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Abstract: We study the statistical mechanics of binary systems under the gravitational interaction
of the Modified Newtonian Dynamics (MOND) in three-dimensional space. Considering the bi-
nary systems in the microcanonical and canonical ensembles, we show that in the microcanonical
systems, unlike the Newtonian gravity, there is a sharp phase transition, with a high-temperature
homogeneous phase and a low-temperature clumped binary one. Defining an order parameter in
the canonical systems, we find a smoother phase transition and identify the corresponding critical
temperature in terms of the physical parameters of the binary system.

Keywords: Modified Newtonian Dynamics (MOND); phase transition; structure formation; bi-
nary systems

1. Introduction

The growth of structures from the initial condition in the early Universe to the galaxies
and clusters of galaxies is addressed by the standard model of cosmology. In this scenario,
the origin of the structures is quantum fluctuations of a scalar field, the so-called inflaton
field. The amplitude of the structures grows after the end of inflation. The standard
paradigm for structure formation, Λ Cold Dark Matter (ΛCDM) [1], has a very good
agreement in the early Universe from the CMB observations [2] because the free parameters
are tuned to fit the CMB; however, ΛCDM runs into severe difficulties with local and large-
scale structures [3–6].

There is another approach to structure formation theory from the statistical mechanics
point of view, where the structures form when a phase transition occurs in gravitating
systems [7–20]. One classical example in statistical mechanics is the 2D self-gravitating
system with a logarithmic gravitational potential [8]. In this approach, one takes an
ensemble of N-body particles as a thermodynamical system, where from the partition
function one can derive the thermodynamical quantities. We note that in this system, all
the particles are under their mutual gravitational interaction; this has to be taken into
account in calculating the partition function. It has been shown that for such a system there
exist two phases of (a) high-temperature gaseous phase, and (b) clumped low-temperature
phase. This approach has an analytical solution only in 2D (logarithmic) gravity. To extend
it to 3D, one has to deal with a simpler thermodynamical approach such as studying
two-body systems [9–17].

In the standard theory of structure formation, to have a compatible theoretical result
with observation, we need to have a dark matter component in addition to the baryonic
component of the cosmic fluid. The effect of dark matter in structure formation is important
when the universe was dominated by radiation whose pressure repelled the baryonic matter
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and prevented the formation of baryonic structures. The perturbation in the dark matter
fluid of the Universe (unlike the baryonic and radiation components) would grow through
the gravitational instability to form over-dense regions. The consequence of dark matter
structures is that after recombination, the gravitational potential of dark matter could
accumulate the baryonic matter to form the baryonic part of galaxies within dark matter
halos [21,22]. There is another approach to deal with the dynamics of large-scale structures
by replacing the dark matter with a modification to the gravity law. In some of these
models, the extra degrees of freedom such as the scalar or the vector sectors are considered
for the gravitational field. A generic formalism of this theory is the scalar–vector–tensor
theory, which is the so-called Modified Gravity Model (MOG) [23]. Although this theory
can explain the dynamics of galaxies and clusters of galaxies without a need for dark
matter [24,25], it predicts a larger mass-to-light ratio compared to the observation [26].
There are also non-local gravity models, where in one of these theories, the Einstein
gravity has been supplemented by the non-local terms, which is analogous to the non-local
electrodynamics [27]. This theory also educes to the standard Poisson equation in the
weak field approximation with an extra term that plays the role of dark matter. The theory
provides compatible dynamics for galaxies and clusters of galaxies without the need for a
dark matter component [28]. There is also another popular model, which is called Modified
Newtonian Dynamics (MOND) [29]. In this theory, Newton’s second law, or usually
the Poisson equation, is modified in systems with accelerations smaller than a universal
acceleration, a0. This theory also provides compatible dynamics to the spiral and elliptical
galaxies [30]. It is worth mentioning that the main problem of modified gravity models is
that they cannot explain the observational data on different scales; see [6] for a possible
hybrid solution using both MOND and hot dark matter in the form of sterile neutrinos.

