
entropy

Article

A Satellite Incipient Fault Detection Method Based on
Decomposed Kullback–Leibler Divergence

Ge Zhang 1,2 , Qiong Yang 1, Guotong Li 1,2,3,*, Jiaxing Leng 1 and Mubiao Yan 1,2

����������
�������

Citation: Zhang, G.; Yang, Q.; Li, G.;

Leng, J.; Yan, M. A Satellite Incipient

Fault Detection Method Based on

Decomposed Kullback–Leibler

Divergence. Entropy 2021, 23, 1194.

https://doi.org/10.3390/e23091194

Academic Editor: Claude Delpha

Received: 30 July 2021

Accepted: 7 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Innovation Academy for Microsatellites of CAS, Shanghai 201203, China;
zhangge1@shanghaitech.edu.cn (G.Z.); yangq@microsate.com (Q.Y.); lengjiaxing0520@163.com (J.L.);
yanmb@microsate.com (M.Y.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
* Correspondence: ligt@microsate.com

Abstract: Detection of faults at the incipient stage is critical to improving the availability and
continuity of satellite services. The application of a local optimum projection vector and the Kullback–
Leibler (KL) divergence can improve the detection rate of incipient faults. However, this suffers from
the problem of high time complexity. We propose decomposing the KL divergence in the original
optimization model and applying the property of the generalized Rayleigh quotient to reduce time
complexity. Additionally, we establish two distribution models for subfunctions F1(w) and F3(w) to
detect the slight anomalous behavior of the mean and covariance. The effectiveness of the proposed
method was verified through a numerical simulation case and a real satellite fault case. The results
demonstrate the advantages of low computational complexity and high sensitivity to incipient faults.

Keywords: Kullback–Leibler (KL) divergence; fault detection; condition monitoring; incipient fault;
generalized Rayleigh quotient (GRQ); optimum projection vector (PV)

1. Introduction

Due to the vigorous development of the space industry, the number of satellites
in orbit has increased to meet various needs, such as navigation [1], communication [2],
meteorology [3], and earth observation [4]. However, satellites face the risk of abnormalities
or experience failure because of high-energy particles in space, electrostatic discharge,
and cycle temperature [5–7]. Because serious faults may occur due to the continuous
deterioration of incipient faults [8], timely and accurate detection of incipient faults can
reserve sufficient processing time for satellite operation and maintenance system, which is
of great significance to guarantee the availability and continuity of satellite services [9].

During the past three decades, the problem of satellite fault detection has been exten-
sively studied in various studies [10–13]. In traditional satellite fault detection methods,
such as threshold-based methods [14,15] and model-based methods [16,17], the thresholds
or the models required for fault detection necessitate manual setting. Therefore, the perfor-
mance of these fault detection methods heavily relies on the experience of experts [18]. In
recent years, data-driven fault detection methods have eliminated this heavy dependence
on expert experience and become a popular research field [19–22]. These methods establish
normal models based on satellite normal historical data, and then compare the online
data with the normal models to assess whether the online data is faulty. However, the
methods proposed in the existing literature are mainly applied to serious faults, and an
extremely small amount of research and application relates to incipient faults of satellites.
The amplitudes of incipient faults are small compared to system signals, usually ranging
from 1% to 10% [23], which are easily masked by normal system variations [24]. Therefore,
satellite incipient fault detection is a daunting task [25].
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Ji et al. [26] found that the introduction of smoothing technology can improve the
detection rate of incipient faults. Jinane et al. [27] proposed an incipient fault detection
method based on principal component analysis (PCA) and the KL divergence, but this
method only considered the incipient faults in the principal component subspace. Chen
et al. [23] proposed an improved method that monitors anomalous behaviors in principal
and residual subspaces. Gautam et al. [28] presented a sensor incipient fault detection
method based on a Kalman Filter and the KL divergence. Deng et al. [29] combined
two-step localized kernel PCA with the KL divergence for nonlinear system incipient
fault monitoring. Zhang et al. [30] proposed that the principal components obtained by
PCA are not necessarily the optimum projection vector (PV) for detecting incipient faults.
Furthermore, the problem of finding the optimum PV was modeled as an optimization
model. Using local optimum PV in real time makes the method more sensitive to incipient
faults, but it also raises the problem of high computational complexity. For this reason,
this paper proposes a new incipient fault detection method with lower computational
complexity by decomposing the KL divergence. The main contributions of this work are
summarized as follows:

1. We analyzed the necessity and feasibility of decomposing the KL divergence in the
optimization model.

2. We constructed two distribution models for subfunctions F1(w) and F3(w).
3. The effectiveness of the proposed method was verified through a numerical case and

a real satellite fault case.

This paper is organized as follows. The generalized Rayleigh quotient (GRQ) and
original optimization model are introduced in Section 2. The fault detection method based
on the decomposed KL divergence is presented in detail in Section 3. In Section 4, the
proposed method is illustrated and analyzed through two cases. Finally, conclusions are
given in Section 5.

2. Preliminary

In this section, we introduce the definition and property of the generalized Rayleigh
quotient and note the problem of original optimization model.

