathematical properties of the ecosystems, including the uniqueness, stability of
the solutions, etc. [23–27]. However, for the prediction of the PDFs of the species pop-
ulations, only the ecosystems enforced by stochastic processes with jumps have been
investigated [28,29]. Therefore, more work needs to be done on deriving the stochastic
responses of the ecosystems under stochastic excitations with random jumps.

The stochastic averaging method is an effective tool for investigating nonlinear sys-
tems excited by stochastic forcings. It was first applied to nonlinear systems under Gaussian
white noise excitation [30–32], and then generalized to nonlinear systems with other types
of stochastic excitations [33,34]. It has been successfully employed to study the stationary
PDFs [6–9,11,12,28,35] and the optimal control [36] of species populations in ecosystems
with small self-competition and small stochastic excitation. However, the solution of the
ecosystem dynamics under continuous and random jump excitation by the stochastic
average method has not yet been reported.

Inspired by this, here, we study predator–prey models with predator saturation
and predator competition terms excited by combined Gaussian and Poisson noises. The
governing equation for the solution of the stochastic model is approximately derived
by applying the stochastic averaging method. Then, the statistical responses including
the approximate PDFs and moments of the population densities are derived by solving
the governing equation with a perturbation technique. Further, the effects of the system
parameters as well as the stochastic excitations on the stationary responses are presented.
The rest of the paper is organized as follows. Section 2 introduces two ecosystem models
excited by combined Gaussian white noise and Poisson white noise and the averaged
generalized Fokker–Planck–Kolmogorov (GFPK) equation. In Section 3, the effects of
the parameters on the stochastic dynamics of the ecosystem are discussed. Finally, the
conclusions are summarized in Section 4.

2. The Models
2.1. The Deterministic Models

In the present paper, we start from two deterministic prey–predator type ecosystems,
one with an abundant prey population and the other with a large predator population,
which can be viewed as generalizations of the LV model [1]. Although the two models are
given based on different assumptions, fortunately we can define some new parameters to
obtain a more general model that contains the two models as its special cases [8,37].

Case 1: prey population is abundant

Consider the case where the prey is abundant. The model is given as

.
x1= ax1−sx2

1 −
bx1x2

1+Ax1
,

.
x2= −cx2 +

f x1x2
1+Ax1

.
(1)

where x1 and x2 are the prey and predator population densities, respectively; a and c
represent the birth rate of the prey and the death rate of the predators. −sx2

1 reveals the
self-competition between the preys. The terms bx1x2

1+Ax1
and f x1x2

1+Ax1
in Equation (1) describe

the interaction between the species [37]. These two interaction terms are proportional only
to the predator population x2, which implies that the consumption of the prey depends on
the predator population and not on the prey population.
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Model (1) can be reformulated in the following form

.
x1 = x1

[
a− bx2 − s

f

(
−c + f x1

)
+ g1(x1, x2)

]
,

.
x2 = x2

[
−c + f x1 + g2(x1, x2)

]
.

(2)

with

g1(x1, x2) =
b
f

Ax2
f x1 − c

1 + Ax1
, g2(x1, x2) = −Ax1

f x1 − c
1 + Ax1

(3)

by introducing

f = f − cA, a = a− sc
f
= a− sc

f − cA
, b =

f b
f + cA

=
b
f
( f − cA). (4)

At this time, Model (2) has two equilibrium points, one unstable point (0, 0) and one
asymptotically stable point

(
c/ f , a/b

)
.

Case 2: the predator population is large

When the population predator is large relative to the prey population, the prey–
predator system can be modeled as

.
x1 = ax1 − sx2

1 −
bx1x2

1+Bx2
,

.
x2 = −cx2 +

f x1x2
1+Bx2

.
(5)

In this case, the prey consumption depends only on the prey supplement. Compared
with model (1) in Case 1, Model (5) has different interaction terms bx1x2

1+Bx2
, f x1x2

1+Bx2
, which

imply that the prey growth rate and the predator death rate depend only on the prey
supply. [8]. The other terms in (5) are the same as those in Equation (1).

