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Abstract: Although robust divergence, such as density power divergence and γ-divergence, is
helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls
the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference.
We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen
score applied to an unnormalized model defined by robust divergence. The proposed selection
criterion only requires first and second-order partial derivatives of an assumed density function with
respect to observations, which can be easily computed regardless of the number of parameters. We
demonstrate the usefulness of the proposed method via numerical studies using normal distributions
and regularized linear regression.

Keywords: efficiency; Hyvarinen score; outlier; unnormalized model

1. Introduction

Data with outliers naturally arise in diverse areas. In the analysis of data containing
outliers, statistical models with robust divergence are known to be powerful and have
been used regularly. In particular, the density power divergence [1] and γ-divergence [2]
have been routinely used in this context due to their robustness properties while there
now exist others. In these studies, the theoretical properties of the robustness of robust
divergence against outliers are also clarified through the analysis of influence functions. For
its interesting applications, see for example [3,4] and references therein. Robust divergence,
in general, holds a tuning parameter that controls robustness under model misspecification
or contamination. Ref. [1] noted that there is a trade-off between estimation efficiency and
strength of robustness; thereby, a suitable choice of the tuning parameter seems crucial
in practice. However, a well-known selection strategy such as cross-validation is not
straightforward under contamination, so that we need to rely on a trial-and-error way to
find a reasonable value of the tuning parameter.

To select a turning parameter, we here propose a simple but novel selection criterion
for the tuning parameter by using the asymptotic approximation of Hyvarinen score [5,6]
with unnormalized models based on robust divergence. Typical existing methods [7,8]
choose a tuning parameter based on the asymptotic approximation of the mean square
error but have the drawback of requiring some pilot estimators and an analytical expression
of the asymptotic variance. In addition, their works are essentially limited to the simple
normal distribution and simple linear regression. Our proposed method has the following
advantages over the existing studies.

1. Our method does not require an explicit representation of the asymptotic variance.
Therefore, our method can be applied to rather complex statistical models, such as
multivariate models, which seems difficult to be handled by the previous methods;

2. In the existing studies, it is necessary to determine a certain value as a pilot estimate
to optimize a tuning parameter. Thus, the estimates may strongly depend on the pilot
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estimate. On the other hand, our method does not require a pilot estimate and is
stable and statistically efficient;

3. Although our proposed method is based on a simple asymptotic expansion, it is more
statistically meaningful and easier to interpret the results statistically than existing
methods because it is based on the theory of parameter estimation for unnormalized
statistical models.

Through numerical studies under simple settings, we show that the existing methods
can be sensitive to a pilot estimate and tends to select an unnecessarily larger value of
a tuning parameter, leading to loss of efficiency compared with the proposed method.
Moreover, we still apply the proposed selection method, an estimation procedure in which
the asymptotic variance is difficult to compute. As an illustrative example of such a case,
we consider robust linear regression with γ-divergence and `1-regularization, where the
existing approach is infeasible to apply.

As related works, there are two information criteria using the Hyvarinen score. [9] pro-
posed AIC-type information criteria for unnormalized models by deriving an asymptotic
unbiased estimator of the Hyvarinen score, but it does not allow unnormalized models
whose normalizing constants do not exist. Hence, the criterion cannot be applied to the
current situation. On the other hand, [10] proposed an information criterion via Laplace
approximation of the marginal likelihood in which the potential function is constructed by
the Hyvarinen score. Although [10] covers unnormalized models with possibly diverging
normalizing constants, the estimator used in the criterion is entirely different from one
defined as the maximizer of robust divergence; thereby, the criterion does not apply to the
tuning parameter selection of robust divergence either. Moreover, ref. [11] developed an
robust sequential Monte Carlo sampler based on robust divergence in which γ is adaptively
selected. However, it does not provide selection of γ in a frequentist framework.

