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Abstract: Generally speaking, it is difficult to compute the values of the Gaussian quantum discord
and Gaussian geometric discord for Gaussian states, which limits their application. In the present pa-
per, for any (n + m)-mode continuous-variable system, a computable Gaussian quantum correlation
M is proposed. For any state ρAB of the system,M(ρAB) depends only on the covariant matrix of
ρAB without any measurements performed on a subsystem or any optimization procedures, and thus
is easily computed. Furthermore,M has the following attractive properties: (1)M is independent
of the mean of states, is symmetric about the subsystems and has no ancilla problem; (2) M is
locally Gaussian unitary invariant; (3) for a Gaussian state ρAB,M(ρAB) = 0 if and only if ρAB is
a product state; and (4) 0 ≤ M((ΦA ⊗ΦB)ρAB) ≤ M(ρAB) holds for any Gaussian state ρAB and
any Gaussian channels ΦA and ΦB performed on the subsystem A and B, respectively. Therefore,M
is a nice Gaussian correlation which describes the same Gaussian correlation as Gaussian quantum
discord and Gaussian geometric discord when restricted on Gaussian states. As an application ofM,
a noninvasive quantum method for detecting intracellular temperature is proposed.

Keywords: continuous-variable systems; Gaussian states; Gaussian geometric discord;
Gaussian channels

1. Introduction

The presence of quantum correlations in composite quantum systems is one of the main
features of quantum mechanics. Among the quantum correlations, the entanglement [1] is
surely the most important one, as it is the first quantum correlation that used as physical
resource. However, it is proved that non-entangled quantum correlations can also be
exploited in quantum protocols. As a matter of fact, non-entangled quantum correlations
not only play important roles in various quantum computing tasks and quantum communi-
cations, but also widely exist in various biological activities. In the study of photosynthesis,
Cho observed quantum coherence when he investigated the energy transfer process of the
Light Capture Complex by a two-dimensional spectral research method [2]. Evidence and
experiments show that quantum coherence plays an important role in photosynthesis of
green plants and bacteria [3,4]. By the nuclear magnetic resonance (NMR) experiments,
Standish proved that nonlocal correlation exists in human brain information processing [5].
Therefore, the study and characterization of quantum correlations that go beyond the
paradigm of entanglement have attracted increasingly more attention recently.

The prominent role of such quantum correlations (QCs) in the efficient realization of a
number of tasks has led to the introduction of several measures of QCs. Notice that, in many
quantum protocols, the systems considered are continuous variable systems. For example,
the information propagated and communicated during the process of quantum communica-
tion is carried by photons, and the corresponding physical system is a continuous-variable
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system. For continuous-variable systems, Giorda, Paris [6] and Adesso, and Datta [7] inde-
pendently proposed the definition of Gaussian quantum discord (GQD) D for two-mode
Gaussian states ρAB via the mutual information I(ρAB) and the extractable information
J(ρAB) determined by performing the Gaussian positive operator value measurements
(GPOVMs). It was revealed that a Gaussian state ρAB contains the GQD (i.e., D(ρAB) 6= 0)
if and only if ρAB is not a product state. G. Adesso and D. Girolami in [8] introduced the
concept of Gaussian geometric discord (GGD) DG for (n + m)-mode Gaussian states ρAB
via GPOVMs and the Hilbert–Schmidt norm. It is also shown that DG(ρAB) = 0 if and
only if ρAB is a product state, that is, ρAB contains no quantum correlations. Thus, both
GQD and GGD are quantifications of the same bipartite Gaussian quantum correlation:
ρAB has the correlation if and only if ρAB is not a product state. Since then, many efforts
have been made to find simpler methods to quantify this Gaussian quantum correlation
and various measures for it were proposed. The measurement-induced disturbance of
Gaussian states was studied in [9]. Gaussian discord of response (GDx

R) for two-mode
Gaussian states can be found in [10]. The MIN for Gaussian states was discussed in [11].
For other related results, see in [12–18], and the references therein. Based on fidelity, in [19],
the authors introduced a quantum correlation NF for Gaussian systems. The quantum
non-locality NF for Gaussian systems is discussed in [20]. However, by now, all known
quantifications of this correlation for continuous-variable systems are very difficult to
compute. Most of them can only be calculated for (1 + 1)-mode Gaussian states or some
special (n + m)-mode Gaussian states. This is mainly because all quantifications of the
correlation involve measurements performed on one subsystem and optimization process,
which made them difficult to evaluate. This clearly limits the applications of such Gaussian
quantum correlation in real-life scenarios. Therefore, it makes sense to find simpler and
computable quantifications of Gaussian quantum correlations.

According to the works in [21–24], a bona fide quantum correlation GA (here, lo-
cal measurements are performed on subsystem A) for Gaussian states with respect to
subsystem A should satisfy:

(i) GA(ρAB) = 0 if and only if ρAB is a product state;
(ii) GA((W ⊗ V)ρAB(W† ⊗ V†)) = GA(ρAB) holds for any Gaussian unitary operators

W ∈ B(HA), V ∈ B(HB) and any Gaussian state ρAB;
(iii) GA((I ⊗Φ)ρAB) ≤ GA(ρAB) holds for any Gaussian channel Φ performed on subsys-

tem B and any Guassian state ρAB;
(iv) There exists an entanglement measure E such that GA(|ψ〉〈ψ|) = E(|ψ〉〈ψ|) holds for

any bipartite pure state |ψ〉〈ψ|.
Similar criterion should be satisfied by GB if local measurements are performed on

subsystem B. Note that the property that ρAB is a product state is symmetric about the
subspace, but the quantum correlation GA is not in general. Therefore, it is natural and
more reasonable to find Gaussian quantum correlations G that are symmetric about the
subsystems and satisfy:

(a) G(ρAB) = 0 if and only if ρAB is a product state;
(b) (Locally Gaussian unitary invariant) G((W ⊗V)ρAB(W† ⊗V†)) = G(ρAB) holds for

any Gaussian unitary operators W ∈ B(HA), V ∈ B(HB) and any Gaussian state ρAB;
(c) (Non-increasing under local Gaussian channels) G((ΦA ⊗ΦB)ρAB) ≤ G(ρAB) holds

for any Gaussian channels ΦA and ΦB performed, respectively, on subsystem A and
B and any Gaussian state ρAB;

(d) (Reducing to an entanglement measure for pure states) There exists an entanglement
measure E such that G(|ψ〉〈ψ|) = E(|ψ〉〈ψ|) holds for any bipartite pure state |ψ〉〈ψ|.
It is clear that the condition (c) implies the condition (b) and, if G satisfies properties

(a–d), then it satisfies properties (i–iv).
The purpose of this paper is to propose a quantificationM for bipartite Gaussian

systems in terms of the covariance matrix, which avoids the measurements performed on
a subsystem as well as the optimization procedure. This Gaussian correlation measure
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M describes the same correlation as Gaussian discord for Gaussian states but has some
remarkable nice properties that the Gaussian discord does not possess: (1)M is a quantum
correlation satisfying the properties (a–c), (2)M is symmetric about subsystems and has
no ancilla problem, and (3)M can be estimated easily for any (n + m)-mode Gaussian
states. Furthermore, M is better in detecting the non-classicality in Gaussian states as
an upper bound of NF in [20]. Finally, as an application, we propose a noninvasive and
repeatable quantum method for detecting intracellular temperature using (1 + 1)-mode
Gaussian quantum correlationM.