2.1. Generalized Rayleigh Quotient (GRQ)

The GRQ is defined as follows [31]:

R(A, B, x) =
xT Ax
xT Bx

(1)

where x is a non-zero vector, A is a symmetric matrix, and B is a positive definite symmetric
matrix. The GRQ has a critical property that the maximum value of R(A, B, x) is equal to
the maximum eigenvalue of matrix B−1 A [32]; that is, R(A, B, x) ≤ λmax, where λmax is
the maximum eigenvalue of the matrix B−1 A. In addition, the optimum vector x which
maximizes R(A, B, x) is the eigenvector corresponding to the maximum eigenvalue [32].

The sum of two GRQs is defined as follows [33]:

R(A1, B1, A2, B2, x) =
xT A1x
xT B1x

+
xT A2x
xT B2x

(2)

where x is a non-zero vector, both A1 and A2 are symmetric matrices, and both B1 and B2
are positive definite symmetric matrices.

Because iteration is not required, the maximum value of a single GRQ can be quickly
obtained by directly applying the property of the GRQ. Regarding the maximum value
of the sum of two GRQs, according to Reference [33], the time complexity of maximizing
the sum of two GRQs is NP-hard. Prominently, accurate algorithms cannot solve large
instances of such a problem, and approximate algorithms are necessary.
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2.2. Original Optimization Model

Under the assumption that the data obey a multidimensional Gaussian distribution,
and using the KL divergence to detect incipient faults, the problem of finding the optimum
projection vector (PV) is modeled as follows [30]:{

minw − h(w)

s.t.wTw = 1; ∀wi,−1 ≤ wi ≤ 1, i ∈ [1, m]
(3)

h(w) =
1
2

[
wTΣyw
wTΣxw

+
wTΣxw
wTΣyw

+
(

∆µTw
)2
(

1
wTΣxw

+
1

wTΣyw

)
− 2

]
(4)

In Equations (3) and (4), w is a PV, h(w) is the KL divergence of the projections of
normal historical data X and online data Y. Both the normal historical data and the online
data obey m dimensional joint Gaussian distributions, X ∼ N(µx, Σx), Y ∼ N

(
µy, Σy

)
[30].

Let ∆µ = µy − µx, ∆Σ = Σy − Σx; the KL divergence h(w) can be expressed as the sum of
two GRQs, as shown in Equation (5):

h(w) = 1
2

[
wTΣyw
wTΣxw + wTΣxw

wTΣyw +
(
∆µTw

)2
(

1
wTΣxw + 1

wTΣyw

)
− 2
]

= 1
2

[
wTΣyw
wTΣxw + wT∆µ∆µTw

wTΣxw

]
+ 1

2

[
wTΣxw
wTΣyw + wT∆µ∆µTw

wTΣyw

]
− 1

= 1
2

[
wT(Σy+∆µ∆µT)w

wTΣxw +
wT(Σx+∆µ∆µT)w

wTΣyw

]
− 1

= 1
2

(
wT A1w
wT B1w + wT A2w

wT B2w

)
− 1

(5)

where A1 = Σy +∆µ∆µT , A2 = Σx +∆µ∆µT , B1 = Σx, B2 = Σy. According to the property
of the covariance matrix, both Σx and Σy in Equation (5) are non-negative symmetric
matrices. This paper considers only the case that both of the matrices are positive definite
symmetric matrices to satisfy the condition of the GRQ. If the influence of the coefficient 0.5
and the constant −1 is ignored, Equation (3) can be equally expressed as the maximization
of the sum of two GRQs: maxw

wT A1w
wT B1w + wT A2w

wT B2w

s.t.wTw = 1; ∀wi,−1 ≤ wi ≤ 1, i ∈ [1, m]
(6)

As stated in Section 2.1, the time complexity of solving the optimization problem in
Equation (6) is NP-hard. Similarly, the optimization problem in Equation (3) is NP-hard. In
Reference [30], a ready-made optimization solution tool (the fmincon function in MATLAB)
is used to solve the optimization problem. However, this method can only obtain the local
optimum PV, rather than the global optimum PV. Additionally, with the gradual increase
in the number of variables to be monitored, the time complexity of iteration becomes more
prominent. Therefore, this study aimed to determine an approximate algorithm with lower
time complexity.

3. Incipient Fault-Detection Method Based on Decomposed KL Divergence

In this section, we propose the idea of decomposing the KL divergence and built two
distribution models to detect incipient faults.

3.1. Decomposed KL Divergence

As stated in Section 2.1, the maximum value of a single GRQ can be quickly obtained
by applying the property of the GRQ. Therefore, this paper attempts to decompose h(w)
to reduce time complexity. Specifically, we attempt to decompose h(w) into the sum of
multiple GRQs, and then calculate the maximum value and the optimum PV of each GRQ.