The rest of the paper is organized as follows. Section 2 introduces a new selection
criterion based on the Hyvarinen score. We then provide concrete expressions of the
proposed criterion under density power divergence and γ-divergence in Section 3. We
numerically illustrate the proposed method in two situations in Section 4. Concluding
remarks are given in Section 5.

2. Tuning Parameter Selection of Robust Divergence

Suppose we observe y1, . . . , yn as realizations from a true distribution or data gen-
erating process G, and we want to fit a statistical model { fθ : θ ∈ Θ} where Θ ⊆ Rd for
some d ≥ 1. Furthermore, assume that the density of G is expressed as (1− ω) fθ∗ + ωδ,
where δ is a contaminated distribution that produces outliers in observations. Our goal is
to make statistical inference on θ∗ by successfully eliminating information of outliers. To
this end, robust divergence such as density power divergence [1] and γ-divergence [2] is
typically used for robust inference on θ∗. Let y = (y1, . . . , yn) be a vector of observations
and Dγ(y; θ) be a (negative) robust divergence with a tuning parameter γ. We assume
that the robust divergence has a additive form, namely, Dγ(y; θ) = ∑n

i=1 Dγ(yi; θ). This
constraint is necessary when using the H-score, but it is not a strong constraint in the
context of this study because the well-known robust divergence, as presented in Section 3,
satisfies this property.

For selecting the tuning parameter γ, our main idea is to regard Lγ(yi; θ) ≡ exp{Dγ(yi; θ)}
as an unnormalized statistical model whose normalizing constant may not exist. Recently,
ref. [10] pointed out that the role of such unnormalized models can be recognized in terms
of relative probability. For such model, we employ the Hyvarinen score (H-score) in terms of
Bayesian model selection [5,6], defined as

H∗n(γ) ≡
1
n

n

∑
i=1

{
2

∂2

∂y2
i

log L(m)
γ (y) +

(
∂

∂yi
log L(m)

γ (y)
)2
}

, (1)
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where L(m)
γ (y) is the marginal likelihood given by

L(m)
γ (y) =

∫
π(θ)

n

∏
i=1

Lγ(yi; θ)dθ. (2)

with some prior distribution π(θ). We consider an asymptotic approximation of the
H-score (1) under large sample sizes. Under regularity conditions [12], the Laplace approx-
imation of (2) is

L(m)
γ (y) ≈ (2π)d/2π(θ̂γ)|H(θ̂γ)|−1/2

n

∏
i=1

Lγ(yi; θ̂γ), (3)

where θ̂γ is the M-estimator given by

θ̂γ = argmaxθ

n

∑
i=1

log Lγ(yi; θ),

and H(θ̂γ) is the Hessian matrix at θ = θ̂γ. Then, we have the following approximation,
where the proof is deferred to Appendix A.

Proposition 1. Under some regularity conditions, it follows that

∂

∂yi
log L(m)

γ (y) = D′γ(yi; θ̂γ) + op(1),
∂2

∂y2
i

log L(m)
γ (y) = D′′γ(yi; θ̂γ) + op(1),

where D′γ(yi; θ) = ∂Dγ(yi; θ)/∂yi and D′′γ(yi; θ) = ∂2Dγ(yi; θ)/∂y2
i .

The above results give the following approximation of the original H-score:

Hn(γ) =
1
n

n

∑
i=1

{
2D′′γ(yi; θ̂γ) +

(
D′γ(yi; θ̂γ)

)2
}

, (4)

which satisfies Hn(γ) = H∗n(γ) + op(1) under n→ ∞. We then define the optimal γ as

γopt = argminγHn(γ).

Let θ∗γ be the quantity that θ̂γ converges to. Then, from the argument given in [5,10],
the criterion (4) would converge to the Fisher divergence between the unnormalized model
exp{Dγ(y; θ∗γ)} and the true data generating process. Although the unnormalized model
is not a valid statistical model in the sense that it does not have a finite normalizing
constant, the Fisher divergence can be recognized as the distance in terms of relative
probabilities [10].