2. Definition of the Quantity M
We first recall briefly some notions and notations concerning Gaussian states and

Gaussian unitary operations. For arbitrary state ρ in a n-mode continuous-variable system
with state space H, its characteristic function χρ is defined as

χρ(z) = tr(ρW(z)),

where z = (x1, y1, · · · , xn, yn)T ∈ R2n, W(z) = exp(iRTz) is the Weyl displacement op-
erator, R = (R1, R2, · · · , R2n) = (Q̂1, P̂1, · · · , Q̂n, P̂n). As usual, Q̂k = (âk + âk

†)/
√

2 and
P̂k = −i(âk − âk

†)/
√

2 (k = 1, 2, · · · , n) stand for, respectively, the position and momentum
operators, where â†

k and âk are the creation and annihilation operators in the kth mode
satisfying the Canonical Commutation Relation (CCR)

[âk, â†
l ] = δkl I and [â†

k , â†
l ] = [âk, âl ] = 0, k, l = 1, 2, · · · , n.

If the state ρ has finite second-order moment, then

d = (〈R̂1〉, 〈R̂2〉, . . . , 〈R̂2n〉)T = (tr(ρR1), tr(ρR2), . . . , tr(ρR2n))
T ∈ R2n

is called the mean or the displacement vector of ρ and Γ = (γkl) ∈ M2n(R) is called the co-
variance matrix (CM) of ρ defined by γkl = tr[ρ(∆R̂k∆R̂l + ∆R̂l∆R̂k)] with
∆R̂k = R̂k− 〈R̂k〉 ([25]). Note that Γ is real symmetric and satisfies the condition Γ+ i∆ ≥ 0,

where ∆ = ⊕n
j=1∆j with ∆j =

(
0 1
−1 0

)
for each j. Here, Mk(R) stands for the algebra of

all k× k matrices over the real field R. Denote by S(H) and FS(H), respectively, the set of
all states in system H and the set of all states with finite second-order moment in n-mode
CV system H. Moreover, ρ ∈ FS(H) is called a Gaussian state if χρ(z) is of the form

χρ(z) = exp[−1
4

zTΓz + idTz].

Now, assume that ρAB is an (n + m)-mode Gaussian state with state space
H = HA ⊗ HB. Then, the CM Γ of ρAB can be written as

Γ =

(
A C

CT B

)
, (1)

where A ∈ M2n(R), B ∈ M2m(R) and C ∈ M2n×2m(R). Furthermore, A and B are the
CMs of the reduced states ρA = trBρAB and ρB = trAρAB, respectively [26]. Actually, all
the quantum correlations between subsystems A and B are embodied in C, to be specific,
if C = 0, then the Gaussian state ρAB is a product state, that is, ρAB = σA ⊗ σB for some
σA ∈ S(HA) and σB ∈ S(HB) [27]. Particularly, if n = m = 1, by means of local Gaussian
unitary (symplectic at the CM level) operations, Γ has a standard form:

Γ0 =

(
A0 C0
CT

0 B0

)
(2)
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with A0 =

(
a 0
0 a

)
, B0 =

(
b 0
0 b

)
, C0 =

(
c 0
0 d

)
, a, b ≥ 1 and ab− 1 ≥ c2(d2).

For any unitary operator U acting on H, the unitary operation ρ 7→ UρU† is said to be
Gaussian if it maps Gaussian states into Gaussian states, and such U is called a Gaussian
unitary operator. It is well known that a unitary operator U is Gaussian if and only if

U†RU = SR + m,

for some vector m in R2n and some S ∈ Sp(2n,R), the symplectic group of all 2n× 2n real
matrices S that satisfy

S ∈ Sp(2n,R)⇔ S∆ST = ∆.

Thus, every Gaussian unitary operator U is determined by some affine symplectic map
(S, m) acting on the phase space, and can be denoted by U = US,m [26,28]. In a word, if
ρ is any n-mode Gaussian state with CM Γ and displacement vector d, and assume that
US,m is a Gaussian unitary operator. Then, the characteristic function of the Gaussian state
σ = US,mρU†

S,m is of the form exp(− 1
4 zTΓσz + idT

σz), where Γσ = SΓST and dσ = m + Sd.
Now, we propose a positive functionM : FS(HA ⊗ HB) → [0, ∞) for continuous-

variable systems in terms of the CM for (n + m)-mode states.

Definition 1. For any (n + m)-mode state ρAB ∈ FS(HA ⊗ HB) with CM Γ =

(
A C

CT B

)
,

the quantityM(ρAB) is defined by

M(ρAB) = 1− det(Γ)
(det A)(det B)

(3)

Clearly,M is very easily evaluated for any (n + m)-mode state ρAB ∈ FS(HA ⊗ HB)
because no measurements are involved and no optimization procedure is needed.

Definition 1 is inspired by the work in [20], in which Gaussian quantum correlation
NG,A
F was introduced and discussed. For any (n + m)-mode state ρAB ∈ S(HA ⊗ HB) with

CM Γ =

(
A C

CT B

)
, the quantity NG,A

F (ρAB) is defined as

NG,A
F (ρAB) = sup

U
C2(ρAB, (U ⊗ I)ρAB(U† ⊗ I)) = sup

U
{1− (trρAB(U ⊗ I)ρAB(U† ⊗ I))2

tr(ρ2
AB)tr((U ⊗ I)ρAB(U† ⊗ I))2

},

where the supremum is taken over all Gaussian unitary operators U ∈ B(HA) satisfying
UρAU† = ρA with ρA = TrBρAB the reduced state. It was shown in [20] that, for any

(n + m)-mode state ρAB with CM Γ =

(
A C

CT B

)
, we have

NG,A
F (ρAB) ≤ 1− det(B− CT A−1C)

det B
. (4)

However, it is well known that the determinant det
(

A C
D B

)
= (det A)(det(B−DA−1C))

if A is invertible and det
(

A C
D B

)
= (det B)(det(A− CB−1D)) if B is invertible (see, for

example, in [29]). Thus,

M(ρAB) = 1− det(Γ)
(det A)(det B)

= 1− det(B− CT A−1C)
det B

= 1− det(A− CB−1CT)

det A
.

Therefore, M is exactly an upper bound for the Gaussian quantum correlation NG,A
F

obtained in [20]. Note that the Gaussian correlation NG,A
F is not symmetric about the

subsystems A and B.



Entropy 2021, 23, 1190 5 of 20

3. Properties of M on Gaussian States

LetM : FS(HA ⊗ HB)→ [0,+∞) be the function as Definition 1.M has several nice
properties , whose proofs will be given in Appendix A.

