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Abstract: Renormalization group techniques are widely used in modern physics to describe the
relevant low energy aspects of systems involving a large number of degrees of freedom. Those
techniques are thus expected to be a powerful tool to address open issues in data analysis when
datasets are highly correlated. Signal detection and recognition for a covariance matrix having
a nearly continuous spectra is currently one of these opened issues. First, investigations in this
direction have been proposed in recent investigations from an analogy between coarse-graining and
principal component analysis (PCA), regarding separation of sampling noise modes as a UV cut-off
for small eigenvalues of the covariance matrix. The field theoretical framework proposed in this
paper is a synthesis of these complementary point of views, aiming to be a general and operational
framework, both for theoretical investigations and for experimental detection. Our investigations
focus on signal detection. They exhibit numerical investigations in favor of a connection between
symmetry breaking and the existence of an intrinsic detection threshold.

Keywords: renormalization group; field theory; phase transition; big data; principal component
analysis; signal detection; information theory

1. Introduction

Statistical physics was born to deal with systems involving a very large number of
interacting degrees of freedom, to extract relevant features at large scales, when classical
mechanics are no longer a feasible option [1]. These relevant features generally take
the form of an effective description involving a small number of parameters related to
very large number of parameters used to describe microscopic states. From the point
of view of information theory, statistical physics looks like a consequence of a statistical
inference based on the maximum entropy estimate, disregarding the specific aspects of
the microscopic problem, and it is for this reason a general paradigm [2–4]. In the last
century, Wilson and Kadanoff [5–9] discovered that an effective description valid for large
scales can be deduced from the knowledge of a microscopic description following a coarse-
graining procedure called renormalization group (RG), which averages recursively over
the fluctuations that have short wavelengths, with respect to a reference scale. In modern
physics [10,11], RG becomes a powerful tool to address the questions of universality and
simplicity of the large-scale physical laws [12–19].

Modern data analysis aims to deal with very large datasets, which are strongly cor-
related, and principal component analysis (PCA) is one of the most popular methods to
extract information, i.e., to find relevant features [20–31]. Even though different realisations
are present in the literature, the principle is always the same. PCA is a linear projection
onto the lower dimensional subspace spanned by the eigendirections corresponding to the
larger eigenvalues (the relevant features). For the datasets taking the form of a suitably
mean-shifted and normalized N × P matrix Xai, with a ∈ {1, · · · , P} and i ∈ {1, · · · , N},
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the covariance matrix C (if one wishes to work with different random variables, for in-
stance associated to different systems, one should also reduce the matrix X, and work with
the correlation matrix) is defined as the average of XTX, describing correlations between
type-i variables. Standard PCA works well when the largest eigenvalues can be easily
distinguished from the other ones. In this case, a small number of modes captures the
most relevant features of the covariance. Such an effective description is reminiscent of
the famous large river effect of the RG flow in statistical physics, referring to the general
property of this flow to be dragged toward a finite-dimensional subspace corresponding to
relevant and marginal operators for sufficiently large scales [32].

The connection between PCA and RG can be traced from information theory [33–40] as a
consequence of the ability of the RG to extract large scale relevant features of a microscopic
system. From an information theory point of view, the RG describes how a theory valid for
small distance physics flows toward a simpler theory (i.e., with a reduced set of parameters)
at larger distance, as information is progressively lost (due to coarse-graining). In turn,
the inference problem of recovering the elementary theory from the knowledge of the
large scale simpler model is the same as finding the equivalent class of elementary models
having the same large scale limits. The distinction between elements of the different
equivalent family is based on the existence of an intrinsic criterion which quantifies the
intrinsic ability for a perturbation to a given microscopic state to survive at large scale.
The relevant operators of quantum fields, that survives at a large distance, are the only
ones whose provide a clean distinction between asymptotic states for some large scale
observer. Relevance can be defined intrinsically from information theory, according to a
specific notions of distance between states. In information geometry theory, where the state
space looks as a differentiable manifold, a computable notion of distance is given by the
Fisher information metric, and the notion of equivalence class can be defined with respect
to this distance, since all the asymptotic states having distance smaller than some working
precision are undistinguishable [36–39].

In the case of a continuous spectrum [21,22,41,42], the standard PCA fails to provide a
clean separation between noise and information. We propose to exploit the link between
PCA and RG to address this separation with an objective physical criterion. A first step
in this direction was done in [20–22]. The authors considered an effective field theory
framework, where the separation between information and noise looks like an arbitrary
cut-off scale Λ in the eigenvalue spectrum of the covariance matrix (see Figure 1). In [23], the
authors introduced the non-perturbative Wetterich–Morris framework. In that formalism
the bare (i.e., the microscopic) action is left unchanged, but infrared contributions are
suppressed from the effective action. Hence, the formalism focus on the effective action
Γk for the integrated-out degrees of freedom up to the scale k rather than the microscopic
action for the remaining (infrared) degrees of freedom. In some sense, we rather focus on
determining what the “noise” is than what the “information” is, and k looks as an IR rather
UV cut-off (the notion of infrared (IR) and ultraviolet (UV) are related, respectively, to the
smaller and higher values of the scale parameter k.). In this previous study however, the
investigations of the author were essentially restricted to the power-counting aspects for
distributions around the universal Marchenko–Pastur (MP) noise [43]. The conclusions
were: (1) for a purely noisy data the first quartic perturbation to the Gaussian distribution is
relevant from coarse-graining; (2) a strong enough signal must change the power counting
to make the perturbation irrelevant, and the effective description goes perturbatively
toward the Gaussian point.

The aim of the following work is to consider the same question and to go beyond
these dimensional aspects. More precisely, we address the following question: within our
field theoretical formalism, is it possible to find objective criteria to decide if a continuous
spectrum associated to a dataset contains information or not? Focusing on deformations
around MP law, our result shows that in this formalism, the presence of a signal in the
spectrum can be identified from a symmetry breaking corresponding to a non-zero value
of the field theory vacuum. The symmetry is progressively restored as the signal strength
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is turned to zero. Note that the conclusions of this paper have been extended to tensorial
PCA in [25].

Let us note that phase transitions are usually associated to signal detection in PCA [44–46].
A classic example is provided by the one-spiked matrix model [47], which exhibits a sharp
phase transition in the larger eigenvalue distribution. In that elementary case the signal
is materialized by a single vector u ∈ RN with length 1 and the noise by a N × N matrix
M along the Gaussian orthogonal ensemble. Let us denote by λ the size (intensity) of the
signal. For λ < 1, the largest eigenvalue λc in the sum M + λuuT follows semi-circle law
with Tracy–Widom distribution for N → ∞. In contrast, for λ > 1, the largest eigenvalue
converges toward λc = λ + 1/λ, and its statistic follows a Gaussian error function. From
the point of view of signal detection, this result as a consequence that as soon as λ > 1,
the signal can be easily detected using standard iterative methods; whereas detection is
impossible in practice for λ < 1. The main difference with our point of view is that we
do not focus on the largest eigenvalue distribution, but on the ability of the spectrum to
support large-scale non-trivial structures embedded in a field theory.

Eigenvalues

Density spectrum

Λ

Noise Signal

Figure 1. Qualitative picture of the signal detection issue in a nearly continuous spectrum.

The manuscript is organized as follows. Section 2 provides a summary of the field
theoretical framework introduced in [23], specifying some subtle points not discussed in
this previous work, especially with regard to the kinetic classical action. Moreover, antici-
pating the results of the next section, we discuss the relevance of interactions and argue
the existence of a “wall” in generalized momenta, defining a physical cut-off, below which
the relevant sector diverges and the field theoretical embedding breaks down. Working
above this wall, we show that only a few number of local couplings are relevant, essentially
quartic and sixtic couplings for small perturbations around MP law. We close the section
with the Wetterich–Morris non-perturbative formalism [21,22,32–52], that we discuss in
this context. Section 3 is devoted to an analysis of the exact RG equation using standard
local potential approximation (LPA) and its improved version (LPA′) which takes into
account field renormalization effects and anomalous dimension. Within this approximation
scheme, we are able to identify the presence of a signal (materialized by a few number of
discrete spikes disturbing the purely noisy data) as a lack of symmetry restoration in the
deep IR, for k ∼ 1/N. Finally, in Section 4, we summarize our investigations, and discuss
some open issues, together with a plan to address them in the future.