Existing selection strategies for γ mostly use the asymptotic variance of θ̂γ. For
example, under the density power divergence, refs. [7,8] suggested using asymptotic
approximation of the mean squared errors of θ̂γ. However, computation of the asymptotic
variance is not straightforward, especially when an additional penalty function is incor-
porated into the objective function or the dimension of θ is large. On the other hand, the
proposed criterion (4) does not require the computation of asymptotic variance but only
needs the derivatives of robust divergence concerning yi. Furthermore, it should be noted
that the proposed criterion (4) can be applied to a variety of robust divergence.

3. Possible Robust Divergences to Consider

We here provide detailed expressions for the proposed criterion (4) under some robust
divergences. For simplicity, we focus on two robust divergences which can be empirically
estimated from the data. Still, the proposed method could be applied to other divergences
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such as Hellinger divergence [13] or αβ-divergence [14]. In what follows, we shall use the
notations, f ′(yi; θ) = ∂ f (yi; θ)/∂yi and f ′′(yi; θ) = ∂2 f (yi; θ)/∂y2

i .

3.1. Density Power Divergence

The density power divergence [1] for a statistical model f (yi; θ) is

Dγ(yi; θ) =
1
γ

f (yi; θ)γ − 1
1 + γ

∫
f (t; θ)1+γdt.

It can be seen that Dγ(yi; θ) + 1− 1/γ → log f (yi; θ) as γ → 0, so the above function
can be regarded as an extension of the standard log-likelihood. Then, a straightforward
calculation leads to the expression of (4), given by

Hn(γ) =
n

∑
i=1

[
f ′(yi; θ̂γ)

2 f (yi; θ̂γ)
γ−2
{

2(γ− 1) + f (yi; θ̂γ)
γ
}
+ 2 f (yi; θ̂γ)

γ−1 f ′′(yi; θ̂γ)

]
.

3.2. γ-Divergence

The original form of γ-divergence [2] for a statistical model f (yi; θ) is given by

1
γ

log

{
n

∑
i=1

f (yi; θ)γ

(∫
f (t; θ)1+γdt

)−γ/(1+γ)
}

,

which is not an additive form. However, the maximization of the above function with
respect to θ is equivalent to the maximization of the transformed version of γ-divergence,
Dγ(y; θ) = ∑n

i=1 Dγ(yi; θ), where

Dγ(yi; θ) =
1
γ

f (yi; θ)γ

{∫
f (t; θ)1+γdt

}−γ/(1+γ)

.

Then, we have

Hn(γ) =
n

∑
i=1

[
f ′(yi; θ̂γ)

2 f (yi; θ̂γ)
γ−2

{
2(γ− 1)
Cγ(θ̂γ)

+
f (yi; θ̂γ)γ

Cγ(θ̂γ)2

}
+

2 f (yi; θ̂γ)γ−1 f ′′(yi; θ̂γ)

Cγ(θ̂γ)

]
,

where Cγ(θ) =
(∫

f (t; θ)1+γdt
)γ/(1+γ).

4. Numerical Examples
4.1. Normal Distribution with Density Power Divergence

We first consider a simple example of robust estimation of the normal population
mean under unknown variance. Let y1, . . . , yn be sampled observations and we fit N(µ, σ2)
to the data. The density power divergence [1] of the model is given by

Dγ(yi; µ, σ2) =
1
γ

φ(yi; µ, σ2)γ − (2πσ2)−γ/2(1 + γ)−3/2,

where φ(yi; µ, σ2) is the density function of N(µ, σ2). In this case, the criterion (4) is
expressed as

Hn(γ) =
n

∑
i=1

2
{

γ(yi − µ̂γ)2 − σ̂2
γ

}
σ̂4

γ
φ(yi; µ̂γ, σ̂2

γ)
γ +

(yi − µ̂γ)2

σ̂4
γ

φ(yi; µ̂γ, σ̂2
γ)

2γ

,

where µ̂γ and σ̂γ are the estimator based on the density power divergence.
We first demonstrate the proposed selection strategy through simulation studies.