In this work, we study the phase transition for a binary interacting via MONDian
gravity, in non-expanding and expanding spaces. For simplicity, we start with an ensemble
of two-body objects instead of the N-body system and investigate the phase transition by
decreasing the temperature of the system.

The rest of the paper is organized as follows: In Section 2, we review the statistical
mechanics of binary interacting systems under a Newtonian potential in the microcanon-
ical ensemble. In Section 3, we present the statistical mechanics of a binary system in
MOND. Section 6 is devoted to studying the statistical mechanics of MONDian systems in
the canonical ensemble. We then study and discuss the influence of the expanding Uni-
verse with scale factor a(τ) on the critical temperature of the phase transition in Section 4.
Section 6 summarizes the paper and discusses possible further research.

2. Statistical Mechanics of a Self-Gravitating Binary under Newtonian Potential:
Microcanonical Ensemble

The statistical mechanics of self-gravitating systems has been the subject of attention
for many years [9–20,31]. Such systems have distinguished physical properties due to the
long-range nature of the gravitational force. At thermal equilibrium, these systems are not
spatially homogeneous, and the intrinsic inhomogeneity character suggests that fractal
structures can emerge in a system of gravitationally interacting particles [18–20]. Here we
review the statistical mechanics of a self-gravitating binary system in Newtonian gravity in
the microcanonical ensemble [9–17]. We start with the Hamiltonian of a two-body system,

H(P, Q; p, r) =
P2

2M
+

p2

2µ
+ V(r). (1)

where in 3D the potential is V(r) = −Gm2/r, (Q, P) are coordinates and momentum of the
center of mass, and (r, p) are the relative coordinates and momentum with the reduced
mass. In what follows, for the sake of simplicity we take the mass of these two bodies to be
identical, (i.e., M = 2m and µ = m/2). We assume a spherical shape for the two objects
with radius of b/2 and that the two-body system is confined in a spherical box of radius R,
where r in Equation (1) varies within the interval of (b, R). The volume associated with
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a constant energy of this system (i.e., H = E) in the phase-space [32,33] is given by the
density of states

g(E) =
∫

δ(E− H(r, p, Q, P))d3Pd3 pd3Qd3r. (2)

First we integrate over Q, which leads to 4πr3/3, and inserting the explicit form of the
Hamiltonian leads to the following relation:

g(E) =
4πR3

3

∫
d3Pd3r

∫ ∞

0
δ(E− p2

2µ
− P2

2M
−V(r))4πp2dp. (3)

Now we perform integration over p-space. Using the new variable x ≡ p2/µ, the square-
root term appears from the integration as a result of a property of the Dirac δ-function.

g(E) =
8π2m3/2R3

3

∫
d3Pd3r

√
E− P2

2m
−V(r) . (4)

This time we integrate over P-space similar to the previous step in Equation (3). The result is

g(E) = AR3
∫ rmax

b
r2dr(E−V(r))2 , (5)

where A = 64π5m3/3. In the case of Newtonian gravity, the potential energy is V(r) = −Gm2/r
and since the kinetic energy is always positive definite (i.e., E− V(r) > 0), the upper limit of
the integral (rmax) should be taken in such a way that guarantees the positive sign of the kinetic
energy. The upper bound of integration for the following ranges of energy is given by,{

(−Gm2/b) < E < (−Gm2/R) rmax = Gm2/E
(−Gm2/R) < E < +∞ rmax = R

(6)

The second condition has no specific meaning in astrophysics, though it has an analogy
with the standard thermodynamics where the size of the box is R. We assume that the
container has a fixed volume while we can increase the velocity of the particles, and they
are constrained to stay in this volume. Integrating (5) results in

g(E)
A(Gm2)3 =


R3

3 (−E)−1
(

1 + bE
Gm2

)3
, (−Gm2/b) < E < (−Gm2/R)

R3

3 (−E)−1
[(

1 + RE
Gm2

)3
−
(

1 + bE
Gm2

)3
]

, (−Gm2/R) < E < ∞.

