
entropy

Article

Towards an Efficient and Exact Algorithm for Dynamic
Dedicated Path Protection

Ireneusz Szcześniak 1,*, Ireneusz Olszewski 2 and Bożena Woźna-Szcześniak 3

����������
�������

Citation: Szcześniak, I.; Olszewski, I.;

Woźna-Szcześniak, B. Towards an

Efficient and Exact Algorithm for

Dynamic Dedicated Path Protection.

Entropy 2021, 23, 1116. https://

doi.org/10.3390/e23091116

Academic Editor: Ernestina

Menasalvas

Received: 1 August 2021

Accepted: 24 August 2021

Published: 27 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Częstochowa University of Technology, 42-200 Częstochowa, Poland
2 Institute of Telecommunications, UTP University of Sciences and Technology, 85-796 Bydgoszcz, Poland;

irek@utp.edu.pl
3 Department of Mathematics and Computer Science, Jan Długosz University, 42-200 Częstochowa, Poland;

b.wozna@ujd.edu.pl
* Correspondence: ireneusz.szczesniak@pcz.pl

Abstract: We present a novel algorithm for dynamic routing with dedicated path protection which,
as the presented simulation results suggest, can be efficient and exact. We present the algorithm in
the setting of optical networks, but it should be applicable to other networks, where services have to
be protected, and where the network resources are finite and discrete, e.g., wireless radio or networks
capable of advance resource reservation. To the best of our knowledge, we are the first to propose an
algorithm for this long-standing fundamental problem, which can be efficient and exact, as suggested
by simulation results. The algorithm can be efficient because it can solve large problems, and it
can be exact because its results are optimal, as demonstrated and corroborated by simulations. We
offer a worst-case analysis to argue that the search space is polynomially upper bounded. Network
operations, management, and control require efficient and exact algorithms, especially now, when
greater emphasis is placed on network performance, reliability, softwarization, agility, and return on
investment. The proposed algorithm uses our generic Dijkstra algorithm on a search graph generated
“on-the-fly” based on the input graph. We corroborated the optimality of the results of the proposed
algorithm with brute-force enumeration for networks up to 15 nodes large. We present the extensive
simulation results of dedicated-path protection with signal modulation constraints for elastic optical
networks of 25, 50, and 100 nodes, and with 160, 320, and 640 spectrum units. We also compare
the bandwidth blocking probability with the commonly-used edge-exclusion algorithm. We had
48,600 simulation runs with about 41 million searches.

Keywords: dynamic dedicated path protection; generic Dijkstra algorithm; elastic optical network;
modulation constraints

1. Introduction

Optical networks, which are the backbone of communication networks, need to
provide protection for the carried traffic to prevent large-scale disruptions due to fiber cuts,
human errors, hardware failures, power outages, natural disasters or attacks [1–3]. From
among the various ways of protecting traffic in optical networks, dedicated path protection
(DPP) is the simplest, and the most effective, albeit the most expensive. In DPP, there are
two paths established for a single demand: the working one, and the protecting one. When
the working path fails, the protecting path delivers the traffic. DPP has been commonly
used and studied for decades.

In a wavelength-division multiplexed (WDM) network, if a client signal does not fully
utilize the fixed spectrum of the assigned wavelength, the spectrum of the precious erbium
window is wasted, a problem addressed by elastic optical networks (EONs) which divide
the spectrum into fine frequency slot units (of, e.g., 12.5 GHz width), or just units, and then
allocating contiguous units to form a slot tailored to a specific demand [4].

Entropy 2021, 23, 1116. https://doi.org/10.3390/e23091116 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1486-6572
https://doi.org/10.3390/e23091116
https://doi.org/10.3390/e23091116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23091116
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23091116?type=check_update&version=1

Entropy 2021, 23, 1116 2 of 21

Routing in WDM networks with the spectrum continuity constraint is called rout-
ing and wavelength assignment (RWA). Routing in EONs with the spectrum contiguity
constraint added is called routing and spectrum assignment (RSA), and with the signal
modulation constraint added is called routing, modulation, and spectrum assignment
(RMSA). These routing problems can be dynamic or static. In dynamic (aka online) routing,
a single demand is routed in a loaded network, as opposed to static (aka offline) routing,
where many demands are routed in an unloaded network.

When finding an exact solution for a dynamic routing problem in optical networks,
some path cost is minimized, and the spectrum and modulation constraints are met. The
path cost can be defined in various ways, e.g., the path length, the number of edges, some
signal quality measure, monetary cost, or a measure related to availability. The path
cost can take into account the cost of traversing not only an edge, but a vertex, too. In
routing with DPP, the cost of a path pair is minimized, and the spectrum and modulation
constraints must be met for both paths.

Whether routing along paths of lowest cost leads to optimal network performance (as
measured, for instance, with the bandwidth blocking probability over a series of established
and terminated connections) is, to the best of our knowledge, an open research problem,
which we do not address in this work. We research the problem of an exact algorithm, one
which finds an optimal (i.e., of lowest cost) solution, and not of an optimal algorithm. An
algorithm optimality could imply optimal network performance, or optimal computational
complexity, and we address neither of these.

Our novel contribution is an algorithm which solves the dynamic routing problems
with DPP for WDM networks and EONs without signal regeneration and spectrum con-
version. The algorithm can take into account various spectrum allocation policies. With
extensive simulations, we demonstrate the computational performance of the proposed
algorithm, which can be polynomial, not exponential. We corroborate the optimality of the
results found for networks up to 15 nodes. Finally, we provide under a liberal license our
free and open-source implementation of the proposed algorithm [5].

The article is organized as follows. In Section 2, we review related works, in Section 3,
we state the research problem, in Section 4, we describe the algorithm, and, in Section 5,
we report on the simulation results. Finally, Section 6 concludes the article.

2. Related Works

The proposed algorithm is based on the generic Dijkstra algorithm recently pro-
posed [6]. The generic Dijkstra algorithm is a generalization of the Dijkstra algorithm,
which takes into account the spectrum continuity and contiguity constraints by introducing
the incomparability relation between solutions. Specifically, we modify the generic Dijkstra
algorithm to work on a search graph, which is built using the input graph, and represents
the possible ways of finding path pairs. Furthermore, we introduce the incomparability
relation between pairs of paths.

