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Abstract: We show the properties and characterization of coherence witnesses. We show methods
for constructing coherence witnesses for an arbitrary coherent state. We investigate the problem of
finding common coherence witnesses for certain class of states. We show that finitely many different
witnesses W1, W2, · · · , Wn can detect some common coherent states if and only if ∑n

i=1 tiWi is still a
witnesses for any nonnegative numbers ti(i = 1, 2, · · · , n). We show coherent states play the role of
high-level witnesses. Thus, the common state problem is changed into the question of when different
high-level witnesses (coherent states) can detect the same coherence witnesses. Moreover, we show
a coherent state and its robust state have no common coherence witness and give a general way to
construct optimal coherence witnesses for any comparable states.

Keywords: common coherence witnesses; high-level witnesses; common coherent states
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1. Introduction

Originating from the fundamental superposition principle in quantum mechanics,
quantum coherence [1,2] plays a crucial role in quantum metrology [3,4], quantum algo-
rithms [5], nanoscale thermodynamics [6–10] and energy transportation in the biological
systems [11–14]. Detecting and quantifying quantum coherence, therefore, become funda-
mental problems in the emerging quantum areas. Numerous impressive schemes on measures
of quantum coherence have been presented [15–26].

The coherence witness, inspired by entanglement witnesses, is arguably a powerful
tool for coherence detection in experiments [26–32] and coherence quantification in the-
ory [33,34]. It directly detects any coherent states and gives rise to measures of quantum
coherence without state tomography. Compared with the entanglement witness, the coher-
ence witness has many different characteristics deserving to be investigated extensively.

Two natural questions arise that when different coherence witnesses can detect some
common coherent states and when different coherent states can be detected by some
common coherence witnesses in finite-dimensional systems. Although these two similar
questions related to entanglement witnesses have been well solved, separably [35–37], the
problems of common coherence witnesses and common coherent states remain unsolved.

In this paper we systematically investigate and solve the problems of common co-
herence witnesses and common coherent states. This paper is organized as follows. In
section II, we review the concept of coherence witnesses and the methods of constructing
coherence witnesses. In section III we show sufficient and necessary conditions for any
given two or many coherence witnesses to be incomparable, and deal with problem of
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common coherence witnesses. In section IV, we characterize coherent states based on
high-level witnesses and solve the problem when different coherent states can be detected
by common coherence witnesses. Summary and discussions are given in section IV.

2. Common Coherence Witnesses

With respect to a fixed basis {|i〉}i=1,2,··· ,d of the d-dimensional Hilbert Space H, a
state is called incoherent if it is diagonal in this basis. Denote I the set of incoherent states.
The density operator of an arbitrary incoherent state δ ∈ I is of the form,

δ =
d

∑
i=1

δi|i〉〈i|. (1)

Clearly, the set of incoherent states I is convex and compact. Since the set of all incoherent
states is convex and compact, there must exist a hyperplane which separates a arbitrary
given coherent state from the set of all incoherent states by the Hahn-Banach theorem [38].
We call this hyperplane a coherence witness [26,27]. A coherence witness is an Hermitian
operator, W = W†, such that (i) tr(Wδ) ≥ 0 for all incoherent states δ ∈ I , and (ii) there
exists a coherent state π such that tr(Wπ) < 0. More precisely, an Hermitian operator
W on H is a coherence witness if (i’) its diagonal elements are all non-negative, and (ii’)
there is at least one negative eigenvalue. Following the definition of incoherent states
and the Hahn-Banach theorem, we can restrict the condition (i) to tr(Wδ) = 0 and relax
(ii) to tr(Wπ) 6= 0 [26,33,39]. As coherence witnesses are hermitian quantum mechanical
observables, they can be experimentally implemented [28–32].

Since the density matrix of an entangled quantum state can not be diagonal, from
the Definition (1) an entangled quantum state must be a coherent state. Therefore, the
entanglement witnesses are also kinds of coherence witnesses with respect to a fixed basis.
We denote S the set of all separable states, E the set of all entangled states, I the set of all
incoherent states and C the set of all coherent states. Figure 1a illustrates the schematic
picture of the relations between entanglement and coherence. Therefore, we can construct
coherence witnesses in a similar way of constructing entanglement witnesses [40,41].