(7)

From the density of states function g(E), which represents the phase space volume
covered by this system with energy E, we can calculate the entropy and the temperature of
the system according to the following relations (with Boltzmann constant KB = 1):

S(E) = ln g(E); T−1(E) = β(E) =
∂S(E)

∂E
. (8)

From Equation (7), we obtain the dimensionless temperature for the interval (−Gm2/b) <
E < (−Gm2/R) as

t(ε) =
[

3
1 + ε

− 1
ε

]−1
. (9)

where the dimensionless temperature t and energy ε are defined as

t ≡ (bT/Gm2), ε ≡ (bE/Gm2). (10)
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Further, for the second interval of −Gm2/R < E < ∞ in (7), t(ε) is given by

t(ε) =

3
[
(1 + ε)2 − R

b (1 +
R
b ε)2

]
(1 + ε)3 − (1 + R

b ε)3
− 1

ε

−1

. (11)

In Figure 1, we depict t(ε) in terms of ε [32]. It can be seen that the specific heat is positive
along AB and CD while it is negative along BC. For a system with energy in the range
AB, the two solid spherical objects are in contact, and increasing the energy of the system
increases the kinetic energy, or in other words, the temperature of the system. Over the
range BC, the two objects detach from each other and start circular motion according to the
mutual gravitational force between them. For the CD path in Figure 1 the total energy is
larger than zero (i.e., E > 0) and the two objects decouple from each other and behave as
free particles.

A

B

C

D

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4
ϵ

0.05

0.10

0.15

0.20

0.25

t

MOND

Newtown

Figure 1. Dimensionless temperature versus dimensionless energy (Equation (9)) for a binary system
interacting under Newtonian gravity (dashed orange curve) and MONDian gravity (solid blue curve).
As expected, there is a flat part for MOND due to entering the DML. Since, for constant temperature,
the energy has a finite change there must be a sharp phase transition.

3. Statistical Mechanics of a Self-Gravitating Binary in MOND:
Microcanonical Ensemble

In the Modified Newtonian Dynamics (MOND), which is proposed to solve the dark matter
problem on galaxy scales [29], the second law of Newtonian mechanics is modified for small
accelerations. The characteristic acceleration for this modification is a0 = 1.2× 10−10 m s−2 [34]
where for a ≤ a0, the definition of force is modified to F = maµ(a/a0). Here µ(x) is larger
than unity for smaller accelerations and is unity for the large accelerations (i.e., a� a0). This
model can explain the rotation curve of spiral galaxies and predicts the Tully–Fisher relation [35];
however, in this theory, energy and momentum are not well-defined [36]. One of the simple
solutions to this problem is that one may interpret MOND as modified gravity rather than
modified dynamics. The gravitational acceleration in the deep MOND limit where g� a0 will
be [29]

gDML = −√gN .a0 = −
√

Gma0

r
. (12)

The subscript DML stands for the Deep-MOND Limit, in which the potential from the
gravitational acceleration is given by

φDML =
√

Gma0 ln(r/R). (13)

For an isolated binary system in the DML, the gravitational force between the two particles
scales is F ∼ 1/r, which for objects in circular motion, results in a constant velocity and is
compatible with the flat rotational curves of galaxies. We note that for g� a0 the Newto-
nian gravity is recovered (i.e., g = gN) and the potential will behave as φN = −Gm/r.
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Since, in MOND, the acceleration of a test particle in a gravitating system is stronger
than in Newtonian gravity, in addition to studying the dynamics of a system, we can
investigate the formation of structures in these two scenarios. For a self-gravitating system,
the free-fall time scale represents the strength of clustering of a structure. The ratio of
characteristic timescales in Newtonian and MOND gravity is [37,38],

TMOND
TN

=
[ 16

π2 ·
gN
a0

] 1
4
.

For gN < a0 we would expect a shorter time-scale for the clustering in MOND compare to
the Newtonian gravity. We refer interested readers to [39] for a thorough investigation into
the free-fall timescales in MOND.