To the best of our knowledge, no efficient and exact algorithm (at least demonstrated
by simulations) for solving the dynamic routing problem with DPP in optical networks
has been published. In [7], the authors offered a proof that the dynamic RWA with
DPP is nondeterministic polynomial time complete (NP-complete). In Reference [8], the
authors offered a proof that the dynamic RMSA with DPP is NP-complete. In contrast,
we propose an algorithm with the efficiency and exactness demonstrated by simulations,
which suggests the problem may be tractable.

Dynamic routing without DPP is simpler, but its status seemed unclear. In
References [9,10], the problem was solved with exponential worst-case time and memory
complexities. However, the dynamic routing problems in EONs can be solved exactly in
polynomial time with the spectrum scan method [11], introduced in Reference [12]. The
exact-routing concept of the spectrum scan method was introduced earlier for WDM net-
works in Reference [13] but was called a heuristic greedy algorithm. That concept was used
under the name of the spectrum window planes [14], and the filtered-graphs algorithm [6].

Entropy 2021, 23, 1116 3 of 21

In Reference [15], the authors solved efficiently (in polynomial time) and exactly the
dynamic routing problem in WDM networks with their interconnected-layered-graph
algorithm. That exact algorithm was later improved and applied to EONs in Reference [16]
but was called heuristic.

In a very broad sense, dynamic routing problems are multicriteria shortest path prob-
lems, which, in turn, are multiobjective combinatorial optimization problems with a set
of constraints given to define the combinatorial structure of the problem [17]. Whether a
specific routing problem is tractable or not depends on the number and type of criteria
(or objective functions) and constraints. Routing problems are defined for discrete or
continuous criteria: discrete for, e.g., optical networks [9] and networks capable of advance
resource reservation [18], continuous for, e.g., networks with quality-of-service require-
ments [19,20]. In Reference [21], ten bicriteria shortest path problems were studied, some
of them were proven NP-complete, others were solved in polynomial time with a novel
multilabeling algorithm. That bicriteria multilabeling algorithm was generalized to any
number and type of criteria in Reference [22], which is now called the Martins algorithm.

The Martins algorithm is the basic algorithm for exactly solving any multicriteria
shortest path problem, but with exponential worst-case memory and time complexities [23].
To use the Martins algorithm for dynamic routing in optical networks, we could consider
available spectrum units as discrete criteria, but that would lead to exponential worst-case
time and memory complexities. The generic Dijkstra is similar to the Martins algorithm
in that it is also a multilabeling algorithm, but the generic Dijkstra algorithm is a single
criterion shortest path algorithm, where the ordering between solutions (labels) is partial.

The efficient and exact algorithms for finding a shortest pair of edge-disjoint paths in
a graph are: the Suurballe algorithm [24], the Bhandari algorithm [25], and any minimum-
cost, maximum-flow algorithm (e.g., the successive shortest path algorithm) with edge
capacities set to one [26], all of which use the path augmentation technique. These algo-
rithms cannot be used for solving the stated problem because they do not consider the
spectrum continuity and contiguity constraints.

In our simulations, we also used two well-known algorithms for solving the problem:
the heuristic edge-exclusion algorithm, and the exact brute-force algorithm.

The edge-exclusion algorithm is a simple and commonly-used algorithm for finding
a pair of edge-disjoint paths: find a shortest path, then remove from the graph the edges
found, and then find a shortest path again. This heuristic performs quite well, but it often
finds suboptimal solutions, and it can fail even when a solution exists (e.g., for the so-called
trap topology).

The edge-exclusion algorithm usually employs the limited (i.e., with a limited K,
e.g., K = 10) K-shortest path (KSP) algorithm to find a shortest path, which is a heuristic
algorithm whose blocking probability depends on the value of K. However, the edge-
exclusion algorithm can perform better if an algorithm of lower blocking probabilities
is used. The blocking probabilities of the generic Dijkstra algorithm can be even twice
as low as the blocking probabilities of the limited KSP algorithm [27]. Therefore, in the
edge-exclusion algorithm, we used the generic Dijkstra algorithm.

The brute-force algorithm enumerates the path pairs using a priority queue that sorts
the pairs in increasing-cost order. After we retrieve a pair from the queue, we produce
new path pairs by extending one of the paths in the pair with an available edge that was
not used before because the two paths should be edge-disjoint and without loops. We put
a new path pair into the queue, if its paths meet the spectrum continuity and contiguity
constraints. We keep looking for path pairs until we find one whose paths end at the
destination node, provided we have enough time and memory. We successfully used
the brute-force algorithm only for very small networks (15 nodes), since this algorithm is
very inefficient.

Entropy 2021, 23, 1116 4 of 21

3. Problem Statement

Given:

• directed multigraph G = (V, E), where V = {vi} is a set of vertexes, and E = {ei} is
a set of edges,

• available units function AU(ei), which gives the set of available units of edge ei, which
do not have to be contiguous,

• s and t are the source and target vertexes of the demand,
• a cost function cost(p), which returns the cost of path p,
• a monotonically nondecreasing cost function COST(l), which returns the (real or

integer) cost of path pair l,
• a decision function decide(p) of monotonically increasing requirements, which returns

true if path p can support the demand, otherwise false,
• the set of all units Ω on every edge.

Find:

• a cheapest (i.e., of the lowest cost) pair of edge-disjoint paths (a path is a sequence of
edges), the cheaper being the working path, and the more expensive the protecting
path,

• continuous and contiguous units for each of the two paths separately: the working
path and the protecting path (i.e., each path can have different spectrum).

We denote a set of contiguous units (CU) which start at index a and end at index b
inclusive as [a . . b]. For instance, [0 . . 2] denotes units 0, 1, and 2. We can treat a set of units
as a set of CUs. For instance, {0, 1, 3, 4, 5} and {[0 . . 1], [3 . . 5]} are the same. Two CUs are
incomparable, when one is not included in the other. For instance, [0 . . 2] and [2 . . 3] are
incomparable, which we denote with the ‖ relation, e.g., [0 . . 2] ‖ [2 . . 3].

To state the problem generically, we intentionally introduced the cost, COST, and
decide functions to consider the RWA, RSA, and RMSA problems with DPP at once. For
example, for RWA, the cost(p) function for path p could return the length of the path, for
RSA, the product of the path length and the number of units requested by the demand,
and, for RMSA, the product of the path length and the number of units required by the
demand for the given path.

We require that the COST(l) function for a path pair l be monotonically nondecreas-
ing, i.e., for any path pair l′ derived from l by appending an edge to one of the paths,
COST(l) ≤ COST(l′). This requirement implies the proposed algorithm cannot be used for
networks with regeneration, when the path cost is defined as the product of the path length
and the required number of units. Regeneration would reduce the number of required
units, and the cost of the path pair would be reduced, thus violating this requirement.

