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Abstract: We share a small connection between information theory, algebra, and topology—namely,
a correspondence between Shannon entropy and derivations of the operad of topological simplices.
We begin with a brief review of operads and their representations with topological simplices and
the real line as the main example. We then give a general definition for a derivation of an operad in
any category with values in an abelian bimodule over the operad. The main result is that Shannon
entropy defines a derivation of the operad of topological simplices, and that for every derivation of
this operad there exists a point at which it is given by a constant multiple of Shannon entropy. We
show this is compatible with, and relies heavily on, a well-known characterization of entropy given
by Faddeev in 1956 and a recent variation given by Leinster.
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1. Introduction

In this article, we describe a simple connection between information theory, algebra,
and topology. To motivate the idea, consider the function d : [0, 1]→ R defined by

d(x) =

{
−x log x if x > 0,
0 if x = 0.

This map satisfies an equation reminiscent of the Leibniz rule from Calculus, d(xy) =
d(x)y+ xd(y) for all x, y ∈ [0, 1]. In other words, d is a nonlinear derivation [1], (Lemma 2.2.6).
This derivation may also bring to mind the Shannon entropy of a probability distribution.
Indeed, a probability distribution on a finite set {1, . . . , n} for n ≥ 1 is a tuple of nonnegative
real numbers p = (p1, . . . , pn) satisfying ∑n

i=1 pi = 1, and the Shannon entropy of p is defined
to be

H(p) = −
n

∑
i=1

pi log pi =
n

∑
i=1

d(pi).

Although d is not linear, this may prompt one to wonder about settings in which
Shannon entropy itself is a derivation. We describe one such setting below by showing a
correspondence between Shannon entropy and derivations of the operad of topological
simplices.

1.1. Motivation

As evidenced by recent work, the intersection of information theory and algebraic
topology is fertile ground. In 2015 tools of information cohomology were introduced in [2]
by Baudot and Bennequin who construct a certain cochain complex for which entropy
represents the unique cocycle in degree 1. In the same year, Elbaz-Vincent and Gangl
approached entropy from an algebraic perspective and showed that what are known as
information functions of degree 1 behave “a lot like certain derivations” [3]. A few years
prior in 2011, Baez, Fritz, and Leinster gave a category theoretical characterization of
entropy in [4], which was recently extended to the quantum setting by Parzygnat in [5].
In preparation of that 2011 result, Baez remarked in the informal article [6] that entropy
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appears to behave similarly to a derivation in a certain operadic context, an observation we
verify and make explicit below. Cohomological ideas are also explored in Mainiero’s recent
work, where entropy is found to appear in the Euler characteristic of a particular cochain
complex associated to a quantum state [7]. Upon taking inventory, one thus has the sense
that entropy behaves somewhat similar to “d of something,” for some (co)boundary-like
operator d. The present article is in this same vein. Notably, once a few simple definitions
are in place, the mathematics is quite straightforward. Even so, we feel it is worth sharing
if for no other reason than to provide a glimpse at yet another algebraic and topological
facet of entropy.

1.2. Background

To start, our work is based on a particular characterization of Shannon entropy that is
compatible with an operadic viewpoint. Let ∆n denote the standard topological n-simplex
for n ≥ 0,

∆n := {(p0, p1, . . . , pn) ∈ Rn+1 | 0 ≤ pi ≤ 1 and
n

∑
i=0

pi = 1},

where ∆0 denotes the unique probability distribution on the one-point set. More generally,
any probability distribution p = (p0, . . . , pn) on an n + 1-element set is a point in ∆n. Given
n + 1 probability distributions qi = (qi

0, . . . , qi
ki
) ∈ ∆ki where i = 0, 1, . . . , n, they may be

composed with p simultaneously to obtain a point in ∆k0+k1+···+kn+n denoted by

p ◦ (q0, q1, . . . , qn) := (p0q0
0, . . . , p0q0

k0
, p1q1

1, . . . , p1q1
k1

, . . . , pnqn
1 , . . . , pnqn

kn
).

