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Abstract: In this article, a novel adaptive fixed-time neural network tracking control scheme for
nonlinear interconnected systems is proposed. An adaptive backstepping technique is used to
address unknown system uncertainties in the fixed-time settings. Neural networks are used to
identify the unknown uncertainties. The study shows that, under the proposed control scheme,
each state in the system can converge into small regions near zero with fixed-time convergence time
via Lyapunov stability analysis. Finally, the simulation example is presented to demonstrate the
effectiveness of the proposed approach. A step-by-step procedure for engineers in industry process
applications is proposed.

Keywords: adaptive fixed-time; neural network; nonlinear interconnected systems

1. Introduction

In actual industrial processes, after decades of development, several control strategies
based on classical control theory and modern control theory have been developed. How-
ever, most of these control methods are based on single-input single-output linear systems.
There are many nonlinear, uncertain, unmodeled dynamic problems in actual industrial
processes that pose great challenges to the design of control systems. With the develop-
ment of engineering automation requirements, the research of control strategies based on
multi-input multi-output nonlinear systems has attracted growing attention. In recent
decades, many control schemes have been proposed for stability analysis and the control for
nonlinear systems, such as the adaptive technique [1–3], backstepping technique [4–6], U
model control [7–9], sliding mode control [10–12], super twisting algorithm [13,14], neural
network technique [6,15,16], etc. In particular, neural network technology has attracted
many researchers’ attention because of the following aspects: (1) a neural network has
the strong ability to learn any function and can approximate any nonlinear system, and
(2) because of the self-learning ability of neural networks, the controller does not need
much system model and parameter information, so neural network control can be widely
used to solve the control problems caused by uncertain models [17]. In [18], the control
problem of time-varying output constraints was investigated using the neural network
technique. The use of adaptive neural network control for an uncertain nonlinear sys-
tem with external disturbance was presented in [19]. In [20], neural network controller
designs were presented for several classes of nonlinear systems, including single-input
single-output nonlinear systems, strict feedback nonlinear systems, nonaffine nonlinear
systems, and multi-input multi-output triangular nonlinear systems.

Most of the above research was proven based on Lyapunov stability theory. However,
actual systems often have various disturbances that cannot strictly meet the definition of
Lyapunov stability. To solve this problem, scholars have mainly introduced new concepts
based on two aspects. On the one hand, the concept of input-to-state stability has been

Entropy 2021, 23, 1152. https://doi.org/10.3390/e23091152 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6400-9184
https://orcid.org/0000-0002-6561-5917
https://orcid.org/0000-0001-5153-0675
https://doi.org/10.3390/e23091152
https://doi.org/10.3390/e23091152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23091152
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23091152?type=check_update&version=2


Entropy 2021, 23, 1152 2 of 15

introduced; on the other hand, the concept of practical stability has been introduced with
the aim of making systems stable in finite time. If a closed-loop system reaches a stable
state in a limited time, it is called finite-time stability. Further, if a system meets the
convergence time and does not depend on the initial parameters, it is called fixed-time
stability. Compared with the traditional finite-time control method, the convergence time of
the fixed-time control method is independent of the initial conditions. Exponential stability,
finite-time stability, and fixed-time stability are all concepts related to the convergence rate
of a system. They are very important for many control applications, such as the explosion
of missiles. In [21], taking the stability analysis of a sliding mode control system as an
example, input–output stability, finite-time stability, and fixed-time stability are introduced
in detail. In [14], the convergence time of the super-twisting algorithm for a nonaffine
nonlinear system was calculated. In [22], the finite time input–output stability of nonlinear
systems is studied. In [23], a finite-time adaptive controller is designed for interconnected
systems with time-varying output constraints to make the system stable in finite time, but
the fixed-time convergence problem is not considered in this paper. The use of adaptive
fixed-time tracking control for a strict feedback nonlinear system was studied in [24].
However, there are still many problems to be solved in these existing control strategies,
such as state constraints, the adaptive backstepping “explosion” problem, and so on.

In the actual production process, many physical models, such as power systems, pro-
cess control systems, and manipulator models, can be modeled as nonlinear interconnected
systems. Because the interconnected terms between nonlinear interconnected subsystems
are unknown, it is physically difficult to obtain this information through sensors, and it
requires significant computer resources. Therefore, designing a reliable control scheme for
nonlinear interconnected systems is a challenging task. The adaptive decentralized control
scheme for interconnected nonlinear systems was discussed in [25]. In [26], the robust
adaptive tracking control scheme was proposed for uncertain interconnected nonlinear
systems. In [27], the use of adaptive neural control for high-order interconnected systems
was examined.