We simulated y1, . . . , yn from the normal distribution with true parameters, µ = 2, and
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σ = 1, and then replace the first nω observations by yi + 7. We adopted four settings
for ω ∈ {0, 0.05, 0.1, 0.15}. Using the simulated dataset, the optimal γ is selected among
{0, 0.01, . . . , 0.69, 0.70} through the criterion Hn(γ), and we obtain the adaptive estimator
µ̂γopt . For comparison, we also employed two selection methods, OWJ [7] and IWJ [8], in
which the optimal value of γ is selected via asymptotic approximation of mean squared
errors of the estimator. We set γ = 0.5 to compute a pilot estimator that must be specified
in the two methods. Furthermore, we also computed µ̂γ with γ = 0.1, 0.3, and 0.5. Using
an estimator of the asymptotic variance of µ̂γ given in [8], we also computed the Wald-type
95% confidence interval of µ. Based on 5000 simulated datasets, we obtained the squared
root of mean squared error (RMSE) of the point estimator, as well as coverage probability
(CP) and average length (AL) of the interval estimation. The results are reported in Table 1.
It is observed that the use of small γ (such as γ = 0.1) may lead to unsatisfactory results
when the contamination is heavy. It can also be seen that with the use of relatively large
γ, the estimation results can be inefficient. On the other hand, the proposed method can
adaptively select a suitable value of γ since the averaged value of γopt increases with the
contamination ratio ω, as confirmed in Table 2. This would be the main reason that the
proposed method provides reasonable performance in all the scenarios.

Table 1. RMSE of the point estimation and CP and AL of interval estimation of the normal population
mean.

Fixed γ
ω HS OWJ IWJ 0.1 0.3 0.5

0 10.3 10.6 10.3 10.2 10.5 11.0
RMSE 0.05 10.7 10.9 10.7 14.4 10.8 11.3

0.1 11.0 11.1 11.0 44.7 11.1 11.5
0.15 11.4 11.4 11.4 82.6 11.5 11.8

0 94.8 93.8 94.2 94.6 94.5 94.4
CP 0.05 94.7 93.9 94.1 93.2 94.2 94.1

0.1 94.3 94.1 94.2 36.7 94.2 94.4
0.15 94.1 93.7 93.8 0.1 93.6 94.1

0 40.6 40.1 39.8 40.4 40.7 42.6
AL 0.05 41.7 41.0 40.9 50.4 41.2 43.3

0.1 42.5 41.9 41.8 79.5 42.0 44.1
0.15 43.4 42.9 42.9 100.4 43.1 45.1

Table 2. Average values of selected γ in the three methods in simulation studies with normal
distribution.

ω HS OWJ IWJ

0 0.088 0.212 0.158
0.05 0.169 0.260 0.230
0.1 0.217 0.284 0.267

0.15 0.252 0.302 0.294

We next apply the proposed method to Simon Newcomb’s measurements of the speed
of light data, motivated by applications in Basu et al. [1], Basak et al. [8], Stigler [15]. We
searched the optimal γ among {0, 0.01, . . . , 0.69, 0.70} and the H-sores are shown in left
panel in Figure 1. The obtained optimal value is γopt = 0.09, which is substantially smaller
than γ̂ = 0.23 selected by the existing methods as reported in [8]. Since the method
proposed in [8] requires a pilot estimate and the estimation results depend significantly on
it, we believe that our estimation results are more reasonable. In fact, it is unlikely that we
will have to use a value of γ = 0.23 for a dataset that contains only two outliers. As shown
in the right panel in Figure 1, the estimated density functions are almost the same when
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γ = 0.09 and when γ = 0.23. However, it would be preferable to adopt the smaller value
of γ = 0.09 if the estimates are almost identical in terms of statistical efficiency.
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Figure 1. H-scores for each γ (left) and the estimate normal density functions with optimal gamma
selected via the H-score and IJW methods (right) in the analysis of the Newcomb data.