2. The RG in Field Theory

Despite its origins in particle physics, the RG is probably one of the most important and
universal concepts discovered during the last century. RG enables to understand physics
at different scales. Technically, in the field theoretical framework, this is a consequence of
the ability of the microscopic degrees of freedom to be reabsorbed by a set of parameters,
that predictivity is required to be finite to design an effective field theory. Such a theory
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has, thus, the property to be valid only up to a certain scale, where the more fundamental
degrees of freedom cannot be distinguished from their effective description. The same
procedure can then be repeated, resulting in an effective chain of theories. This coarse-
graining is at the core of the RG idea, as originally formulated by Kadanoff and Wilson [5–9]
(see Figure 2). In particular, the RG aims to address the following question: to what extent
can two different microscopic states be distinguishable under coarse-graining? To be more
formal, let us consider a system built with a large number N of interacting degrees of
freedom ζi for i ∈ [1, N]. A microscopic state is a set ζ ≡ {ζ1, ζ2, · · · , ζN}. The nature of
the elementary states ζi describing a single degree of freedom depends on the problem that
one considers (for the standard Ising model, for instance [53], ζi’s are discrete variables
ζi = ±1). Assuming the maximum entropy prescription, these states are associated to a
probability distribution p[ζ] = e−S [ζ], where S [ζ] is called classical action or fundamental
Hamiltonian in physics. This microscopic level is conventionally called ultraviolet scale (UV
scale), and the dominant configurations, say classics, are given by the saddle point equation
∂S/∂ζi = 0. The momenta of the distribution are generated by:

Z[j] = ∑
ζ

p[ζ]ejζ , (1)

where j ≡ {j1, j2, · · · , jN} and jζ := j1ζ1 + · · ·+ jNζN . Moreover, the formal sum ∑ have
to be replaced by a functional path integral for continuous degrees of freedom. The classical
field M := {Mi} is defined as the means value of ζi: Mi := ∑ζ ζi p[ζ]. The cumulants of the
distribution are generated by the free energy W[j] = ln Z[j], taking successive derivatives
with respect to the source j and setting j = 0. In the field theoretical vocabulary, W[j] is the
generating functional of connected correlations functions (i.e., the correlations functions
which cannot be factorized as a product of two-point correlation functions). The physical
configurations for M are fixed, for j = 0 by an equation taking the same form as the saddle
point equation for ζ, but involving the effective action Γ[M], ∂Γ/∂Mi = 0. This effective
action is formally defined as the Legendre transform of the free energy:

Γ[M] + W[j] = jM . (2)

We call infrared scale (IR scale) the effective description where fluctuations are integrated out.
From a statistical point of view, Γ[M] is the generating function of one particle irreducible
(1PI) diagrams or effective vertices, in the sense that they represent effective couplings
between components of the field M entering in the construction of the functional Γ[M].

Then, the Wilson RG procedure [17,18] assumes a progressive dilution of the informa-
tion, integrating-out progressively the fluctuating degrees of freedom following a given
slicing. In that way, RG constructs a path from UV to IR scales (see Figure 2), in which each
step provides an effective description, associated to an effective classical action describing
fluctuations of non-integrated degrees of freedom. Thus, the effect of the microscopic
degrees of freedom that we ignore is hidden in the parameters defining this action. Thus,
RG transformations define a mapping from an action to another at different scales, and the
successive positions of the classical action through the functional space of allowed actions
construct a trajectory, starting in the UV and ending in the IR. This functional space is
usually called theory space. Along this trajectory, the couplings (i.e., the parameters defining
the action) change; and the RG equations take the form of a dynamical system describing
this running behavior of the couplings along RG trajectories.

However, the existence of such a path is guaranteed only if it is possible to define
a criterion for the choice of the renormalization scale of such fluctuations. In standard
field theory, this criterion is given by the energy of the modes, the high energy modes
being associated to small scales whereas low energy modes are associated to large scales.
These energy levels correspond to the eigenvalues of some physically relevant operator. In
standard field theory, for instance, for a classical action describing a scalar field φ(x) on Rd,
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S [φ] :=
1
2

∫
Rd

ddx φ(x)(−∆ + m2)φ(x) +
g
4!

∫
Rd

ddx φ4(x) , (3)

the operator allowing to classify the modes is the kinetic operator K = ∆ + m2; or simply
the Laplacian ∆, whose eigenvectors are the Fourier modes.

2.1. A Field Theoretical Embedding for Data Analysis

As in statistical physics, in the big data area, a state is a point in a space with a very
large number of dimensions. PCA, in turn, aims to find the most relevant features out
of a very large number of variables. In the case of a continuous spectrum, the relevance
is fixed by some sensitivity threshold, discriminating between large eigenvalues that we
keep and small eigenvalues that we discard. In other words, PCA constructs effective
descriptions, which are valid as long as we can ignore the small eigenvalue effects. This
picture is reminiscent of what RG do. From this, it could exist a criterion to distinguish
between a noisy spectrum and another containing information, based on the differences
between their respective effective asymptotic states. Let us consider the example of the
field theory described by the classical action (3). The dimension of coupling constants like
g depends on the dimension of the background space Rd. In this example, [g] = d− 4.
The relevance in the vicinity of the Gaussian fixed point (g ≈ 0) depends on the value of
this dimension. For d > 4, the operator φ4(x) is irrelevant, meaning that for sufficiently
large scale, the theory is essentially Gaussian. In the opposite situation, for d < 4, the RG
flow moves away from the Gaussian fixed point (The point m2 = g = 0 is a fixed point
of the RG flow, thus any partial integration leads to another Gaussian model in virtue of
the Gaussian integration properties. Thus, the relevance of the operators in the deep IR is
usually determined by the dimension of the space.) However, the latter determines also
the shape of the distribution for the Laplacian eigenvalues p2, which is ρ(p2) = (p2)d/2−1,
and relevance can be alternatively viewed as a property of the momentum distribution,
without reference to the background space dimension. This is exactly what the authors of
references [20–23] did: the scaling dimension is defined through the coarse graining, from
the requirement that no explicit scale dependence occurs in the flow equations, excepts
eventually at the linear level (see Section 3.1).

We propose a framework allowing to construct a field theoretical approximation of
the fundamental RG flow. This point of view is familiar in condensed matter physics, and
especially in the physics of critical phenomena. The classical example is the Ising model,
whose critical behavior may be well approximated by an effective field theory in the criti-
cal domain [7]. Let us consider a set of N random variables, φ = {φ1, φ2, · · · , φN} ∈ RN ;
providing an archetypal example of field. Moreover, we assume that there exists a distribu-
tion p[φ] able to reproduce the covariance matrix C, at least for sufficiently large scale (in
eigenvalue space). An elementary formal realization of this is given by the Gaussian states:

p[φ] ∝ exp

(
−1

2 ∑
i,j

φiC−1
ij φj

)
, (4)

ensuring that 〈φiφj〉 = Cij. The bracket notation 〈X[φ]〉 defines the mean value of X with
respect to the distribution p[φ]. For such a Gaussian description, all the non-vanishing
momenta of the distributions, 〈φiφjφk · · · 〉 reduce to a sum of the product of 2-points
function following Wick theorem, and only the second cumulant does not vanish. In the
field theory language, a theory with this property is said to be free. From an RG point of view,
this description makes sense only if the Gaussian point is stable, i.e., if any perturbation
around the Gaussian point ends up disappearing after some steps of the RG. In the next
section we show that for MP law the Gaussian point is unstable. Moreover for a realistic
dataset, correlations for n-point functions fail to be a product of 2-point functions, as a
purely Gaussian law would have required. In the field theory language, this failing of the
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Gaussian description indicates the presence of interactions, materialized as non-Gaussian
terms in the action. The coupling g

∫
φ4(x) in (3) provides an elementary example.