In order to have a continuous transition from the DML to the Newtonian gravity, one
needs a transition function µ(a) [40]. There are various transition functions. One of the
simple models is µ(x) = x/(1 + x) or a sigmoid function, other transition function can be
found in [41,42]. The sigmoid function better fits the observational data [43].

Now let us study the statistical mechanics of two-body objects in MOND in the
microcanonical ensemble. The enumeration of the total number of possible states (phase
volume) for a binary system with energy E is given by

g(E) =
∫

δ(E− H(r, p, Q, P))d3Pd3 pd3Qd3r . (14)

By integrating over P, p and Q, similar to the calculations in Section 2 for Newtonian
gravity, the function g(E) is given by

g(E) = AR3
∫ rmax

b
r2dr(E−V(r))2 , (15)

where A = 64π4m3/3. Taking into account the Newtonian and DML phases for the
gravitational potential, the total potential is given in the following two domains,

V(r) =

{ −Gm2/r, r < rM

m
√

Gma0ln(r/R), r > rM

(16)

where the MOND radius rM =
√

Gm/a0 is the scale of transition between the two domains.
In order to calculate integral (15), one needs precisely determine rmax in terms of energy
ranges, i.e., 

−Gm2

b < E < −Gm2

rM
, rmax = −Gm2

E

−Gm2

rM
< E < 0, rmax = R exp( E

m
√

Gma0
)

0 < E < ∞, rmax = R

(17)

Here the bound of rmax results from the positive sign of the kinetic energy. Detailed
calculation of g(E) for different energy ranges are given in Appendix A. We define the tem-
perature of system from Equation (8) and plot t = t(ε) for three energy ranges in Figure 1.
Here we adopt R/b = 1010 and e2/e1 = 100 where e1 = m

√
Gma0 and e2 = Gm2/b. In this

figure, the (t, ε) diagram for MONDian gravity is almost similar to that of the Newtonian,
except for ε being just slightly below 0, where for the case of Newtonian gravity t(0) = 0
but for MONDian gravity t(0) > 0. In fact, for MONDian gravity (the solid curve), there is
a flat part, in which for constant temperature, the energy has a finite change, indicating a
sharp phase transition where the heat capacity diverges.

We can interpret this area as when the binary system enters the deep-MOND where
the rotation velocity of the binary objects around their center of mass is vrot =

√
Gma0/2.



Entropy 2021, 23, 1158 6 of 13

In this case, with increasing energy of the system, the orbital size of the binary increases;
however, the kinetic energy, which represents the temperature of the system, remains
constant. In the next section, we study statistical mechanics and phase transition of a binary
system in the MONDian gravity for the canonical ensemble.

4. Statistical Mechanics of a Self-Gravitating Binary in MOND: Canonical Ensemble

Let us at first assume an ensemble of binary objects under Newtonian gravity. The sys-
tem is composed of an ensemble of thermalized binaries with an associated temperature.
The partition function associated with a binary system in this ensemble is given by

Z(β) =
∫

d3Pd3 pd3Qd3r exp(−βH), (18)

where the parameters and the Hamiltonian are defined in Section 2. Integrating over
momenta P, p and position Q, Equation (18) simplifies to [32,37]:

Z(β) = R3β−3
∫ R

b
dr r2 exp

(
β

GM2

r

)
. (19)

In dimensionless form, using the definition of t as introduced in Section 2, the partition can
be written as

Z(t) =
(

R
b

)3
t3
∫ R/b

1
x2 exp

(
1
tx

)
dx

=
R3

12b6

[
b3(−2Ei

(
b

Rt

)
− log

(
Rt
b

)
+ 2 log

(
−Rt

b

)
+ log

(
b

Rt

)
+ 2Ei

(
1
t

)
− 2e1/tt

(
2t2 + t + 1

)
− log

(
1
t

)
− 2 log(−t) + log(t)) + 2Rte

b
Rt

(
b2 + bRt + 2R2t2

)]
(20)

Equation (20) is expressed in terms of an exponential integral function (Ei(x) =

−
∫ ∞
−x

exp(−t)
t dt) and has no known analytical solution, so here we solve it numerically

and calculate the mean energy of the system by using:

E(β) = −∂ ln Z/∂β. (21)

In order to identify a phase transition, we calculate numerically the derivative of energy
with respect to the thermodynamical variables. If this quantity diverges or becomes
discontinuous, the system undergoes a phase transition [44]. We calculate the derivative of
energy with respect to the temperature, which is defined as the specific heat and is shown
in Figure 2.