We also assume that an optimal path pair has the optimal substructure, i.e., it is built of
optimal path pairs, which is required by the dynamic programming principle the proposed
algorithm relies on. In our simulations, the defined problem meets this assumption: the
path cost is the product of the path length and the number of units required, while the cost
of a path pair is the sum of the costs of the two paths.

The decide function accepts or rejects a candidate path, and lets the user define an
acceptable path. We require the function to have monotonically increasing requirements,
i.e., if the function rejects path p, then any path derived from p by appending an edge
should also be rejected. For RWA, the function should make sure that the CU has at least
one unit (wavelength), for RSA, that the CU has at least the number of units requested by
the demand, and, for RMSA, that a CU has at least the number of units required for the
demand for the given path length.

The bitrate of a demand is not a given of the stated problem and, if needed, should
be relegated to the decision function as an implementation detail. Likewise, the cost,
COST, and decide functions remain undefined in the problem statement. In Section 5, to
solve the RMSA problem with DPP, we define the cost, COST, and decide functions in

Entropy 2021, 23, 1116 5 of 21

Section 5.1.3. The decision function defined there by (7) checks for the required number of
units, which depends on the path length.

4. Proposed Algorithm

We run the generic Dijkstra algorithm on a search graph. Searching for a cheapest
solution in the search graph corresponds to searching for a pair of paths of lowest cost in
the input graph. The algorithm grows the search tree for the search graph.

4.1. Preliminaries

Below, we describe the search graph, the search tree, the priority queue, and the
related concepts of the solution, the path trait, and the solution label.

4.1.1. Search Graph

The search graph has a set of vertexes X = {x = (vx,1, vx,2)}, where vertex indexes
vx,1, and vx,2 of the input graph satisfy vx,1 ≤ vx,2. For vertex x, we find a set of solutions,
where the solution is a pair of paths: one path leads to vertex vx,1, and the other to vertex
vx,2. Which of the paths could eventually (when vertex t is reached by both paths) become
working or protecting is unknown and unimportant at this stage.

An edge in the search graph from vertex x to vertex x′ represents finding a solution for
vertex x′ based on a solution for vertex x by taking edge e′ in the input graph from either
vertex vx,1 or vx,2. Therefore, the edge in the search graph connects vertex x to some other
vertex x′ which has one of the vertex indexes vx,1 or vx,2 taken from x. The other vertex
index of x′ is the index of the target vertex of edge e′. Vertex x′ becomes either (vx′ ,1, vx,2),
or (vx,1, vx′ ,2), with its vertex indexes swapped if necessary, because we require the first
one be smaller than or equal to the second one.

Taking a single edge in the input graph is the simplest, and the only one needed, way
of producing a new solution in the search graph. Taking at once two edges of the input
graph, one edge for each of the two paths, should also work, but this would lead to a more
complicated and less efficient algorithm. This is more complicated because we cannot
always take two edges, and less efficient because, by taking two edges, we can reach a
suboptimal solution, which we would avoid if we took one of those edges first.

4.1.2. Path Trait

A path trait p is a pair of a cost and a CU, which describes a path in the input graph.
For a path trait p, function cost(p) gives the path cost, and function CU(p) the path CU.
For example, assuming the cost is the path length, a path trait p = (500 km, [0 . . 10]) says
the path is cost(p) = 500 km long and has the CU of CU(p) = [0 . . 10].

Path trait pi is better than or equal to path trait pj, denoted by pi ≤ pj, when the cost
of pi is smaller than or equal to the cost of pj, and the CU of pi includes the CU of pj, i.e.,
(cost(pi) ≤ cost(pj)) ∧ (CU(pi) ⊇ CU(pj)). If pi ≤ pj, then we drop pj, since it offers no
better path in comparison with pi, and so we perform the search more efficiently.

This definition of the path trait comparison allows for incomparability of path traits,
which is needed when searching for paths with the spectrum continuity and contiguity
constraints. For instance, path trait p1 = (1, [0 . . 2]) is incomparable with p2 = (2, [0 . . 3])
because neither p1 ≤ p2 nor p2 ≤ p1 is true. We are interested in path trait p2, even though
its cost is higher than the cost of p1, because p2 has a CU that is incomparable with the CU
of p1.

4.1.3. Solution Label

Solution label lx = (px,1, px,2) for vertex x is a pair of path traits px,1, px,2, where
the first path which ends at vx,1 has trait px,1, and the other path which ends at vx,2 has
trait px,2.

We compare solution labels to drop those solutions which offer nothing better than
we already have, thus limiting the search space, and performing the search more efficiently.

Entropy 2021, 23, 1116 6 of 21

Label li is better than or equal to label lj, denoted by li ≤ lj, when both path traits of li are
better than or equal to both path traits of lj, i.e., (pi,1 ≤ pj,1) ∧ (pi,2 ≤ pj,2). If li ≤ lj, then
we should not be interested in lj because it offers no better solution in comparison with li.

A solution label for vertex x with the same vertexes in the input graph, i.e.,
vx,1 == vx,2, should have its path traits ordered with the ≤ relation, i.e., px,1 ≤ px,2,
so that, when we compare labels of two solutions for vertex x, we compare the working-
path traits first, and the equal to or worse protecting-path traits next.

This definition of the label comparison allows for incomparability of labels, which
is needed when searching for a pair of paths, when these paths can have incomparable
traits. For instance, label l1 of path traits p1,1 = (1, [0 . . 2]), and p1,2 = (2, [10 . . 12])
is incomparable with label l2 of path traits p2,1 = (2, [0 . . 3]), and p2,2 = (10, [10 . . 12])
because neither l1 ≤ l2 nor l2 ≤ l1 is true.

4.1.4. Search Tree

The result of the search is the search tree, which is organized according to the dynamic-
programming principle of reusing data from previous computation. Search-tree node
nx′ = (x′, lx′ , e′, nx) represents a solution found for the search-graph vertex x′ = (vx′ ,1, vx′ ,2)
based on the solution found for node x. The solution is described by label lx′ = (px′ ,1, px′ ,2):
the first path of the solution which ends at vx′ ,1 has trait px′ ,1, and the other path which
ends at vx′ ,2 has trait px′ ,2. We get the solution from the previous search-tree node nx for
vertex x by taking edge e′ in the input graph. For a search-tree node n, function label(n)
returns its label, and function vertex(n) returns its search-graph vertex.