We, therefore, consider an interacting field theory. In standard field theory, there
exist powerful principles, inherited from physics or mathematical consistency, to guide
the choice of interactions, and the relevant domains of the theory space. In the absence of
such a guide, we use the same simplicity argument already considered in [20,23]. We focus
on purely local interactions of the form g ∑i φ2n

i , with fields interacting on the same point,
with the same coupling constant. In that way, near to the Gaussian point our distribution
p[φ] is suitably expanded as

p[φ] ∝ exp

(
−1

2 ∑
i,j

φiC̃−1
ij φj −

g
4! ∑

i
φ4

i + · · ·
)

. (5)

Note that, in our assumptions we kept only even interaction terms, ignoring for instance
couplings like φ3

i . This hypothesis is equivalent to assume the reflection symmetry (note
that, truncating around quartic interactions, adding a term like ∑i,j φ2

i φ2
j , which is invariant

under to the rotational group O(N), enlarges the discrete group Z2 to the hypercubic
symmetry. Thus, the purely local model is, with this respect, the less structured one.)
φi → −φi. Finally, note that, in principle, C̃−1 6= C−1. Indeed, what is known “empirically”
is the full 2-point function Cij; and the probability distribution must be:∫

dφ φiφj p[φ] = Cij . (6)

and from perturbation theory ∫
dφ φiφj p[φ] = C̃ij +O(g) . (7)

Note that, from an information theory point of view, probability density (5) corresponds
to the maximum entropy solution, compatible with constraint (5) and the existence of
undetermined non-Gaussian correlations. From that point of view, the model is minimal
in the sense that it carries the least possible structure, as stated in [20]. In that setting
Cij = C̃ij only at first order, and when non-Gaussian contributions cannot be neglected, C̃ij
receives quantum corrections, depending on the couplings in a non-trivial way. Inferring
the Gaussian kernel C̃ij from the knowledge of Cij is a very challenging problem in field
theory. In some approximation schemes however, relevant to extracting non-perturbative
information about the behavior of the RG flow, this difficulty is not a limitation of our
investigation. In the local potential approximation that we will consider in this paper for
instance, we assume that C−1

ij and C̃−1
ij differ by a constant, C−1

ij = C̃−1
ij + k; the constant k

capturing all the quantum corrections. One would expect that an approximation works,
essentially, in the region of small eigenvalues for C−1

ij , the IR regime in the field theoretical
language. We hope that our methods can track the presence of a signal. We will return
on this discussion in Section 3.1. A finer analysis would require more elaborate methods,
beyond the scope of this paper. We are then able to construct an approximation of the RG
flow, which is not autonomous due to the lack of dilatation invariance of the eigenvalue
distribution for C−1

ij (see Section 3). Finally, let us mention a remark about the field
theoretical embedding. In Section 3, we show that even for the MP law, the number of
relevant interaction becomes arbitrarily large in the first 66% of the smallest eigenvalues.
This introduces an unconventional difficulty in field theory, which can be alternatively
viewed as a limitation of the field theory approximation. The breaking down of the field
theory up to a certain scale is not a novelty. It is well known for instance that the Ising
model behaves like an effective φ4 field theory like (3) in the vicinity of the ferromagnetic
transition. Thus, a failure of the field theoretical approximation may be alternatively
viewed as a signal that a more elementary description is required. Then, it is interesting
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to remark that the field theory considered in (5) may be essentially deduced from the
Ising-like model:

pIsing({S}) ∝ exp
(

1
2

SiCijSj

)
, (8)

where the Si = ±1 are discrete Ising spins. Indeed, introducing N reals variables φi, and
using the standard Gaussian trick to rewrite the quadratic term in Si;

pIsing({S}) ∝
∫

∏
i

dφi exp
(
−1

2
φiC−1

ij φj + Siφi

)
. (9)

Thus, summing over {Si} configurations generates an effective ∑i cosh(φi); and expanding
it in power of φi reproduces the terms appearing in the local expansion in (5). The model
described by (8) is reminiscent of the standard spin-glass models, as the Sherrington–
Kirkpatrick model [54–57]. Its derivation, moreover, follows directly from the maximum
entropy prescription with constraint (6) if we assume to work with discrete spins. We can
alternatively see our model of field theory as coming from this binary model, derived from
a principle of maximum entropy with fixed correlations [2–4].

2.2. The Model

In this section, we provide a mathematical definition of the field theoretical model that
we consider, an extended discussion can be found in [20,23]. Following these references,
we work in the eigenbasis of the matrix C−1

ij , more suitable for a coarse-graining approach.

Note that, with our assumption, this eigenbasis is the same as the one for C̃−1
ij . In that way,

the Gaussian (or kinetic) part of the classical action of p[φ] takes the form;

Skinetic[ψ] =
1
2 ∑

µ

ψµλµψµ , (10)

where λµ denote the eigenvalues of C̃−1
ij , labeled with the discrete index µ; and the fields

{ψµ} are the eigen-components of the expansion of φi along the normalized eigenbasis u(µ)
i :

ψµ = ∑
i

φiu
(µ)
i , ∑

j
C̃−1

ij u(µ)
j = λµu(µ)

i . (11)

Let then m2 be the smallest eigenvalue. We introduce the positive definite quantities
p2

µ := λµ −m2. This way, the kinetic action takes the form of a standard kinetic action in
field theory:

Skinetic[ψ] =
1
2 ∑

µ

ψµ(p2
µ + m2)ψµ . (12)

In the continuum limit, for N sufficiently large, it is suitable to use the empirical eigenvalue
distribution χ(λ) and to replace sums by integrals. This distribution is empirically inferred
from ∑µ δ(λ− λµ)/N, and the distribution ρ(p2

µ) for the momenta p2
µ follows. Moreover,

with our assumptions on C̃−1
ij , this distribution can be directly deduced from the spectrum

of C−1
ij . Finally, for purely random matrices with i.i.d entries, the MP theorem states that

the empirical distribution has to converge toward an analytic form that can be used to do
exact computations.

It is, however, difficult to deal with interactions in this formalism. A simplification,
already considered by the authors of [23] is to work with momentum-dependent field
ψ(p) rather than with the field ψµ (labeled with the positive quantity p2

µ). This can be
motivated by the observation that the model (5) is no rather fundamental than any other
model able to reproduce effective correlations in some approximation scheme. In local
approximation, that we consider in this paper, the two formulations are expected to be in
the same universality class when we define locality in momentum space as:
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Definition 1. An interaction is said to be local of order P if it involves P fields and if it is
conservative, i.e., if it is of the form:

U[ψ] ∝ ∑
{pα}

δ0,∑P
α=1 pα

P

∏
α=1

ψ(pα) . (13)

where δp,p′ denotes the standard Kronecker delta, equal to 1 for p = p′ and zero otherwise. By
extension, we say that a functional U[ψ] is local if its expansion in power of ψ involves only
local terms.

This definition follows the standard one in classical and quantum field theory, and it is
moreover consistent with the idea that locality is defined “at contact point” in the original
representation (5).

S

UV scale

IR scale

Γ

RG flow

Theory space

Figure 2. Qualitative illustration of the RG flow. The UV scale is described by the classical action S ,
while the IR scale is described by an effective object Γ, where microscopic effects are hidden in the
different parameters involved in its definition.

2.3. Wetterich–Morris Framework

Among the different incarnations of the Kadanoff–Wilson’s coarse-graining idea, the
Wetterich–Morris (WM) framework has the advantage to be well suited to non-perturbative
approximation methods [58,59]. Rather than Kadanoff–Wilson approach, which focuses on
the effective classical action Sk for IR modes below the scale k, the WM formalism focuses
on the effective averaged action Γk; i.e., the effective action for integrated-out modes above
the scale k. As recalled in the previous section, the fundamental ingredient to describe
IR scales, when all degrees of freedom have been integrated out is the effective action
Γ[M], which is defined as the Legendre transform of the free energy W[j] (Equation (2));
the classical field M = {Mµ} being defined as:

Mµ =
∂W[j]

∂jµ
. (14)

The starting point of the WM formalism is to modify the classical action S [ψ] adding a
scale dependents term ∆Sk[ψ], depending on a continuous index k running from k = Λ,
for some fundamental UV scale Λ, to k = 0. In such a way, we define a continuous family
of models, described by a free energy Wk[j] defined as:

Wk[j] := ln
∫
[dψ]p[ψ]e−∆Sk [ψ]+∑µ j(pµ)ψ(pµ) . (15)

The regulator function ∆Sk[ψ] behaves like a mass, whose value depends on the momen-
tum scale:

∆Sk[ψ] =
1
2 ∑

µ

ψ(pµ)rk(p2
µ)ψ(−pµ) . (16)
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The momenta scale rk(p2
µ) provides an operational description of the Kadanoff–Wilson’s

coarse-graining procedure, and it is chosen, such that:

1. rk=0(p2) = 0 ∀p2, meaning that for k = 0, Wk ≡ W, all the fluctuations are inte-
grated out;

2. rk=Λ(p2) � 1, meaning that in the deep UV, all fluctuations are frozen with a very
large mass;

3. rk(p2) ≈ 0 for p2/k2 < 1, meaning that high energy modes with respect to the scale
k2 are essentially unaffected by the regulator. In contrast, low energy modes must
have a large mass which decouples them from long-distance physics.