By defining the new parameters

a = a− sc
f

, f =
f b

b + aB
, b = b− aB, (6)

Model (5) can be expressed in the form of Equation (2) with different nonlinear functions:

g1(x1, x2) = −Bx2
a− bx2

1 + Bx2
, g2(x1, x2) =

f
b

Bx1
a− bx2

1 + Bx2
. (7)

Some assumptions about the systems in Case 1 and Case 2 are needed for subsequent
analysis. First, we consider the situation that the parameter s in the self-competition term
for both cases is small. It describes the situation that the prey population density is small,
and the impact of the self-competitions term −sx2

1 is small. Second, we assume the term
Ax1 � 1 for the Case 1. This assumption is consistent with the first one. Third, for Case 2,
Bx2 � 1 is also necessarily needed to meet the requirement of the first assumption. For the
convenience of following analysis, a small and positive parameter ε is introduced and the
parameters s, A and B in Equation (2) are replaced by ε2s, ε2 A, and ε2B to represent small
values of these parameters. Thus, the mathematical model that we will investigate becomes

.
x1 = x1

[
a− bx2 − ε2s

f

(
−c + f x1

)
+ ε2g1(x1, x2)

]
,

.
x2 = x2

[
− c + f x1 + ε2g2(x1, x2)

]
.

(8)

with

g1(x1, x2) =
b
f

Ax2
f x1 − c

1 + ε2 Ax1
, g2(x1, x2) = −Ax1

f x1 − c
1 + ε2 Ax1

, (9)
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for Case 1 and with

g1(x1, x2) = −Bx2
a− bx2

1 + ε2Bx2
, g2(x1, x2) =

f
b

Bx1
a− bx2

1 + ε2Bx2
. (10)

for Case 2.

2.2. The Stochastic Model

We take the random environmental fluctuations into account in Equation (8). Gaussian
white noise and Poisson white noise are adopted to model the random environmental
fluctuations, which cause random changes in the growth rate of the prey and death rate
of the predators. This means that the growth rate of the prey and the death rate of the
predators in Equation (8) are changed as:

a→ a + ε(ζ1(t) + ξ1(t)) , c→ c + ε(ζ2(t) + ξ2(t)), (11)

Here, ε is the small parameter from Equation (8), which indicates that the random
environmental influences are small. ζi(t)(i = 1, 2) are two independent Gaussian white
noise excitations that are used to characterize the continuous environmental fluctuations.
They have the following statistical characteristics:

E[ζi(t)] = 0, E[ζi(t + τ)ζi(t)] = 2Diδ(τ). (12)

where E[•] represents the mathematical expectation and 2Di are the noise intensities.
Moreover, two independent Poisson white noises ξi(t)(i = 1, 2) are used to model the jump
effects in the environment, which can be viewed as the formal derivatives of compound
Poisson processes Ci(t)

ξi(t) =
dCi(t)

dt
, Ci(t) =

Ni(t)

∑
k=1

YikU(t− tik), i = 1, 2. (13)

In Equation (14), Ni(t) denote Poisson counting processes with mean arrival rates
λi > 0. Yik represent the random magnitudes of the impulses that obey Gaussian distri-
butions with variances E[Y2

ik] and zero mean in the present paper. U(•) is the unit step
function. λiE[Y2

ik] are the intensities of the Poisson white noises. In addition, ζi(t) are also
assumed to be independent with ξi(t).

Consequently, the system that we will investigate can be described by the following
Stratonovich stochastic differential equation (SDE) based on Equations (8) and (11),

.
X1 = X1

[
a− bX2 − ε2s

f

(
−c + f X1

)
+ ε2g1(X1, X2) + εζ1(t) + εξ1(t)

]
,

.
X2 = X2

[
−c + f X1 + ε2g2(X1, X2) + εζ2(t) + εξ2(t)

]
,

(14)

where

g1(X1, X2) =
b
f

AX2
f X1 − c

1 + ε2 AX1
, g2(X1, X2) = −AX1

f X1 − c
1 + ε2 AX1

, (15)

for Case 1 and

g1(X1, X2) = −BX2
a− bX2

1 + ε2BX2
, g2(X1, X2) =

f
b

BX1
a− bX2

1 + ε2BX2
, (16)

for Case 2. Mathematically, the symbols X1(t) and X2(t) are used to represent the stochastic
processes corresponding to the deterministic functions x1(t) and x2(t) in Equation (8).
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Equation (14) can be transferred to the following Itô SDE by adding some correction
terms as follows [38]

dX1 = X1

[
a− bX2 − s

f

(
−c + f X1

)
+ g1(X1, X2) + εD1

]
dt

+ε
√

2D1X1dB1(t) + X1dC1(t) + X1
∞
∑

i=2

1
i! (dC1(t))

i,

dX2 = X2

[
−c + f X1 + g2(X1, X2) + εD2

]
dt + ε

√
2D2X2dB2(t)