A tree node represents a solution which is either permanent or tentative. A permanent-
solution node stays in the tree for good, while a tentative-solution node can be discarded.
A tentative-solution node is always a leaf. A tentative solution wants to become permanent,
but instead it can be discarded or never processed.

To ensure that a solution is edge-disjoint, we do not add to the search tree a solution
node if its edge was already used by its ancestor in the search tree.

4.1.5. Priority Queue

The optimality of the solutions found is achieved with the priority queue, which
provides the cheapest solutions. The priority queue stores pairs, where a pair has a cost and
a reference to a search-tree node nx of a tentative solution. The cost in the pair is the cost
of the solution, i.e., COST(label(nx)). The queue sorts the solutions in the increasing-cost
order, with the cheapest solution at the top.

A tentative solution is waiting in the queue to be processed, but it also can be either
discarded, if we find a better solution, or never processed, if the search finishes sooner. A
tentative solution becomes permanent when it is retrieved from the queue.

4.2. Algorithm

The proposed algorithm has the main loop listed in Algorithm 1, and the relax proce-
dure listed in Algorithm 2. The main loop iterates over the permanent solutions retrieved
from the priority queue, while the relax procedure pushes tentative solutions to the prior-
ity queue.

The solutions for vertex x are maintained in the set Px of permanent solutions with
incomparable labels, and the set Tx of tentative solutions with incomparable labels. The
set of all permanent solutions is P, and the set of all tentative solutions is T. Permanent
solutions are optimal.

We start the search at vertex xs = (s, s). We create the tentative solution nxs (the root
of the search tree) of two empty paths starting at vertex s with 0 costs and the CUs of Ω.
We insert nxs into the set of tentative labels for vertex x, and push the pair of (0, nxs) to the
priority queue Q.

Entropy 2021, 23, 1116 7 of 21

To cover the maximal part of the search space, we look for the paths with the maximal
CU, which satisfy the requirements of the decision function decide used by the relax
procedure. For this reason, we start the search with the CU of Ω.

We stop searching when the priority queue is empty, or when we find a permanent
solution for vertex xt = (t, t). If we need a complete (i.e., for all vertexes x) search tree, we
should let the algorithm run until the priority queue is empty.

In each iteration of the main loop, we process the cheapest of all tentative solutions,
and make it permanent. When we retrieve a pair from the queue, we have to ensure the
tentative solution was not discarded by the relax procedure, i.e., that the reference to nx is
not null.

Next, we relax the out edges of vertex x in the search graph. An edge in the search
graph represents taking an edge in the input graph from either vertex vx,1 or vx,2, and so we
iterate over the edges leaving vertex vx,1 first, and over the edges leaving vertex vx,2 next.

Algorithm 1 Dedicated Path Protection Algorithm
In: graph G, source vertex s, target vertex t
Out: a cheapest pair of paths, and their CUs
Here, we concentrate on permanent solutions nx.

xs = (s, s)
xt = (t, t)
lxs = ((0, Ω), (0, Ω))
nxs = (xs, lxs , e∅, null)
Txs = {nxs}
push(Q, (0, nxs))
while Q is not empty do

nx = pop(Q)
if nx == null then

continue the main loop
x = (vx,1, vx,2) = vertex(nx)
// Remove nx from the set of tentative solutions for x.
Tx = Tx − {nx}
// Add nx to the set of permanent solutions for x.
Px = Px ∪ {nx}
if x == xt then

break the main loop
lx = (px,1, px,2) = label(nx)
for each out edge e′ of vertex vx,1 in G do

relax(e′, vx,2, px,2, px,1, nx)
for each out edge e′ of vertex vx,2 in G do

relax(e′, vx,1, px,1, px,2, nx)
return trace(P, xt, xs)

The relax procedure relaxes a single edge in the search graph, which is described
in the procedure parameters: the taken edge e′ in the input graph, vertex v1 and the
corresponding path trait p1 which both do not change, the other trait p2 of the path to
which we try to append edge e′, and the previous search-tree node nx.

The relaxation can find a number of tentative solutions, which would differ only by
the CU of C′, because there may be a number of spectrum fragments available AU(e′) on
edge e′ which we can use for a tentative solution.

We build (if necessary, we swap the elements of pairs x′ and lx′ with the swap function)
and add a tentative solution nx′ to Tx′ and Q, only when there is no solution with a better
or equal label already found. Adding nx′ can make some tentative solutions invalid (since
nx′ is better), so we discard them.

Entropy 2021, 23, 1116 8 of 21

Algorithm 2 relax
In: edge e′, const vertex v1, const trait p1, other trait p2,

previous search-tree node nx
Here, we concentrate on tentative solutions nx′ .

v′ = target(e′)
c′ = cost(path of p2 with e′ appended)
for each CU C′ in CU(p2) ∩AU(e′) do

x′ = (v1, v′)
p′ = (c′, C′)
if decide(p′) then

lx′ = (p1, p′)
if v′ < v1 then

swap(x′)
swap(lx′)

else if v1 == v′ and not p1 ≤ p′ then
swap(lx′)

// Make sure we should be interested in lx′ .
if @n ∈ Px′ : label(n) ≤ lx′ then

if @n ∈ Tx′ : label(n) ≤ lx′ then
// Make sure we are not reusing e′.
if e′ not used by ancestors then

// Discard worse tentative solutions.
Tx′ = Tx′ − {n ∈ Tx′ : lx′ ≤ label(n)}
nx′ = (x′, lx′ , e′, nx)
// Add nx′ to the tentative solutions for x′.
Tx′ = Tx′ ∪ {nx′}
push(Q, (COST(lx′), nx′))

Spectrum allocation policy should be taken into account in two places. First, the
priority queue should choose the solution of the preferred spectrum allocation policy from
among the tentative solutions of the same cost. Second, once the solution for the destination
vertex is found, the preferred CUs should be allocated from the CUs found.

The trace function, using P, traces back the tree nodes from the node for vertex xt to
the node for vertex xs. For each tree node there is an edge, which the function appends
to one of the two paths. When appending an edge to a path, we have to ensure that not
only the cost matches, but the CU matches, too. We have to consult the other path trait
of the tree node, to ensure that we are not appending the edge to the wrong path, which
coincidentally meets the conditions. The function returns the less expensive path as the
working path, and the more expensive path as the protecting. For each of the paths, the
function allocates the minimal CU, with the required number of units, from the maximal
CU found for the permanent solution for vertex xt.