The two boundaries conditions ensure that we recover the effective descriptions,
respectively, in the UV limit, where no fluctuations are integrated out, and in the deep
IR where all the fluctuations are integrated out. In other words, we interpolate between
the classical action S and the effective action Γ. This can be achieved by introducing the
effective averaged action Γk defined as:

Γk[M] + Wk[j] = ∑
µ

j(pµ)M(pµ)−
1
2 ∑

µ

M(pµ)rk(p2
µ)M(−pµ) , (17)

such that Γk=0 ≡ Γ and, from the conditions on rk, Γk=Λ ∼ S . The meaning of Γk is
illustrated in the Figure 3. Along the path from k = Λ to k = 0, Γk goes through the
theory space, and the different coupling changes. The dynamics of the couplings can be
deduced considering a small variation k→ k + dk, and we can show that Γk obeys to the
WM equation [58,59]:

Γ̇k =
1
2 ∑

µ

ṙk(p2
µ)
(

Γ(2)
k + rk

)−1

µ,−µ
. (18)

This equation is the one that we will use in this paper to investigate RG flow for datasets.
The dot notation Γ̇k represents the partial derivation of Γk with respect to the scale k.

k = Λ k k = 0

Γk Γ

Figure 3. Qualitative illustration of the meaning of the effective averaged action Γk, as the effective
action of the UV degrees of freedom which have been integrated-out.

3. RG, from Theory to Numerical Investigations

In this section, we investigate the behavior of the RG flow, focusing on the evolution of
the field expectation value and symmetry restoration aspects. However, since the functional
space has infinite dimensions, solving the non-perturbative Equation (18) is a difficult task,
requiring approximations that we discuss as well.

As a first approximation, we focus on the symmetric phase [60–66], which can be
defined as the region of the whole phase space where it makes sense to expands the
averaged effective action Γk[M] in the power of M, around M = 0. Regions where
M = 0 become unstable vacua and the field expansion can be improved by an expansion
around a non-zero vacuum. This works well in the local potential approximation (LPA),
neglecting the momentum dependence of the classical field. Corrections to the strict LPA
take the form of a perturbative expansion in the power of p2, called derivative expansion
(this terminology is inherited from the standard field theory, where an expansion in the
power of the momentum p2 is nothing but an expansion in the power of ∆, the standard
Laplacian in Rd.) (DE). In this paper, we consider only the first terms in the derivative
expansion, provided by the kinetic action contribution

∫ 1
2 p2M(p)M(−p) to Γk[M]. In

strict LPA, the coefficient in front of p2 (the field strength) remains equal to 1. A slight
improvement to the LPA, called LPA′ takes into account the field strength flow Z(k):∫ 1

2 p2M(p)M(−p)→
∫ 1

2 Z(k)p2M(p)M(−p), so that the anomalous dimension does not
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vanish. We will consider both these approximations, showing explicitly that the corrections
provided to LPA′ remain small into the range of scales that we consider, thus ensuring the
validity of the LPA, as well the reliability of our conclusions.

3.1. Solving the Exact RG Equation into the Symmetric Phase
3.1.1. Generalities

As explained before, a truncation is generally required to solve the RG Equation (18).
In other words, a truncation is nothing but an ansatz for Γk, and, thus, a specific parametriza-
tion of a finite-dimensional region of the full phase space. The reliability of the method is,
however, no guarantee in general, and a deep inspection is always required to validate the
conclusions of the truncations. Generally, there are two main sources of shortcomings.

The first one comes from the choice of the regulator rk. Indeed, formally, the boundary
conditions ensured by rk and Γk are such that different choices for rk lead to different
trajectories into the theory space, with the same boundary conditions Γk=0 = Γ. This
formal device however does not survive the truncation procedure in general, and it is
well known that a spurious dependence on the regulator appears for physically relevant
quantities like critical exponents. The knowledge of exact results or exact relations enables
in favorable cases, to improve the choice of the regulator. Some general considerations
based on optimization criteria can be of some help in other cases [67–69]. For our purpose,
since we essentially focus on the shape of the effective potential rather than on the specific
value of a physical quantity, one expects that such dependence is not too relevant.

The second one is the choice of truncation. A general criterion is based on the relative
relevance of the different ingredients entering in the definition of Γk. In the worst case, the
parametrization may conflict with exact relations, coming, for instance, from symmetries
like Ward identities [60–66]. Once again, one expects that such a pathological effect is not
likely to appear here.

In this section, we aim to focus on the symmetric phase, where Γk is assumed to be
well expanded in the power of M. With this assumption, it is suitable to write Γk[M] =
Γk,kin[M] + Uk[M], where Γk,kin[M], the kinetic part, keeps only the quadratic terms in
M and Uk[M], the potential, is expanded in power of M higher than 2. In the LPA, the
potential Uk[M] is a purely local function, in the sense of the Definition 1. Moreover, we
assume that Uk is an even function, i.e., that the symmetry M → −M holds. In contrast,
Γk,kin[M], whose inverse propagates the local modes, may involve non-local contributions,
and its generic parametrization reads as:

Γk,kin[M] =
1
2 ∑

p
M(−p)(Z(k, p2)p2 + u2(k))M(p) , (19)

where Z(k, p2) expands in power of p2 as Z(k, p2) = Z(k) + O(p2). In this paper, we
focus on the first order of the DE, keeping only the term of order (p2)0 in the expansion
of Z(k, p2). In the symmetric phase moreover, assuming that Uk[x] is an even function,
the flow equation for Z(k) vanishes exactly. Thus, it is suitable to fix the normalization of
fields, such that Z(k) = 1 ∀ k.

As explained in Section 2.1, the field theory framework that we consider is non-
conventional in the sense that the full kinetic action is known in the deep IR, but not at the
microscopic level. We, thus, have to infer the microscopic kinetic action from the IR regime.
Such an inference problem is reputed to be a hard problem (Figure 4), especially because the
coarse-graining is not invertible. A consequence of this is the large river effect [70]. Usually,
when a sufficiently large number of degrees of freedom have been integrated out, all the RG
trajectories converge toward a finite-dimensional region of the full phase space, spanned
by relevant and marginal (by power counting) interactions. In other words, different
microscopic physics may have the same effective behavior at sufficiently large scale, the
difference, spanned by irrelevant (i.e., non-renormalizable) interactions falling below the
experimental precision threshold on a large enough scale. Thus, the best compromise
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is an equivalence class of microscopic models, that are not distinguishable (up to some
experimental precision) in the deep IR. This hard inference problem is simplified within
the LPA, because the expression for the effective kinetic action differs only by the mass
parameter u2(k).

UV Equivalence class

IR scale

Γ

RG flow

Theory space

S1

S2
S3

Γk

Figure 4. Qualitative illustration of the RG flow behavior. Some different UV initial conditions lead to
the same (universal) IR physics, up to negligible differences with regard to the experimental precision.

The derivation of the flow equations follows the general strategy [65]. Taking the
second derivative of the Equation (18) with respect to Mµ, we get:

Γ̇(2)
k,µ1µ2

= −1
2 ∑

µ

ṙk(p2
µ)Gk,µµ′Γ

(4)
k,µ′µ′′µ1µ2

Gk,µ′′µ . (20)

The different terms involved in this expression can be explicitly derived from the truncation.
Indeed, from:

Γk[M] =
1
2 ∑

p
M(−p)(p2 + u2(k))M(p)

+
u4(k)
4!N ∑

{pi}
δ

(
∑

i
pi

)
4

∏
i=1

M(pi)

+
u6(k)
6!N2 ∑

{pi}
δ

(
∑

i
pi

)
6

∏
i=1

M(pi) +O(M6) , (21)

we straightforwardly deduce that:

Γ(2)
k,µ1µ2

= δpµ1 ,−pµ2

(
p2

µ1
+ u2(k)

)
, (22)

and:
Γ(4)

k,µ1µ2µ3µ4
=

g
4!N ∑

π

δ0,pπ(µ1)
+pπ(µ2)

+pπ(µ3)
+pπ(µ4)

, (23)

where π denotes elements of the permutation group of four elements. Note that, the origin
of the factors 1/N and 1/N2 can be easily traced. As we will see below, the 1/N in front
of u4 ensures that (20) can be rewritten as an integral in the large N limit, involving the
effective distribution ρ(p2). The 1/N2 in front of u6 ensures that all the contributions
to the flow of u4 receive the same power in 1/N. For the same reason, u8 have to scale
as 1/N3 and u2p as 1/Np−1. Finally, the division by 1/(2p)! ensures that the symmetry
factors of the Feynman diagrams match exactly with the dimension of its own discrete
symmetry group.