Entropy 2021, 23, 1194 4 of 18

Under the guidance of this idea, the KL divergence h(w) can be decomposed into the sum
of four GRQs, as expressed in Equations (8)–(11):

h(w) =
1
2
(F1(w) + F2(w) + F3(w) + F4(w))− 1 (7)

F1(w) =
wTΣyw
wTΣxw

(8)

F2(w) =
wTΣxw
wTΣyw

(9)

F3(w) =
wT∆µ∆µTw

wTΣxw
(10)

F4(w) =
wT∆µ∆µTw

wTΣyw
(11)

where F1(w), F2(w), F3(w), and F4(w) are collectively referred to as the subfunctions of
h(w). In Equations (8)–(11), both Σx and Σy are positive definite symmetric matrices, so
that each subfunction of h(w) satisfies the form of the GRQ. Therefore, we can obtain the
maximum value and optimum PV of each subfunction using the property of the GRQ.

Clearly, the maximization of each subfunction may not maximize the original function.
For instance, we can find a PV w1 that maximizes F1(w), but w1 does not necessarily
maximize h(w). In this case, what is the point of decomposing h(w)? According to
reference [30], the ultimate goal of maximizing h(w) is to determine the PV w that is most
sensitive to the incipient fault; that is, our ultimate goal is to detect the incipient fault. From
the aspect of fault detection, although the PV obtained by maximizing the subfunction may
not be optimal for the original function, the PV has its own value if it can detect the fault
and be obtained in a fast manner.

Which subfunctions of h(w) are effective and can be solved quickly? After analy-
sis, two subfunctions F1(w) and F3(w) are selected. According to Equation (8) and the
property of GRQ, the maximum value of F1(w) is the maximum eigenvalue of matrix
Σ−1

x Σy. Furthermore, the optimum PV of F1(w) is the eigenvector corresponding to the
maximum eigenvalue. Similarly, According to Equation (10) and the property of the GRQ,
the optimum PV of F3(w) is the eigenvector corresponding to the maximum eigenvalue of
matrix Σ−1

x ∆µ∆µT . Let the optimum PVs of F1(w) and F3(w) be wF1 and wF3, respectively.

3.2. Construction of Fault Detection Models

The optimum PVs wF1 and wF3 only provide two optimal perspectives of observation
which the on-line data and the normal historical data are the easiest to distinguish that can
be most easily distinguished by the online data and the normal historical data. We still lack
some measurement indices to test whether a fault has occurred in the on-line data Y. This
section uses F1(w) and F3(w) as the deviation measurement indices. Due to noise, both
F1(w) and F3(w) fluctuate in their normal ranges when there is no fault in Y. However,
F1(w) or F3(w) are outside of the normal ranges when a fault occurs in Y.

The normal ranges of F1(w) or F3(w) are the key to fault detection. To obtain them, we
assume that the normal historical data X and the online data Y obey two m-dimensional
joint Gaussian distributions, X ∼ N(µx, Σx) and Y ∼ N

(
µy, Σy

)
, respectively. Denote the

projections of X and Y onto the vector wF1 as pF1 and qF1, respectively. According to the
property of m-dimensional joint Gaussian distribution, pF1 and qF1 obey one-dimensional
Gaussian distributions pF1 ∼ N

(
wF1

Tµx, wF1
TΣxwF1

)
and qF1 ∼ N

(
wF1

Tµy, wF1
TΣywF1

)
,

respectively [34]. The relationship of F1(w), wF1, Σx, and Σy is presented in Equation (12):

F1(w) =
wF1

TΣywF1

wF1
TΣxwF1

(12)
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Denote the projections of X and Y onto the vector wF3 as pF3 and qF3, respectively.
Similarly, according to the property of m-dimensional joint Gaussian distribution, pF3
and qF3 obey one-dimensional Gaussian distributions pF3 ∼ N

(
wF3

Tµx, wF3
TΣxwF3

)
and

qF3 ∼ N
(
wF3

Tµy, wF3
TΣywF3

)
, respectively [34]. The relationship of F3(w), wF3, Σx and

∆µ is presented in Equation (13):

F3(w) =
wF3

T∆µ∆µTwF3

wF3
TΣxwF3

(13)

Because the normal historical data X are obtained before fault detection, and the
optimum PVs wF1 and wF3 are obtainable from Section 3.1, it can be considered that Σx,
µx, wF1, and wF3 in Equations (12) and (13) are known and invariable. Furthermore, the
mean offset vector ∆µ and the covariance matrix Σy related to Y are unknown and variable.
Because Σx, wF1, and wF3 are known, we can assume wT

F1ΣxwF1 = cF1 and wT
F3ΣxwF3 = cF3,

where both cF1 and cF3 are constants. Hence, Equations (14) and (15) can be obtained:

F1(w) =
wF1

TΣywF1

cF1
(14)

F3(w) =
wF3

T∆µ∆µTwF3

cF3
(15)

To obtain the normal ranges of F1(w) or F3(w), it is supposed that the fault-free online
data Y are obtained by sampling the joint Gaussian distribution obeyed by X. Because pF1
and qF1 are the projections of X and Y onto the vector wF1, respectively, we can consider
that qF1 is obtained by sampling the one-dimensional Gaussian distribution obeyed by pF1.
Similarly, we can consider that qF3 is obtained by sampling the one-dimensional Gaussian
distribution obeyed by pF3.