4.3. Example

We demonstrate how the algorithm works by finding a solution from the source vertex
s to the destination vertex t for a single unit in the trap topology shown in Figure 1, where
an edge label gives not only the name of the edge, but also its cost and available units. Not
to complicate the example further, the signal modulation constraints are not considered,
especially since they are not crucial to the algorithm as they only discard paths.

Entropy 2021, 23, 1116 9 of 21

s

q

r

t

e1, (1, [0 . . 0]) e2, (3, [0 . . 1])

e3, (1, [0 . . 1])

e4, (3, [1 . . 1]) e5, (1, [0 . . 1])

Figure 1. A sample input graph: the trap topology.

The trap topology is well-known since the edge-exclusion algorithm fails for it: when
the edges of the shortest path from s to t through vertexes q and r are removed, a second
path does not exist. However, the optimal solution does exist: one path goes through vertex
q with the CU of [0 . . 0], and the other through vertex r with [1 . . 1].

Figure 2 shows the search graph generated, where the edge label gives the name of an
input-graph edge to take to make a transition between the vertexes in the search graph.
For example, the transition from vertex (s, s) to vertex (q, s) requires edge e1. Most edges
are undirected, since the algorithm examines transitions in both directions. However, there
are some directed edges (e.g., from (q, s) to (s, t)), since their reverse transitions (e.g., from
(s, t) to (q, s)) are not examined. Because paths in the input graph have to be edge-disjoint,
some paths in the search graph are disallowed, e.g., (s, s)− (q, s)− (q, q).

(s, s)

(q, s)

(r, s)

(q, r)

(q, q)

(r, r)

(s, t)

(q, t)

(r, t)

(t, t)

e1

e4

e3

e1

e4

e2

e5

e1

e4

e2

e3
e5 e1

e4e2
e3

e5

e2

e5

e3

Figure 2. The search graph.

Figure 3 shows the search tree generated, where only the permanent (and not tentative)
solutions are represented. The tree is rooted at node n1 for vertex (s, s). The solution found
is represented by node n14 for vertex (t, t). A search-graph vertex can have a set of
permanent incomparable solutions, which are represented by a set of search-tree nodes,
e.g., for vertex (q, s) there are two search-tree nodes: n2 and n8.

The algorithm processes solution labels by taking actions on them, as reported in
Table 1. A label can be produced and pushed into the queue, as in, e.g., action #0. A row
represents an action on a label which was produced for the given search-graph vertex
by making a transition with the given edge. For instance, action #2 reports a label that
is pushed into the queue, and which was produced for the search-graph vertex (q, s) by
making a transition with edge e1 (from vertex (s, s)).

A label can be retrieved from the queue, and made permanent, as in, e.g., action #1. A
search-tree node for a permanent label has a name reported, e.g., n1 as in action #1. A row
for a label made permanent is colored gray to mark the beginning of a sequence of rows

Entropy 2021, 23, 1116 10 of 21

that report the actions of the relaxation based on the label from that gray row. For instance,
the row for action #1 is gray, and the subsequent rows for actions from #2 to #5 report the
actions of the relaxation that ensued.

n1

(s, s)

n2

n8

(q, s)

n3

n5

(r, s)

n7

(q, r)

n10

(q, q)

n11

(r, r)

n4

n6

(s, t)

n9

(q, t)

n12

n13

(r, t)

n14

(t, t)

e1

e4

e4

e3 e5

e4

e3

e5

e3

e4

e1
e2

e3

Figure 3. The search tree.

A label can be pushed into the queue, or it can be dropped for two reasons: it is worse
than or equal to an existing label (e.g., in action #4, a label is dropped because an equal
label of action #2 exists), or it uses an edge twice (e.g., in action #7, a label is dropped
because edge e1 is used twice). A label can also be discarded from the queue if a better
label is found (e.g., in action #17, a label is discarded because a better label was found in
action #16).

As reported in Table 1, the search is booted with action #0. There are 14 permanent
labels found for 10 vertexes of the search graph. The algorithm terminates, when the
destination node (t, t) is reached with the search-tree node n14. We can trace back from n14
to n1 to get the aforementioned optimal solution.

Table 1. Solution labels processed.

Action
Number

Solution
Cost

Search-Tree
Node Name

Search-Graph
Vertex Solution Label Edge Action

0 0 (s, s) ((0, [0 . . 1]), (0, [0 . . 1])) e∅ push into queue
1 0 n1 (s, s) ((0, [0 . . 1]), (0, [0 . . 1])) e∅ make permanent
2 1 (q, s) ((1, [0 . . 0]), (0, [0 . . 1])) e1 push into queue
3 3 (r, s) ((3, [1 . . 1]), (0, [0 . . 1])) e4 push into queue
4 1 (q, s) ((1, [0 . . 0]), (0, [0 . . 1])) e1 drop (worse or equal)
5 3 (r, s) ((3, [1 . . 1]), (0, [0 . . 1])) e4 drop (worse or equal)
6 1 n2 (q, s) ((1, [0 . . 0]), (0, [0 . . 1])) e1 make permanent
7 2 (q, q) ((1, [0 . . 0]), (1, [0 . . 0])) e1 drop (edge reuse)
8 4 (q, r) ((1, [0 . . 0]), (3, [1 . . 1])) e4 push into queue
9 2 (s, s) ((0, [0 . . 1]), (2, [0 . . 0])) e1 drop (worse or equal)

10 4 (s, t) ((0, [0 . . 1]), (4, [0 . . 0])) e2 push into queue
11 2 (r, s) ((2, [0 . . 0]), (0, [0 . . 1])) e3 push into queue
12 2 n3 (r, s) ((2, [0 . . 0]), (0, [0 . . 1])) e3 make permanent
13 3 (q, r) ((1, [0 . . 0]), (2, [0 . . 0])) e1 drop (edge reuse)
14 5 (r, r) ((2, [0 . . 0]), (3, [1 . . 1])) e4 push into queue
15 3 (q, s) ((3, [0 . . 0]), (0, [0 . . 1])) e3 drop (worse or equal)
16 3 (s, t) ((0, [0 . . 1]), (3, [0 . . 0])) e5 push into queue
17 4 (s, t) ((0, [0 . . 1]), (4, [0 . . 0])) e2 discard from queue

Entropy 2021, 23, 1116 11 of 21

Table 1. Cont.