As shown in [1] and reviewed below, this composition of probabilities finds a natural
home in the language of operads. Furthermore, it plays a key role in a well-known 1956
characterization of Shannon entropy due to D. K. Faddeev [8]. A proof of a slight variation
of Faddeev’s result was recently given by Leinster [1], (Theorem 2.5.1). That is the version
we quote here.

Theorem 1 (Faddeev-Leinster). Let {F : ∆n → R}n≥0 be a sequence of functions. The following
are equivalent:

1. the functions F are continuous and satisfy

F(p ◦ (q0, . . . , qn)) = F(p) +
n

∑
i=0

piF(qi) (1)

where n ≥ 0 and p ∈ ∆n and qi ∈ ∆ki with k0, k1, . . . , kn ≥ 0;
2. F = cH for some c ∈ R.

To make the connection with derivations, let us introduce some notation. Given a prob-
ability distribution p ∈ ∆n let p̄ : Rn+1 → R denote the function that maps a point
x = (x0, . . . , xn) to the standard inner product 〈p, x〉 = ∑n

i=0 pixi. Then, when F = H,
Equation (1) may be rewritten as

H(p ◦ (q0, . . . , qn)) = H(p) + p̄(H(q0), . . . , H(qn)). (2)

This equation is one hint that entropy might be a derivation, although a “q” is notably
absent from the first term on the right-hand side. As a further teaser, Baez explored an
algebraic interpretation of Equation (2) in the informal article [6], where the reader is
reminded that Shannon entropy is a derivative of the partition function of a probability
distribution with respect to Boltzmann’s constant, considered as a formal parameter. In
that article, Equation (2) follows in a few short lines from this computation. One is thus
motivated to look for a general framework of operad derivations for which Equation (2) is
an example. This is what we describe below.
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Section 2 reviews the definition of operads and representations of them. We will recall
that the collection of topological simplices admits the structure of an operad as in [1] and
that R gives rise to a representation of it. In Section 3, we define an abelian bimodule
M over any operad O and the notion of a derivation of O with values in M. With these
definitions in place, Equation (2) will find a generalization in Proposition 1, and the main
result will quickly follow.

Theorem 2. Shannon entropy defines a derivation of the operad of topological simplices, and for
every derivation of this operad there exists a point at which it is given by a constant multiple of
Shannon entropy.

2. Background: Operads and Their Representations

In an introduction to operads, it is helpful to first think about algebras. An algebra A is
a vector space V equipped with a bilinear map µ : V ×V → V thought of as multiplication.
Depending on whether µ satisfies a particular relation, the algebra will usually be described
by an approriate qualifier. For instance, if µ(v, w) = µ(w, v) for all v, w ∈ V, then A is
called a commutative algebra; if µ(µ(u, v), w) = µ(u, µ(v, w)) for all u, v, w ∈ V, then A is a
called an associative algebra, and so on. Behind each of these algebras is a particular operad
that encodes the behavior of the multiplication map µ. To motivate the formal definition,
it is helpful to visualize µ as a planar binary rooted tree and more generally to imagine
an arbitrary n-ary operation as a planar rooted tree with n leaves. There is a natural way
to compose such operations. For instance, when f is a 3-ary operation and g is a 4-ary
operation, they may be composed to obtain a 6-ary operation by using the output of g as
one of the inputs of f as illustrated in Figure 1. There g has been grafted into the second
leaf of the tree associated to f , and so we denote that choice with the subscript “◦2” in
the figure. There are two other composites f ◦1 g and f ◦3 g, which are not shown but are
obtained similarly.

f g

 

f ◦2 g

Figure 1. One of the three ways to compose a 4-ary operation g with a 3-ary operation f .

In general, there are n ways to compose an m-ary operation with an n-ary operation,
and the resulting operation will always have arity m + n− 1. This composition should
further satisfy some sensible associativity and unital axioms, and the collection of all
such operations with their compositions is called an operad. The concept has origins in
category theory [9] and has been used extensively in algebraic topology and homotopy
theory [10–14] with applications in physics as well [15,16]. Operads may be defined in
any symmetric monoidal category, and for ease of exposition below, we will assume all
categories C are concrete (that is, all objects have underlying sets) so that we may refer to
elements in a given object of C. Indeed, the main example to have in mind is the category of
topological spaces.