From the numerical calculation of specific heat cv in terms of the temperature, we find
that it has a peak at t = tcritical . To understand the nature of the detected phase transition,
we define an order parameter and study its behavior near the critical temperature. Here we
take the mean distance between the companions of a binary system as the order parameter
and define it as [8]:

< r2 >=

∫ R
b drr4 exp(β Gm2

r )∫ R
b drr2 exp(β Gm2

r )
. (22)

For the first-order phase transition, we expect to have an abrupt change in the order
parameter. For instance, if we apply it for matter in the liquid and gaseous phases, this
parameter sharply changes when a liquid changes to the gaseous state. For the second
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order phase transition, the order parameter will be a continuous function at the critical
temperature. For simplicity, we rewrite Equation (22) in dimensionless form as:

< x2 >=

∫ R/b
1 x4 exp

(
1
tx

)
dx∫ R/b

1 x2 exp
(

1
tx

)
dx

(23)

and calculate < x2 > numerically allowing us to plot the order parameter as a function
of temperature in Figure 3. We notice that there is the phase transition for the order
parameter at exactly the same temperature that the specific heat has a peak, whereas the
order parameter is a differentiable function at the critical temperature. The order parameter
shows that a high-temperature system has a homogeneous phase, while at low temperature,
< x2 > vanishes.

0.01 0.012 0.014 0.016 0.018 0.02
t

0

0.2

0.4

0.6

0.8

1

C v
/C

v(t
c)

Newton
MOND

Figure 2. Normalized specific heat of the system made of a binary under Newtonian (dashed orange
curve) and MONDian (solid blue curve) gravity. The phase transition temperature is at the peak of
these curves.
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t

0.2
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0.8

1

<
X

2
>

/<
X

2
>

m
ax

MOND
Newton

Figure 3. Order parameter as a criterion to detect the phase transition. The orange dashed curve
represents the Newtonian system, and the blue solid one is for MOND. This plot shows that the
mean value of the distance between the particles changes very fast but remains differentiable near
the phase transition.

Now we perform a similar calculation for the temperature dependence of the order
parameter in the combination of deep MOND and Newtonian gravity, where for small
and large accelerations (i.e., a < a0 and a > a0), DML and Newtonian gravity will have
dominant contributions, respectively. Since the potential is a function of distance, we
need to make an approximation before calculating the partition function. The potential
is defined as φ(r) = −

∫
F.dr, we can break this integration into separate three parts with

different gravitational potentials. For r � rM we have Newtonian gravity, and r � rM
potential is in DML, and between we are in a regime that is a combination of Newtonian
and MONDian, i.e.,

φ(r) = −
∫

F.dr = −
∫

0<r<rM−δ
(−GM/r2)dr
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−
∫

r>rM+δ
(−
√
(GMa0/r2))dr−

∫
rM−δ<r<rM+δ

F.dr. (24)

Three terms in the integration belong to the Newtonian, DML, and mixing of Newtonian
and DML, respectively. Here δ is a small constant. The result of integration is,

φ(r) = −GM/r +
√

GMa0 ln(r)−
∫ rM+δ

rM−δ
F.dr + C. (25)

where C is the constant of integration, and we chose it to be ∼ − ln(R). We note that
the third term in r.h.s of Equation (26), that is

∫ rM+δ
rM−δ F.dr, depends on the interpolating

function, (F = mµ(a/a0)). A simple approach is by choosing a proper µ with a very fast
transition from Newtonian regime to MONDian regime. Then we can ignore this term and
the potential simplifies to