Theorem 1. The following statements are true:

(1) M is independent of the mean of states;
(2) M is symmetric about the subsystems: for any state ρAB ∈ FS(HA ⊗ HB),

M(F(ρAB)) =M(ρAB), where F : S(HA ⊗ HB)→ S(HB ⊗ HA) is the swap defined by
F(ρA ⊗ ρB) = ρB ⊗ ρA.

(3) M has no ancilla problem: for any state ρC ∈ FS(HC), regarding ρABC = ρAB ⊗ ρC as a
bipartite state with partition A:BC, we always haveM(ρABC) =M(ρAB).

Theorem 2. M is locally Gaussian unitary invariant, that is, for any (n + m)-mode Gaussian
state ρAB ∈ S(HA ⊗ HB) and any Gaussian unitary operators W ∈ B(HA) and V ∈ B(HB), we
haveM((W ⊗V)ρAB(W† ⊗V†)) =M(ρAB).

Theorem 3. For any (n + m)-mode state ρAB ∈ S(HA ⊗ HB) with CM Γ =

(
A C

CT B

)
,

M(ρAB) = 0 if and only if C = 0. Particularly, for any Gaussian states ρAB,M(ρAB) = 0 if and
only if ρAB is a product state.

By Theorem 3, for Gaussian states, M describes the same non-classicality as that
described by Gaussian quantum discord (two-mode) [6,7], Gaussian geometric discord [8],
the Gaussian discord of response GDx

R in [10], the correlations Q, QP discussed in [12],
the correlations NF and NF discussed, respectively, in [19,20], as they take value 0 at a
Gaussian state ρAB if and only if ρAB is a product state.

According to Definition 1,M relies only on the CM of a given Gaussian state and is
independent of the measurements and optimization process. Hence, unlike those Gaussian
quantum correlations involved measurements, the estimate of M is easy and reliable.
In the following, we are going to give some computation formulas of M based on the
representations of CM of the Gaussian states.

For any (1 + 1)-mode Gaussian state ρAB, under some suitable local Gaussian unitary
operation, its CM can be reduced to the standard form

Γ0 =

(
A0 C0
CT

0 B0

)
=


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

. (5)

Therefore, by Theorem 2, we have

Theorem 4. If ρAB is a (1+ 1)-mode Gaussian state whose CM has the standard form Equation (5),
then we have

M(ρAB) = 1− (ab− c2)(ab− d2)

a2b2 .

Consider the (n + m)-mode pure Gaussian states. Without loss of generality, assume
that n ≤ m. Then, according to the mode-wise decomposition of pure Gaussian states [30],
the CM Γ of any (n + m)-mode pure Gaussian state can always be brought into ΓS by the
corresponding symplectic transformation S = Sn ⊕ Sm. Moreover,
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ΓS = SΓST =
n⊕

j=1


γj 0

√
γ2

j − 1 0

0 γj 0 −
√

γ2
j − 1√

γ2
j − 1 0 γj 0

0 −
√

γ2
j − 1 0 γj

⊕ I2(m−n) (6)

with γj ≥ 1, j = 1, 2, . . . , n, the single-mode mixedness factor.
The following results give computation formulas ofM for, respectively, (n+m)-mode

and (1 + m)-mode pure Gaussian states in terms of the single-mode mixedness factor.

Theorem 5. Suppose n ≤ m, for any (n + m)-mode pure Gaussian state ρAB, let γj ≥ 1,
j = 1, 2, . . . , n, be the single-mode mixedness factors in the CM of the mode-wise decomposition of
the pure Gaussian state. Then, we have

M(ρAB) = 1− 1
∏n

j=1 γ4
j

.

Particularly, any (1 + m)-mode pure Gaussian state can always be brought in the
phase-space Schmidt form [31]. The corresponding symplectic transformation S achieving
the Schmidt decomposition is the direct sum of two diagonalizing matrices acting on the
single-mode and m-mode subsystems, respectively, i.e., S = S1 ⊕ S2. Suppose Γ is the CM
of a (1 + m)-mode pure Gaussian state; accordingly, the CM of its phase-space Schmidt
form is

ΓS = SΓST =


γ 0

√
γ2 − 1 0

0 γ 0 −
√

γ2 − 1√
γ2 − 1 0 γ 0

0 −
√

γ2 − 1 0 γ

⊕ I2(m−1) (7)

with γ ≥ 1 the single-mode mixedness factor. We also call ΓS the phase-space Schmidt
form of Γ. It is clear that the phase-space Schmidt form of a (1 + m)-mode pure Gaussian
state is the tensor product of a two-mode squeezed state and an (m− 1)-mode uncorrelated
vacuum state [32].

Corollary 1. For any (1 + m)-mode pure Gaussian state ρAB , we have

M(ρAB) = 1− 1
γ4 ,

where γ ≥ 1 is the single-mode mixedness factor in the phase-space Schmidt form of the CM Γ.

The physical meaning of M is that M(ρAB) > M(σAB) reveals that ρAB is more
correlated than σAB. To see this, let us consider the following example. According to
the mode-wise decomposition of pure Gaussian states mentioned above, the phase-space
Schmidt form of the CM of any (1 + 1)-mode pure Gaussian state ρAB is

ΓS = SΓST =


γ 0

√
γ2 − 1 0

0 γ 0 −
√

γ2 − 1√
γ2 − 1 0 γ 0

0 −
√

γ2 − 1 0 γ

 .
= ΓS(γ),
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where γ ≥ 1 is the single-mode mixedness factor. In [33], a measure of entanglement D for
(1 + n)-mode pure Gaussian state is derived, where, for any (1 + 1)-mode pure Gaussian
state ρAB with ΓS(γ), the phase-space Schmidt form of the CM,

D(ρAB) = 1− 2
γ2 + 1

.

It is well known that for any entanglement measure E, and any states ρAB and σAB, one may
regard that ρAB is more entangled than σAB whenever E(ρAB) > E(σAB). Then, for Gaus-
sian pure state ρAB with CM ΓS(

√
3) and σAB with CM ΓS(

√
2), one has

D(ρAB) = 1 − 2
(
√

3)2+1
= 1

2 and D(σAB) = 1 − 2
(
√

2)2+1
= 1

3 , thus D(ρAB) > D(σAB),

i.e., ρAB is more correlated than σAB. By Definition 1,

M(ρAB) = 1− 1
γ4 .

Therefore,M(ρAB) =
8
9 > 3

4 =M(σAB), which reveals the same fact that ρAB contains
more correlation than σAB. Geometrically,M(ρAB) >M(σAB) reflects that σAB is closer to
the set of product states than ρAB.

As mentioned before,M, D, DG, Q, NF, and NF describe the same non-classicality
for (n + m)-mode Gaussian states. In [20], we compared the scales of NGF with Gaussian
quantum discord D, Gaussian Geometric Discord DG and quantum correlation Q, and
found that, NGF is the best one in detecting such non-locality. As an upper bound of NGF ,
M surely can do better.