+X2dC2(t) + X2
∞
∑

i=2

1
i! (dC2(t))

i,

(17)

in which X1
∞
∑

i=2

1
i! (dC1(t))

i and X2
∞
∑

i=2

1
i! (dC2(t))

i are two correction terms. We introduce the

integral form of the compound Poisson process by Poisson random measures for further
analysis [39]

Ck(t) =
∫ t

0

∫
Qk

YkPk(dt, dYk) (18)

where Pk(dt, dYk) are Poisson random measures and Qk are the Poisson mark spaces.
Based on the Poisson random measure, the differentiation of compound Poisson processes
can be written as

(dCk(t))
i =

∫ t

0

∫
Qk

Yi
kPk(dt, dYk), i = 1, 2, · · · (19)

Then, the equivalent stochastic integro-differential equation (SIDE) of Equation (17)
can be derived as [40]

dX1 = X1

[
a− bX2 −

ε2s(−c+ f X1)
f

+ ε2g1(X1, X2) + ε2D1

]
dt

+ε
√

2D1X1dB1(t) +
∫
Q1

γ11P1(dt, dY1),

dX2 = X2

[
−c + f X1 + ε2g2(X1, X2) + ε2D2

]
dt + ε

√
2D2X2dB2(t)

+
∫
Q2

γ22P2(dt, dY2),

(20)

where

γ11 = X1

∞

∑
i=1

εi

i!
Yi

1 and γ22 = X2

∞

∑
i=1

εi

i!
Yi

2. (21)

In the remainder of this paper, the stochastic dynamics of the stochastic ecosystems
will be analyzed based on Equation (20). Different from the deterministic system, the
probability measures for the prey and predator population are needed to describe the
random behavior of the system with random excitations. For the study of the stochastic
problem, probability plays an important role. Thus, an important task here is to obtain the
PDFs for both prey and predator population densities. In this paper, we focus on the long-
term behavior of this stochastic model, namely, the stationary responses of Equation (14).
To derive the stationary PDFs, we use a stochastic averaging method as described below.

2.3. The Stochastic Averaging

Without considering the random excitations and the nonlinear function gi(x1, x2)
(I = 1, 2) and letting the self-competition term be 0, Equation (20) reduces to the famous
LV model

.
x1 = x1

(
a− bx2

)
,

.
x2 = x2

(
−c + f x1

)
.

(22)

It is known [1] that the system (22) has periodic trajectories that can be defined by

r(x1, x2) = f x1 − c− c ln
f x1

c
+ bx2 − a− a ln

bx2

a
= Q, (23)
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where Q is a constant and r(x1, x2) = 0 at both the unstable equilibrium point (0, 0) and
the stable non-asymptotic equilibrium point

(
c/ f , a/b

)
of Equation (22). This means that

Equation (23) is the first integral of the system (22) for any positive value Q [1]. The period
of the periodic trajectories with constant Q is determined by

T(Q) =
∮

dt =
∮ dx2

x2

(
f x1 − c

) =
∮ dx1

x1

(
a− bx2

) . (24)

Figure 1 demonstrates the trajectories of the system for three cases. Figure 1a shows
the periodic trajectories for system (22) with different initial values. For different initial
values, different closed orbits are obtained, namely, periodic solutions. Figure 1b,c show
the random trajectories for system (22) under Gaussian white noise and Poisson white
noise, respectively. It is known that stochastic excitation has a significant influence on the
dynamics of the ecosystems. The trajectories of the system under stochastic excitations are
random. Moreover, the trajectory changes with continuous slight jumps for the system with
Gaussian white noises, while for the system excited by Poisson white noises, the trajectory
includes some large jumps, which demonstrates the influences of different stochastic
excitations on the trajectories. It can also be seen in these figures that large population
densities of species may evolve into smaller population densities with the evolution of
time. For an ecosystem, a smaller population density means that the population is more
likely to die out, which means that the system is relatively fragile or unstable.