φ(r) ' −GM/r|(r<rM) −
√
(GMa0) ln(r/R)|(r>rM). (26)

An alternative approach is to use a simple interpolating function for a single point
mass using a hyperbolic substitution [41,42],

φ(r) =
√

Gma0

[
ln
(

1 +
√

1 + r̃2
)
− 1

r̃
−
√

1
r̃2 + 1

]
.

where r̃ ≡ 2r
rM

and rM ≡
√

Gm
a0

. (27)

We provide the influence of the interpolating function on the critical temperature, see below.
For simplification, we continue with Equation (26). As a result, the partition function

of the ensemble of the binary system in the MONDian gravity (using the MONDian
potential in Equation (18)) by integrating over variables P, p and Q is

Z(β) = R3β−3
[ ∫ rM

b
drr2 exp(β

Gm2

r
) +

∫ R

rM

drr2 exp(−e1βln(r/R))
]
, (28)

Which in dimensionless representation it simplifies to:

Z(t) = (
R
b
)3t3

[ ∫ rM/b

1
dxx2 exp(

1
tx
) +

∫ R/b

rM/b
dxx2 exp(− e1 ln(bx/R)

e2t
)
]

. (29)

Here e1 = m
√

Gma0 and e2 = Gm2/b. Following the same procedure as the Newto-
nian case, we calculate the specific heat and order parameter and plot them in Figures 2
and 3, where the specific heat and the order parameter are given by:

Cv = ∂E/∂T =
∂(t2∂ ln Z/∂t)

∂t
, (30)

< r2 >=

∫ rM
b r4 exp(βGm2/r)dr +

∫ R
rM

r4 exp(−βe1ln(r/R))dr∫ rM
b r2 exp(βGm2/r)dr +

∫ R
rM

r2 exp(−βe1ln(r/R))dr
. (31)

Equation (31) can also be rewritten in the dimensionless form as:

< x2 >=

∫ rM
b

1 x4 exp
(

1
tx

)
dx +

∫ R
b

rM
b

x4 exp
(
− e1 ln(bx/R)

e2t

)
dx∫ rM

b
1 x2 exp

(
1
tx

)
dx +

∫ R
b

rM
b

x2 exp
(
− e1 ln(bx/R)

e2t

)
dx

. (32)
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Comparing Figures 2 and 3, the phase transition temperature is identical whether we
obtain it from the divergence of Cv or from a fast change of < x2 >. Further, we note that
Cv is always positive for the canonical case, unlike the micro-canonical case.

If we use the specific interpolating function that is introduced in Equation (27), we
observe a similar behavior, but at a different critical temperature (see Figure 4). We see that,
qualitatively, the critical behavior of the systems is the same but the interpolating function
affects the details of the phase transition.
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/<
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2
>

m
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Figure 4. Order parameter as a criterion to detect the phase transition. This plot shows that the
variance of the distance between the particles changes fast but remains differentiable near the
phase transition.

5. Statistical Mechanics of a Self-Gravitating Binary in MOND:
Comoving Coordinates

In an expanding universe with characteristic scale factor a(τ), the physical coordinates
of r is related to the comoving coordinate q as [45],

r ≡ a(τ)q. (33)

The Hamiltonian of a binary system with potential given in Equation (26) can be written in
the comoving coordinate as

H =
p2

2ma(τ)2 −
Gm2

a(τ)q

∣∣∣(q<qMa(τ)) + m
√

Gma0 ln(qa(τ)/R)
∣∣∣
(q>qMa(τ))

. (34)

This Hamiltonian in an expanding universe can also be obtained from the Minkowski–
Hamiltonian with the following replacements:

m→ ma(τ)2, G → Ga(τ)−5, a0 → a0a(τ)−1, R→ Ra(τ)−1. (35)

We can interpret the renormalization process by assigning dynamics to these parameters.
For instance the m→ ma(τ)2 renormalization is related to the kinetic energy of particles
that decrease as 1/a2 with the expansion of the Universe. Here we have the effective
gravitational constant (G → Ga(τ)−5) as well as the acceleration parameter of MOND
(a0 → a0a(τ)−1) changing with the scale factor.