To be specific, consider a special class of Gaussian states, the symmetric squeezed
thermal states (SSTSs). Recall that the symmetric squeezed thermal states (SSTSs) are
Gaussian states whose CMs are as in Equation (2), parameterized by n and µ such that
a = b = 1 + 2n and c = −d = 2µ

√
n(1 + n), where n is the mean photon number for each

party and µ is the mixing parameter with 0 ≤ µ ≤ 1 [34]. By Theorem 4, for any SSTS ρAB,
we have

M(ρAB(n̄, µ)) = 1− ((1 + 2n̄)2 − 4µ2n̄(1 + n̄))2

(1 + 2n̄)4 . (8)

According to the analytical formula provided in [8], for any SSTS ρAB with parameters n̄
and µ, one has

DG(ρAB(n̄, µ)) =
1

(1 + 2n̄)2 − 4n̄(1 + n̄)µ2 −
9

(
√
(1 + 2n̄)2 + 2

√
(1 + 2n̄)2 − 3n̄(1 + n̄)µ2)2

. (9)

Figure 1 shows thatM(ρAB(n̄, µ)) > DG(ρAB(n̄, µ)) for all SSTSs with 0 < µ ≤ 1 and
0 ≤ n̄ ≤ 50. For example, taking n̄ = 40 and µ = 0.8, one sees that DG(ρAB(40, 0.8)) ≈
0.00019 ≈ 0, whileM(ρAB(40, 0.8)) ≈ 0.87033� 0. This suggests thatM(ρAB) is better in
detecting whether or not a state is a product state.

Figure 1. For SSTSs ρAB(n̄, µ) with 0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 50, z=M(ρAB(n̄, µ))− DG(ρAB(n̄, µ)), it
is clear that the figure is above the n̄oµ plane.
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4. Non-Increasing Property of M under Local Gaussian Operations

As a Gaussian state ρ is described by its CM Γ and displacement vector d, we can
denote it as ρ = ρ(Γ, d). Recall that a Gaussian channel is a quantum channel that
transforms Gaussian states into Gaussian states. Assume that Φ is a Gaussian channel
of n-mode Gaussian systems. Then, there exist real matrices M, K ∈ M2n(R) satisfying
M = MT ≥ 0 and detM ≥ (detK− 1)2, and a vector d ∈ R2n, such that, for any n-mode
Gaussian state ρ = ρ(Γ, d), we have Φ(ρ(Γ, d)) = ρ(Γ′, d′) with

d′ = Kd + d and Γ′ = KΓKT + M. (10)

Therefore, we can parameterize the Gaussian channel Φ as Φ = Φ(K, M, d).
We first consider the (1 + 1)-mode Gaussian states. AsM is invariant under local

Gaussian unitary operation, we may require that the CM of involved Gaussian state is of
the standard form.

Theorem 6. Consider the (1+ 1)-mode continuous-variable system AB. Let Φ = Φ(K, M, d) be a

Gaussian channel performed on the subsystem B with K =

(
k11 k12
k21 k22

)
and

M =

(
m11 m12
m12 m22

)
. Assume that ρAB ∈ S(HA ⊗ HB) is any (1 + 1)-mode Gaussian state

with CM Γ0 =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

. Then,

M((I ⊗Φ)ρAB) = 1− (ab− c2)(ab− d2)n1 + a(ab− c2)n2 + a(ab− d2)n3 + a2n4

a2b2n1 + a2b(n2 + n3) + a2n4
,

where n1 = k2
11k2

22 + k2
12k2

21 − 2k11k12k21k22, n2 = m22k2
11 + m11k2

21 − 2m12k11k21,
n3 = m22k2

12 + m11k2
22 − 2m12k12k22 and n4 = m11m22 −m2

12.

Remark 1. If K = 0, then det M ≥ 1, and we have

M((I ⊗Φ)ρAB) =1− det M
det M

= 0.

In fact, in this case, the Gaussian channel I⊗Φ(0, M, d) maps any Gaussian state ρAB to a product
state. Thus, by Theorem 3, we always haveM((I ⊗Φ)ρAB) = 0.

Remark 2. If M = 0, then det K = 1 = det KT , and

M((I ⊗Φ)ρAB) =1−
det(K(B0 − CT

0 A−1
0 C0)KT)

det(KB0KT)

=1−
det(B0 − CT

0 A−1
0 C0)

det B0

=M(ρAB).

Thus, in this case, after performing the Gaussian operation I⊗Φ(K, 0, d), the quantityM remains
the same.

As a consequence of Theorem 6, the following result gives a stronger form of local
Gaussian operation non-increasing property ofM, which is not possessed by other known
similar Gaussian correlations such as the Gaussian quantum discord (two-mode) [6,7],
Gaussian geometric discord [8], and the Gaussian quantum correlation NF in [19].
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Corollary 2. Let ρAB be a (1 + 1)-mode Gaussian state. Then, for any Gaussian channels ΦA and
ΦB performed on the subsystem A and B, respectively, we have

0 ≤M((ΦA ⊗ΦB)ρAB) ≤M(ρAB).

It is remarkable that the result of Corollary 2 is true for any (m + n)-mode systems;
that is, we have the following.

Theorem 7. For any (m + n)-mode Gaussian state ρAB, for any Gaussian channels ΦA and ΦB
performed on the subsystem A and B respectively, we have

0 ≤M((ΦA ⊗ΦB)ρAB) ≤M(ρAB).

Obviously, Theorem 7 implies Theorem 2, the local Gaussian unitary invariance.
Theorem 7, together with Theorems 1–3, reveal thatM is a Gaussian quantum corre-

lation without ancilla problem which describes the same Gaussian quantum correlation
as the Gaussian quantum discord and the Gaussian geometric discord for (m + n)-mode
Gaussian systems. An (n + m)-mode Gaussian state has this correlation if and only if it
is not a product state. We remark here that, just like the entanglement, the non-product
correlation is symmetric about the subsystems. Therefore, it is more natural to require
that a non-product correlation measure is symmetric about the subsystems. OurM has
this symmetry, but all known such Gaussian correlations are introduced by some local
operations on a subsystem and thus not symmetric about the subsystem.

5. A Possible Future Application of M: Thermometry

Intracellular temperature measurement is a key point in the field of life science,
and scientists have invented nanothermometers for detecting intracellular temperatures.
Uchiyama detected and depicted the temperature distribution of a single cell by implant-
ing special nanogels into the cytoplasm [35]. Other methods for measuring intracellular
temperature can be found in [36,37], and those nanothermometers detect intracellular
temperature by sending special luminescent or polymer materials into the cell. As the
Gaussian correlationM is computable for any (n + m)-mode Gaussian states, it is easier to
be applied in real-life scenarios such as the quantum information tasks and quantum biol-
ogy scenarios. In this section, we give a possible application ofM to thermometry, which
is currently on theoretical level. In the following, we briefly describe a possible quantum
method of measuring intracellular temperature by the Gaussian quantum correlationM.