Assume that f obeys a one-dimensional Gaussian distribution N
(
µ, σ2). Let g denote

the sample set of f , µ denote the sample mean of g, S2 denote the sample variance of g,
and n1 denote the sample number of g. Thus, µ satisfies [35]:

µ ∼ N
(

µ,
σ2

n1

)
(16)

S2 satisfies [35]:
(n1 − 1)S2

σ2 ∼ χ2(n1 − 1) (17)

Let f = pF1 and g = qF1, then the variances of pF1 and qF1 are substituted into
Equation (17). We can obtain:

(n1 − 1)wF1
TΣywF1

wF1
TΣxwF1

∼ χ2(n1 − 1) (18)

Because wT
F1ΣxwF1 = cF1, we can obtain:

(n1 − 1)wF1
TΣywF1

cF1
∼ χ2(n1 − 1) (19)

Comparing Equation (14) with Equation (19), we can obtain:

(n1 − 1)F1(w) ∼ χ2(n1 − 1) (20)

Therefore, the subfunction F1(w) multiplied by a constant n1 − 1 obeys a chi-square
distribution with n1 − 1 degrees of freedom when there is no fault in Y.
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Let f = pF3 and g = qF3, then the mean and variance of qF3 and the mean of pF3 are
substituted into Equation (16). We can obtain:

wT
F3µy ∼ N

(
wT

F3µx,
wT

F3ΣxwF3

n1

)
(21)

Because µx, Σx, and wF3 are all known, we can suppose wT
F3µx = c3, where c3 is a

constant. According to the property of the one-dimensional Gaussian distribution, wT
F3µy−

c3 still obeys the one-dimensional Gaussian distribution, as shown in Equation (22):

wT
F3µy − wT

F3µx = wT
F3µy − c3 ∼ N

(
0,

wT
F3ΣxwF3

n1

)
(22)

Since ∆µ = µy − µx and wT
F3ΣxwF3 = cF3, we can obtain:

wT
F3∆µk ∼ N

(
0,

cF3

n1

)
(23)

Normalize wT
F3∆µk and we can obtain:√

n1

cF3
wT

F3∆µk ∼ N(0, 1) (24)

Furthermore, we can obtain Equation (25) from the relationship between the standard
normal distribution and the chi-square distribution:

n1wT
F3∆µk∆µT

k wF3

cF3
∼ χ2(1) (25)

Comparing Equation (15) with Equation (25), we can obtain:

n1F3(w) ∼ χ2(1) (26)

Therefore, the subfunction F3(w) multiplied by a constant n1 obeys a chi-square
distribution with one degree of freedom when there is no fault in Y.

In summary, (n1 − 1)F1(w) and (n1)F3(w) obey chi-square distributions with n1 − 1
and one degree of freedom, respectively. Thus, the chi-square test is applicable to verify
whether a fault occurs in Y. Given a significance level α, the fault detection thresholds
of (n1 − 1)F1(w) and n1F3(w) are obtainable from the chi-square test. Denote the fault
detection thresholds of (n1 − 1)F1(w) and n1F3(w) as εF1 and εF3, respectively. In this case,
two fault detection models are established as follows:{

H0 : F1(w) ≤ εF1
n1−1 , f ault− f ree

H1 : F1(w) > εF1
n1−1 , f aulty

(27)

{
H0 : F3(w) ≤ εF3

n1
, f ault− f ree

H1 : F3(w) > εF3
n1

, f aulty
(28)

The reason for selecting the subfunctions F1(w) or F3(w) is the coverage of detectable
faults. It can be seen from Equation (4) that h(w) is a function of w, Σx, Σy, and ∆µ. Because
the normal historical data X and the PV w are determined, both w and Σx are known,
whereas ∆µ and ∆Σ, which are related to the online data, are unknown. Thus, h(w) is a
function of ∆µ and ∆Σ.

Due to noise, both ∆µ and ∆Σ fluctuate within their normal ranges. However, ∆µ or
∆Σ are outside of the acceptable range when the online data is faulty. Because h(w) is a
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function of ∆µ and ∆Σ, the abnormal change in ∆µ or ∆Σ will further position h(w) outside
of the acceptable range. Therefore, the abnormal change in ∆µ or ∆Σ can be detected by
h(w). It can be seen from Equation (8) and ∆Σ = Σy − Σx that F1(w) is a function of ∆Σ;
thus, the fault caused by the abnormal change in ∆Σ can be detected by F1(w). Similarly,
the fault caused by the abnormal change in ∆µ can be detected by F3(w) from Equation (10).
Therefore, the combination of F1(w) and F3(w) can cover the majority of faults that can be
detected by h(w).