To consider a self-gravitating binary at any time in approximate thermal equilibrium,
we assume that the characteristic time of the particle motions under their mutual grav-
itation is shorter than the time variation of the scale factor. This hypothesis is valid for
structures that are almost decoupled from the expansion and become virialized. Given this,
the Equations (28) and (31) in the comoving frame will be as follows:

Z(β) = R3a(τ)3β−3

[ ∫ qM

b
q2 exp(βGm2/a(τ)q)dq +

∫ R

qM

q2 exp(−βm
√

Gma0ln(a(τ)q/R))dq

]
. (36)
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< q2 >= a(τ)2

∫ qM
b q4 exp(βGm2/a(τ)q)dq +

∫ R
qM

q4 exp(−βm
√

Gma0ln(a(τ)q/R))dq∫ qM
b q2 exp(βGm2/a(τ)q)dq +

∫ R
qM

q2 exp(−βm
√

Gma0ln(a(τ)q/R))dq
. (37)

Equations (36) and (37) can be rewritten in dimensionless form as:

Z(t) = (
R
b
)3a(τ)3t3

[ ∫ qM
b

1
x2 exp

(
1

txa(τ)

)
dx +

∫ R
b

qM
b

x2 exp
(
− e1 ln(ba(τ)x/R

e2t

)
dx

]
, (38)

< x2 >= a(τ)2

∫ qM
b

1 x4 exp
(

1
txa(τ)

)
dx +

∫ R
b

qM
b

x4 exp
(
− e1 ln(ba(τ)x/R)

e2t

)
dx∫ qM

b
1 x2 exp

(
1

txa(τ)

)
dx +

∫ R
b

qM
b

x2 exp
(
− e1 ln(ba(τ)x/R

e2t

)
dx

, (39)

where x ≡ q
b . In Figure 5 , the order parameter < x2 > for various scale factors

a(τ) = 1, 0.1, 0.05 is plotted in the left panel, while the right panel demonstrates criti-
cal temperature versus scale factor, showing that the critical temperature decreases as the
scale factor increases.
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Figure 5. Order parameter (left) and critical temperature (right) for different values of the scale
factor. When the scale factor increases, the critical temperature decreases.

6. Conclusions

In this work, we have studied thermodynamical phase transition under MONDian
gravity. In addition, the influence of the cosmic expansion on the critical temperature of
the detected phase transition has been studied. We have shown that in the microcanonical
ensemble of binary systems under MONDian gravity, a sharp phase transition is not
present in Newtonian gravity. Furthermore, we find a smoother phase transition with finite
critical temperature by studying the specific heat Cv and an order parameter of a binary
system in a canonical ensemble. One interesting result is that although both Newtonian
and MONDian systems experience a phase transition in the canonical ensemble, they
have different critical temperatures. The next steps in our research will be considering
all interactions in the N-body system with the MONDian gravity and its connection with
cosmological MOND [26]. In other directions, it would also be interesting to study the
fractal structure of clusters in the crumpled phase of the system, as well as the equation of
state (using the partition function in the grand canonical ensemble) and complexity in the
view of [46]. Investigation of the critical temperature of rotating MONDian self-gravitating
systems will be another interesting problem.
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Appendix A

Here we calculate g(E) for the binary system in MOND for the microcanonical ensem-
ble. For the case with energy −Gm2

b < E < −Gm2

rM
from Equation (15), we have:

g(E) =
∫ − be2

E

b
r2(E +

be2

r
)2 dr = − b3(E + e2)

3

3E
. (A1)