To implement the quantum method, first, one prepare laser beam (Gaussian state)
ρG(0) with quantum correlation as the initial state, and put this Gaussian state into a
specific cell in certain tissue or organ by laser irradiation. The laser beam is so small
that we can consider the cell as the environment system of the Gaussian state. The cell
and the Gaussian state constitute a composite system, ignoring the effect of extracellular
environment, the composite system can be treated approximately as a closed system.
Obviously, the Gaussian state is not related to the environment the moment it enters the
cell, as a consequence, the initial state of the composite system can written as ρG(0)⊗ σ(0),
where σ(0) stands for the cell sate. As the cell has temperature, we can view the cell
as a thermal environment of the Gaussian state. Thus, the Gaussian state follows the
thermodynamic evolution law related to environment temperature T in the cell. During the
evolution process, the environment will affect the Gaussian state ρG(0) in the subsystem
(we only consider the affect of intracellular temperature T here). Detecting the quantities of
quantum correlationM contained in the evolved state ρG(t, T) at time t by proper detector,
after calculation, one gets the intracellular temperature of the cell.

As an illustration, and for simplicity’s sake, assume that the system which prepares
the initial Gaussian state is a (1+ 1)-mode boson system HG, denote mk and wk as the mass
and frequency of the k-th resonator, let Q̂k and P̂k stand for the momentum and position
operator of the k-th mode, where k = 1, 2. Let HE represent the thermal environment
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system (the cell), then the composite system coupled by the Gaussian state and the cell
is HG ⊗ HE. Apparently, the product state ρGE(0) = ρG(0) ⊗ ρE(0) is the initial state
of the coupled composite system, where ρG(0) ∈ B(HG) is a Gaussian state with mean
m(0) and covariance matrix Γ(0), and ρE(0) ∈ B(HE) stands for the cell state. Consider
approximatively the composite system as a closed system, then the time evolution of
the initial Gaussian state ρGE(0) is unitary: ρGE(t) = UGE(t)ρGE(0)U†

GE(t), where the
evolution operator UGE depends on the Hamiltonian of the composite system. However,
affected by the environment system, the time evolution of the reduced Gaussian state
ρG(0), ρG(t) = TrE(UGE(t)ρGE(0)U†

GE(t)) is no longer unitary evolution of ρG(0), instead,
it is determined by a time-dependent Gaussian channel.

As M is locally unitary invariant and independent of the mean, without loss of
generality, we can prepare (1 + 1)-mode squeezed thermal state ρG(0) as the initial state,
with covariance matrix

Γ(0) =


a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

,

where a, b related to the compression parameters and the average photon number per
mode, while c depends on the compression parameters and the average photon number on
two modes. Let a = b = 2, c = 1, m1 = m2 = ω1 = ω2 = h̄ = 1. Then, by an approach as
in [38,39], one gets the covariance matrix Γ(t) of the time revolution ρG(t) is

Γ(t) =


m(t, T) 0 1 0

0 m(t, T) 0 −1
1 0 m(t, T) 0
0 −1 0 m(t, T)

, (11)

where m(t, T) = e−2t(2− 1
2 coth 1

2KT ) +
1
2 coth 1

2KT , with K the Boltzmann constant. A proof
of Equation (11) will be given in Appendix A.

Now, by Theorem 4, at time t, and under the influence of cell environment T, the
quantity of quantum correlationM(ρG(t)) of the Gaussian state ρG(t) is

M(ρG(t)) = 1−
((e−2t(2− 1

2 coth 1
2KT ) +

1
2 coth 1

2KT )
2 − 1)2

(e−2t(2− 1
2 coth 1

2KT ) +
1
2 coth 1

2KT )
4

, (12)

which depends on time t and the intracellular temperature T. Hence, we may write ρG(t) as
ρG(t, T). Thus, once we measured the quantityM(ρG(t, T)) of the Gaussian state ρG(t, T)
at time t, the intracellular temperature T can be easily drawn from the Equation (12), i.e.,
the intracellular temperature of the cell is detected.

We point out that, in our model, one may choose different detectors which can detect
other quantum correlations contained in Gaussian state ρG(t, T), while among which, the
computation ofM is so far the simplest one.

In the following, under the settings of the above model, we investigate the change
trend of quantum correlationM(ρG(t, T)).

Let α = coth 1
2KT ; it is clear that α is a monotone increasing function of Intracellular

temperature T, and one can write Equation (12) as

M(ρG(t, α)) = 1−
((e−2t(2− 1

2 α) + 1
2 α)2 − 1)2

(e−2t(2− 1
2 α) + 1

2 α)4
. (13)

Figure 2 shows the corresponding relation betweenM(ρG(t, α)), t, and α. Apparently,
once the quantityM(ρG(t, α)) of the Gaussian state ρG(t, α) at time t is detected, one can
solve α by Equation (13), and further, the intracellular temperature T.
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Figure 2. In the cellular environment, the relation betweenM(ρG(t, α)), t and α.

Fix α = 10, α = 20, and α = 30, in Figure 3, we delineate the evolution behaviors of
quantum correlationM(ρG(t, α)) the cellular environment with blue, orange, and green
curves, respectively. Clearly, M(ρG(t, α)) decrease dramatically in a short time at the
beginning, after that, it becomes stable. Figure 2 also reveals that, as α gets bigger(the
temperature gets higher), the speed and the amplitude of the attenuation ofM(ρG(t, α))
gets greater, i.e., when α is small, it takes more time forM(ρG(t, α)) to become stable. This
means that when a Gaussian state is coupled with the cellular environment, the revolution
of quantum correlationM contained in Gaussian state is a feedback of the intracellular
temperature. To be specific, the greater the speed and amplitude of the attenuation ofM,
the higher the intracellular temperature.

2 4 6 8 10
t

0.05

0.10

0.15

M

α=10

α=20

α=30

Figure 3. In cell environment, for different α, the dynamic evolution properties ofM(ρG(t, α)).

6. Conclusions

By now, all quantifications of Gaussian quantum discord and Gaussian geometric
discord for (n + m)-mode bipartite continuous-variable systems have been derived from
considering the difference between the Gaussian state and the output after performing
some measurements over certain subsystem, and then, taking an optimization procedure.
The obstacle for applying these quantifications of Gaussian quantum discord is that they
are very difficult to be calculated, though a lot of effort have be paid.

The main work of the present paper is to propose a new quantificationM in terms of
covariant matrices for any states in (n + m)-mode continuous-variable systems without
any measurements performed on a subsystem and any optimization procedures. This
quantificationM has many attractive properties: M is independent of the mean of states,
is symmetric about the subsystems, has no ancilla problem, and is easily computed for any
(n + m)-mode Gaussian states. M is locally Gaussian unitary invariant and is increasing
under local Gaussian channels, that is, 0 ≤ M((ΦA ⊗ ΦB)ρAB) ≤ M(ρAB) holds for
any Gaussian channels ΦA and ΦB performed on the subsystem A and B, respectively.
M(ρAB) = 0 if and only if ρAB is a product state. M is an upper bound of a replacement
of Gaussian geometric discord, NF , which is defined and discussed in [20]. Therefore,M
is a Gaussian correlation which is a very nice replacement of Gaussian quantum discord
as well as Gaussian geometric discord. As an application ofM, a noninvasive quantum
method for detecting intracellular temperature is proposed.