Why are the other two subfunctions F2(w) and F4(w) not chosen to detect faults?
Comparing Equation (8) with Equation (10), F1(w) and F2(w) are reciprocal to each other.
Therefore, we can detect the abnormal change in ∆Σ by taking either of them. The expres-
sions of F3(w) and F4(w) differ only in the denominator. After experimental verification,
the fault detection ability of F4(w) is similar to that of F3(w). Thus, only one of F3(w) and
F4(w) needs to be selected to detect the abnormal change in ∆µ

3.3. Overall Fault Detection Process

We intend to use sliding windows to extract and monitor the online data in real time.
Let the online data extracted by the kth sliding window be Yk. The pseudocode and the
flow chart of the proposed method are shown as follows:

1. Z-score normalization is performed for each parameter of the normal historical data
X, and X is obtained.

2. The online data Yk are extracted by a sliding window with the length of n1.
3. The on-line data Yk are normalized by Z-score to obtain Yk.
4. Two optimum PVs wF1 and wF3 between X and Yk are obtained by using the property

of the GRQ, as stated in Section 3.1.
5. Two fault detection thresholds εF1 and εF3 are set by using the chi-square test with a

significance level α.
6. Equations (12) and (13) are used to calculate the actual values F1(w) and F3(w) of X

and Yk.
7. The potential existence of a fault in Yk is tested according to Equations (27) and (28).

If at least one of two fault detection models detect fault, the online data Yk can be
considered to be faulty. Otherwise, Yk is normal. Let k = k + 1; the online data of the
next sliding window Yk is tested from steps 2 to 7.

As can be seen from Figure 1, for each sliding window Yk, we can use the property of
the GRQ to obtain the optimum PVs wF1 and wF3 between X and Yk. Because the online
data Yk may vary from different windows, wF1 and wF3 may not be the same for each
window; that is, the optimum PVs adjust the online data in real time, which makes the
proposed method more adaptable to potential faults.

We suppose that the system model includes n monitored variables and the length of
sliding windows is n1. The computation cost of Z-score normalization for Yk is O(nn1). The
computation cost of obtaining the mean vector and the covariance matrix of Yk is O(n1)
and O

(
n2n1

)
, respectively. The computation cost of obtaining the inverse matrix of Σx is

O
(
n3). The computation cost of obtaining Σ−1

x Σy is O
(
n3). Similarly, the computation cost

of obtaining Σ−1
x ∆µ∆µT is O

(
n3). The computation cost of obtaining both the maximum

eigenvalue and the eigenvector of Σ−1
x Σy and Σ−1

x ∆µ∆µT is O
(
n3). Combining all the

computation cost parts above, we can get the overall computation cost of obtaining two
optimum projection vectors for each window as O

(
n3).
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4. Results and Analysis

In this section, we use a numerical case and a real satellite fault case to assess the
effectiveness of the proposed method.

4.1. Numerical Case

In this subsection, a numerical simulation case, which includes three incipient faults,
is provided to verify the correctness and effectiveness of the proposed method. The system
model is as shown in Equation (29):

x1 = s1 + s2 + f1 + e1

x2 = s1 − s5 + e2

x3 = (1 + f3)(s2 − s3) + e3

x4 = s1 − (1 + f2)s4 + e4

x5 = s1 + s3 + (1 + f2)s4 + e5

(29)

In Equation (29), [x1, x2, x3, x4, x5]
T are five monitored variables, [s1, s2, s3, s4, s5]

T are
five signal sources, [e1, e2, e3, e4, e5]

T are five noise sources, and [ f1, f2, f3]
T are three incip-

ient fault sources. All the signal sources and the noise sources are independent of each
other and obey the standard normal distribution N(0, 1).

The experimental parameters of the numerical case were set as follows. The number
of each of normal historical samples and online samples was 60,000. The values of the
fault sources before and after injecting faults were [0, 0, 0]T and [0.09, 0.20, 0.09]T , respec-
tively. All the incipient faults were injected at the moment of 30,001 and did not occur
simultaneously. The fault types of f1, f2, and f3 were offset fault, gain fault, and gain fault,
respectively. Both the length and interval of sliding windows were 300 for all data in the
experiment. A total of 200 windows were obtained from the online data after using sliding
windows. The first 100 of the 200 windows were normal windows, whereas the last 100
were fault windows. The default signal-to-noise ratio (SNR) was set as 20 dB [30]. The
simulation hardware platform was a desktop computer (CPU: Intel core i5− 10400, RAM:
DDR4/2666/16G) and the software was MATLAB 2019b.

The compared fault-detection methods included using PCA and the T2 statistic [36]
(PCA + T2), PCA and the squared prediction error statistic [36] (PCA + SPE), PCA and the
KL divergence [23] (PCA + KLD), and the method based on the local optimum PV and
the KL divergence [30] (LOPVKLD). Because of the poor effect of directly monitoring the
original variables, the methods of PCA + T2 and PCA + SPE in this experiment monitored
the means and variances of the original variables. The principal subspace was selected
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with a cumulative variance contribution of more than 90%. The confidence levels for the
PCA + T2 method and the PCA + SPE method were both set at 0.95. The significance levels
for the PCA + KLD method and the LOPVKLD method were 0.05 and 0.01, respectively.
The significance levels of the subfunctions F1(w) and F3(w) proposed in this paper were
0.0005 and 0.001, respectively. Three evaluation indexes—fault detection rate (FDR), false
alarm rate (FAR), and the time consumption of finding the optimum PV for each window
(time consumption)—were chosen as the indexes for evaluating the fault detection results.
For the purpose of conciseness, only the fault detection result of the PCA + KLD method
of the principal component that was most sensitive to the fault is presented, whereas the
other, relatively poor results are not displayed.