Definition 1. Let C be a symmetric monoidal category with monoidal product ⊗.. An operad in
C consists of a sequence of objects {O(1),O(2), . . .} together with morphisms

◦i : O(n)⊗O(m)→ O(n + m− 1)

in C for all n, m ≥ 1 and 1 ≤ i ≤ n and an operation 1 ∈ O(1) satisfying the following:

(i) [associativity] For all p ∈ O(n) and q ∈ O(m) and r ∈ O(k),
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(p ◦j q) ◦i r =


(p ◦i r) ◦j+k−1 q if 1 ≤ i ≤ j− 1
p ◦j (q ◦i−j+1 r) if j ≤ i ≤ j + m− 1
(p ◦i−m+1 r) ◦j q if i ≥ j + m

(ii) [identity] The operation 1 ∈ O(1) acts as an identity in the sense that

1 ◦1 p = p ◦i 1 = p

for all p ∈ O(n) and 1 ≤ i ≤ n.

The definition is conceptually simple despite its cumbersome appearance. For instance,
Figure 2 illustrates the associativity requirements listed in item (i).

p

r q

p

q
r

p

q r

Figure 2. Associativity in an operad. (Left) First composing q with p and then r is the same as first
composing r with p and then q. The order in which this is performed does not matter. (Right) The
same is true if r appears to the right, rather than the left, of q. (Middle) Likewise, r may first be
composed with q and their composite may then be composed with p, or q may be first composed
with p followed by r. Again, the order does not matter.

As mentioned above, one often thinks of the elements O(n) as abstract n-to-1 op-
erations, and the morphisms ◦i specify a way to compose them. It is common to begin
indexing the sequence of objects at n = 0 to account for 0-ary operations, but as we will
soon see, our main example of an operad in Example 2 will have no 0-ary operations, and
so our definition starts with O(1). We do not consider an action of the symmetric group
and so O is sometimes called a non-symmetric operad, but we will simply call it an operad.
In the special case when C is the category of vector spaces with linear maps and ⊗ is the
tensor product, O is often called a linear operad. When it is the category Top of topological
spaces with continuous maps and ⊗ is the Cartesian product, O is often called a topological
operad.

Example 1. Given a set X, the endomorphism operad is EndX = {EndX(1), EndX(2), . . .}
where EndX(n) := C(Xn, X) denotes the set of all functions from the n-fold Cartesian product Xn

to X. The unit operation in EndX(1) is the identity function idX : X → X. If f ∈ C(Xn, X) and
g ∈ C(Xm, X) are a pair of functions, then for each i = 1, . . . , n the composition f ◦i g is obtained
by using the output of g as the ith input of f . Explicitly, given (x1, . . . , xn+m−1) ∈ Xn+m−1,

( f ◦i g)(x1, . . . , xn+m−1) := f (x1, . . . , xi−1, g(xi, . . . , xi+m−1), xi+m, . . . , xn+m−1).

The simultaneous composition of several functions may also be considered. That is, given
n functions gi ∈ C(Xki , X) where i = 1, . . . , n they may be composed with f simultaneously to
obtain a new function f ◦ (g1, . . . , gn) ∈ C(Xk1+···+kn , X), which is again defined by using the
outputs of the gi as the inputs of f . Explicitly, given (x1, . . . , xk1+···+kn) ∈ Xk1+···+kn , we have

( f ◦ (g1, . . . , gn))(x1, . . . , xk1+···+kn) = f (g1(x1, . . . , xk1), . . . , gn(xk1+···+kn−1+1, . . . , xk1+···+kn))

Example 2. The simplices ∆0, ∆1, ∆2, . . . give rise to a topological operad called the operad of topo-
logical simplices ∆ = {∆1, ∆2, . . .} where ∆n := ∆n−1. The unit operation in ∆1 is the unique
probability distribution on a one-point set. If p = (p1, . . . , pn) ∈ ∆n and q = (q1, . . . , qm) ∈ ∆m
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are probability distributions, then the composition p ◦i q is obtained by multiplying each of the m
coordinates of q by pi and then replacing the ith coordinate of p with the resulting m-tuple. Explicitly,

p ◦i q := (p1, . . . , piq1, . . . , piqm, . . . , pn) ∈ ∆n+m−1.