4.2. Gamma Distribution with Density Power Divergence

We next consider robust estimation of the gamma distribution. Let y1, . . . , yn be
sampled observations and we fit Ga(α, β) to the data, where α is a shape parameter and β
is a rate parameter, so that the expectation of the gamma distribution is α/β. The density
power divergence of the model is given by

Dγ(yi; α, β) =
1
γ

fGa(yi; α, β)γ − Γ(α(1 + γ)− γ)

Γ(α)1+γ
βγ(1 + γ)−α(1+γ)+γ,

where fGa(yi; α, β) is the density function of Ga(α, β). In this case, the criterion of γ is
one given in Section 3.1 in which the first and second order derivatives of the density are
given as

f ′Ga(yi; α, β) =

(
α− 1

yi
− β

)
fGa(yi; α, β)

f ′′Ga(yi; α, β) =

(
α− 1

yi
− β

)
f ′Ga(yi; α, β)− α− 1

y2
i

fGa(yi; α, β).

We demonstrate the proposed selection criterion through simulation studies. We
simulated y1, . . . , yn from the gamma distribution with true parameters, α = 2, and β = 4,
and then replace the first nω observations by yi + 5. We adopted three settings for ω ∈
{0, 0.05, 0.1} and two scenarios for n ∈ {100, 200}. Using the simulated dataset, the optimal
γ is selected among {0, 0.01, . . . , 0.49, 0.50} through the HS criterion Hn(γ), and we obtain
the adaptive estimators, α̂γopt and β̂γopt . For comparison, we applied the standard maximum
likelihood (ML) estimator, as well as the robust estimator with fixed γ ∈ {0.1, 0.5}. In this
study, we do not include OWJ or IWJ methods since the asymptotic variance formula in this
case has not been investigated before and the derivation would require tedious algebraic
calculation.

Based on 5000 simulated datasets, we obtained the squared root of mean squared error
(RMSE) of the point estimator, where the results are shown in Table 3. We also provide the
average values of the selected γ in Table 4. It is observed that the (non-robust) ML and the
robust method using the small γ (γ = 0.1) leads to unsatisfactory results when the data
are contaminated. It can also be confirmed that γ = 0.5 does not hold reasonable accuracy
when the contamination ratio is small or 0, which indicates that a suitable selection step is
substantially related to the estimation result. The proposed method, however, has some
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adaptive property. When there is not contamination, the estimation performance is almost
identical to the the ML estimator which is the most efficient in this scenario since a small
value (sometimes exactly zero) of γ is selected in this scenario, as shown in Table 4. On the
other hand, the estimation performance is still better than the other methods when the data
are contaminated, by successfully finding a suitable value (increasing according to ω) of γ.

Table 3. RMSE of the point estimation in the gamma distribution.

α β
Fixed γ Fixed γ

n ω ML HS 0.1 0.5 ML HS 0.1 0.5

0 0.28 0.29 0.38 1.25 0.65 0.73 0.91 3.63
100 0.05 0.91 0.37 0.70 1.29 2.50 1.00 1.98 3.74

0.1 1.13 0.40 0.99 1.34 3.10 1.09 2.81 3.86

0 0.19 0.20 0.29 1.14 0.44 0.49 0.70 3.37
200 0.05 0.92 0.28 0.69 1.18 2.54 0.75 1.98 3.47

0.1 1.14 0.28 1.01 1.21 3.13 0.78 2.86 3.53

Table 4. Average values of selected γ by the proposed criterion in the gamma distribution.