The detection results of five fault-detection methods for the incipient fault f1 are
shown in Figure 2. As can be seen from Figure 2, both the PCA + T2 method and the PCA
+ SPE method failed to detect f1 because most of the fault windows were still within the
detection threshold. Conversely, both the PCA + KLD method and the LOPVKLD method
successfully detected f1. As stated in Section 3.2, the subfunctions F1(w) and F3(w) can
detect the fault that causes the abnormal change in ∆Σ and ∆µ, respectively. Because f1 is
the offset fault that can cause the abnormal change in ∆µ, the fault f1 can be successfully
detected by the subfunction F3(w) rather than the subfunction F1(w).
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Figure 2. The detection results of five fault-detection methods for the fault f1. (a) The result of PCA
+ T2 for f1; (b) the result of PCA + SPE for f1; (c) The result of PCA + KLD for f1; (d) the result of
LOPVKLD for f1; (e) the result of F1(w) for f1; (f) the result of F3(w) for f1.

The detection results of five fault-detection methods for the incipient fault f2 are
presented in Figure 3. As shown, the PCA + SPE method still fails to detect f2. Both the
PCA + T2 method and the PCA + KLD method have relatively poor detection results
for f2. Due to the application of the local optimum PV, the LOPVKLD method has a
better detection result for f2. Because f2 is the gain fault which can cause the abnormal
change in ∆Σ, f2 can be successfully detected by the subfunction F1(w) rather than the
subfunction F3(w).
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Figure 3. The detection results of five fault-detection methods for the fault f2. (a) The result of PCA
+ T2 for f2; (b) the result of PCA + SPE for f2; (c) the result of PCA + KLD for f2; (d) the result of
LOPVKLD for f2; (e) the result of F1(w) for f2; (f) the result of F3(w) for f2.

As can be seen from Figure 4, three fault-detection methods—PCA + T2, PCA + SPE
and PCA + KLD—are ineffective in detecting the fault f3, because most of the result values
of these methods are still under the detection threshold. It can be seen from Figure 3d,f
that the LOPVKLD method and the subfunction F1(w) are effective at detecting f3. As f3 is
the gain fault, the subfunction F3(w) fails to detect f3.

Considering the randomness of the signal sources and the noise sources in the numer-
ical case, we simulated the three incipient faults 100 times and then derived the average of
the fault detection results, as presented in Table 1.

It can be seen from Reference [30] that the PCA + T2 and the PCA + SPE methods are
ineffective in detecting incipient faults when the original variables are monitored. As can be
seen from Table 1, the fault detection rates of these two methods increase, particularly the
fault detection rate for f2. The reason for the improvement in these two methods is that the
extraction of the means and variances of the variables can be considered as smoothing the
variables. Although the means and variances of the variables are monitored, the detection
results of these two methods are inferior to those of the PCA + KLD method. Due to the
usage of constant PVs, the PCA + KLD method is effective at detecting f1 and f2, but has
poor detection results for f3.

Because of the application of the local optimum PV, the LOPVKLD method is sensitive
to all three incipient faults. However, as stated in Section 2.2, the LOPVKLD method has the
disadvantage of high computation complexity. As can be seen from Table 1, the LOPVKLD
method requires a long duration (about 70 ms) to obtain the optimum PV. By contrast, the
duration to obtain the optimum PV for each subfunction is less than 25 µs, three orders
of magnitude faster than the LOPVKLD method. Because finding the optimum PV is not
required, the PCA + T2, PCA + SPE, and PCA + KLD methods have lower computation
complexity than the proposed method. However, the detection results of these methods are
not as good as those of the proposed method, particularly the detection result for f3. Because
the subfunctions F1(w) and F3(w) can detect the faults caused by the abnormal change in
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∆Σ and ∆µ, respectively, the three faults can be successfully detected by F3(w), F1(w), and
F1(w), respectively.
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Figure 4. The detection results of five fault-detection methods for the fault f3. (a) The result of PCA
+ T2 for f3; (b) the result of PCA + SPE for f3; (c) the result of PCA + KLD for f3; (d) the result of
LOPVKLD for f3; (e) the result of F1(w) for f3; (f) the result of F3(w) for f3.

Table 1. Comparison of fault detection performance for the three incipient faults.

Faults Evaluation Indexes PCA + T2 PCA + SPE PCA + KLD LOPVKLD
Proposed Method

F1(w) F3(w)

f1

FDR (%) 5.76 17.02 97.41 94.63 7.41 96.67
FAR (%) 4.49 7.67 11.90 15.76 8.5 5.56

Time consumption 0 (µs) 0 (µs) 0 (µs) 68.5 (ms) 18.42 (µs) 24.26 (µs)

f2

FDR (%) 58.46 25.96 79.36 89.08 95.99 8.41
FAR (%) 4.41 8.05 11.58 14.84 7.17 5.80

Time consumption 0 (µs) 0 (µs) 0 (µs) 70.8 (ms) 18.20 (µs) 23.75 (µs)

f3

FDR (%) 27.56 20.87 30.37 90.91 97.81 7.25
FAR (%) 4.61 7.68 11.50 15.82 7.53 5.88

Time consumption 0 (µs) 0 (µs) 0 (µs) 71.7 (ms) 18.31 (µs) 23.99 (µs)