Equivalently, the distribution p may be visualized as a planar tree with n leaves labeled by the
probabilities p1, . . . , pn and similarly for q. Then the composition p ◦i q is obtained by “painting”
each of the leaves of q with the probability pi and grafting the resulting tree into the ith leaf of p as
below. Notice the sum of the probabilities on the leaves on the composite tree is 1.

p1 p2 · · ·
pn
◦i

q1 q2 · · ·
qm

= p1 · · · · · ·

piq1 piq2
· · ·

piqm

pn

As an example, if p =
(

1
6 , . . . , 1

6

)
represents the probability distribution of rolling a six-sided

die and q =
(

1
2 , 1

2

)
is that of a fair coin toss, then p ◦3 q =

(
1
6 , 1

6 , 1
12 , 1

12 , 1
6 , 1

6 , 1
6

)
is a point in ∆7,

whose picture is shown on the left of Figure 3.

1
6

1
6

1
12

1
12

1
6

1
6

1
6

p1q1
1 ··

p1q1
k1

p2q2
1 ··

p2q2
k2

· · ·

pnqn
1 ··

pnqn
kn

Figure 3. (Left) A picture of the composition p ◦3 q when p is the probability distribution associated to
a six-sided die and q is that of a fair coin toss. (Right) The simultaneous composition of n probability
distributions qi ∈ ∆ki

with a given p ∈ ∆n.

Further recall that if we have n different distributions qi = (qi
1, . . . , qi

ki
) ∈ ∆ki

where
i = 1, . . . , n, then we may compose them with p simultaneously to obtain the following point in
∆k1+···+kn ,

p ◦ (q1, . . . , qn) = (p1q1
1, . . . , p1q1

k1
, p2q2

1, . . . , p2q2
k2

, . . . , pnqn
1 , . . . , pnqn

kn
).

This simultaneous composition is illustrated by the tree on the right in Figure 3.

Just as groups come to life when considering representations of them, so operads
come to life when each abstract n-ary operation is mapped to a concrete n-ary operation on
a particular object. This assignment is traditionally called an algebra of the operad, but we
prefer the more descriptive name representation.

Definition 2. Let O be an operad in the category of sets. A representation of O, or an O-
representation, is set X together with functions

ϕn : O(n)→ EndX(n) for n ≥ 1

that respect the operad unit and compositions. That is, ϕn(1) = 1 and

ϕn+m−1(p ◦i q) = ϕn(p) ◦i ϕm(q)

for all p ∈ O(n), q ∈ O(m) and 1 ≤ i ≤ n.
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Importantly, one may also wish to define a representation of an operad in any symmet-
ric monoidal category C whenever “EndX(n)” is in fact an object in C. It must consist of an
object X together with a family of morphisms O(n)→ EndX(n) in C that are compatible
with the operad unit and compositions. This holds, for instance, when the monoidal
category C is also closed—that is, when it is equipped with an internal hom functor that is
compatible with the monoidal product. Monoidal closure, however, will not be required in
our work, which primarily concerns the category Top of topological spaces. Indeed, the
main example to have in mind is when O = ∆ is the operad of simplices and X = R is the
real line in Top. In this case, we define EndR(n) := Top(Rn,R) to be the space of continu-
ous functions Rn → R equipped with the product topology. Now, consider the continuous
maps ϕn : ∆n → EndR(n) given by p 7→ ϕn(p) where ϕn(p)(x) := 〈p, x〉 = ∑n

i=1 pixi when-
ever x = (x1, . . . , xn) ∈ Rn. Then, it is simple to check that ϕn+m−1(p ◦i q) = ϕn(p) ◦i ϕm(q)
for all p, q, and i and that ϕn(1) = 1 for all n, and so R is a representation of ∆.

3. Derivations of the Operad of Simplices

With these basic definitions in hand, the present goal is to define a mapping d out of
the topological operad ∆ that satisfies an appropriate version of the Leibniz rule,

d(p ◦i q) = dp ◦i q + p ◦i dq (desideratum) (3)

for all p ∈ ∆n and q ∈ ∆m and for all 1 ≤ i ≤ n. This desired equation suggests the
codomain of d should be a (bi)module over ∆ that is, moreover, an abelian monoid. This
motivates the following two definitions, the first of which is a slight generalization of that
given by Markl in [15].