Based on the above analysis, the main goal of this article is to design an adaptive
fixed-time neural network tracking controller for nonlinear interconnected systems. The
main contributions of this paper are as follows:

(1) The combination of fixed-time control and neural network adaptive control for non-
linear interconnected systems.

(2) A fixed-time low pass filter is designed to solve the “explosion of complexity” based
on backstepping control technology.

(3) A fixed-time controller is designed, which contains the convergence time of the error
system, weights of neural networks, and a low pass filter system.

The article is organized into the following sections. A nonlinear interconnected
mathematical description of the problem is presented in Section 2, the adaptive fixed-time
neural network control scheme for a class of nonlinear interconnected systems is proposed
in Section 3, two simulation examples are provided to show the reliability of the presented
control scheme in Section 4, and finally, some conclusions are given in Section 5.

2. Problem Formation and Preliminaries

Consider the interconnected nonlinear system:

.
xi,m = xi,m+1 + fi,m(xi,m).
xi,n = ui + fi,n(xi,n) + hi,n(x1,n, x2,n, · · · , xN,n)
yi = xi,1

(1)

where xi,m ∈ R is the state of the interconnected nonlinear system; xi,m = [xi,1, . . . , xi,m]
T ∈ Rm

is the state vector of the system; fi,m(xi,m) : Rm → R is the known smooth function;
hi,n(x1,n, x2,n, · · · , xN,n) : Rn×N → R is the unknown smooth function; yi ∈ R is the output
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of the system; ui ∈ R is the corresponding control input of the system; the desired trajectory
yi,d and its derivative are continuous and bounded.

Remark 1: In the next section, we introduce a neural network adaptive control method based
on the fixed-time stability theory. The objective of the method is for the nonlinear interconnected
system output to be able to track the desired signal and maintain fixed-time stability based on the
adaptive fixed-time neural network controller. The designed setting time does not rely on the initial
parameters and can be realized only by adjusting the controller parameters.

3. Adaptive Fixed-Time Tracking Control System Design
3.1. Control System Design

In this section, the design of a fixed-time adaptive law for the error systems of neural
networks will be presented. The tracking control system’s objective is to drive the error
system to fixed-time stability. To solve the tracking control problem, the neural network
adaptive controller, based on fixed-time Lyapunov stability theory for nonlinear inter-
connected systems, is presented. The adaptive fixed-time laws were designed to update
the weights of the neural networks for the error systems. Neural networks were used to
approximate unknown functions. The parameters of the neural networks were iteratively
based on the Lyapunov fixed-time stability theorem. The convergence time can be designed
by choosing controller parameters without the initial condition. Based on the controller, the
error-closed loop system achieves Lyapunov fixed-time bounded stability, which means
the output trajectory can track to the desired trajectory in fixed time.

Remark 2: The control structure’s design for the closed loop system is shown in Figure 1. The
states of the error system can be determined from the minus between the setting reference function
and the actual output function of the nonlinear interconnected system.

Figure 1. Control structure of the closed system.

3.2. Control System Analysis

Step 1: First, for the system i, the following variables are selected:

zi,1 = xi,1 − yi,d (2)

The dynamics of zi,1 can be obtained as

.
zi,1 = xi,2 + fi,1(xi,1)−

.
yi,d (3)

Design the ideal virtual control as

αi,1 = −pi,1zp
i,1 − qi,1zq

i,1 − fi,1(xi,1) +
.
yi,d (4)

where pi,1 > 0, qi,1 > 0 Select the virtual control αi,1 and design the adaptive law as

.
αi,1 = −li,p,1yp

i,1 − li,q,1yq
i,1 − ki,α,1yi,1 − zi,1, αi,1(0) = 0 (5)
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where, li,p,1 > 0, li,q,1 > 0 and the error virtual control is

yi,1 = αi,1 − αi,1 (6)

Therefore, based on system (3) and virtual control

.
zi,1 = xi,2 + fi,1(xi,1)−

.
yi,d − pi,1zp

i,1 − qi,1zq
i,1 − fi,1(xi,1) +

.
yi,d − αi,1

= xi,2 − pi,1zp
i,1 − qi,1zq

i,1 − αi,1 + αi,1 − αi,1

= −pi,1zp
i,1 − qi,1zq

i,1 + zi,2 + yi,1

(7)

where
zi,2 = xi,2 − αi,1 (8)

and the dynamic error virtual control is

.
yi,1 =

.
αi,1 −

.
αi,1

= −li,p,1yp
i,1 − li,q,1yq

i,1 − ki,α,1yi,1 − zi,1 −
.
αi,1

(9)