n = 100 n = 200
ω 0 0.05 0.1 0 0.05 0.1

γopt 0.036 0.137 0.164 0.025 0.133 0.161

4.3. Regularized Linear Regression with γ-Divergence

Note that the proposed criterion can be used when some regularized terms are in-
troduced in the objective function, while the existing method requiring an asymptotic
variance of the estimator is not simply applicable. We demonstrate the advantage of
the proposed method through regularized linear regression with γ-divergence [16]. Let
yi and xi be a response variable and a p-dimensional vector of covariates, respectively,
for i = 1, . . . , n. The model is yi ∼ N(x>i β, σ2). Then, the transformed γ-divergence is
Dγ(yi; θ) = γ−1φ(yi; x>i β, σ2)γ/Cγ(σ2) with Cγ(σ2) = {(1 + γ)−1/2(2πσ2)−γ/2}γ/(1+γ),
and the H-score is expressed as

Hn(γ) =
n

∑
i=1

2
{

γ(yi − x>i β̂γ)2 − σ̂2
γ

}
σ̂4

γCγ(σ̂2
γ)

φ(yi; x>i β̂γ, σ̂2
γ)

γ +
(yi − x>i β̂γ)2

σ̂4
γCγ(σ̂2

γ)
2 φ(yi; x>i β̂γ, σ̂2

γ)
2γ

.

Here, β̂γ and σ̂2
γ are estimated as the minimizer of the following regularized γ-divergence:

− 1
γ

log

{
n

∑
i=1

φ(yi; x>i β, σ2)γ

}
− γ

1 + γ
log σ2 + λ

p

∑
k=1
|βk|,

where λ is an additional tuning parameter that can be optimized via 10-fold cross-validation.
We use the R package gamreg [16] to estimate β and σ2 under given γ.

We apply the aforementioned method to the well-known Boston housing dataset [17].
In this analysis, we included the original 13 covariates and 12 quadratic terms of the
covariates except for one binary covariate, resulting in 25 covariates in total. We searched
the optimal γ among {0, 0.02, . . . , 0.68, 0.70}, and the estimated H-scores are shown in
the left panel in Figure 2, where the optimal value of γ was 0.16. For comparison, we
estimated the regression coefficients with γ = 0 and γ = 0.5. Note that γ = 0 reduces to
the (non-robust) standard regularized linear regression. The scatter plots of the estimated
standardized coefficients under γ = 0.16 against ones under the two choices of γ are shown
in the right panel of Figure 2. It is confirmed that the estimates with γ = 0.16 and γ = 0.5
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are comparable while there are substantial differences between estimates with γ = 0.16
and γ = 0, indicating that a certain amount of robustness is required for the dataset.
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Figure 2. H-scores for each γ (left) and the estimated regression coefficients with three choices of
γ (right).

5. Concluding Remarks

We proposed a new criterion for selecting the optimal tuning parameter in robust
divergence, using the Hyvarinen score for unnormalized models with robust divergence.
The proposed criterion does not require the asymptotic variance formula of the estimator
that is needed in the existing selection methods. Although we simply focused on the uni-
variate and continuous situation, the proposed criterion can also be applied to multivariate
or discrete distribution, where finite differences under discrete distributions should replace
derivatives. Applications of the proposed score to such cases would also be helpful, and
we left it to future work.
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Appendix A. Proof of Proposition 1

We first assume standard regularity conditions in the M-estimation theory [18] for the
objective function ∑m

i=1 log Lγ(yi; θ). We also assume that log Lγ(yi; θ) is twice continuously
differentiable with respect to yi, log π(θ) is continuously differentiable and the derivative
of log π(θ) is bounded.

We first note that θ̂γ is a solution of the following estimating equation:

n

∑
i=1

Sγ(yi; θ) = 0, Sγ(yi; θ) ≡ ∂

∂θ
log Lγ(yi; θ).