The reason for the sensitivity of the proposed method to incipient faults, from the
perspective of optimum PV, is explained in this paper. The projection process can be
regarded as a weighted sum process, as presented in Equation (30):

wTX = w1x1 + w2x2 + · · ·+ w5x5 (30)

In Equation (30), w is an optimum PV and can be considered to be a weight coefficient
vector and X is the vector which includes five monitored variables. For the purpose of
presentation, all the optimum PVs in the numerical case were normalized (the moduli of
the vectors were set to 1) and the absolute value was taken. The optimum PVs obtained
using the LOPVKLD method, the subfunction F1(w), and the subfunction F3(w) before



Entropy 2021, 23, 1194 12 of 18

and after insertion of the faults f1 and f3 are shown in Figure 5a–f, respectively. In each
subfigure of Figure 5, the first 100 windows were the normal windows, whereas the last
100 windows were the fault windows.
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Figure 5. Comparison of the optimum PVs for different faults. (a) The optimum PVs of LOPVKLD
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PVs of LOPVKLD for f3; (e) the optimum PVs of F1(w) for f3; (f) the optimum PVs of F3(w) for f3.

Due to the enlargement of the faulty variables, the fault is easier to expose and the
detection ability is improved. It can be seen from Equation (29) that the fault f1 was added
to the variable x1. As can be seen from Figure 5a–c, both the LOPVKLD method and the
subfunction F3(w) enlarged the weight of faulty variable x1 after the fault f1 occurred. As
shown in Figure 5d–f, because the fault variable of the fault f3 is x3, both the LOPVKLD
method and the subfunction F1(w) enlarged the weight of faulty variable x3 after the fault
f3 occurred. In addition, because iteration is not needed, the computation complexity of
the proposed method is less than that of the LOPVKLD method. In summary, the proposed
method not only retains the advantage of being more sensitive to possible incipient faults,
but also alleviates the disadvantage of high computational complexity.

4.2. Real Satellite Fault Case

On 16 March 2021, key telemetry parameters of a satellite payload abnormally fluctu-
ated. Figure 6 presents the phenomena of a telemetry parameter fluctuation related to the
fault. In this case, the development of the fault experienced three stages. In the first stage,
the variance of the telemetry parameter increased slightly and lasted around 50 days. With
the further deterioration of the fault, the mean and variance of the telemetry parameter
significantly fluctuated in the second stage. The fault lasted around 70 days in this stage.
As the fault developed to the third stage, the mean and variance of the telemetry parameter
seriously deviated from the normal fluctuation range. Because the current fault detection
system adopts the method based on a threshold, the system cannot detect the fault until it
develops to the third stage. If the fault was successfully detected at the beginning of the
first stage, it could be found about four months earlier. Thus, the research objective of this
paper is to detect the incipient fault from the first stage.
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Figure 6. The phenomena of the fault parameter fluctuation.

In this study, a total of 13,066,123 samples were collected and arranged from the
satellite measurement and control system from 7:35:34 on 15 November 2020 to 16:27:52 on
16 May 2021. Two telemetry parameters related to the fault were selected, as presented in
Figure 7. For the reason of confidentiality, the true telemetry parameter names are hidden.
The sampling rate of the telemetry data in Figure 7 was 1 Hz. Due to the constraints of
the satellite’s visible arc and the ground station measurement and control resources, some
telemetry data were not transmitted; that is, the telemetry data were discontinuous in time.
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Figure 7. The phenomena of the selected fault parameters. (a) All the data of the parameters; (b) the
periodic phenomenon of the parameters.

As indicated in Figure 7b, the parameters show a periodicity, and the period is
consistent with the satellite orbital period (46, 468 s). For this reason, in this study, we
took the satellite orbital period as the length of the sliding window, set the interval of
the sliding window as 10,000, and retained the sliding windows comprising more than
40,000 samples as effective windows. A total of 524 effective windows were obtained
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from the first 6,246,451 samples after being extracted by sliding windows. The samples
of the first 100 effective windows were selected as the normal historical data. The last
424 effective windows were selected as the online data for testing. Among the 424 windows
for testing, the first 72 windows were normal windows, whereas the last 354 windows
were fault windows.

Furthermore, it can be seen from Figure 7b that the telemetry parameters do not obey
Gaussian distributions; thus, the fault detection threshold set by the chi-square test may
not be appropriate, and the normal historical data must be used to assist in setting the
threshold. As stated in Section 3.2, the subfunction F1(w) multiplied by the constant n1 − 1
obeys a chi-square distribution with n1 − 1 degrees of freedom. In this case, the length
of the sliding window n1 was 46,468. The degrees of freedom were sufficiently high that
the subfunction F1(w) could be considered to obey a normal distribution; that is, the 3σ
method could be used in this case to test whether there is a fault in F1(w).