The Lyapunov candidate functional is chosen as

V1 =
1
2

z2
i,1 +

1
2

y2
i,1 (10)

Differentiating V1 with respect to time t yields

.
V1 = zi,1

.
zi,1 + yi,1

.
yi,1

= −pi,1zp+1
i,1 − qi,1zq+1

i,1 + zi,1zi,2

−li,p,1yp+1
i,1 − li,q,1yq+1

i,1 − ki,α,1y2
i,1 − yi,1

.
αi,1

(11)

Step m: the form of the tracking error is

zi,m = xi,m − αi,m−1 (12)

The dynamics of zi,m can be obtained as

.
zi,m = xi,m+1 + fi,m(xi,m)−

.
αi,m−1 (13)

Design the ideal virtual control as

αi,m = −pi,mzp
i,m − qi,mzq

i,m − fi,m(xi,m) +
.
αi,m−1 (14)

where pi,m > 0, qi,m > 0 Select the virtual control αi,m, and the adaptive law can be obtained as

.
αi,m = −li,p,myp

i,m − li,q,myq
i,m − ki,α,myi,m − zi,m, αi,m(0) = 0 (15)

where, li,p,m > 0, li,q,m > 0 and the error virtual control is

yi,m = αi,m − αi,m (16)

Therefore, based on system (13) and virtual control
.
zi,m = xi,m+1 + fi,m(xi,m)−

.
αi,m−1 − pi,mzp

i,m − qi,mzq
i,m − fi,m(xi,m) +

.
yi,m−1 −

.
αi,m−1

= xi,m+1 − pi,mzp
i,m − qi,mzq

i,m − αi,m + αi,m − αi,m

= −pi,mzp
i,m − qi,mzq

i,m + zi,m+1 + yi,m

(17)

where
zi,m+1 = xi,m+1 − αi,m (18)
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and the dynamic error virtual control is

.
yi,m =

.
αi,m −

.
αi,m

= −li,p,myp
i,m − li,q,myq

i,m − ki,α,myi,m − zi,m −
.
αi,m

(19)

The Lyapunov candidate functional is chosen as

Vm =
1
2

z2
i,m +

1
2

y2
i,m (20)

Differentiating Vm with respect to time t yields

.
Vm = zi,m

.
zi,m + yi,m

.
yi,m

= −zi,m−1zi,m − pi,mzp+1
i,m − qi,mzq+1

i,m + zi,mzi,m+1

−li,p,myp+1
i,m − li,q,myq+1

i,m − ki,α,my2
i,m − yi,m

.
αi,m

(21)

Step n: the time derivative of zi,n can be described as

zi,n = xi,n − αi,n−1 (22)

Based on dynamics and tracking errors, the dynamics of zi,n can be obtained as

.
zi,n = ui + fi,n(xi,n) + hi,n(x1,n, x2,n, · · · , xN,n,)− .

αi,n−1 (23)

Design the NNs’ approximate nonlinear systems as

hi,n(x1,n, x2,n, · · · , xN,n) = WT
i Ψ(Z) + εi(Z) (24)

where Z = [x1,n, x2,n, · · · , xN,n]
T , θi = ‖Wi‖, and is estimated by θ̂i. The controller is

designed as

ui = −zi,n−1 − pi,nzp
i,n − qi,nzq

i,n − ki,nzi,n − fi,n(xi,n)− sign(zi,n)θ̂i‖Ψ‖+
.
αi,n−1 (25)

where ki,n > 1
2 . Design the adaptive law as

.
θ̂i = µi

(
|zi,n||Ψi| − ςi θ̂

p
i − χi θ̂

q
i

)
(26)

where µi > 0, ςi > 0, χi > 0 Therefore, based on system (23) and controller

.
zi,n = WT

i Ψ(Z) + εi(Z)− zi,n−1 − pi,nzp
i,n − qi,nzq

i,n − ki,nzi,n − sign(zi,n)θ̂i‖Ψ‖ (27)

the Lyapunov candidate functional is chosen as

Vn =
1
2

z2
i,n +

1
2µi

θ̃2
i (28)