We remark that, unlike the other known Gaussian quantum correlations,M is sym-
metric about the subsystem A and B. Thus, as a Gaussian quantum correlation, M is
more natural because the property that a state is not a product state is symmetric about
the subsystems. Moreover, the concepts of Gaussian quantum discord and Gaussian geo-
metric discord are very difficult to extend to multipartite multimode continuous-variable
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systems, however, the definition ofM can be generalized naturally to any states for mul-
tipartite multimode continuous-variable systems. This gives some possibility to discuss
the problem of quantifying the Gaussian quantum correlation in multipartite multimode
continuous-variable systems.
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Appendix A

In this appendix, we present our proofs of Theorems 1–7.

Proof of Theorem 1. The properties thatM is independent of the mean and is symmetric
about the subsystems are obvious from Definition 1. Assume that ρAB ∈ FS(HA ⊗ HB)

is any (n + m)-mode Gaussian state with CM Γ =

(
A C

CT B

)
. Then, the corresponding

CM of the swapped state F(ρAB) ∈ FS(HB ⊗ HA) is Γ̃ =

(
B CT

C A

)
, by Definition

1, one has M(F(ρAB)) = M(ρAB). To see that M has no ancilla problem, when an
uncorrelated ancilla system C is appended, the corresponding CM of ρA:BC has the form of

Γ̄ =

 A C 0
CT B 0
0 0 D

. It follows that

M(ρA:BC) =1−
det(

(
B 0
0 D

)
−
(

CT

0

)
A−1(C 0))

det
(

B 0
0 D

)

=1−
det
(

B− CT A−1C 0
0 D

)
det B det D

=1− det(B− CT A−1C)
det B

=M(ρAB),

completing the proof.

Proof of Theorem 2. Assume that ρAB ∈ S(HA ⊗ HB) is any (n + m)-mode Gaussian

state with CM Γ =

(
A C

CT B

)
. For given Gaussian unitary operators W ∈ B(HA) and

V ∈ B(HB), let σAB = (W ⊗V)ρAB(W† ⊗V†). According to the Williamson Theorem, a
Gaussian unitary operator corresponding to a symplectic matrix in the CM level. Denote
by SW and SV , respectively, the corresponding symplectic matrixes. Then, the CM of σAB is

Γ̄ =

(
SW 0
0 SV

)(
A C

CT B

)(
ST

W 0
0 ST

V

)
=

(
SW AST

W SWCST
V

SVCTST
W SV BST

V

)
.
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By definition,

M((W ⊗V)ρAB(W† ⊗V†)) =1−
det(SV BST

V − SVCTST
W(SW AST

W)−1SWCST
V)

det(SV BST
V)

=1−
det(SV BST

V − SVCT A−1CST
V)

det(SV BST
V)

=1−
det SV det(B− CT A−1C)det ST

V
det SV det B det ST

V

=1− det(B− CT A−1C)
det B

=M(ρAB)

as desired. The proof completes.

To prove Theorem 3, we need the following Lemma.

Lemma A1. Let A, B ∈ Mn(C), then A ≥ B ≥ 0 with B is invertible. If det A = det B, then
A = B.

Proof of Lemma A1. As B is invertible, then det A = det B > 0. Assume that, for
k = 1, 2, . . . , n, λA

k and λB
k are, respectively, eigenvalues of A and B, and they are ar-

ranged in descending order, i.e., λA
1 ≥ λA

2 ≥ · · · ≥ λA
n > 0, λB

1 ≥ λB
2 ≥ · · · ≥ λB

n > 0.
As A ≥ B ≥ 0, according to the corollary 7.7.4 in [29], one has TrA ≥ TrB and λA

k ≥ λB
k

for k = 1, 2, . . . , n. If det B = det A, then ∏n
k=1 λB

k = ∏n
k=1 λA

k , which forces λA
k = λB

k for
k = 1, 2, . . . , n. Consequently, we have TrB = ∑n

k=1 λB
k = ∑n

k=1 λA
k = TrA. Without loss of

generality, suppose B = (bkl)n×n and A = diag(λA
1 , λA

2 , · · ·, λA
n ). Now, A− B ≥ 0 implies

that λA
k − bkk ≥ 0. As ∑n

k=1 bkk = TrB = TrA = ∑n
k=1 λA

k , we must have λA
k = bkk for each

k = 1, 2, . . . , n, which entails that bkl = 0 whenever k 6= l since A− B ≥ 0. Therefore, one
gets A = B, as desired.

Proof of Theorem 3. Assume that ρAB ∈ FS(HA ⊗ HB) is an (n + m)-mode state with

CM Γ =

(
A C

CT B

)
as in Equation (1). If C = 0, by Definition 1, it is obvious that

M(ρAB) = 1− det A det B
det A det B = 0. Conversely, assume thatM(ρAB) = 0, according to Defi-

nition 1, one must have det(B− CT A−1C) = det B. Let D = B− CT A−1C. It is clear that
0 ≤ D ≤ B. Thus, by Lemma 1, we must have B = D, which follows that C = 0. The last
assertion is true because, for a bipartite Gaussian state ρAB, C = 0 if and only if ρAB is a
product state.

Proof of Theorem 5. By Theorem 2,M is locally Gaussian unitary invariant. Therefore,
for any (n + m)-mode pure Gaussian state ρAB, it is sufficient to assume that the CM Γ has
the form as Equation (6). In this case, one sees that

A =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

, B =


β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βm

⊕ I2(m−n), C =


ε1 0 . . . 0 0 . . . 0
0 ε2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . εn 0 . . . 0

,
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where αj = β j =

(
γj 0
0 γj

)
and ε j =

√γ2
j − 1 0

0 −
√

γ2
j − 1

 with γj the j-th single-

mode mixedness factor. Then, it is easy to check that

B− CT A−1C =


β1 − ε1α−1

1 ε1 0 . . . 0
0 β2 − ε2α−1

2 ε2 . . . 0
...

...
. . .

...
0 0 . . . 0
0 0 . . . βn − εnα−1

n εn

⊕ I2(m−n).

After some straightforward calculations, one gets

det B =
n

∏
j=1

det β j =
n

∏
j=1

γ2
j ,

det(B− CT A−1C) =
n

∏
j=1

det(β j − ε jα
−1
j ε j) =

1
∏n

j=1 γ2
j

.

Therefore,M(ρAB) = 1− det(B−CT A−1C)
det B = 1− 1

∏n
j=1 γ4

j
.

Proof of Theorem 6. Suppose that the (1 + 1)-mode Gaussian state ρAB has CM

Γ0 =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

. Then, by Equation (10), the CM Γ′ of σAB = (I ⊗Φ)ρAB is

Γ′ =
(

I 0
0 K

)(
A0 C0
CT

0 B0

)(
I 0
0 KT

)
+

(
0 0
0 M

)
=

(
A0 C0KT

KCT
0 KB0KT + M

)
.