Let X be the normal historical data, which include the date of 100 normal windows.
We assume that the ith normal window data is Xi. We set Xi as the online data and then use
the property of the GRQ to obtain the optimum PV wF1_i between X and Xi. Let Y = Xi,
w = wF1_i; we can obtain the value of F1_i(w) from Equation (8). Furthermore, we can
obtain a vector F1_X(w) from 100 normal windows. The process of obtaining the vector
F1_X(w) is shown in Figure 8.
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Let M1 and S1 be the mean and the standard deviation of the vector F1_X(w), respec-
tively. The fault-detection method of the subfunction F1(w) is presented as follows:{

H0 : M1 − 3S1 ≤ F1(w) ≤ M1 + 3S1, f ault− f ree
H1 : M1 − 3S1 > F1(w)|F1(w) > M1 + 3S1, f aulty

(31)

It can be seen from Section 3.2 that the subfunction F3(w) multiplied by the constant
n1 obeys a chi-square distribution with one degree of freedom. Therefore, we refer to the
method in Reference [30] to set the threshold. Let F3_X(w) be the set of 100 F3(w) values
of 100 normal windows. The process of obtaining the vector F3_X(w) is similar to that of
the vector F1_X(w). The difference between these two processes is that we use the property
of the GRQ to obtain the optimum PV wF3_i and then obtain the value of F3_i(w) from
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Equation (10). Let M3 be the mean of the vector F3_X(w). The fault-detection method of
the subfunction F3(w) is presented as follows:{

H0 : F3(w) ≤ M3χ2
α(1), f ault− f ree

H1 : F3(w) > M3χ2
α(1), f aulty

(32)

where χ2
α(1) is the threshold of the chi-square distribution with one degree of freedom with

a given significance level α.
In this real satellite fault case, both the PCA + T2 and the PCA + SPE methods

still monitored the means and variances of the telemetry parameters. The experimental
parameters of these two methods were the same as those presented in Section 4.1. The
significance levels of the PCA + KLD method were set to 0.05 and 0.01, respectively. The
significance levels of the LOPVKLD method were set to 0.05 and 0.01, respectively. The
threshold of F1(w) was set by the 3δ method, and the significance level of F3(w) was 0.01.
The detection results and evaluation indexes of these five methods for the real satellite fault
are shown in Figure 9 and Table 2, respectively.
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Figure 9. The detection result of five methods for the real satellite fault. (a) The result of PCA + T2 for the fault; (b) the result
of PCA + SPE for the fault; (c) the result of second principal component of PCA + KLD for the fault; (d) the result of first
principal component of PCA + KLD for the fault; (e) the result of LOPVKLD with the significance level of 0.05; (f) the result
of LOPVKLD with the significance level of 0.01; (g) the result of F1(w) for the fault; (h) the result of F3(w) for the fault.

It can be seen from Figure 9a that the PCA + T2 method has a poor detection result
for the real satellite fault, particularly the fault windows between Nos. 100 and 200.
Compared to Figure 9a, the detection result of the PCA + SPE method in Figure 9b is
significantly improved. However, some fault windows around Nos. 250 to 300 are below
the fault detection threshold. Figure 9c,d presents the detection results of the two principal
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components of the PCA + KLD method for the real satellite fault. In Figure 9c,d, the
detection thresholds of significance levels of 0.05 and 0.01 are represented by the black
dashed line and the magenta dashed line, respectively. Figure 8e,f illustrates the fault
detection results of the LOPVKLD method with the significance levels of 0.05 and 0.01,
respectively. According to Figure 9c,f, the fault detection rates of the PCA + KLD and the
LOPVKLD methods are higher than 95% with the significance level of 0.05. However, the
false alarm rates of both these methods are higher than 25% at this significance level. At
significance levels of 0.01, the false alarm rates of these two methods are around 12%, but
the fault detection rates decrease by around 10%. As a comparison, the fault detection and
false alarm rates of the subfunction F1(w) are 100% and 0%, respectively. The false alarm
of the proposed method comes from the subfunction F3(w). It can be seen from Figure 9
and Table 2 that the false alarm rate of the proposed method is 13.89%. The effectiveness
and superiority of the proposed method is further verified by the real satellite case.

Table 2. The evaluation indexes of five fault methods for the real satellite fault.

Evaluation Indexes PCA + T2 PCA + SPE
PCA + KLD LOPVKLD Proposed Method

α = 0.05 α = 0.01 α = 0.05 α = 0.01 F1(w) F3(w)

FDR (%) 63.46 83.85 97.16 85.65 95.17 85.51 100 32.95
FAR (%) 14.08 16.9 25 11.11 26.39 12.50 0 13.89

5. Conclusions

In this paper, we propose a new and fast method to detect incipient faults of satellites.
We decompose the KL divergence and use the property of the generalized Rayleigh quotient
to obtain the optimum projection vector. Under the assumption that the variables obey a
multidimensional Gaussian distribution, the distributions of the subfunctions F1(w) and
F3(w) are presented and verified. To address non-Gaussian satellite telemetry parameters,
we use the normal historical data to assist in setting the threshold. The proposed method is
a linear method. Future work may focus on developing a nonlinear fault-detection method.
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