Figure 1. Typical trajectories of the systems. (a) Deterministic trajectories of system (22) with different
initial values; (b) one trajectory of the system under Gaussian white noises only with initial value
(1.2,1.2); (c) one trajectory of the system under Poisson white noises only with initial value (1.2,1.2).

Replacing the variables x1 and x2 by stochastic processes X1 and X2 in Equation (23),
the random counterpart of the first integral (23) can be obtained as

R(t) = R(X1, X2) = f X1 − c− c ln
f X1

c
+ bX2 − a− a ln

bX2

a
. (25)

Based on the stochastic chain rule [39], the differential form of the first integral is
given as

dR(t) =
(

f X1 − c
)[
− ε2s

f

(
−c + f X1

)
+ ε2g1(X1, X2) + ε2D1 + ε2cD1

]
dt

+
(

bX2 − a
)[

ε2g2(X1, X2) + ε2D2 + ε2aD2
]
dt + ε

√
2D1

(
f X1 − c

)
dB1(t)

+ε
√

2D2

(
bX2 − a

)
dB2(t) +

∫
Q1

[
f γ11 − c ln

(
1 + γ11

X1

)]
P1(dt, dY1)

+
∫
Q2

[
bγ22 − a ln

(
1 + γ22

X2

)]
P2(dt, dY2).

(26)
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Taking the Taylor expansions of ln(1 + γ11/X1) and ln(1 + γ22/X2), and substituting
them in Equation (26), one arrives at

dR(t) =
(

f X1 − c
)[
− ε2s

f

(
−c + f X1

)
+ ε2g1(X1, X2) + ε2D1 + ε2cD1

]
dt

+
(

bX2 − a
)[

ε2g2(X1, X2) + ε2D2 + ε2aD2
]
dt

+ε
√

2D1

(
f X1 − c

)
dB1(t) + ε

√
2D2

(
bX2 − a

)
dB2(t)

+
∫
Q1

[
εA11Y1 + ε2 A12Y2

1 + ε3 A13Y3
1 + ε4 A14Y4

1 + · · ·
]
P1(dt, dY1)

+
∫
Q2

[
εA21Y2 + ε2 A22Y2

2 + ε3 A23Y3
2 + ε4 A24Y4

2 + · · ·
]
P2(dt, dY2).

(27)

in which
A11 = f X1 − c; A12 = f X1

2 ; A13 = f X1
6 ; A14 = f X1

24 ;

A21 = bX2 − a; A22 = bX2
2 ; A23 = bX2

6 ; A24 = bX2
24 .

Replacing X1 in Equation (20) by R(t) yields a new system governed by Equation (27)
and the second equation of Equation (20). R(t) is a slowly varying variable since ε is a
small parameter, while Xi are rapidly varying variables. Based on the stochastic averaging
method proposed by [41,42], one can derive the averaged GFPK equation for R(t) as

∂
∂t p(r, t) = − ∂

∂r
(

A1 p(r, t)
)
+ 1

2!
∂2

∂r2

(
A2 p(r, t)

)
− 1

3!
∂3

∂r3

(
A3 p(r, t)

)
+ 1

4!
∂4

∂r4

(
A4 p(r, t)

)
+ O

(
ε5), (28)

where p(r, t) is the PDF of R(t) at time t. O(ε5) represents the terms of ε5 and higher, which
contains an infinite number of terms of GFPK equation with small magnitude due to the
increasing powers of ε. The other parameters of Equation (28) are given as

A1 = ε2 A11 + ε4 A12, (29)

A11 =
〈

U0 + A12λ1

[
Y2

1

]
+ A22λ2

[
Y2

2

]〉
t
, (30)

A12 =
〈

A14λ1

[
Y4

1

]
+ A24λ2

[
Y4

2

]〉
t
, (31)

U0 = ( f X1 − c)
[
− s

f (−c + f X1) + g1(X1, X2) + D1(1 + c)
]

+(bX2 − a)[g2(X1, X2) + D2(1 + a)],
(32)

A2 = ε2 A21 + ε4 A22, (33)

A21 =
〈

A2
11

(
2D1 + λ1E

[
Y2

1

])
+ A2

21

(
2D2 + λ2E

[
Y2

2

])〉
t
, (34)

A22 =
〈(

A2
12 + 2A11 A13

)
λ1E

[
Y4

1

]
+
(

A2
22 + 2A21 A23

)
λ2E

[
Y4

2

]〉
t
, (35)