From the implicit function theorem, it follows that

∂θ̂γ

∂yi
=

{
n

∑
j=1

∂

∂θ
Sγ(yj; θ)

∣∣∣∣
θ=θ̂γ

}−1
∂

∂yi

n

∑
j=1

Sγ(yj; γ)

∣∣∣∣
θ=θ̂γ

= H(θ̂γ)
−1S′γ(yi; θ̂γ),
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where we defined S′γ(yi; θ) = ∂Sγ(yi; θ)/∂yi. Note that ∂θ̂γ/∂yi = Op(n−1) under large n.
From (3), the first order partial derivative of the marginal log-likelihood can be approxi-
mated as

∂

∂yi
log L(m)

γ (y) ≈ ∂

∂yi

n

∑
j=1

log Lγ(yj; θ̂γ) +
∂

∂yi
log π(θ̂γ)−

1
2

∂

∂yi
log |H(θ̂γ)|. (A1)

Under the regularity conditions for π(θ), it follows that

∂

∂yi
log π(θ̂γ) =

∂θ̂γ

∂yi
× ∂

∂θ
log π(θ)

∣∣∣∣
θ=θ̂γ

= op(1)

under large n. From the same argument, we can also show that ∂ log |H(θ̂γ)|/∂yi = op(1).
Regarding the first term in (A1), we have

∂

∂yi

n

∑
j=1

log Lγ(yj; θ̂γ) =
∂

∂yi
log Lγ(yi; θ)

∣∣∣∣
θ=θ̂γ

+

(
∂θ̂γ

∂yi

)> n

∑
j=1

∂

∂θ
log Lγ(yj; θ)

∣∣∣∣
θ=θ̂γ

= D′γ(yi; θ̂γ) +

{
n

∑
j=1

Sγ(yj; θ̂γ)

}>
H(θ̂γ)

−1S′γ(yi; θ̂γ) (A2)

= D′γ(yi; θ̂γ) + Op(n−1/2),

since Sγ(yj; θ) is a score function and ∑n
j=1 Sγ(yj; θ̂γ) = Op(n1/2).

Using the expression of the first order derivative (A2), it holds that

∂2

∂y2
i

n

∑
j=1

log Lγ(yj; θ̂γ) =
∂

∂yi
D′γ(yi; θ̂γ) +

{
∂

∂yi

n

∑
j=1

Sγ(yj; θ̂γ)

}>
H(θ̂γ)

−1S′γ(yi; θ̂γ)

+

{
n

∑
j=1

Sγ(yj; θ̂γ)

}>
H(θ̂γ)

−1
{

∂

∂yi
H(θ̂γ)

}
H(θ̂γ)

−1S′γ(yi; θ̂γ)

+

{
n

∑
j=1

Sγ(yj; θ̂γ)

}>
H(θ̂γ)

−1 ∂

∂yi
S′γ(yi; θ̂γ). (A3)

Note that

∂

∂yi
D′γ(yi; θ̂γ) = D′′γ(yi; θ̂γ) +

(
∂

∂θ
D′(yi; θ)

∣∣∣∣
θ=θ̂γ

)>
∂θ̂γ

∂yi
= D′′γ(yi; θ̂γ) + Op(n−1).

By applying the same formula to ∂S′γ(yi; θ̂γ)/∂yi, we can confirm that the third and forth
terms in (A3) are Op(n−1/2). Regarding the second term in (A3), we have

∂

∂yi

n

∑
j=1

Sγ(yj; θ̂γ) = S′γ(yi; θ̂γ) +

{
n

∑
j=1

∂

∂θ
Sγ(yj; θ)

∣∣∣∣
θ=θ̂γ

}
H(θ̂γ)

−1S′γ(yi; θ̂γ)

= 2S′γ(yi; θ̂γ),

which shows that the second term in (A3) is Op(n−1), so that the proof is completed.