Action
Number

Solution
Cost

Search-Tree
Node Name

Search-Graph
Vertex Solution Label Edge Action

18 3 n4 (s, t) ((0, [0 . . 1]), (3, [0 . . 0])) e5 make permanent
19 4 (q, t) ((1, [0 . . 0]), (3, [0 . . 0])) e1 drop (edge reuse)
20 6 (r, t) ((3, [1 . . 1]), (3, [0 . . 0])) e4 push into queue
21 3 n5 (r, s) ((3, [1 . . 1]), (0, [0 . . 1])) e4 make permanent
22 4 (q, r) ((1, [0 . . 0]), (3, [1 . . 1])) e1 drop (worse or equal)
23 6 (r, r) ((3, [1 . . 1]), (3, [1 . . 1])) e4 drop (edge reuse)
24 4 (q, s) ((4, [1 . . 1]), (0, [0 . . 1])) e3 push into queue
25 6 (s, s) ((0, [0 . . 1]), (6, [1 . . 1])) e4 drop (worse or equal)
26 4 (s, t) ((0, [0 . . 1]), (4, [1 . . 1])) e5 push into queue
27 4 n6 (s, t) ((0, [0 . . 1]), (4, [1 . . 1])) e5 make permanent
28 5 (q, t) ((1, [0 . . 0]), (4, [1 . . 1])) e1 push into queue
29 7 (r, t) ((3, [1 . . 1]), (4, [1 . . 1])) e4 drop (edge reuse)
30 4 n7 (q, r) ((1, [0 . . 0]), (3, [1 . . 1])) e4 make permanent
31 5 (r, s) ((3, [1 . . 1]), (2, [0 . . 0])) e1 drop (worse or equal)
32 7 (r, t) ((3, [1 . . 1]), (4, [0 . . 0])) e2 drop (worse or equal)
33 5 (r, r) ((2, [0 . . 0]), (3, [1 . . 1])) e3 drop (worse or equal)
34 5 (q, q) ((1, [0 . . 0]), (4, [1 . . 1])) e3 push into queue
35 7 (q, s) ((1, [0 . . 0]), (6, [1 . . 1])) e4 drop (worse or equal)
36 5 (q, t) ((1, [0 . . 0]), (4, [1 . . 1])) e5 drop (worse or equal)
37 4 n8 (q, s) ((4, [1 . . 1]), (0, [0 . . 1])) e3 make permanent
38 5 (q, q) ((1, [0 . . 0]), (4, [1 . . 1])) e1 drop (worse or equal)
39 7 (q, r) ((4, [1 . . 1]), (3, [1 . . 1])) e4 drop (edge reuse)
40 7 (s, t) ((0, [0 . . 1]), (7, [1 . . 1])) e2 drop (worse or equal)
41 5 (r, s) ((5, [1 . . 1]), (0, [0 . . 1])) e3 drop (worse or equal)
42 5 n9 (q, t) ((1, [0 . . 0]), (4, [1 . . 1])) e1 make permanent
43 6 (s, t) ((2, [0 . . 0]), (4, [1 . . 1])) e1 drop (worse or equal)
44 8 (t, t) ((4, [0 . . 0]), (4, [1 . . 1])) e2 push into queue
45 6 (r, t) ((2, [0 . . 0]), (4, [1 . . 1])) e3 push into queue
46 5 n10 (q, q) ((1, [0 . . 0]), (4, [1 . . 1])) e3 make permanent
47 6 (q, s) ((4, [1 . . 1]), (2, [0 . . 0])) e1 drop (worse or equal)
48 8 (q, t) ((4, [1 . . 1]), (4, [0 . . 0])) e2 push into queue
49 6 (q, r) ((4, [1 . . 1]), (2, [0 . . 0])) e3 drop (edge reuse)
50 8 (q, t) ((1, [0 . . 0]), (7, [1 . . 1])) e2 drop (worse or equal)
51 6 (q, r) ((1, [0 . . 0]), (5, [1 . . 1])) e3 drop (worse or equal)
52 5 n11 (r, r) ((2, [0 . . 0]), (3, [1 . . 1])) e4 make permanent
53 6 (q, r) ((3, [0 . . 0]), (3, [1 . . 1])) e3 drop (worse or equal)
54 6 (r, t) ((3, [1 . . 1]), (3, [0 . . 0])) e5 drop (worse or equal)
55 6 (q, r) ((4, [1 . . 1]), (2, [0 . . 0])) e3 drop (edge reuse)
56 8 (r, s) ((2, [0 . . 0]), (6, [1 . . 1])) e4 drop (worse or equal)
57 6 (r, t) ((2, [0 . . 0]), (4, [1 . . 1])) e5 drop (worse or equal)
58 6 n12 (r, t) ((2, [0 . . 0]), (4, [1 . . 1])) e3 make permanent
59 7 (q, t) ((3, [0 . . 0]), (4, [1 . . 1])) e3 drop (worse or equal)
60 7 (t, t) ((3, [0 . . 0]), (4, [1 . . 1])) e5 drop (edge reuse)
61 6 n13 (r, t) ((3, [1 . . 1]), (3, [0 . . 0])) e4 make permanent
62 7 (q, t) ((4, [1 . . 1]), (3, [0 . . 0])) e3 drop (edge reuse)
63 9 (s, t) ((6, [1 . . 1]), (3, [0 . . 0])) e4 drop (worse or equal)
64 7 (t, t) ((3, [0 . . 0]), (4, [1 . . 1])) e5 drop (edge reuse)
65 8 n14 (t, t) ((4, [0 . . 0]), (4, [1 . . 1])) e2 make permanent

4.4. Worst-Case Analysis

We argue the size of the search space is polynomially upper bounded. We derive the
upper bound L of the number of incomparable labels (i.e., the size of the search space)
by considering the worst case where every vertex of all |X| search graph vertexes has the
maximum number S of incomparable labels. Therefore, L = |X|S. The problem is to derive
|X| and S.

Entropy 2021, 23, 1116 12 of 21

The number of vertexes in the search graph is given by (1), since the input graph has
|V| vertexes, and since vertexes x = (vx,1, vx,2) of the search graph satisfy vx,1 ≤ vx,2. The
number of vertexes with vx,1 = vx,2 is |V|, and the number of vertexes with vx,1 < vx,2 is
the number of combinations of two elements from the set of |V| elements.

|X| = |V|+
(
|V|
2

)
=
|V|(|V|+ 1)

2
. (1)

The maximum number S of incomparable labels a vertex can have is given by (2).
Since a label describes a solution made up of two independent paths, S is the maximum
number of incomparable path traits squared.