Definition 3. Let O = {O(1),O(2), . . .} be an operad in a symmetric monoidal category C. A
bimodule over O, or simply an O-bimodule, is a collection of objects M = {M(1), M(2), . . .}
in C together with morphisms

◦L
i = O(n)⊗M(m)→ M(n + m− 1) (left composition)

◦R
i = M(n)⊗O(m)→ M(n + m− 1) (right composition)

in C for each 1 ≤ i ≤ n such that whenever

p⊗ q⊗ r ∈


M(n)⊗O(m)⊗O(k), or
O(n)⊗M(m)⊗O(k), or
O(n)⊗O(m)⊗M(k)

the following holds:

(p ◦j q) ◦i r =


(p ◦i r) ◦j+k−1 q if 1 ≤ i ≤ j− 1
p ◦j (q ◦i−j+1 r) if j ≤ i ≤ j + m− 1
(p ◦i−m+1 r) ◦j q if i ≥ j + m.

(4)

The associativity requirements displayed in Equation (4)—and hence the intuition
behind them—are completely analogous to those defining operads as illustrated in Figure 2.
The only difference here is that one of the three operations may come from the bimodule
rather than the operad. Here is the main example to have in mind.

Example 3. As every algebra is a bimodule over itself, so every representation of O is an O-
bimodule in a straightforward way. Indeed, in the case of the topological operad of simplices, the
maps comprising the ∆-representation structure on R induce a ∆-bimodule structure on EndR.
However, we will make use of a slight variant of this bimodule structure. Right composition will be
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defined in the expected way, though left composition will not. Explicitly, we define the left and right
composition maps

◦L
i : ∆n × Top(Rm,R) −→ Top(Rn+m−1,R)
◦R

i : Top(Rn,R)× ∆m −→ Top(Rn+m−1,R)

as follows. Given a probability distribution p ∈ ∆n and a continuous function f : Rm → R, define
left composition by p ◦L

i f := p̄ ◦ (0, . . . , 0, f , 0, . . . , 0), where the composition on the right-hand
side is defined as in the simultaneous composition in the endomorphism operad of R illustrated
in Example 1, and where each 0 denotes the zero function R→ R. Here, recall that p̄ : Rn → R
maps a point x to the standard inner product 〈p, x〉 as introduced in Section 1. Unwinding this,
left composition thus evaluates explicitly as (p ◦L

i f )(x1, . . . , xn+m−1) = pi f (xi, . . . , xi+m−1). In
words, the value of the left composite p ◦L

i f : Rn+m−1 → R at a point x is computed by evaluating
f at the m-subtuple of x beginning at the ith coordinate and scaling that output by pi. All other
coordinates of x are ignored. The picture to have in mind is that below, where the bold dots are
imagined to be “plugs” that prevent the surplus coordinates from playing a role. In this picture,
n = 3 and m = 2.

(p ◦L
2 f )(x1, x2, x3, x4) =

p

f
x1

x2 x3

x4
= p2 f (x2, x3)

Given a probability distribution q ∈ ∆m and a continuous function g : Rn → R, define right
composition by

(g ◦R
i q)(x1, . . . ,xn+m−1)

:= g(x1, . . . , xi−1,
m

∑
k=1

qkxi+k−1, xi+m, . . . , xn+m−1).

This may be understood visually as well. The value of the right composite g ◦R
i q : Rn+m−1 →

R at a point x is computed by taking the inner product of q with the m-tuple of x beginning at the
ith coordinate and using that number as the ith input of g with all other coordinates of x falling
into place as in the picture below. There are no “plugs” in this instance since all coordinates of x
play a role.

(g ◦R
2 q)(x1, x2, x3, x4) =

g

q
x1

x2 x3

x4
= g(x1, q1x2 + q2x3, x4)

These examples suggest the inner product notation is a convenient choice. Given N ≥ 1 and
k ≤ N and a point x ∈ RN , let xi,k ∈ Rk denote the k-subtuple of x beginning at the ith coordinate:

xi,k := (xi, . . . , xi+k−1).