After some straightforward calculations, one can immediately achieve that

M((I ⊗Φ)ρAB) =M(σAB)

=1−
det((KB0KT + M)− KCT

0 A−1
0 C0KT)

det(KB0KT + M)
.

Clearly, K, M can not be zero simultaneously. After some tedious calculations, one gets

M((I ⊗Φ)ρAB)

= 1− (ab− c2)(ab− d2)n1 + a(ab− c2)n2 + a(ab− d2)n3 + a2n4

a2b2n1 + a2b(n2 + n3) + a2n4
,

where

n1 =k2
11k2

22 + k2
12k2

21 − 2k11k12k21k22, n2 =m22k2
11 + m11k2

21 − 2m12k11k21,

n3 =m22k2
12 + m11k2

22 − 2m12k12k22, n4 =m11m22 −m2
12.

The proof is completed.

Proof of Corollary 2. We first consider the special case that ΦA = I, and will prove that

0 ≤M((I ⊗ΦB)ρAB) ≤M(ρAB). (A1)
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To this end, assume that the (1 + 1)-mode Gaussian state ρAB has CM Γ0 of the standard

form, that is, Γ0 =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

. Let ΦB = ΦB(K, M, d) be any Gaussian channel

performed on the subsystem B with K =

(
k11 k12
k21 k22

)
and M =

(
m11 m12
m12 m22

)
. We have

to show thatM((I ⊗Φ)ρAB) ≤M(ρAB).
IfM(ρAB) = 0, then, by Theorem 3, ρAB is a product state. Therefore, (I ⊗Φ)ρAB is a

product state, and thusM((I ⊗Φ)ρAB) = 0 =M(ρAB).
Assume thatM(ρAB) 6= 0. Then, M((I ⊗ Φ)ρAB) ≤ M(ρAB) holds if and only if

M((I⊗Φ)ρAB)
M(ρAB)

≤ 1. Let α = (ab− c2)(ab− d2), β = a2b2, γ = a(ab− c2)n2 + a(ab− d2)n3 +

a2n4 and δ = a2b(n2 + n3) + a2n4 with n2, n3, n4 as in Theorem 6. Then, according to
Theorem 6, we have

M((I ⊗Φ)ρAB)

M(ρAB)
≤ 1⇔

1− αn1+γ
βn1+δ

1− α
β

≤ 1⇔ αn1 + γ

βn1 + δ
≥ α

β
⇔ γβ ≥ αδ.

Therefore, it suffices to prove that γβ− αδ ≥ 0. By some computations, one sees that

γβ = [a(ab− c2)n2 + a(ab− d2)n3 + a2n4]a2b2

= a3b2(ab− c2)n2 + a3b2(ab− d2)n3 + a4b2n4

and

αδ = a2b(ab− c2)(ab− d2)n2 + a2b(ab− c2)(ab− d2)n3 + a2(ab− c2)(ab− d2)n4.

Note that n1 = k2
11k2

22 + k2
12k2

21− 2k11k12k21k22 = (k11k22− k12k21)
2 ≥ 0 and n4 = m11m22−

m2
12 = det M ≥ 0. As m22k2

11 + m11k2
21 ≥ 2

√
m22
√

m11k11k21 ≥ 2m12k11k21, we have n2 ≥ 0.
One can verify n3 ≥ 0 by the same way. Also note that a, b ≥ 1 and ab ≥ c2(d2) by the
constraint condition of the parameters in the definition of the Gaussian state. Now it is
clear that

γβ− αδ = a2bd2(ab− c2)n2 + a2bc2(ab− d2)n3 + a2(abc2 + abd2 − c2d2)n4 ≥ 0,

as desired. To this end, we come to the conclusion thatM((I ⊗Φ)ρAB) ≤M(ρAB), and
the equality holds if M = 0 (See Remark 2 after the proof of Theorem 6).

Now let us consider the general case. Let U ⊗ V be a local Gaussian unitary opera-
tion, that is, for some Gaussian unitary operators U and V on the subsystems A and B,
respectively, so that (U ⊗ V)(ρAB) = (U ⊗V)ρAB(U† ⊗V†) for each state ρAB. Then,

(I ⊗Φ) ◦ (U ⊗ V) = U ⊗ (Φ ◦ V) = (U ⊗ I) ◦ (I ⊗ (Φ ◦ V)).

Note that Φ ◦ V is still a Gaussian channel which sends ρB to Φ(VρBV†). Keep this in mind
and let ρAB be any (1 + 1)-mode Gaussian state. Then, there exists a local Gaussian unitary
operation U ⊗V such that σAB = (U† ⊗V†)ρAB(U ⊗V) has CM of the standard form. By
what we have proved above and Theorem 2, we see that

M((I ⊗Φ)ρAB) =NGF ((I ⊗Φ)((U ⊗V)σAB(U† ⊗V†)))

=M((I ⊗Φ) ◦ (U ⊗ V)σAB) =M((U ⊗ I) ◦ (I ⊗ (Φ ◦ V))σAB)

=M((I ⊗ (Φ ◦ V))σAB) ≤M(σAB) =M(ρAB),

as desired, until now, we conclude that Equation (A1) holds for all (1+ 1)-mode Gaussian states.
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Following the same routine, let ΦB = I, one can show that

0 ≤M((ΦA ⊗ I)ρAB) ≤M(ρAB). (A2)

Combine Equations (A1) and (A2) together, it is clear that

M((ΦA ⊗ΦB)ρAB) =M((I ⊗ΦB) ◦ (ΦA ⊗ I)ρAB)

≤M((ΦA ⊗ I)ρAB)

≤M(ρAB),

completing the proof.

Our proof of Theorem 7 gives also another proof of Corollary 2. To do this, we need
one more lemma on matrices.

Lemma A2. Let B, K, M ∈ Mn(C) with B and M positive semidefinite. If both B and KBK† + M
are invertible, then

K†(KBK† + M)−1K ≤ B−1.

The equality holds if and only if M = 0 and K is invertible.

Proof of Lemma A2. Note that, if A and B are invertible, then 0 ≤ B ≤ A⇔ 0 ≤ A−1 ≤ B−1.
Assume that K is invertible. As B ≤ B + K−1M(K−1)† we have

K†(KBK† + M)−1K = [K−1(KBK† + M)(K†)−1]−1 = (B + K−1M(K−1)†)−1 ≤ B−1,

which reveals that the lemma is true for the case that K is invertible.
Next, assume that K is not invertible. It is obvious that for sufficient small ε0 > 0,

K + εI is invertible for each ε ∈ (0, ε0). As the set of all invertible matrices is an open subset
in Mn(C), the facts that KBK† + M is invertible and (K + εI)B(K + εI)† + M→ KBK† + M
as ε→ 0 entail that there is some ε1 ∈ (0, ε0) such that (K + εI)B(K + εI)† + M is invertible
for all ε ∈ (0, ε1). Thus, by what was proved above,

(K + εI)†((K + εI)B(K + εI)† + M)−1(K + εI) ≤ B−1

holds for all ε ∈ (0, ε1). Now, as limε→0((K + εI)B(K + εI)† + M)−1 = (KBK† + M)−1, we
see that

K†(KBK† + M)−1K = lim
ε→0

(K + εI)†((K + εI)B(K + εI)† + M)−1(K + εI) ≤ B−1.