A3 = ε4 A31 = ε4
〈

3A2
11 A12λ1E

[
Y4

1

]
+ 3A2

21 A22λ2E
[
Y4

2

]〉
t
, (36)

A4 = ε4 A41 = ε4
〈

A4
11λ1E

[
Y4

1

]
+ A4

21λ2E
[
Y4

2

]〉
t
, (37)

where the symbol 〈[ ]〉t means the time average in one quasi-period, which is defined as

〈[ ]〉t =
1
T

∮
[ ]dt =

1
T

∮
[ ]dx2

x2( f x1 − c)
=

1
T

∮
[ ]dx1

x1(a− bx2)
, (38)

where T is the period given in Equation (24).
It can be found from Equations (29)–(37) that the coefficients consist of terms of order

ε2 and ε4. In the absence of terms of order ε4 and higher in Equation (28) the averaged GFPK
Equation (28) will reduce to the averaged FPK equation for the system under only Gaussian
white noises ζi(t) with intensities (2Di + λiE[Y2

i ])(i = 1, 2). By solving this reduced FPK



Entropy 2021, 23, 1208 8 of 14

equation, one can obtain the Gaussian approximation solution for the averaged GFPK
equations. However, the Gaussian approximation solution is not a proper approximation
for small values of λ for Poisson white noise with the same noise intensity since the
influence of term of order ε4 in Equation (28) cannot be ignored. Therefore, more terms of
the GFPK equations should be considered to obtain a more accurate solution when dealing
with the system with Poisson white noise.

3. The Approximate Stationary Responses

The PDFs of the population densities are obtained by solving the averaged GFPK
Equation (28) with certain boundary and initial conditions. In the present paper, only the
long-term behaviors of the ecosystem are studied. A perturbation technique [43] is applied
to derive the stationary PDFs pR(r) for R(t) by solving the following reduced averaged
GFPK equation

0 = − ∂
∂r
(

A1 pR(r)
)
+ 1

2!
∂2

∂r2

(
A2 pR(r)

)
− 1

3!
∂3

∂r3

(
A3 pR(r)

)
+ 1

4!
∂4

∂r4

(
A4 pR(r)

)
+ O

(
ε5), (39)

A second-order perturbation solution

pR(r) = p0(r) + εp1(r) + ε2 p2(r) (40)

is adopted here to derive the approximate solution of Equation (39). By substituting
Equation (40) into Equation (39) and putting terms of the same order of ε together, the
equations for p0(r), p1(r), p2(r) are given as

− ∂

∂r

(
ε2 A11 p0(r)

)
+

1
2

∂2

∂r2

(
ε2 A12 p0(r)

)
= 0 (41)

− ∂

∂r

(
ε3 A11 p1(r)

)
+

1
2

∂2

∂r2

(
ε3 A12 p1(r)

)
= 0 (42)

− ∂
∂r
(
ε4 A11 p2(r)

)
+ 1

2
∂2

∂r2

(
ε4 A12 p2(r)

)
= ∂

∂r
(
ε4 A12 p0(r)

)
− 1

2
∂2

∂r2

(
ε4 A22 p0(r)

)
+ 1

3!
∂3

∂r3

(
ε4 A31 p0(r)

)
− 1

4!
∂4

∂r4

(
ε4 A41 p0(r)

) (43)

It can be seen from Equation (41) that p0(r) is the solution for the system excited
by Gaussian white noise with the same noise intensity, namely, approximate Gaussian
solutions for the system excited by Poisson white noise. By solving Equations (41)–(43)
step-by-step, the second-order perturbation solution (40) can be obtained. Then, the
approximate stationary joint PDFs pX1X2(x1, x2) take the form

pX1X2(x1, x2) =
pR(r)

x1x2T(r)
. (44)

The marginal PDFs and moments of X1 and X2 can be calculated from Equation (44),
such as

pX1(x1) =
∫ ∞

0
pX1X2(x1, x2)dx2, pX2(x2) =

∫ ∞

0
pX1X2(x1, x2)dx1 (45)

E[X1] =
∫ ∞

0
x1 pX1(x1)dx1, Var(X1) =

∫ ∞

0
[x1 − E(X1)]

2dx1 (46)

E[X2] =
∫ ∞

0
x2 pX2(x2)dx2, Var(X2) =

∫ ∞

0
[x2 − E(X2)]

2dx2 (47)

Furthermore, when the Poisson white noise intensity is 0, the method developed in
this paper reduces to the case excited by Gaussian white noise. The effects of the Gaussian
noise on the dynamics of the ecosystems have been studied by Cai [7]. Therefore, in the
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following subsections, we focus on the influence of the system parameters and Poisson
white noise parameters on the stationary statistics.