Differentiating Vn with respect to time t yields

.
Vn = zi,n

.
zi,n +

1
µi

θ̃i

.
θ̂i

= zi,nWT
i Ψ(Z) + zi,nεi(Z)− zi,n−1zi,n − pi,nzp+1

i,n − qi,nzq+1
i,n

−ki,nz2
i,n − θ̂i|zi,n|‖ Ψ ‖+ θ̃i

(
|zi,n||Ψi| − ςi θ̂

p
i − χi θ̂

q
i

)
≤ θi|zi,n|‖ Ψ ‖ −

(
ki,n − 1

2

)
z2

i,n +
1
2 εi − zi,n−1zi,n − pi,nzp+1

i,n − qi,nzq+1
i,n

−θ̂i|zi,n|‖ Ψ ‖+ θ̃i|zi,n||Ψi| − ςi θ̃i θ̂
p
i − χi θ̃i θ̂

q
i

(29)
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where ε2
i (Z) ≤ εi. Based on Lemma 4, we have

−ςi θ̃i θ̂
p
i ≤ −γi θ̃

p+1
i + λiθ

p+1
i

−χi θ̃i θ̂
q
i ≤ −νi θ̃

q+1
i + υiθ

q+1
i

(30)

where ςi, γi, λi, χi, νi, υi are real numbers, γi, λi is determined by ςi, p, and νi, υi is deter-
mined by χi, q. Therefore, we have

.
Vn ≤ −

(
ki,n − 1

2

)
z2

i,n +
1
2 εi − zi,n−1zi,n − pi,nzp+1

i,n − qi,nzq+1
i,n

−γi θ̃
p+1
i + λiθ

p+1
i − νi θ̃

q+1
i + υiθ

q+1
i

(31)

Theorem 1. For the interconnected nonlinear system (1), based on the feasible virtual control signal
(5), (15) actual controller (25), and adaptive law (26), the error state between the system output
and the desired function is fixed-time Lyapunov stability, and the setting time does not rely on the
initial parameters.

Proof. Based on the Lyapunov candidate functionals (10), (20), and (28), differentiating
the Lyapunov functional with respect to time t yields (11), (21), and (31). Choosing the
Lyapunov candidate functional as

V =
1
2

n

∑
j=1

z2
i,j +

1
2

n−1

∑
j=1

y2
i,j +

1
2µi

θ̃2
i (32)

and differentiating the Lyapunov functional with respect to time t yields

.
V ≤ −

n
∑

j=1
pi,jz

p+1
i,j −

n
∑

j=1
qi,jz

q+1
i,j −

n
∑

j=1
li,p,jy

p+1
i,j −

n
∑

j=1
li,q,jy

q+1
i,j

−
n−1
∑

j=1
ki,α,jy2

i,j −
n−1
∑

j=1
yi,j

.
αi,j −

(
ki,n − 1

2

)
z2

i,n +
1
2 εi

−γi θ̃
p+1
i + λiθ

p+1
i − νi θ̃

q+1
i + υiθ

q+1
i

(33)

where
∣∣∣ .
αi,1

∣∣∣2 ≤ pi, and

.
V ≤ −

n
∑

j=1
pi,jz

p+1
i,j −

n
∑

j=1
qi,jz

q+1
i,j −

n
∑

j=1
li,p,jy

p+1
i,j −

n
∑

j=1
li,q,jy

q+1
i,j

−γi θ̃
p+1
i − νi θ̃

q+1
i −

n−1
∑

j=1

(
ki,α,j − 1

2

)
y2

i,j −
(

ki,n − 1
2

)
z2

i,n

+
n−1
∑

j=1
mj +

1
2 εi + λiθ

p+1
i + υiθ

q+1
i

(34)

By choosing the control parameters, ki,α,j >
1
2 , ki,n > 1

2 we have

.
V ≤ −

n
∑

j=1
pi,jz

p+1
i,j −

n
∑

j=1
qi,jz

q+1
i,j −

n
∑

j=1
li,p,jy

p+1
i,j

−
n
∑

j=1
li,q,jy

q+1
i,j − γi θ̃

p+1
i − νi θ̃

q+1
i

+
n−1
∑

j=1
mj +

1
2 εi + λiθ

p+1
i + υiθ

q+1
i

≤ −aV
p+1

2 − bV
q+1

2 + c

(35)



Entropy 2021, 23, 1152 7 of 15

where

a =
min{pi,j∈N ,li,p,j∈N ,γi}(

max
{

1
2 , 1

2µi

}) p+1
2

, b =
(2n)

1−q
2 min{qi,j∈N ,li,q,j∈N ,νi}(
max

{
1
2 , 1

2µi

}) q+1
2

c =
n−1
∑

j=1
mj +

1
2 εi + λiθ

p+1
i + υiθ

q+1
i

(36)

Therefore, the error system is fixed-time, practical, and stable. �

Remark 3: From the definition of Lyapunov stability, Lyapunov stability, asymptotic stability, and
finite-time stability are the three most basic concepts, and their definitions are progressive.