Then given any point x ∈ Rn+m−1, the left and right composition maps may be written more
succinctly as

(p ◦L
i f )(x) = pi f (xi,m)

(g ◦R
i q)(x) = g(x1, . . . , xi−1, 〈q, xi,m〉, xi+m, . . . , xn+m−1).
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We will use this notation below and will always write xi in lieu of xi,m since the context will
make it clear that xi must be an m-tuple. The boldface font is used to distinguish a tuple xi from a
real number xi. Finally, note that the maps ◦L

i and ◦R
i are continuous since f and g are continuous,

and moreover that the associativity requirements in Equation (4) are analogous to those illustrated
in Figure 2, so it is straightforward to verify they are satisfied. In particular, the zero functions
appearing in the definition of ◦L

i simplify the situation greatly. For instance, several of associativity
requirements follow from the simple fact that multiplying an input xi by a probability and then
mapping the result to zero is the same as first mapping the input to zero and then multiplying that
zero by a probability. So EndR is indeed a ∆-bimodule.

Next, recall that the desired Leibniz rule in Equation (3) suggests the bimodule should
be equipped with a notion of addition. This motivates the following definition.

Definition 4. Let O be an operad in a symmetric monoidal category C. An O-bimodule M is an
abelian O-bimodule if each M(n) is an abelian monoid in C; that is, if for each n = 1, 2, . . . the
following hold:

(i) [associativity, commutativity] there is a morphism µn : M(n)×M(n) → M(n) in C such
that µn(µn(a, b), c) = µn(a, µn(b, c)) and µn(a, b) = µn(b, a) for all a, b, c ∈ M(n),

(ii) [identity] there is an element 1 ∈ M(n) such that µn(1, a) = a = µn(a, 1) for all a ∈ M(n).

As the primary example, consider EndR viewed as a ∆-bimodule as described in
Example 3. For each n, define µn : EndR(n)× EndR(n)→ EndR(n) by pointwise addition,
meaning that for each f , g ∈ EndR(n) we have µn( f , g) = f + g where ( f + g)(x) :=
f (x) + g(x) for all x ∈ Rn. The identity element in EndR(n) is the constant map at zero.
Moreover each µn is continuous and inherits associativity and commutativity from R. In
this way, EndR is an abelian ∆-bimodule.

Remark 1. Notice that the ∆-bimodule composition maps ◦L
i and ◦R

i distribute over sums in the
abelian ∆-bimodule EndR. In other words, for all continuous functions f , g ∈ EndR(n) and for all
probability distributions q ∈ ∆m,

( f + g) ◦R
i q = f ◦R

i q + g ◦R
i q, 1 ≤ i ≤ n

and similarly for left composition ◦L
i . This follows directly from pointwise addition.

With this setup in mind, our desideratum in Equation (3) is now realized in the
following definition.

Definition 5. Let O be an operad in a category C and let M be an abelian O-bimodule. A
derivation of O valued in M is sequence of morphisms {dn : O(n)→ M(n)} in C satisfying

dn+m−1(p ◦i q) = dn p ◦R
i q + p ◦L

i dmq (5)

for all p ∈ O(n), q ∈ O(m) and for all 1 ≤ i ≤ n.

In the special case when O is a linear operad, this definition coincides with that given
by Markl in [15]. In what follows, we omit the subscripts and simply write d instead of dn.
Now, suppose O = ∆ is the operad of topological simplices and EndR is equipped with
the structure of an abelian ∆-bimodule given above. Here is the picture to have in mind for
Equation (5):

d

  =

d
+ d
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On the right-hand side we have used the “plug” notation introduced in Example 3,
which can also be understood explicitly by evaluating d at a point x ∈ Rn+m−1,

d(p ◦i q)(x) = (dp ◦R
i q)(x) + (p ◦L

i dq)(x)

= dp(x1, . . . , 〈q, xi〉, . . . , xn+m−1) + pidq(xi).