3.1. The Influence of System Parameters

In this section, the influences of system parameters on the model (14) for Case 1 and
Case 2 are shown in Figures 2–9. The stochastic properties of population densities of the
prey and predator can be calculated from Equations (44)–(47).

Figure 2. The PDFs of X1 for the model with predator saturation term (Case 1) for different ε2A values.

Figure 3. The means and relative fluctuations of X1 and X2 and X2 for the model with predator
saturation term (Case 1) for different ε2 A value. The parameters are the same as those in Figure 2
except for λi = 1.0, E[Y2

i ] = 0.01, i = 1, 2.

Figure 4. The PDFs of X1 and X2 for the model with the predator competition term (Case 2)
for different ε2B values. The parameters are the same as those in Figure 2 except for λi = 0.5,
ε2E[Y2

i ] = 0.02, i = 1, 2.
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Figure 5. The means and relative fluctuations of X1 and X2 for the model with the predator competi-
tion term (Case 2) for different ε2B values. The parameters are the same as those in Figure 4 except
λi = 1.0, ε2E[Y2

i ] = 0.01, i = 1, 2.

Figure 6. The PDFs of X1 and X2 for Case 1. The parameters are the same as those in Figure 2 except
for ε2 A = 0.05, 2ε2Di = 0.001, λ = λi = 0.1, ε2E[Y2] = ε2E[Y2

i ] = 0.08, i = 1, 2.

Figure 7. The PDFs of X1 and X2 for Case 2. The parameters are the same as those in Figure 4 except
for ε2s = 0.08, ε2B = 0.05, 2ε2Di = 0.001, λ = λi = 0.2, ε2E[Y2] = ε2E[Y2

i ] = 0.04, i = 1, 2.

Figure 8. The PDFs of X1 and X2 for Case 1 with different mean arrival rate λ. The other parameters
are the same as those in Figure 6.
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Figure 9. The PDFs of X1 and X2 for Case 2 with different mean arrival rate λ. The other parameters
are the same as those in Figure 7.

Case 1: prey is abundant compared with the predator
The effects of the parameter ε2 A in the predator saturation term of Equation (15) on the

stationary PDFs of the species are shown in Figure 2. The PDF pX1(x1) of the population
density of the prey X1(t) and the PDF of the population density of the predators X2 are
calculated with the following parameters a = 1.0, b = 1.0, c = 0.5, f = 0.5, ε2s = 0.1,
2ε2Di = 0.005, λi = 0.5, ε2E[Y2

i ] = 0.02, i = 1, 2, and two different values of ε2 A. One
can see from Figure 2 that the occurrence of the predator saturation influences the system
behavior significantly. Compared with the case of ε2 A = 0.0, the maxima of the PDFs
of the species population densities become lower, and the probabilities for both small
and large populations increase for ε2 A = 0.05. This means that the ecosystem becomes
more unstable for ε2 A = 0.05. This is reasonable in the real world. Since the parameter
ε2 A represents the case of large prey population, it is obvious that the ecosystem is more
unstable when this extreme case occurs. The solid lines in Figure 2 show the second-order
perturbation solutions, while the discrete points denote the results obtained from Monte
Carlo simulation. The good agreement between these two results shows the effectiveness
of the second-order perturbation solution.

The effect of ε2 A on the moments of the population densities of prey and predators
which can be calculated from Equations (46) and (47) are depicted in Figure 3. It can be seen
that the curves for the means and relative fluctuations

√
Var(Xi)/E[Xi] of the population

densities of both species increase monotonously. This means that the ecosystem fluctuates
more strongly for larger value of ε2 A, which implies a more unstable system.

Case 2: predator population is large
Figure 4 depicts the PDFs of X1 and X2 for the model in Case 2 for different ε2B

values. It is found that the maxima of the PDFs for the case of ε2B = 0.05 are larger and
the probability in this case is more concentrated. Figure 5 shows the mean and relative
fluctuation of the species population of the ecosystem. It can be seen that the mean value of
the prey and predator increase with increase of the ε2B value, while the relative fluctuation
curves decrease with increasing the value of ε2B, implying a more stable ecosystem. The
results of the Monte Carlo simulations are also given in Figures 4 and 5 to validate the
results of the proposed method.