From (22), we easily deduce that

Gk,µµ′ =
1

p2
µ + u2 + rk(p2

µ)
δpµ ,−pµ′ . (24)
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To compute the flow equation, we have to make a choice for the regulator. From the
expected form of the propagator, it is suitable to chose the Litim regulator—which is
optimized in the sense of [67,68]:

rk(p2
µ) = (k2 − p2

µ)θ(k
2 − p2

µ) , (25)

where θ(x) denotes the standard Heaviside function. The flow equation for u2 follows:

u̇2 = − 1
2N

2k2

(k2 + u2)2 ∑
µ

θ(k2 − p2
µ)Γ

(4)
k,µµµ1µ1

∣∣∣∣
pµ1=0

. (26)

In the large N limit, it is suitable to convert the sum as an integration, following [23]. For
power law distributions ρ(p2) = (p2)α, the resulting equations are exactly the same as
for standard field theory in dimension d, for which ρ(p2) = (p2)d/2−1. The RG proceed
usually in two steps. As a first step we integrate degrees of freedom into some range of
momenta p ∈ [sΛ, Λ] (s < 1), providing a change of cut-off Λ→ sΛ. The second step is a
global dilatation p→ p/s, ensuring that the original UV cut-off Λ is restored (see Figure 5).

ΛsΛ ⇒
Λ

Figure 5. A step of the RG flow. On the left, integration of momenta between sΛ and Λ. On the right,
dilatation of the remaining momenta with a factor 1/s.

The shape of a power-law distribution is globally invariant to such transformations.
The consequence is the existence of a global scale-dependent rescaling up → kdp ūp for
all couplings, such that flow equations become autonomous. In that equation, dp is the
scaling (or canonical) dimension for up. The distribution that we consider in this paper,
like MP law, do not enjoy this shape invariance property, and the flow equation never look
as an autonomous system. The best compromise that we can do is a local definition of the
canonical dimension, as in [23] with the example of quartic coupling. Here, we reproduce
some parts of this analysis, providing a deeper investigation of the local scaling dimensions
for higher couplings.

3.1.2. Flow Equations, Scaling and Dimension

Because of the asymptotic nature for u2, it is suitable to assume that it must scale as
k2, and following [23], we define the dimensionless mass as ū2 = k−2u2. Thus, without
assumptions on the distribution ρ we get:

˙̄u2 = −2ū2 −
2u4

(1 + ū2)2
1
k2

∫ k

0
ρ(p2)pdp , (27)

with the notation Ẋ = kdX/dk. For a power law distribution, L :=
∫ k

0 ρ(p2)pdp equals
L = k2α+2/(2α + 2); therefore

d ln(L) = (2α + 2)d ln(k) . (28)

The variation of the loop integral is proportional to the variation of the time flow t = ln(k).
This is why the parameter t is as well relevant for ordinary QFT. For ρ being not a power
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law however, it is suitable to use the time τ defined as dτ := dL. In this parametrization
we get straightforwardly:

dū2

dτ
= −2

dt
dτ

ū2 −
2u4

(1 + ū2)2
ρ(k2)

k2

(
dt
dτ

)2
, (29)

and we define the τ-dimension for u2

dimτ(u2) = 2
dt
dτ

. (30)

The τ-dimension for u4 can be defined in the same way,

u4
ρ(k2)

k2

(
dt
dτ

)2
=: ū4 , (31)

ensuring that the non autonomous character of the flow is entirely contained in the linear
term of the flow equations. We obtain finally:

dū2

dτ
= −2

dt
dτ

ū2 −
2ū4

(1 + ū2)2 . (32)

For the coupling u4, taking the fourth derivative of the flow Equation (18) and excluding
the odd functions which vanish, we get:

du4

dτ
= − 2u6

(1 + ū2)2 ρ(k2)

(
dt
dτ

)2
+

12u2
4

(1 + ū2)3
ρ(k2)

k2

(
dt
dτ

)2
. (33)

Thus, rescaling u6 in such a way that only the linear term in ū4 is scale-dependent enforces
the definition:

u6 k2

(
ρ(k2)

k2

(
dt
dτ

)2
)2

=: ū6 . (34)

Therefore:
dū4

dτ
= −dimτ(u4)ū4 −

2ū6

(1 + ū2)2 +
12ū2

4
(1 + ū2)3 , (35)

where:

dimτ(u4) := −2
(

t′′

t′
+ t′

(
1
2

d ln ρ

dt
− 1
))

, (36)

denoting as X′ for dX/dτ. Finally, we get for u6:

ū′6 = −dimτ(u6)ū6 + 60
ū4ū6

(1 + ū2)3 − 108
ū3

6
(1 + ū2)4 ; (37)

where:

− dimτ(u6) := 2
dt
dτ

+ 4
(

t′′

t′
+ t′

(
1
2

d ln ρ

dt
− 1
))

. (38)

In the same way, we get for u2p:

− dimτ(u2p) = 2(p− 2)
dt
dτ
− (p− 1)dimτ(u4) . (39)

3.1.3. Analytical Noisy Data, MP Distribution

For our numerical investigations we need to keep control of the size of the signal and
numerical approximations. To this end, we consider deformations around a model of noise.
We focus on the MP law, which has the double advantage to be a familiar model of noise
and to be analytic. For X N × P matrix with i.i.d. entries and variance σ2 < ∞, the MP
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distribution µ(x) gives the spectrum of the correlation matrix Z := XT X
P for both N, P→ ∞

but P/N =: K remains finite [43]. Explicitly:

µ(x) =
1

2πσ2

√
(a+ − x)(x− a−)

Kx
, (40)

where a± = σ2(1±
√

K)2. The distribution ρ for eigenvalues of the inverse matrix can be
easily deduced from (40). Figure 6 provides a picture of the numerical flow for a quartic
truncation. Interestingly, the behavior of the RG flow looks very close to the familiar flow
for φ4 theory in dimension d < 4. In particular, we show the existence of two regions,
one in which the flow goes toward positive mass and the second one toward the negative
mass. Usually, this splitting is governed by a fixed point, the Wilson–Fisher fixed point.
Even though we have no true fixed point, in this case, we show that an analogous effect
appears, the role of the fixed point being played by an extended attractive region that we
call pseudo-fixed point.

Figure 6. Numerical flow associated to the MP law (data without signal) and for the quartic truncation.
The main directions of the flow are highlighted by the black arrows (which are oriented from UV to
IR). We observe the existence of a region reminiscent of the standard Wilson–Fisher fixed point.

In Figure 7 we plotted the canonical dimensions of the couplings up to p = 5, for
K = 1 and σ = 0.5, 1 and 2, respectively. This is the property announced in Section 2.1. In
the deep UV sector, i.e., in the domain of very small eigenvalues, the canonical dimension
is positive for an arbitrarily large number of interactions. In the RG language, this means
that an arbitrarily large number of operators are relevant toward the IR scales, and the
description of the flow becomes very difficult, requiring to consider very large truncations
in a very small range of scales. In contrast, up to a scale, Λ0(σ), defined such that:[

dt
dτ
− 3

4
dimτ(u4)

]
t=ln(Λ0)

= 0 , (41)

only the local couplings u4 and u6 are relevant. Numerically, this point is reached in the
vicinity of the eigenvalue λ ∼ λ0/3, λ0 denoting the largest eigenvalue of the analytic
spectrum. We, thus, have essentially revealed the existence of two regions: the deep noisy
region (DNR), for p2 > Λ0, where the number of relevant operators and their respective
canonical dimensions increases arbitrarily, and the learnable region (LR) for p2 < Λ0, where
only two couplings are relevant and standard field theoretical methods are expected to
work. In this paper we only focus on this region; using RG to track the presence of a
signal. Figure 8 shows numerical evolution of couplings u2, u4, and u6, starting the RG flow
from k = Λ0. Note, finally, that the behavior of the canonical dimension can be expected
from the small p behavior of the MP law. Indeed for small p, ρ ∼ (p2)α with α = 1/2.
Following the dimensional analysis in [23], the corresponding canonical dimension for



Entropy 2021, 23, 1132 15 of 27

the local couplings u2p must be dimt(u2p) = 2(1− (p− 1)α), and, thus, interactions are
irrelevant for p > 3. The asymptotic behavior of the distribution provides, therefore, a
first indication of the relevant interactions in the asymptotic region, and we call critical
dimension the corresponding value for α.

u4

u6

u8

u10

μ(σ=2)

5 10 15 20

1

k2

-4

-2

2

{μ, -dim}

u4

u6

u8

u10

μ(σ=1)

1 2 3 4

1

k2

-4

-2

2

4

{μ, -dim}

u4

u6

u8

u10

μ(σ=0.5)

0.2 0.4 0.6 0.8 1.0

1

k2

-6

-4

-2

2

4

{μ, -dim}

Figure 7. The canonical dimension for MP distribution with K = 1 and σ = 0.5 (on the right), σ = 1 (in the middle) and
σ = 2 (on the left). The purple curve corresponds to the MP distribution.