At present, the concepts of stability related to the convergence rate mainly include exponential
stability, finite-time stability, and fixed-time stability. Exponential stability is the realization of
asymptotic stability, while fixed-time stability is the generalization of finite-time stability. From the
point of view of standard definitions, they are strictly distinguished, and from the point of view of
controller design, they also have different forms.

From the perspective of system convergence time, Lyapunov stability can be divided into
infinite-time stability and finite-time stability. In the theoretical analysis of stability, the most
common exponential stability is infinite-time stability. Infinite-time stability means that when
time tends to infinity, the system state can converge exponentially by designing the parameters
of the controller. Finite-time stability means that the system can be stable at a certain time and
continue to maintain a stable state by designing the parameters of the controller. For practical
engineering control, finite-time stability is obviously more practical than infinite-time stability, but
there are some limitations to finite-time stability; for instance, the convergence time of the designed
system depends on the initial state. Therefore, in this section, another scheme was introduced: the
tracking control method for nonlinear interconnected systems based on fixed-time stability theory.
The setting time does not depend on the initial parameters and can be realized only by adjusting
the controller parameters. In other words, under the condition that the controlled system is stable
in fixed time, even if the initial parameters are changed, the controlled system can still be stable
within the originally designed fixed time without redesigning the controller. This greatly improves
the potential of the control method to be used in practical applications.

Remark 4: The design details are summarized in Figure 2. The above-listed step procedure is
detailed below.

Step 1: Design of the ideal virtual control laws (4) and (14), based on backstepping control technology.
Step 2: Design of the virtual control laws (5) and (15), based on the fixed-time low pass filter.
Step 3: The actual controller (25) is obtained recursively through the virtual control signal

and the adaptive parameter (26).
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Figure 2. Design procedure.

4. Numerical Examples

The main purposes of the simulation studies include: (1) validating the effectiveness
of the adaptive fixed-time neural network tracking controller for nonlinear interconnected
systems; (2) showing a step-by-step procedure for building the adaptive fixed-time tracking
control system.

A. Numerical Example
Consider the following nonlinear interconnected system:

.
x1,1 = x1,2.
x1,2 = sin(x1,1) + u1 + h1,2
y1 = x1,1.
x2,1 = x2,2.
x2,2 = sin(x2,1) + u2 + h2,2
y2 = x2,1

(37)

where the function, h1,2 = sin(x2,1)− sin(x1,1). h2,2 = sin(x1,1)− sin(x2,1).
Step 1: Design of the fixed-time ideal virtual control law and fixed-time adaptive law

of neural networks:
αi,1 = −2z

1
3
i,1 − 2z3

i,1 (38)

.
θ̂i = 0.01

(
|zi||Ψi| − 0.1θ̂

5
3
i − 0.1θ̂

1
3
i

)
(39)



Entropy 2021, 23, 1152 9 of 15

Step 2: Design of the fixed-time low pass filter:

.
αi,1 = −2y

1
3
i,1 − 2y3

i,1 − 2yi,1 − zi,1, αi,1(0) = 0 (40)

Step 3: The actual controller is obtained recursively through the virtual control signal
and the adaptive parameter, and the control input is designed as

ui = −zi,1 − 2z
1
3
i,2 − 2z3

i,2 − 2zi,2 − sign(zi,2)θ̂i‖Ψi‖+
.
αi,1 (41)

The initial condition is selected as x11(0) = −2, x21(0) = 2, θ̂1(0) = 0, θ̂2(0) = 0 The
neural network consists of seven nodes, the centers c = [−3,−2,−1, 0, 1, 2, 3], and the
widths b = 1, respectively.