The maximum number of incomparable path traits depends only on Ω. We get the
largest set of incomparable path traits when the cost of path traits increases as the size of
their CUs increases. The largest set has |Ω| subsets: the first subset has |Ω| traits with CUs
of a single unit and the lowest cost, the second subset has |Ω| − 1 traits with CUs of two
units and a higher cost, . . . , and the last subset has a single trait with the CU of |Ω| units
and the highest cost. The largest set has 1 + 2 + . . . + |Ω| = (|Ω|+ 1)|Ω|/2 incomparable
path traits.

S =

(
(|Ω|+ 1)|Ω|

2

)2

. (2)

Therefore, the size of the search space is polynomially upper bounded, since
O(L) = O(|V|2|Ω|4).

5. Simulations

The simulations had two goals: the optimality corroboration, and the performance
evaluation. We had 48,600 simulation runs: 32,400 corroborative runs, and 16,200 perfor-
mance evaluation runs.

We corroborated the optimality of the results of our algorithm by comparing them
with the results of the brute-force enumeration algorithm: for a single search either both
algorithms returned results of the same cost, or both algorithms returned no results.
Since there are billions of feasible solutions even in small networks, and since the brute-
force algorithm enumerates them all, we were able to corroborate the results only for
small networks.

We ran the corroborative simulations for networks of 10, 11, 12, 13, 14, and 15 nodes;
for 160, 320, and 640 units; for offered loads ranging from light to heavy; and for demands
requesting on average from 10 to 64 units. In total, we had 32,400 simulation runs, out of which
183 runs were killed, because they requested more than 120 GB of operating memory, which
we did not have. In total, we carried out 17,590,624 searches, all successfully corroborated.

The remainder of this section is about the performance evaluation.

5.1. Simulation Setting

Below, we describe how we model the network, the traffic, and the signal modulation.

5.1.1. Network Model

A network model has an undirected graph, and |Ω|. We randomly generated three
groups of network graphs with 25, 50, and 100 vertexes, where each group had one
hundred graphs. We generated Gabriel graphs because they have been shown to model
the properties of the transport networks very well [28]. The vertexes were uniformly
distributed over a square area with the density of one vertex per 10 thousand square km.

We used three spacings of 25 GHz, 12.5 GHz, and 6.25 GHz for the erbium band,
which translated to three values for |Ω|: 160, 320, and 640 units.

We present the results only for the first-fit spectrum allocation policy. The first-fit
policy allocates units in the first CU that can support the demand, i.e., the CU with the units
of the lowest indexes. We also considered the best-fit and random-fit policies. The best-fit

Entropy 2021, 23, 1116 13 of 21

policy performed comparably to the first-fit policy, and the random-fit policy performed
markedly worse than the first-fit policy. We do not present the results for these alternative
policies because they add little to the main results.

5.1.2. Traffic Model

We evaluate the algorithm performance as a function of the network utilization, which
we define as the ratio of the number of units in use to the total number of units on all
edges. We measure the network utilization in response to offered load a, which expresses
the desired network utilization.

Demands arrive according to the exponential distribution with rate λ per day. The
end nodes of a demand are different and chosen at random. The number of units a demand
requests is described by distribution (Poisson(γ− 1) + 1) with the mean of γ, i.e., a shifted
Poisson distribution, so that we do not get a zero. Parameter γp expresses the mean number
of units that demands request relative to the number |Ω| of all units on every edge, and
so γ = γp|Ω|. We model the connection holding time with the exponential distribution
with the mean of τ days. A connection is bidirectional: the same CU is allocated in both
directions for a path.

We express λ as a function of a. The offered load is the ratio of the number of
demanded units to the total number of units on all edges. For traffic intensity λτ, the
number of units demanded is 2λτγα, since a demand requests two paths, and we estimate
they require γ units, and α edges each, where α is the average number of edges of a shortest
path between the end nodes of the demand in the network being simulated. Therefore,
a = 2λτγα/|E||Ω|, from which (3) follows.

λ(a) =
a|E||Ω|
2τγα

. (3)

Equation (3) underestimates the value of λ(a) because we assume that every demand
has a connection established. For this reason, a = 1 does not yield a full network utilization.

5.1.3. Signal Modulation Model

We use the signal modulation model from Reference [6], with M modulations available.
For a demand requesting g units for the most spectrally-efficient modulation, the number
of units needed to establish a connection of length d is given by (4), where r1 is the reach of
the least spectrally-efficient modulation, and rM is the reach of the most spectrally-efficient
modulation.

u(g, d) =


g if d ≤ rM

∞ if r1 < d
dg · log2(2d/rM)e otherwise

. (4)

We describe a demand with the number of units g, instead of bitrate b, because the
algorithm works with units, not bitrates. If the bitrate is given, we can calculate the number
of units using (5), where R is a technology-dependent bitrate (e.g., 2.5 Gb/s), and G is the
number of guard-band units [29].

g(b) = db/(R ·M)e+ G. (5)

In the simulations, we assumed M = 4, and the reach of the least-spectrally efficient
modulation r1 equals to one and a half lengths of the longest path from among all the
shortest paths (i.e., for every source-destination combination) in the network being sim-
ulated, which allows us to consider paths much longer than an average shortest path.
Following Reference [6], we calculated rM = r1/2M−1.

Entropy 2021, 23, 1116 14 of 21

5.1.4. The Cost and Decision Functions

The cost and decision functions for path p are given by (6) and (7), where function
length returns the length of path p as the sum of positive lengths of the edges used. The
cost function for path pair l is given by (8).

cost(p) = length(p) · u(g, length(p)), (6)

decide(p) = u(g, length(p)) ≤ |CU(p)|, (7)

COST(l = (p1, p2)) = cost(p1) + cost(p2). (8)

5.2. Runs and Populations

A simulation run simulated 150 days of a network in operation, with the results from
the first 50 days discarded. The parameters of a simulation run were: the network size,
|Ω|, γ, a, and τ. A simulation run reported the mean network utilization, the mean and
maximum times taken, and the mean and maximum number of 64-bit memory words used
by a search for a single demand.

We averaged the mean simulation results to calculate the sample mean results, which
estimate the population mean results, and the average algorithm performance. We took the
maximum of the maximum simulation results to get the sample maximum results, which
estimate the population maximum results, and the worst-case algorithm performance.

In a given population, there were 100 simulation runs whose parameters differed only
with the network model. We had 162 populations because we varied 3 network sizes (25, 50,
100 nodes), 3 values of |Ω| (160, 320, 640 units), 9 values of a (0.05, 0.1, 0.15, 0.2, 0.45, 0.65, 1,
1.5, 2), and two runs for γ = 10 units, and γp = 10% of units available (i.e., 16 units for the
case with 160 units, 32 for 320, and 64 for 640). For all populations, the mean connection
holding time τ = 10 days was constant. In total, we carried out 16200 simulation runs (162
populations × 100 samples) with 24,043,157 searches. The sample means credibly estimate
the population means, since their relative standard error was below 5%.