Figure 8. RG trajectories starting from k = Λ0 for u2 (blue curves), u4 (red curves), and u6

(green curves).

3.1.4. A First Look on Numerical Investigations

After the previous analytic observations, we provide in this section a first inspection
on numerical aspects for non-analytic signals, as illustrated in Figure 9.

Figure 9. A typical DNMP distribution for P = 1500 and N = 2000.

To keep control on the strength of the signal, we focus on two kind of eigenvalue
distributions for our numerical investigations. The first one is a model of noise, that we call
NMP (numerical Marchenko–Pastur). It is obtained by constructing the covariance matrix
for a N × P matrix with i.i.d. random entries and variance equal to 1. The distribution of
the eigenvalues of such matrix converges, for large P and N, to the MP’s law, and we set
P = 1500 and N = 2000 for all our simulations that we discuss in this section. The second
distribution that we call DNMP (disturbed numerical Marchenko–Pastur) is obtained from
the first one by adding the spikes associated to a matrix of rank R = 65 (defining the size
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of the signal). The variance being fixed to 1, the canonical dimensions for the purely noisy
data are given by Figure 7. We focus on the learnable region (LR), for eigenvalues between
2.5 and 3.4, where only the φ4 and φ6 interactions are relevant.

In [23], the authors pointed out that the canonical dimension of relevant operators de-
creases with the presence of a signal in the LR, and in particular for strong enough signal, [g]
becomes negative. Therefore, we expect the existence of a sufficiently small neighbourhood
near the Gaussian fixed point where the field theory goes toward an asymptotic Gaussian
behavior, arbitrarily close to the mass axis. This heuristic behavior based on dimensional
considerations illustrates how the presence of the signal can affect the equivalence class
of asymptotic states. Here, we are aiming to go beyond these dimensional considerations,
and investigate non-perturbative effects with regard to the field expectation value.

Figure 10 shows the RG flow for the NMP law disturbed by a signal materialized
with discrete spikes. Comparing with the purely MP law (Figure 6), we show that the
pseudo-fixed point moved toward the Gaussian fixed point. This illustrate how RG may be
used to track the presence of a signal. Indeed, the (pseudo-)fixed point controls the critical
behavior. If its position changes, one expects that IR physics may be affected for some
initial conditions. Among these IR properties, we focus in this paper on the field vacuum
expectation value. In the truncation that we considered, and neglecting the momentum
dependence of the classical field, the effective potential writes as a sixtic polynomial:

U(m, {u2n}) =
1
2

u2m2 +
u4

4!
m4 +

u6

6!
m6 , (42)

up to the rescaling M =: Nm. The classical configuration is such that ∂U/∂m = 0, and it
depends on the values and on the signs of the different couplings. We focus on the sixtic
truncations, and in the region u6 > 0, ensuring integrability. Under these conditions, we
investigate, in the vicinity of the Gaussian fixed point, the set of initial conditions ending
in the symmetric phase, i.e., such that the values of the couplings ensure m = 0. The set of
these points takes the form of a compact regionR0 around the Gaussian point.

Figure 10. Numerical flow associated to a DNMP distribution in the learnable region.

Figure 11 shows this compact regionR0 for a purely noisy data (on the top) and for a
small perturbation of the previous one with a multi-spike signal (on the bottom). Figure 12
illustrates what happens in regard to the shape of the effective potential. On the left, we
show the evolution of the effective potential in the purple region for a purely noisy data.
On the right, we present the evolution of the potential for the same initial conditions, when
the noise is disturbed with some spikes.
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Figure 11. Three points of view of the compact regionR0 (illustrated with purple dots) in the vicinity of the Gaussian fixed
point (illustrated with a black dot). In this region RG trajectories end in the symmetric phase, and thus are compatible with
a symmetry restoration scenario for initial conditions corresponding to an explicit symmetry breaking. The top plots are
associated to the case of pure noise and the bottom plots are, respectively, associated to the case with signal.

Figure 12. Illustration of the evolution of the potential associated to an example of initial conditions of the coupling u2,
u4, and u6 where the RG trajectories end in the symmetric phase in the case of pure noise (on the left) and stay in the
non-symmetric phase when we add a signal (on the right).

This observation highlights a strong equivalence between the presence of a signal
and the lack of symmetry restoration for some RG trajectories. However, a moment of
reflection shows that regionR0 is too large, and that physically relevant states have to be
researched as a compact subset ε0 of this region constructed as the intersection ofR0 with
the constraint imposed to the probability distribution in the IR. The relevant one in the
LPA is that the mass u2 (interpreted as the largest eigenvalue) remains finite, implying
that ū2 scales as k−2 for small k. Since the separation between two eigenvalues is of order
1/N, one expects that the smallest value for k2 is ∼1/N. Figure 13 shows that trajectories
satisfying this requirement exist inR0, and ε0 6= ∅.

The existence of a non-vanishing set of physically relevant states grants the possibility
to propose the following scenario. We showed that the size of the region R0 decreases
due to the presence of a signal in the spectrum. However, as long as this collapse does not
affect the subset ε0, the presence of the signal has no relevant consequences with respect to
the physical states, at least concerning the expectation value of the field. Our observations
suggest that this is happening only for a signal which is large enough, thus providing
evidence in favor of the existence of an intrinsic detection threshold working with the
expectation value. We do not address the issue of the precise determination of the shape of
this subset ε0, which is the purpose of the companion paper [24].
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Figure 13. Illustration of the evolution of the u2 for eigenvalues between 2.5 and 3.4 in the case of
pure noise (NMP distribution). We can see that the values of ū2 for these examples are of the same
magnitude as N = 2000. This highlights the existence of some RG trajectories associated to physically
relevant states in the deep infrared.

3.2. Venturing into the Non-Symmetric Phase
3.2.1. LPA and LPA′

In this section, we consider the LPA and its improved version LPA′. This way, our
assumptions about Γk,kin (Equation (19)) hold, but we include the mass contribution into
the local potential Uk[M]. Moreover, we neglect the momentum dependence of the classical
field M(p), dominated by the zero-momentum (large scale) value:

M(p) ∼ Mδp0 . (43)

This approximation usually holds in the IR region, which is exactly what we consider.
Moreover, it is not hard to show that such an expansion around M = 0 reproduces exactly
the same equations as the truncation (21) for local operators (i.e., neglecting the momentum
dependence of the effective vertices Γ(2p)

k ). This approximation works well at large scale,
where a symmetry breaking scenario is expected, requiring an expansion around a non-
vanishing vacuum M 6= 0. For this reason, we consider the following parametrization:

Uk[χ] =
u4(k)

2!

(
χ− κ(k)

)2

+
u6(k)

3!

(
χ− κ(k)

)3

+ · · · , (44)

where χ := M2/2, and κ(k) is the running vacuum. The global normalization is such that,
for M0(p) = Mδp0, Γk[M = M0] = NUk[χ]. The 2-point vertex Γ(2)

k moreover is defined as:

Γ(2)
k,µµ′ =

(
Z(k)p2 +

∂2Uk
∂M2

)
δpµ ,−pµ′ , (45)

and, thus, replaces the formula (22), the role of the mass being played by the second
derivative of the potential. The flow equation for Uk can be deduced from (18), setting
M = M0 on both sides. Assuming, once again, that N is large and using the continuum
setting, we get:

U̇k[M] =
1
2

∫
pdp k∂k(rk(p2))ρ(p2)

(
1

Γ(2)
k + rk

)
(p,−p) . (46)

Note that in the definition (45) we introduced the anomalous dimension Z(k), which has a
non-vanishing flow equation for κ 6= 0. To take into account the non vanishing flow for Z,
it is suitable to slightly modify the Litim regulator as:

rk(p2) = Z(k)(k2 − p2)θ(k2 − p2) . (47)
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This modification simplifies the computation of the integrals [67,68]. In the computation
of the flow equations, however it is suitable to rescale the dimensionless couplings ū2p →
Z−pū2p, such that the coefficient in front of p2 in the kinetic action remains equal to 1.
This additional rescaling adds a term nη(k) in the flow equation, where η, the anomalous
dimension is defined as:

η(k) =
Ż(k)
Z(k)

. (48)

Despite the fact that it simplifies the computation, the factor Z in front of the regulator (47)
must not affect the boundary conditions Γk=∞ → S and Γk=0 → Γ. In particular, the first
one requires that rk�1 ∼ kr, for positive r. This is obviously the case for Z = 1, rk�1 ∼ k2.
However, it is possible for Z to break this condition. This may be the case, for instance, if the
flow reaches a fixed point p. At this point, the anomalous dimension takes a value ηp, thus
Z(k) = kηp and rk�1 ∼ k2+ηp . The requirement r > 0 then imposes ηp > −2. Obviously,
this is a limitation of the regulator, not of the method. Moreover, the non-autonomous
nature of the RG equation prevents the existence of exact fixed points, so that the criteria
should be more finely defined. Generally, one expects that the LPA approximation makes
sense only in regimes where η is not so large, and becomes spurious in regime where
|η| & 1 [71].