Of particular interest is the behavior of a derivation {d : ∆n → EndR(n)} when it is
applied to a simultaneous composition of probability distributions. A derivation applied
to the composite (p ◦j q) ◦i r for probability distributions p ∈ ∆n, q ∈ ∆m, and r ∈ ∆k can
be understood in a convenient picture when q and r are composed onto different leaves
of p; that is, when 1 ≤ i ≤ j − 1 or i ≥ j + m. This follows straightforwardly from a
repeated application of d. Indeed, by definition we have d((p ◦j q) ◦i r) = d(p ◦j q) ◦R

i r +
(p ◦j q) ◦L

i dr and by applying the Leibniz rule again to the first summand, this is equal
to (dp ◦R

j q + p ◦L
j dq) ◦R

i r + (p ◦j q) ◦L
i dr, which we can expand to obtain (dp ◦R

j q) ◦R
i r +

(p ◦L
j dq) ◦R

i r + (p ◦j q) ◦L
i dr since composition distributes over sums as noted in Remark 1.

We will identify this function with the picture below in lieu of the cumbersome notation.

d

  =

d
+ d + d

Importantly, the obvious generalization of the formula holds for any simultaneous
composition p ◦ (q1, . . . , qn) for any p ∈ ∆n and qi ∈ ∆ki

where i = 1, . . . , n. This again
follows directly from repeated applications of Equation (5), as illustrated below.

d

( )
=

d
+ d + d + d

This is summarized in the following proposition.

Proposition 1. Let p ∈ ∆n and qi ∈ ∆ki
for n, k1, . . . , kn ≥ 1 and let {d : ∆n → EndR(n)} be a

derivation of the operad of topological simplices. Then for any point x ∈ Rk1+···+kn ,

d(p ◦ (q1, . . . , qn))(x) = dp(〈q1, x1〉, · · · , 〈qn, xn〉) +
n

∑
i=1

pidqi(xi).

Finally, the main result follows.

Theorem 3. Shannon entropy defines a derivation of the operad of topological simplices, and for
every derivation of this operad there exists a point at which it is given by a constant multiple of
Shannon entropy.

Proof. For each n ≥ 1 define d : ∆n → EndR(n) by p 7→ dp where dp(x) = H(p) is
constant for all x ∈ Rn. Then, d is continuous since H is continuous. Moreover, if
p = (p1, . . . , pn) ∈ ∆n and q = (q1, . . . , qm) ∈ ∆m are probability distributions, then
for any x ∈ Rm+n−1 and 1 ≤ i ≤ n, we have
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d(p ◦i q)(x) = H(p ◦i q) = −
(

i−1

∑
k=1

pk log pk + pi

m

∑
k=1

qk log(piqk) +
n

∑
k=i+1

pk log pk

)

= −
(

i−1

∑
k=1

pk log pk + pi log pi

m

∑
k=1

qk + pi

m

∑
k=1

qk log qk +
n

∑
k=i+1

pk log pk

)

= −
(

n

∑
k=1

pk log pk + pi

m

∑
k=1

qk log qk

)

= H(p) + pi H(q)

= (dp ◦R
i q + p ◦L

i dq)(x),

where the last line follows since (dp ◦R
i q)(x) is computed by evaluating the function dp at

some point, and this function is assumed to be constant at H(p).
Conversely, suppose {d : ∆n → EndR(n)} is a derivation. For each n ≥ 1 define a

function F : ∆n → R by F(p) = dp(0) where 0 = (0, . . . , 0) ∈ Rn. Then F is continuous
since d is continuous, and Proposition 1 further implies that

F(p ◦ (q1, . . . , qn)) = d(p ◦ (q1, . . . , qn))(0)

= dp(〈q1, 01〉, . . . , 〈qn, 0n〉) +
n

∑
i=1

pidqi(0i)

= dp(0) +
n

∑
i=1

pidqi(0)

= F(p) +
n

∑
i=1

piF(qi).

From the Faddeev–Leinster result in Theorem 1, it follows that dp(0) = F(p) = cH(p)
for some c ∈ R.