The temperature of this system with energy E is given by T−1 = ∂ ln(g(E))
∂E ,

t =
ε(ε + 1)
2ε− 1

, (A2)

where dimensionless temperature and energy defined as t = (bT/Gm2) and ε = (bE/Gm2)
in Equation (10). If we increase the energy, the particles’ accessible energy would be
−Gm2

rM
< E < 0 making the integral (15)

g(E) =
∫ be2

e1
b r2

(
E + be2

r

)2
dr +

∫ Re(
E
e1 )

be2
e1

r2[E− e1 log
( r

R
)]2 dr

= A1 + A2 + A3,

where e1 = m
√

Gma0, e2 = Gm2/b and

A1 =

(
bEe2

e1
+be2

)3
−b3(E+e2)

3

3E − b3e2
3

27e1
3

(
6Ee1 + 2e1

2),
A2 = 1

27 R3e
3E
e1 [9E2 + 9e1

2 log2
(

eE/e1
)
+ 6Ee1 − 6e1(3E + e1) log

(
eE/e1

)
+ 2e1

2],

A3 = − b3e2
3

27e1
3

[
−6e1(3E + e1) log

(
be2
e1R

)
+ 9e1

2 log2
(

be2
e1R

)
+ 9E2

]
.

Similarly to the first part, we define the temperature of system in this range of energy as

t = B1 + B2 + B3,

where

B1 = b3[3 log( be2
e1R )(−3 e1

e2
log( be2

e1R ) + 6ε + 2 e1
e2
)− 9ε2( e1

e2
)2 + 3ε(7− 9 e1

e2

2
) + ( e1

e2
)(25− 27 e1

e2
)
]
,

B2 = ( e1
e2
)2R3e

3εe2
e1 (9ε2 + 6ε e1

e2
+ 3 e1

e2
log(eεe2/e1)(3 e1

e2
log(eεe2/e1)− 2(3ε + e1

e2
)),

B3 = 2( e1
e2
)2[3 e1

e2
R3e

3ε
e1 (9e2 + 6ε e1

e2
+ 3 e1

e2
log(eεe2/e1)(3 e1

e2
log(eεe2/e1)

−2(3ε + e1
e2
)) + 2( e1

e2
)2 − 3b3(−6 log( be2

e1R ) + 6ε( e1
e2
)2 + 9( e1

e2
)2 − 7))−1].

Finally for the energy range 0 < E < ∞, we have:

g(E) =
∫ be2

e1

b
r2[E +

be2

r
]2dr +

∫ R

be2
e1

r2[E− e1 log
( r

R

)]2dr = C1 + C2,
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where

C1 =
(9E2+6Ee1+2e2

1)(e3
1R3−b3e3

2)
27e3

1
+

3b3e1e3
2 log

(
be2
e1R

)[
−3e1 log

(
be2
e1R

)]
27e3

1
,

C2 = (6E+2e1)

27e3
1

+

(
bEe2

e1
+ae2

)3
−b3(E+e2)

3

3E .

The temperature of the system is similar to parts one and two above, and is given by:

t = D1 + D2 + D3,

where

D1 =
b3
[
9ε2( e1

e2
)2 + 3ε

(
9( e1

e2
)2e2 − 7

)
+ e1

e2
(27 e1

e2
− 25)

]
3
[
b3
(

6ε( e1
e2
)2 + 9( e1

e2
)2 − 7

)
− 6b3 log

(
be2
e1R

)
− 2( e1

e2
)2R3(3ε + e1)

] ,

D2 =
3b3e3

2 log
(

be2
e1R

)[
3 e1

e2
log
(

be2
e1R

)
− 2(3ε + e1)

]
3
[
b3
(

6ε( e1
e2
)2 + 9( e1

e2
)2 − 7

)
− 6b3 log

(
be2
e1R

)
− 2( e1

e2
)2R3(3ε + e1)

] ,

D3 = −
e2

1R3
[
9ε2 + 6ε e1

e2
+ 2( e1

e2
)2
]

3
[
b3
(

6ε( e1
e2
)2 + 9( e1

e2
)2 − 7

)
− 6b3 log

(
be2
e1R

)
− 2( e1

e2
)2R3(3ε + e1)

] .
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