RG equation for η = 0.

As a first approximation, standard LPA sets Z(k) = 1, or equivalently η = 0. From (46),
we arrive to the expression:

U̇k[χ] =

(
2
∫ k

0
ρ(p2)pdp

)
k2

k2 + ∂χUk(χ) + 2χ∂2
χUk(χ)

. (49)

Introducing the flow parameter τ defined in Section 3.1, we get:

U′k[χ] = k2ρ(k2)

(
dt
dτ

)2 k2

k2 + ∂χUk(χ) + 2χ∂2
χUk(χ)

, (50)

First, we define the scaling of the effective potential as:

∂χUk(χ)k−2 = ∂χ̄Ūk(χ̄) , χ∂2
χUk(χ)k−2 = χ̄∂2

χ̄Ūk(χ̄) , (51)

therefore:

U′k[χ] =
(

dt
dτ

)2 k2ρ(k2)

1 + ∂χ̄Ūk(χ̄) + 2χ̄∂2
χ̄Ūk(χ̄)

(52)

The Equation (51) fixes the relative scaling of Uk and χ. The previous relation moreover
fixes the absolute scaling (the word “absolute” simply means that all the flow equations
remain invariant) under a global reparametrization. This property, moreover, can be read
directly in the partition function, and it reflects the invariance of the path integral measure
of Uk:

Uk[χ] := Ūk[χ̄]k2ρ(k2)

(
dt
dτ

)2
. (53)

In order to find the appropriate rescaling for χ, we introduce a scale dependent factor A,
and define χ̄ as χ = Aχ̄. From global coherence, χ̄ has to be such that:

Uk[χ] := Ūk[A−1χ]k2ρ(k2)

(
dt
dτ

)2
. (54)



Entropy 2021, 23, 1132 20 of 27

Therefore, expanding in power of χ, we find that the linear term becomes:

∂χUk(χ = 0)χ = ∂χ̄Ūk[χ̄ = 0]χ̄k2ρ(k2)

(
dt
dτ

)2
, (55)

or, from (51):

∂χUk(χ = 0)χ = ∂χUk(χ = 0)χA−1ρ(k2)

(
dt
dτ

)2
. (56)

Then, assuming ∂χUk(χ = 0)χ 6= 0, we get:

A = ρ(k2)

(
dt
dτ

)2
, (57)

and:

χ = ρ(k2)

(
dt
dτ

)2
χ̄ . (58)

This equation, obviously fixes the dimension of κ which must be the same as χ. The flow
equations for the different couplings must be derived from definition:

∂Uk
∂χ

∣∣∣∣
χ=κ

= 0 , (59)

∂2Uk
∂χ2

∣∣∣∣
χ=κ

= u4(k) , (60)

∂3Uk
∂χ3

∣∣∣∣
χ=κ

= u6(k) . (61)

The first equation is nothing but the mathematical translation of the requirement that the
expansion is made around a local minimum. The two other equations are consequence
of the parametrization of Uk. In order to derive the flow equations for dimensionless
couplings, it is suitable to work with a flow equation at fixed χ̄ rather than fixed χ:

U′k[χ] = ρ(k2)

(
dt
dτ

)2[
Ū′k[χ̄] + dimτ(Uk)Ūk[χ̄]− dimτ(χ)χ̄

∂

∂χ̄
Ūk[χ̄]

]
, (62)

where dimτ(Uk) and dimτ(χ) denote, respectively, the canonical dimension of Uk and χ,
respectively. To compute them, we return on their definitions, explicitly:

dimτ(Uk) = t′
d
dt

ln

(
k2ρ(k2)

(
dt
dτ

)2
)

, (63)

and

dimτ(χ) = t′
d
dt

ln

(
ρ(k2)

(
dt
dτ

)2
)

. (64)

The final expression for the effective potential RG equation then becomes:

Ū′k[χ̄] =− dimτ(Uk)Ūk[χ̄] + dimτ(χ)χ̄
∂

∂χ̄
Ūk[χ̄] +

1
1 + ∂χ̄Ūk(χ̄) + 2χ̄∂2

χ̄Ūk(χ̄)
. (65)

The next steps are standard. From the definition (59) we must have ∂χ̄Ū′k[χ̄ = κ̄] = −ū4 κ̄′.
Thus, taking the second derivative of (65), we get for κ̄′:

κ̄′ = −dimτ(χ)κ̄ + 2
3 + 2κ̄ ū6

ū4

(1 + 2κ̄ū4)2 (66)
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In the same way, taking second and third derivatives, and from the conditions (60) and
(61), we get:

ū′4 = −dimτ(u4)ū4 + dimτ(χ)κ̄ū6 −
10ū6

(1 + 2κ̄ū4)2 + 4
(3ū4 + 2κ̄ū6)

2

(1 + 2κ̄ū4)3 , (67)

and

ū′6 = −dim(u6)ū6 − 12
(3ū4 + 2κ̄ū6)

3

(1 + 2κ̄ū4)4 + 40ū6
3ū4 + 2κ̄ū6

(1 + 2κ̄ū4)3 . (68)

The flow equation for η.

We now assume that η(k) 6= 0. From definition, assuming that Z depends only on the
value of the vacuum, we must have:

Z[M = κ] ≡ d
dp2 Γ(2)

k (p,−p)
∣∣∣∣

M=
√

2κ

. (69)

Therefore:
η(k) :=

1
Z

k
dZ
dk

=
1
Z

d
dp2 Γ̇(2)

k (p,−p) . (70)

The flow equation for Γ(2)
k can be deduced from (18), taking the second derivative with

respect to the classical field. Due to the fact that, the effective vertex are momentum inde-
pendent, in the LPA representation, the contributions involving Γ(4)

k have to be discarded
from the flow equation for Z. Finally:

Ż := (Γ(3)
k,000)

2 d
dp2 ∑

q
ṙk(q2)G2(q2)G((q + p)2)

∣∣∣∣
M=
√

2κ,p=0
, (71)

where, according to LPA, we evaluate the right hand side over uniform configurations.
Therefore, G(p, p′) =: G(p)δ(p + p′) is the inverse of Γ(2)

k (p, p′) + rk(p2)δ(p + p′), with

Γ(2)
k given by equation (45). The expression of Γ(3)

k,000 can be easily obtained; taking the third
derivative of the effective potential for M:

Γ(3)
k,000 = 3u4

√
2κ + u6(2κ)3/2 . (72)

We arrive to the following expression for anomalous dimension (see Appendix A):

η(k) = 2(t′)−2 (3
√

2κ̄ū4 + (2κ̄)3/2ū6)
2

(1 + 2κ̄ū4)4 . (73)

Note that, to derive this expression we have to take into account that the additional
rescaling coming from Z accordingly to the requirement that the coefficient in front of p2 in
the kinetic action remains equals to 1. Requiring κ̄ → Z−1κ̄ with respect to the strict LPA
definition. Due to the factors Z in the definition of barred quantities, η(k) appears in the
flow equations. The net result is a translation of canonical dimensions

dimτ(u2n)→ dimτ(u2n)− n
dt
dτ

η(k) (74)

in the equations obtained within strict LPA.