Figure 1 shows the control structure of the closed-loop system. Figure 2 shows the step-
by-step design procedure. Figures 3–5 are the simulation results. Figure 3 shows the output
of the interconnected system and the output of the interconnected system’s convergence to
the origin point in finite time, which indicates the control performance of the fixed-time
neural network adaptive control. Figure 4 shows the controller of the interconnected
system, which is bound and realizable. Figure 5 shows the trajectories of error of the low
pass filter, and the error between the virtual control and ideal virtual control indicates that
the virtual control is close to the ideal virtual control and that the differential coefficient
exists. The simulation results show that the controlled system can become stable in 14 s,
and the convergence time can be designed. Even if the states’ initial parameters change, the
controlled system can still become stable in 14 s. The system includes unknown nonlinear
functions, which verify that the neural network control scheme has strong adaptive ability
and approximation ability.

Figure 3. Trajectories of x1,1 and x2,1 of the interconnected system.
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Figure 4. Trajectories of the controller of the interconnected system.

Figure 5. Trajectories of error of the low pass filter.

B. Application Example
Consider a pendulum system [25], with two degrees, as an interconnected system

(Figure 6), which has been used as an example of decentralized neural control.

.
x1,1 = x1,2
.
x1,2 = 1

J1
u1 +

kr
2J1

(l − b) +
(

m1gr
J1
− kr2

4J1

)
sin(x1,1) +

kr2

4J1
sin(x2,1)

y1 = x1,1.
x2,1 = x2,2
.
x2,2 = 1

J2
u2 +

kr
2J2

(l − b) +
(

m2gr
J2
− kr2

4J2

)
sin(x2,1) +

kr2

4J2
sin(x2,1)

y2 = x2,1

(42)
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Figure 6. Two inverted pendulums connected by an unknown device.

Step 1: Design of the fixed-time ideal virtual control law and fixed-time adaptive law
of neural networks:

αi,1 = −2z
1
3
i,1 − 2z3

i,1 (43)

.
θ̂i = 0.01

(
|zi||Ψi| − 0.1θ̂

5
3
i − 0.1θ̂

1
3
i

)
(44)

Step 2: Design of the fixed-time low pass filter:

.
αi,1 = −2y

1
3
i,1 − 2y3

i,1 − 2yi,1 − zi,1, αi,1(0) = 0 (45)

Step 3: The actual controller is obtained recursively through the virtual control signal
and the adaptive parameter, and the control input is designed as

ui = −zi,1 − 2z
1
3
i,2 − 2z3

i,2 − 2zi,2 − sign(zi,2)θ̂i‖Ψi‖+
.
αi,1 (46)

The initial condition is selected, and m1 = 2 kg , m2 = 2.5 kg, J1 = 0.5 kg, J2 = 0.625 kg,
k = 100 N/M, r = 0.5 m, l = 0.5 m, g = 9.81 m/s2, b = 0.4 m and the function,
y1,d = 0.5 sin(t). y2,d = 0.5 cos(t) The neural network consists of seven nodes, the centers,
c = [−3,−2,−1, 0, 1, 2, 3] and the widths, respectively.

The simulation results are shown in Figures 7–10. From the simulation results, it can
be seen that the system output can track the desired signal in 2.5 and 5 s, respectively,
and the setting time can be designed. Even if the states’ initial parameter change, the
controlled system can still become stable in the same time. The pendulum system includes
unknown nonlinear functions, which verify that the neural network control scheme has
strong adaptive ability and approximation ability. The pendulum system also includes
interconnected items, which verify that the control scheme can be applied to interconnected
nonlinear control systems.
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Figure 7. Trajectories of x1,1 and y1,d of the interconnected system.

Figure 8. Trajectories of x2,1 and y2,d of the interconnected system.
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Figure 9. Trajectories of the controller of the interconnected system.

Figure 10. Trajectories of error of the low pass filter.

5. Conclusions

In this paper, through the design of a timing adaptive law for a neural network error
system based on the Lyapunov fixed-time stability theorem, the unknown parameters of
neural networks are iterated in fixed time. The convergence time can be designed only by
modifying the parameters of the system controller and the adaptive rate, and it does not
depend on the initial conditions. The fixed-time Lyapunov stability theorem is proposed,
and the strict mathematical proof is completed, which will have more practical significance
than the ideal stability analysis based on Lyapunov stability theory. Furthermore, the
algorithm flow chart is given, which can be used by engineers to realize the proposed
tracking control method by a computer for practical engineering. However, the control
scheme based on neural networks also has some limitations. Firstly, because it cannot
guarantee the asymptotic stability of the system, it is suitable for the controlled system,
whose control objective is bounded stability. Secondly, the pure feedback structure is more
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general than strict feedback, and pure feedback has more application value; therefore,
pure feedback interconnected system fixed-time neural network control results should be
presented in future works.
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