If the equality holds, that is, if K†(KBK† + M)−1K = B−1, then K is invertible and
B + K−1M(K−1)† = B, which entails that M = 0. The converse is obvious, completing
the proof.

Proof of Theorem 7. By the symmetry of M about the subsystems, we need only to
prove that

M((I ⊗ΦB)ρAB) ≤M(ρAB)

holds for any Gaussian channel ΦB performed on the subsystem B and any Gaussian state

ρAB. Assume that the CM of ρAB is Γ =

(
A C

CT B

)
and Φ = ΦB = ΦB(K, M, d̄). Then,

by Equation (10), the CM of (I ⊗ΦB)ρAB is

Γ′ =
(

I 0
0 K

)(
A C

CT B

)(
I 0
0 KT

)
+

(
0 0
0 M

)
=

(
A CKT

KCT KBKT + M

)
.
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Then

M((I⊗Φ)ρAB) = 1− det(Γ′)
det(A)det(KBKT + M)

= 1− det(A− CKT(KBKT + M)−1KCT)

det(A)
.

Note that, as M ≥ 0, by Lemma 2, we have

CKT(KBKT + M)−1KCT ≤ CB−1CT .

This implies that
A− CKT(KBKT + M)−1KCT ≥ A− CB−1CT

and thus det(A− CKT(KBKT + M)−1KCT) ≥ det(A− CB−1CT). It follows that

M((I ⊗Φ)ρAB) = 1− det(A−CKT(KBKT+M)−1KCT)
det(A)

≤ 1− det(A−CB−1CT)
det(A)

=M(ρAB)

as desired.

Proof of Equation (11). According to the work in [38], the time revolution Markov main
equation of a (1+ 1)-mode boson system in thermal environment is described by operator Φ̄t:

dΦ̄t

dt
=

i
h̄
[H, Φ̄t] +

1
2h ∑

j
(V†

j [Φ̄t, Vj] + [V†
j , Φ̄t]Vj),

H =
2

∑
k=1

(
1

2mk
P̂2

k +
mkw2

k
2

Q̂2
k),

where Vj = ∑2
k=1 ajk P̂k + ∑2

k=1 bjkQ̂k, the combination coefficients ajk, bjk are complex
numbers with j = 1, 2, 3, 4 and k = 1, 2. Accordingly, V†

j = ∑2
k=1 a∗jk P̂k + ∑2

k=1 b∗jkQ̂k, where
a∗jk and b∗jk are conjugation of ajk and bjk, respectively.

For any (1 + 1)-mode Gaussian state ρAB with covariance matrix Γ and mean m,
by [38], the time revolution of the covariance matrix and mean are

dm(t)
dt

= Ym(t), (A3)

dΓ(t)
dt

= YΓ(t) + Γ(t)YT + 2D, (A4)

where

Y =


−λ 1

m1
0 0

−m1ω2
1 −λ 0 0

0 0 −λ 1
m2

0 0 −m2ω2
2 −λ


is a 4× 4 matrix, with λ the dissipation constant,

D =


DQ̂1Q̂1

DQ̂1 P̂1
DQ̂1Q̂2

DQ̂1 P̂2
DQ̂1 P̂1

DP̂1 P̂1
DQ̂2 P̂1

DP̂1 P̂2
DQ̂1Q̂2

DQ̂2 P̂1
DQ̂2Q̂2

DQ̂2 P̂2
DQ̂1 P̂2

DP̂1 P̂2
DQ̂2 P̂2

DP̂2 P̂2


is diffusion matrix, and DQ̂kQ̂k

= h
2 ∑4

j=1 |ajk|2, DP̂k P̂k
= h

2 ∑4
j=1 |bjk|2, DQ̂n P̂m

= h
2 Re ∑4

j=1

a∗jmbjn, with k = 1, 2, m = 1, 2, and n = 1, 2. In addition, DQ̂1Q̂2
= h

2 Re ∑4
j=1 a∗j1aj2,

DP̂1 P̂2
= h

2 Re ∑4
j=1 b∗j1bj2.
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The solutions of differential Equations (A3) and (A4) can be found in [39]:

m(t) = exp(Yt)m(0),

Γ(t) = exp(Yt)[Γ(0)− Γ(∞)]exp(Yt) + Γ(∞), (A5)

where m(0) and Γ(0) stand for the mean and the covariance matrix of the initial state, and
Γ(∞) = limt→∞ Γ(t). Furthermore, the covariance matrix satisfies

YΓ(∞) + Γ(∞)YT = −2D. (A6)

For the convenience of computation, in the following, we assume the asymptotic state
is Gibbs state. Then, the corresponding diffusion matrix is

D =


λ

2m1ω1
coth ω1

2KT 0 0 0
0 λm1ω1

2 coth ω1
2KT 0 0

0 0 λ
2m2ω2

coth ω2
2KT 0

0 0 0 λm2ω2
2 coth ω2

2KT

,

where T represents the temperature of the environment.
Now, we prepare (1 + 1)-mode squeezed thermal state ρG(0) as the initial state, with

covariance matrix

Γ(0) =


a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

,

where a, b related to the compression parameters and the average photon number per
mode, while c depends on the compression parameters and the average photon number
on two modes. In order to capture the revolution behavior of the Gaussian state with
time t and environment temperature T, we consider ρG(t, T) as a function of t and T, and
investigate the change trend of ρG(t, T).

Let a = b = 2, c = 1, m1 = m2 = ω1 = ω2 = h = 1, and keep in mind that K is
Boltzmann constant. Then,

Y =


−1 1 0 0
−1 −1 0 0
0 0 −1 1
0 0 −1 −1

 =

(
M 0
0 M

)
, (A7)

D =
1
2

coth
1

2KT


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =
1
2

coth
1

2KT

(
I 0
0 I

)
. (A8)

Substitute Equations (A7) and (A8) into Equation (A6), and denote Γ(∞) =

(
A C

CT B

)
,

one has
MA + AMT = MB + BMT = −coth

1
2KT

I, (A9)

MC + CMT = MCT + CT MT = 0. (A10)

Resolving Equations (A9) and (A10), we have

Γ(∞) = D =


1
2 coth 1

2KT 0 0 0
0 1

2 coth 1
2KT 0 0

0 0 1
2 coth 1

2KT 0
0 0 0 1

2 coth 1
2KT

 =
1
2

coth
1

2KT
I4. (A11)
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Substitute Equation (A11) into Equation (A5), one immediately gets the time revolution of
the covariance matrix Γ(t, T) of ρG(t, T) is of the form

Γ(t, T) =


m(t, T) 0 1 0

0 m(t, T) 0 −1
1 0 m(t, T) 0
0 −1 0 m(t, T)

,

where m(t, T) = e−2t(2− 1
2 coth 1

2KT ) +
1
2 coth 1

2KT . Therefore, we see that Equation (11) is
true, completing the proof.
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