                                                 EI

Coherence Witnesses

Entanglement Witnesses

S

(a) (b)

                      WC I

Coherent States

C

Coherence Witnesses

Q

Figure 1. (Color online) (a) With respective to a fixed basis, all entanglement witnesses are also
coherence witnesses. (b) We denote Q the set of all quantum states and W the set of all coherence
witnesses. Coherent states play the role of high-level witnesses witnessing coherence witnesses.

For a given coherent state |ψ〉〈ψ|, one has coherence witness,

W = αI − |ψ〉〈ψ|, (2)
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where I is the identity matrix and α = max Tr(δ|ψ〉〈ψ|) with the maximal running over all
incoherent state δ. Coherence witnesses can also be constructed from geometrical methods,

W =
1
N
(δ− ρ + Tr(δ(ρ− δ))I), (3)

where δ is the closest incoherent state to ρ, N = ‖ρ − δ‖ and ‖A‖ ≡
√

Tr(A†A). Re-
cently, a general way of constructing a coherence witness for an arbitrary state has been
provided [33,34]: Wρ = −ρ + ∆(ρ) is an optimal coherence witness to detect the coher-
ence of ρ, where ∆(ρ) = ∑d−1

i=0 〈i|ρ|i〉|i〉〈i| is the dephasing operation in the reference basis
{|i〉}d−1

i=0 . More general constructions of coherence witnesses are also given in [33,34].
For a coherence witness W, we define DW = {ρ | tr(ρW) < 0}, namely, the set of all

coherent states “witnessed” by W. Give two coherence witnesses W1 and W2, we say that
W2 is finer than W1 if DW1 ⊆ DW2 , that is, if all the coherent states “witnessed” by W1 are
also “witnessed” by W2. We call W optimal if there exists no other coherence witness which
is finer than it. It is shown that a coherent witness is optimal if and only if its diagonal
elements are all zero [33]. For normalization we set ‖W‖∞ = 1 as there exist traceless
coherence witnesses.

Moreover, given two coherence witnesses W1 and W2, we say that W2 and W1 are
incomparable if DW1 ∩ DW2 = ∅. Two coherence witnesses W1 and W2 can detect some
common coherent states if DW1 ∩ DW2 6= ∅. To proceed, we need the following lemma.

Lemma 1. If W2 and W1 are incomparable, i.e., DW1 ∩ DW2 = ∅ and if DW ⊂ DW1 ∪ DW2 , then
either DW ⊂ DW1or DW ⊂ DW2 .

Proof. On the contrary, suppose that both DW1 ∩ DW and DW2 ∩ DW are nonempty. Take
ρi ∈ DWi ∩ DW , i = 1, 2. Consider the segment [ρ1, ρ2] consising of ρt = (1− t)ρ1 + tρ2,
where 0 ≤ t ≤ 1. As DW is convex, we obtain

[ρ1, ρ2] ⊂ DW ⊂ DW1 ∪ DW2 . (4)

Thus
[ρ1, ρ2] = (DW1 ∩ [ρ1, ρ2]) ∪ (DW2 ∩ [ρ1, ρ2]), (5)

which means that [ρ1, ρ2] can be divided into two convex parts. It follows that there is
0 < t0 < 1 such that {ρt : 0 ≤ t < t0} ⊂ DW1 , {ρt : t0 < t ≤ 1} ⊂ DW2 and either
ρt0 ∈ DW1 or ρt0 ∈ DW2 .

Assume that ρt0 ∈ DW1 ; then tr(W1ρt0) < 0. Thus, for sufficiently small ε > 0 with
t0 + ε ≤ 1, we have

0 ≤ tr(ρt0+εW1)

= tr(ρt0W1) + ε[tr(ρ2W1)− tr(ρ1W1)] < 0

which leads to a contradiction. Similarly, ρt0 ∈ DW2 leads to a contradiction as well. This
completes the proof.

Theorem 1. W2 and W1 are incomparable (no common coherent states can be detected) if and only
if there exist a > 0 and b > 0 such that Wa,b = aW1 + bW2 is positive.