3.2. The Influence of Poisson White Noise

In this section, we focus on the influences of the parameters of the Poisson white
noises, namely mean arrival rate λ and the variance of amplitude E[Y2].

In Figures 6 and 7, some numerical calculations have been performed to obtain the
PDFs of predator and prey population densities in the model (14) for Case 1 and Case 2,
respectively. In these figures, the second-order perturbation results are represented by the
solid lines. The dashed lines are the approximate Gaussian solutions. The Monte Carlo
results are plotted as dotted lines. It is found that the PDFs obtained by the present method
are closer to the Monte Carlo simulation than the approximate Gaussian solutions. The
maxima of the stationary PDFs for the system with both Gaussian and Poisson white noise
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are higher than for the approximate Gaussian solutions. This means that the second-order
perturbation solutions have higher accuracy than the Gaussian approximation solution.

Figures 8 and 9 show the influences of λ of the Poisson white noises on the stationary
PDFs when the Poisson white noise intensity λE[Y2] is kept constant. It is observed from
these figures that with the increase of λ, the maxima of the PDFs decrease and the PDFs
for population densities of prey and predator approach the ones for the system with the
same intensity of Gaussian white noise excitation. To see this clearly, we define the L2
error norm between the PDFs for the system with Poisson white noise and the Gaussian
approximation solution as

l2(xi) =
∫ +∞

0

(
pXi (xi)− pG

xi
(xi)

)2
dxi (48)

where pXi (xi) are the second-order perturbation PDFs for Xi and pG
xi
(xi) are the Gaussian

approximation solutions. We calculate the errors for different λ for Case 1 (Table 1) and
Case 2 (Table 2). It can also be seen from these tables that with the increase of λ, the error
decreases significantly, which also verifies our above conclusion.

Table 1. Error l2(xi) for PDFs in Case 1.

λ 0.05 0.08 0.2 0.4 0.6 0.8 1.0 2.0

l2(x1) 1.19 × 10−2 7.61 × 10−3 9.90 × 10−4 4.52 × 10−4 1.03 × 10−4 3.22 × 10−5 1.84 × 10−5 9.37 × 10−8

l2(x2) 1.54 × 10−2 9.78 × 10−3 1.27 × 10−3 5.85 × 10−4 1.33 × 10−4 4.10 × 10−5 2.34 × 10−5 1.28 × 10−7

Table 2. Error l2(xi) for PDFs in Case 2.

λ 0.05 0.08 0.2 0.4 0.6 0.8 1.0 2.0

l2(x1) 4.39 × 10−2 1.78 × 10−2 4.20 × 10−3 1.21 × 10−3 6.72 × 10−4 1.10 × 10−4 3.81 × 10−5 3.05 × 10−7

l2(x2) 6.05 × 10−2 2.44 × 10−2 5.72 × 10−3 1.65 × 10−3 9.29 × 10−4 1.50 × 10−4 5.19 × 10−5 4.21 × 10−7

4. Conclusions

In the present paper, we have investigated the statistical responses of a stochastic
prey–predator type model for the possible situations of sufficient prey supply and a large
predator population. The statistical responses of the species population, including the
approximate stationarity PDFs and moments, have been obtained by a stochastic averaging
and a perturbation technique. It can be found that, for the system with abundant prey, the
increase of the parameter ε2 A describing the saturation of the predator population from
0 to 0.5 leads to the increase of population fluctuations, which implies that the system
becomes unstable. However, for the system where the predator population is large, the
increase of the parameter ε2B describing the competition of predators for prey has the
opposite effect. In addition, we have paid special attention to the effect of the mean arrival
rate λ of the Poisson white noise. The influence of Poisson white noise on the system tends
to approach the influence of Gaussian white noise with the same noise intensity when the
λ increases from 0.05 to 2.0.

Although only two types of ecosystems with combined Gaussian and Poisson white
noise have been investigated in this paper, our approaches can be applied to other ecosys-
tem models. Except for the stochastic response of the ecosystem being investigated, the
stochastic optimal control or extinction problem are also worth studying.
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