Entropy 2021, 23, 1147 10 of 10

References
1. Basu, A.; Harris, I.R.; Hjort, N.L.; Jones, M. Robust and efficient estimation by minimising a density power divergence. Biometrika

1998, 85, 549–559. [CrossRef]
2. Fujisawa, H.; Eguchi, S. Robust parameter estimation with a small bias against heavy contamination. J. Multivar. Anal. 2008,

99, 2053–2081. [CrossRef]
3. Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target detection within nonhomogeneous clutter via total bregman divergence-

based matrix information geometry detectors. IEEE Trans. Signal Process. 2021, 69, 4326–4340. [CrossRef]
4. Liu, M.; Vemuri, B.C.; Amari, S.i.; Nielsen, F. Shape retrieval using hierarchical total Bregman soft clustering. IEEE Trans. Pattern

Anal. Mach. Intell. 2012, 34, 2407–2419. [PubMed]
5. Shao, S.; Jacob, P.E.; Ding, J.; Tarokh, V. Bayesian model comparison with the Hyvärinen score: Computation and consistency. J.

Am. Stat. Assoc. 2019, 114, 1826–1837. [CrossRef]
6. Dawid, A.P.; Musio, M. Bayesian model selection based on proper scoring rules. Bayesian Anal. 2015, 10, 479–499. [CrossRef]
7. Warwick, J.; Jones, M. Choosing a robustness tuning parameter. J. Stat. Comput. Simul. 2005, 75, 581–588. [CrossRef]
8. Basak, S.; Basu, A.; Jones, M. On the ‘optimal’density power divergence tuning parameter. J. Appl. Stat. 2021, 48, 536–556.

[CrossRef]
9. Matsuda, T.; Uehara, M.; Hyvarinen, A. Information criteria for non-normalized models. arXiv 2019, arXiv:1905.05976.
10. Jewson, J.; Rossell, D. General Bayesian Loss Function Selection and the use of Improper Models. arXiv 2021, arXiv:2106.01214.
11. Yonekura, S.; Sugasawa, S. Adaptation of the Tuning Parameter in General Bayesian Inference with Robust Divergence. arXiv

2021, arXiv:2106.06902.
12. Geisser, S.; Hodges, J.; Press, S.; ZeUner, A. The validity of posterior expansions based on Laplace’s method. Bayesian Likelihood

Methods Stat. Econom. 1990, 7, 473.
13. Devroye, L.; Gyorfi, L. Nonparametric Density Estimation: The L1 View; John Wiley: Hoboken, NJ, USA, 1985.
14. Cichocki, A.; Cruces, S.; Amari, S.i. Generalized alpha-beta divergences and their application to robust nonnegative matrix

factorization. Entropy 2011, 13, 134–170. [CrossRef]
15. Stigler, S.M. Do robust estimators work with real data? Ann. Stat. 1977, 5, 1055–1098. [CrossRef]
16. Kawashima, T.; Fujisawa, H. Robust and sparse regression via γ-divergence. Entropy 2017, 19, 608. [CrossRef]
17. Harrison Jr, D.; Rubinfeld, D.L. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 1978, 5, 81–102.

[CrossRef]
18. Van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: Cambridge, UK, 2000; Volume 3.

http://doi.org/10.1093/biomet/85.3.549
http://dx.doi.org/10.1016/j.jmva.2008.02.004
http://dx.doi.org/10.1109/TSP.2021.3095725
http://www.ncbi.nlm.nih.gov/pubmed/22331859
http://dx.doi.org/10.1080/01621459.2018.1518237
http://dx.doi.org/10.1214/15-BA942
http://dx.doi.org/10.1080/00949650412331299120
http://dx.doi.org/10.1080/02664763.2020.1736524
http://dx.doi.org/10.3390/e13010134
http://dx.doi.org/10.1214/aos/1176343997
http://dx.doi.org/10.3390/e19110608
http://dx.doi.org/10.1016/0095-0696(78)90006-2

	Introduction
	Tuning Parameter Selection of Robust Divergence
	Possible Robust Divergences to Consider
	Density Power Divergence
	-Divergence

	Numerical Examples
	Normal Distribution with Density Power Divergence
	Gamma Distribution with Density Power Divergence
	Regularized Linear Regression with -Divergence

	Concluding Remarks
	Proof of Proposition 1
	References