Proof. Obviously, if W2 is finer than W1, then W2 is finer than Wa,b and Wa,b is finer than
W1 for positive a and b. Hence, DW1 ∩ DW2 ⊆ DW = ∅ since Wa,b = aW1 + bW2 for some
a > 0 and b > 0. Take t = a

b .
By Lemma 1, we have DWa,b ⊂ DW1 or DWa,b ⊂ DW2for all a > 0 and b > 0. Then

DWa,b = D 1
b Wa,b

= DtW1+W2 = D t
1+t W1+

1
1+t W2

. Hence, we obtain DWa,b = DλW1+(1−λ)W2

.
=

Wλ by taking λ = t
1+t , where λ ∈ (0, 1). We now can consider Wλ as Wa,b. When t varies
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from 0 to ∞ continuously, then λ varies from 0 to 1 continuously, which means that DWλ

also varies form DW2 to DW1 continuously. Take λ0 = sup{λ : DWλ
⊂ DW2}.

We claim that if DWλ0
⊂ DW2 then there exist 0 < ε < 1− λ0 such that Wλ0+ε is

a positive operator. Otherwise, if for all 0 < ε < 1 − λ0, DWλ0+ε
6= ∅, then we have

DWλ0
⊂ DW2 , DWλ0+ε

⊂ DW1 , and for all ρ ∈ DWλ0

tr(Wλ0 ρ) < 0, tr(Wλ0 ρ) + ε(tr(W1ρ)− tr(W2ρ)) ≥ 0. (6)

Note that tr(W1ρ) ≥ 0 and tr(W2ρ) < 0, the second part of the last inequality is positive,
and ε is any small positive number, so the last inequality is impossible.

On the other hand, if DWλ0
⊂ DW1 then there exist 0 < ε < λ0 such that DWλ0−ε

is a
positive operator. Otherwise, if for all 0 < ε < λ0, DWλ0−ε

6= ∅, then we have DWλ0
⊂ DW1 ,

DWλ0−ε
⊂ DW2 , and for all ρ ∈ DWλ0

, we have

tr(Wλ0 ρ) < 0, tr(Wλ0 ρ) + ε(tr(W2ρ)− tr(W1ρ)) ≥ 0. (7)

For the similar reason of Equation (6), Equation (7) is impossible as well.
To sum up the previous discussion, no matter DWλ0

⊂ DW1 or DWλ0
⊂ DW2 , there

exists λ ≥ 0, or equivalently t > 0 (a > 0 and b > 0) such that Wλ (Wa,b) is a positive
operator, which completes the proof of the theorem.

Corollary 1. W2 and W1 are not incomparable if and only if Wa,b = aW1 + bW2 are witnesses for
all a > 0 and b > 0.

Theorem 1 can be generalized to the case of finitely many witnesses. We have the following result.

Theorem 2. W1, W2, · · · , Wn are incomparable if and only if there exist ti > 0 (i = 1, 2, · · · , n)
such that W = ∑n

i=1 tiWi is positive.

Proof. (i) The “if” part. If W = ∑n
i=1 tiWi ≥ 0 for ti ≥ 0, then DW = ∅. Let S = {Wi|1 ≤

i ≤ n} and the convex hull of cov(S) = {∑k
i=1 tiWi|ti ≥ 0, ∑K

i=1 ti = 1, Wi ∈ S, K ∈ N}.
Without loss of generality we assume that any subsect of S can detect some coherent states
simultaneously. For n = 2, Theorem 2 holds as it reduces to the Theorem 1. Now assume
that the Theorem 2 holds for K ≤ n− 1. We prove that Theorem 2 holds for K = n. Indeed
we only need to prove the case of n = 3. The case of arbitrary n can be proved in a
similar way.

By the assumption, we have DW1 6= ∅, DW1 ∩ DW2 6= ∅ and DW1 ∩ DW3 6= ∅. But
DW1 ∩ DW2 ∩ DW3 6= ∅, that is, (DW1 ∩ DW2) ∩ DW1 ∩ DW3 6= ∅. Let Wb,c = bW2 + cW3,
where b > 0 and c > 0. We have DW1 ∩ DWb,c ⊂ (DW1 ∩ DW2) ∪ (DW1 ∩ DW3). Since
(DW1 ∩ DW2) and (DW1 ∩ DW3) are disjoint and DW1 ∩ DWb,c is convex, DW1 ∩ DWb,c varies
from (DW1 ∩DW3) to (DW1 ∩DW2), whenever b

c varies from 0 to ∞. By the similar argument
to that in the proof of Theorem 1, we conclude that there exist b0

c0
> 0 such that DW1 ∩

DWb,c = ∅. Therefore, W = a′W1 + b′Wb,c = aW1 + b′bW2 + b′cW3 ≥ 0 for some a′ > 0 and
b′ > 0. By induction on n we complete the proof of (i).