3.2.2. Numerical Investigations

The main goal in this section is to show that the general behavior that we observed
for the DE in the symmetric phase holds using the LPA formalism, expanding around a
non-zero vacuum. Figure 14 shows the existence of some RG trajectories for which the
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symmetry is restored within the range where the eigenvalues are between 2.5 and 3.4
(corresponding to the range where only the φ4 and φ6 interactions are relevant for the MP
distribution with σ = 1 and K = 0.75). This is manifested by the fact that κ decreases to
zero. We also show in the same figure that there are other RG trajectories which do not
allow a restoration of the symmetry. Once again, we can identify a set of initial conditions
in the vicinity of the Gaussian fixed point where symmetry is always restored in the deep IR.
Furthermore, we show that there are initial coupling conditions that are of great interest for
signal detection. In fact, for these initial conditions, we have a restoration of the symmetry
when we consider data without signal and, conversely, we do not have such restoration
when we add the signal in the data. This is illustrated in Figure 15 in the form of potentials
for a specific initial coupling condition. Finally, we emphasize that there is no significant
change in this general behavior when we apply the LPA’ representation instead of the
LPA one, i.e., when we take into account the non-zero anomalous dimension (η) in the
formalism. Indeed, we show in Figure 16, that this anomalous dimension remains very
small for the range of eigenvalues that we consider. This moreover is expected to be a
good indication of the convergence of the derivative expansion [71], which improves the
reliability of our conclusions.

Figure 14. Illustration of the evolution of κ, obtained with the LPA representation, for eigenvalues between 2.5 and 3.4 in
the case of data without signal. For some RG trajectories (on the left), κ decreases to zero, which correspond to a restoration
of the symmetry. For other RG trajectories (on the right), κ stays almost constant in the range of eigenvalues that we consider,
and does not lead to a restoration of the symmetry.

Figure 15. Illustration of the evolution of the potential associated to an example of initial conditions of the coupling u2, u4,
and u6. We see that the RG trajectories, obtained with the LPA representation, end in the symmetric phase in the case of
pure noise (on the left) and stay in the non symmetric phase when we add a signal (on the right).
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Figure 16. Illustration of the evolution of η, obtained by the LPA’ representation, for eigenvalues
between 2.5 and 3.4 in the case of data without signal. We see that for these RG trajectories, the
anomalous dimension η remains small. This highlights that there is no significant change when we
use the LPA’ representation instead of the LPA one.

4. Concluding Remarks and Open Issues

Let us summarize our investigations in this paper:

1. In order to keep control on the size of the signal and numerical approximations, we
constructed datasets as perturbations around the MP law. We showed that the field
theory approximation works well up to some scale Λ0. From this scale, the relevant
sector, spanned by relevant couplings, diverges (its dimension becomes arbitrarily
large, and couplings have arbitrary large dimension), and we expect that standard
approximation fails up to this scale.

2. Above the scale Λ0, and focusing on the local interactions, the relevant sector has
dimension 2, spanned by φ4 and φ6 interactions, in agreement with a naive power
counting based on the critical dimension α = 1/2 of the MP law;

3. For MP distribution, we showed the existence of a compact regionR0 in the vicinity
of the Gaussian fixed point, whose RG trajectories end in the symmetric region, and
thus are compatible with symmetry restoration scenario;

4. Disturbing the MP spectrum with a strong enough signal reduces the size of this
compact region, continuously deforming the effective potential from a symmetric
toward a broken shape. In that picture, the role played by the signal strength is
reminiscent of the role played by the inverse temperature β := 1/T in the physics of
phase transition;

5. Finally, considering intersection ε0 betweenR0 and the physical conditions imposed
to the IR 2-point function, we provided evidence in favor of the existence of an intrinsic
detection threshold in the LPA approximation. This region is fully investigated in the
companion paper [24].

These conclusions have to be completed by some important remarks concerning the
different approximations that we did, and by perspectives for forthcoming works.

The first one is about the approximation procedure used to solve the RG Equation (18).
Indeed, despite the limitations of the field theory approximation, the standard recipes to
solve RG equations present limitations. In particular, the LPA neglects the momentum
dependence of the coupling (i.e., deviations from the strict local approximation). We have
no doubts that such an approximation makes sense in the deep IR regime, at the tail of the
spectrum, where momenta are weak, and non-local interactions appear less relevant than
local ones. However, as we explore the small eigenvalue scales, the effect of derivative
couplings can no longer be neglected. As long as these terms can be treated as corrections,
it is expected that our conclusions will not change significantly. However, these corrections
could play a role in the estimation of the detection criterion. Note that, in regimes where
momenta take large values and DE breaks down, other approximation schemes exist,
enabling to keep the full dependence of the effective vertices. The most popular being the
so-called Blaizot–Mendez–Wschebor (BMW) method [21,22,32–51], which, combined with
exact relations such as Ward identities, gives the possibility to provide exact (i.e., scheme
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independent) results [61]. Another current source of disagreement concerns the choice of
the regulator. However, our conclusions are based on the behavior of the effective potential
rather than on a specific value of a physically relevant quantity as a critical exponent. We
thus expect them to be solid with respect to this issue [62–64,64,72].

The other source of approximation is the theoretical embedding. We showed that such
an embedding offers a satisfactory description only for a small eigenvalue region. As we
pointed out, such a limitation is not a novelty in physics, and it may be the sign that a
more fundamental description has to replace the field theory approximation. Equation (8),
involving discrete spins, provides an example of such a description. Note that, conversely,
our field theory can be viewed as an effective description of such a binary model described
with a constrained maximum entropy distribution. Finally, we focused on equilibrium,
i.e., maximum entropy states, although we have adopted the standard field theory view of
the RG. With this respect, let us mention the interesting possibility to view the exact RG
equations as a form of entropy dynamics [40].

Our results focused on a specific model of noise, closer to the analytical MP law.
Obviously, this is far from exhausting the large diversity of models. One might expect
our conclusions to be much more general, and that they could be a universal property
of all statistical noise models. This conjecture however has to be supported by deeper
investigations, and we plan to address this issue for other models of noise. A first step in
this direction has also been done recently for data materialized by random tensors rather
than matrices [25], as considered in the topic of tensorial PCA [73].
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Appendix A. Derivation of the Anomalous Dimension

In this appendix, we provide the main steps of the derivation of the anomalous
dimension (73).

Using the modified Litim regulator, we get:

ṙk(p2) = η(k)rk(p2) + 2Zk2θ(k2 − p2) , (A1)

and
d

dp2 rk(p2) = −Zθ(k2 − p2) . (A2)

In the improved LPA, the diagonal components of the effective propagator take the form:

G(p2) =
1

Zp2 + Z(k2 − p2)θ(k2 − p2) + M2(g, h, κ)
, (A3)

where M2 denotes the effective mass, i.e., the second derivative of the effective action.
Therefore, we have to compute integrals like

In(k, p) =
∫ k

−k
ρ(q2)q(q2)ndqG((p + q)2) . (A4)
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We focus on small and positive p. The integral decomposes as In(k, p) = I(+)
n (k, p) +

I(−)n (k, p), where:

I(±)n (k, p) = ±
∫ ±k

0
ρ(q2)q(q2)ndqG((p + q)2) . (A5)

Since p > 0, in the negative branch (q + p)2 < k2, and:

I(−)n (k, p) =
1

Zk2 + M2 ×
∫ 0

−k
ρ(q2)q(q2)ndq , (A6)

which is independent of p. In the positive branch, in contrast:

I(+)
n (k, p) =

1
Zk2 + M2

∫ k−p

0
ρ(q2)q(q2)ndq +

∫ k

k−p
ρ(q2)q(q2)ndq

1
Z(q + p)2 + M2 . (A7)

Taking the first derivative with respect to p, we get:

d
dp

I(+)
n (k, p) =− 1

Zk2 + M2 ρ(q2)q(q2)n|q=k−p

+ ρ(q2)q(q2)ndq
1

Z(q + p)2 + M2 |q=k−p

− 2Z
∫ k

k−p
ρ(q2)q(q2)ndq

(q + p)
(Z(q + p)2 + M2)2 .

The first two terms cancels exactly, and then:

d
dp

I(+)
n (k, 0) = −2Z

∫ k

k−p
ρ(q2)q(q2)ndq

(q + p)
(Z(q + p)2 + M2)2 . (A8)

Finally, taking second derivative and setting p = 0, we get:

1
2

d2

dp2 In(k, 0) = −Zρ(k2)(k2)n+1

(Zk2 + M2)2 =: I′′n (k, 0) . (A9)

Therefore:

Zη(k) =
(3u4
√

2κ + u6(2κ)3/2)2

(Zk2 + M2)2

(
2Zk2 I′′0 (k, 0)

+ Zη(k)(k2 I′′0 (k, 0)− I′′1 (k, 0))
)

. (A10)

In order to introduce τ-dimensionless quantities, we remark that both u4κ and u6κ2 have
the same scaling dimension. Finally, using renormalized and dimensionless quantities ū2p,
and replacing the effective mass by its value:

M̄2 = ∂χ̄Ūk(κ̄) + 2κ̄∂2
χ̄Ūk(κ̄) = 2κ̄ū4 , (A11)

we arrive to the expression (73).
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