Notice that the important Equation (2) mentioned in the introduction is obtained as a
corollary. Indeed, if for each n ≥ 1 the map d : ∆n → EndR(n) is defined to be constant at
entropy p 7→ dp ≡ H(p), then d is a derivation by Theorem 3 and so Proposition 1 yields
the following by evaluating d(p ◦ (q1, . . . , qn)) at any point.

Corollary 1. Let p ∈ ∆n and qi ∈ ∆ki
with 1 ≤ i ≤ n. Then

H(p ◦ (q1, . . . , qn)) = H(p) +
n

∑
i=1

pi H(qi).

As a closing remark, Faddeev’s characterization of entropy in Theorem 1 can be
reexpressed using the language of category theory and operads as in [1], (Theorem 12.3.1).
We have omitted this language here but invite the reader to explore the full category
theoretical story in Chapter 12 of Leinster’s book.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: I thank Darij Grinberg, Joey Hirsh, Tom Leinster, Jim Stasheff, and John Terilla
for helpful discussions as well as the anonymous referees for their insightful feedback.

Conflicts of Interest: The author declares no conflict of interest.



Entropy 2021, 23, 1195 11 of 11

References
1. Leinster, T. Entropy and Diversity: The Axiomatic Approach; Cambridge University Press: Cambridge, UK, 2021.
2. Baudot, P.; Bennequin, D. The Homological Nature of Entropy. Entropy 2015, 17, 3253–3318. [CrossRef]
3. Elbaz-Vincent, P.; Gangl, H. Finite Polylogarithms, Their Multiple Analogues and the Shannon Entropy. In Lecture Notes in

Computer Science; Nielsen, F., Barbaresco, F., Eds.; Geometric Science of Information. GSI 2015; Springer: Cham, Switzerland, 2015;
Volume 9389, pp. 277–285.

4. Baez, J.C.; Fritz, T.; Leinster, T. A characterization of entropy in terms of information loss. Entropy 2011, 13, 1945–1957. [CrossRef]
5. Parzygnat, A.J. A functorial characterization of von Neumann entropy. arXiv 2020, arXiv:2009.07125.
6. Baez, J.C. Entropy as a Functor. Blog Post. 2011. Available online: https://www.ncatlab.org/johnbaez/show/Entropy+as+a+

functor (accessed on 15 July 2021)
7. Mainiero, T. Homological Tools for the Quantum Mechanic. arXiv 2019, arXiv:1901.02011.
8. Faddeev, D.K. On the concept of entropy of a finite probabilistic scheme. Uspekhi Mat. Nauk 1956, 11, 227–231. (In Russian)
9. Lambek, J. Deductive systems and categories II. Standard constructions and closed categories. In Lecture Notes in Mathematics;

Hilton, P., Ed.; Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, 1968); Springer:
Berlin/Heidelberg, Germany, 1969; Volume 68.

10. May, J. The Geometry of Iterated Loop Spaces. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1972;
Volume 271.

11. Boardman, J.M.; Vogt, R. Homotopy Invariant Algebraic Structures on Topological spaces. In Lecture Notes in Mathematics;
Springer: Berlin/Heidelberg, Germany, 1973; Volume 347.

12. Loday, J.L.; Vallette, B. Algebraic Operads; Grundlehren der mathematischen Wissenschaften; Springer: Berlin/Heidelberg,
Germany, 2012.

13. Vallette, B. Algebra + Homotopy = Operad. arXiv 2012, arXiv:1202.3245.
14. Stasheff, J. What is... an operad? Notices Amer. Math. Soc. 2004, 51, 630–631.
15. Markl, M. Models for operads. Commun. Algebra 1996, 24, 1471–1500. [CrossRef]
16. Markl, M.; Shnider, S.; Stasheff, J. Operads in Algebra, Topology and Physics; Mathematical Surveys and Monographs, American

Mathematical Society: Providence, RI, USA, 2002.

http://doi.org/10.3390/e17053253
http://dx.doi.org/10.3390/e13111945
https://www.ncatlab.org/johnbaez/show/Entropy+as+a+functor
https://www.ncatlab.org/johnbaez/show/Entropy+as+a+functor
http://dx.doi.org/10.1080/00927879608825647

	Introduction
	Motivation
	Background

	Background: Operads and Their Representations
	Derivations of the Operad of Simplices
	References