(ii) The “only if” part is clear. If DW = ∅, then there exist W such that W ≥ 0
(W ∈ cov(S)) from the proof in (i). It follows that W is not a witness, which gives a
contraction.

3. Common Coherent States

A framework which assembles hierarchies of “witnesses” has been proposed in [42]. In
this framework, a coherence witness can witness coherent states, and on the other hand, a
coherent state can also act as a “high-level-witness ” of coherence witnesses which witnesses
coherence witnesses. Concretely, when a coherence witness W detects a coherent state ρ,
we say that W “witnesses” the coherence of the state ρ. A question naturally arises. What
“witnesses” coherence witnesses. It is known that the set of quantum states (incoherent
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states and coherent states) is also convex and compact. Thus, by the Hahn-Banach theorem,
there is at least one “high-level” witness “witnessing” a coherence witness, see Figure 1b.

For a high-level witness of coherence witnesses Π, one has (i”) tr(Π$) ≥ 0 for all quan-
tum states $, and (ii”) there exists at least one coherence witness W such that tr(ΠW) < 0.
Coherence witnesses “witness” coherent states and coherent states “witness” coherence wit-
nesses. Coherent states play the role of witnesses. Since coherent states are also (high-level)
witnesses, the question when different coherent states can be detected by some common co-
herence witnesses can be transformed into the question when different high-level witnesses
(coherent states) can detect the same coherence witnesses. From the high-level-witness role
played by coherent states and the Theorem 1, we have the following result.

Theorem 3. Two coherent states ρ1 and ρ2 are incomparable, i.e., Dρ1 ∩ Dρ2 = ∅, if and only if
there exists 0 < t < 1 such that ρt = tρ1 + (1− t)ρ2 is an incoherent state.

The robust of coherence CR(ρ) [26,27] of a coherent state ρ ∈ D(Cd) is defined as

CR(ρ) = min
τ∈D(Cd)

{
s ≥ 0

∣∣∣ ρ + s τ

1 + s
= δ ∈ I

}
, (8)

where D(Cd) stands for the convex set of density operators acting on a d-dimensional Hilbert space.
We have the following conclusions.

Corollary 2. Any coherent state ρ and the state minimizing s in (8)) τ have no common coherence
witnesses.

Corollary 3. Two coherent states ρ1 and ρ2 are not incomparable if and only if there does not exist
0 < t < 1 such that ρt = tρ1 + (1− t)ρ2 is an incoherent state.

From the general construction of optimal coherence witnesses for an arbitrary coherent
state [33,34] and Corollary 3, there also exists a general way of constructing a common
optimal coherence witness for different coherent states.

Corollary 4. For two given not incomparable coherent states ρ1 and ρ2, the optimal coherence
witness W = aWρ1 + bWρ2 detects both the coherence of ρ1 and ρ2, where a > 0, b > 0 and
Wρi = −ρi + ∆(ρi) (i = 1, 2).

It is also not difficult to generalize Theorem 3 to the case for finitely many coherent
states.

Theorem 4. The coherent states ρ1, ρ2, · · · , ρn are incomparable if and only if there exist ∑n
i=1 ti = 1,

ti > 0 (i = 1, 2, · · · , n) such that ρ = ∑n
i=1 tiρi is an incoherent state.

4. Summary and Discussion

To summarize, we have investigated the properties of coherent witnesses and the
methods of constructing coherence witnesses for any arbitrarily given coherent states. We
have presented the conditions for different witnesses to detect the same coherent states,
as well as the conditions for a set of different coherent states whose coherence can be
detected by a common set of coherence witnesses. Here, we mainly considered the case of
discrete quantum systems in finite-dimensional Hilbert spaces. In fact our results hold also
for infinite-dimensional cases, since our main results are proved without the additional
assumption tr(W1) = tr(W2). However, the coherence in continuous variable systems
(such as light modes) is significantly different from the case of the discrete systems. For
instance, the set of Gaussian states must be closed and convex, but not necessarily bounded
by the Hahn-Banach theorem [43]). Our investigations may highlight further researches on
these related problems.
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