5.3. Simulation Results

Figures 4 and 5 show the sample means and the sample maxima of the time taken
and memory used by a search, regardless of whether the search was successful or not. The
results are shown on a logarithmic scale as a function of network utilization. The curves
are plotted dotted for 160 units, dashed for 320 units, and solid for 640 units. The sample
means are plotted thin, and the sample maxima thick. Each curve is drawn using 9 data
points for different values of a. For the means, we do not report the error bars representing
the standard error, since they were too small to plot.

Figures 4 and 5 have three rows and two columns of subfigures. The first row shows
the results for the networks with 25 nodes, the second for 50 nodes, and the third for
100 nodes. The first column shows the results for γ = 10, and the second column the results
for γp = 10%.

The mean times range from 10−3 s (for 25 nodes, and 160 units) to 102 s (100 nodes,
640 units). While the difference in scale is 105, we also note that the problem size increased
16 times. The mean time increases about ten times as we increase the network size by
a factor of two. For γ = 10, the mean time increases about five times as the number
of units increases twice (from 160 to 320, and from 320 to 640 units). Interestingly, the
time for γp = 10% is roughly the same for 160, 320, and 640 units, which suggests the
time complexity depends on the number of units requested relative to the number of
available units, and indirectly on the spectrum fragmentation. The mean time decreases as
the network utilization increases, since the search space gets smaller. As for the sample
maximum results, they were usually a hundred times larger than the mean results.

Entropy 2021, 23, 1116 15 of 21

0.1 0.2 0.3 0.4 0.510−4

10−1

102

105

network utilization

ti
m

e
[s

]

(a) time taken for γ = 10, and 25 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4

10−3

10−1

101

103

network utilization

ti
m

e
[s

]

(b) time taken for γp = 10%, and 25 nodes

0.1 0.2 0.3 0.4 0.510−4

10−1

102

105

network utilization

ti
m

e
[s

]

(c) time taken for γ = 10, and 50 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4

10−3

10−1

101

103

network utilization

ti
m

e
[s

]

(d) time taken for γp = 10%, and 50 nodes

0.1 0.2 0.3 0.4 0.510−4

10−1

102

105

network utilization

ti
m

e
[s

]

(e) time taken for γ = 10, and 100 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4

10−3

10−1

101

103

network utilization

ti
m

e
[s

]

(f) time taken for γp = 10%, and 100 nodes

mean, 160 units mean, 320 units mean, 640 units
maximum, 160 units maximum, 320 units maximum, 640 units

Figure 4. The sample means and maxima of the time taken by the proposed algorithm.

Entropy 2021, 23, 1116 16 of 21

0.1 0.2 0.3 0.4 0.5

104

106

108

1010

network utilization

m
em

or
y

w
or

ds

(a) memory used for γ = 10, and 25 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4
103

104

105

106

107

108

network utilization

m
em

or
y

w
or

ds

(b) memory used for γp = 10%, and 25 nodes

0.1 0.2 0.3 0.4 0.5

104

106

108

1010

network utilization

m
em

or
y

w
or

ds

(c) memory used for γ = 10, and 50 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4
103

104

105

106

107

108

network utilization

m
em

or
y

w
or

ds

(d) memory used for γp = 10%, and 50 nodes

0.1 0.2 0.3 0.4 0.5

104

106

108

1010

network utilization

m
em

or
y

w
or

ds

(e) memory used for γ = 10, and 100 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4
103

104

105

106

107

108

network utilization

m
em

or
y

w
or

ds

(f) memory used for γp = 10%, and 100 nodes

mean, 160 units mean, 320 units mean, 640 units
maximum, 160 units maximum, 320 units maximum, 640 units

Figure 5. The sample means and maxima of the memory used by the proposed algorithm.

Entropy 2021, 23, 1116 17 of 21

The memory results report the number of 64-bit memory words used by the permanent
solutions, the tentative solutions, and the priority queue. The network size, |Ω|, and γ
affected the memory results similar to how they affected the time results. For the networks
with 25 nodes, the mean number of words was about 105, while, for the networks with
100 nodes, about 109.

The memory used for γ = 10 is far larger than for γp = 10% because the spectrum
(the available units) is more fragmented (since it is allocated in smaller fragments), and the
algorithm finds more solutions as the search space is larger. Finding more solutions requires
more time: simulations for γ = 10 take more time that the simulations for γp = 10%.

To examine how the incomparable permanent and tentative labels, and the elements
of the priority queue contribute to the memory usage, Figure 6 shows as stack plots the
maximal memory used by the proposed algorithm for the networks of 25, 50, and 100 nodes
with 320 units, and γ = 10.

The permanent labels take about 80% of memory, the tentative labels about 20%, and
the elements of the priority queue take only a small fraction. We assumed that a label takes
15 64-bit words (implementation details: 4 words for a shared pointer, 1 word for a vertex
pair, 4 words for a path trait, 2 words for an edge, 4 words for a shared pointer to the parent
node in the search tree). An element of a priority queue is two words long (1 word for cost,
1 word for a weak pointer to its tentative label).

Most of the memory required by the algorithm is consumed by the permanent labels
because of the large search space. A permanent label stores an optimal solution, and the
results suggest that there are many of them for large networks. Furthermore, that large
number of permanent labels helps to keep the number of tentative labels relatively much
smaller through the edge relaxation.

To further validate the proposed algorithm, Figure 7 shows, for all populations of
interest, the mean bandwidth blocking probabilities of the proposed algorithm as thin
curves and of the edge-exclusion algorithm as thick curves. The figure has two rows and
three columns of subfigures. The first row shows the results for γ = 10, and the second for
γp = 10%. The first column shows the results for the networks with 25 nodes, the second
for 50 nodes, and the third for 100 nodes. We do not plot the error bars representing the
standard error, since they were too small to plot.

Since the proposed algorithm can be exact, and the edge-exclusion algorithm is
heuristic, the proposed algorithm should perform better, and indeed this is so. Interestingly,
the edge-exclusion algorithm (which uses the generic Dijkstra algorithm) performs very
well, at only about 5% worse.

0.2 0.3 0.4
0

0.5

1

1.5 ·106

network utilization

m
em

or
y

w
or

ds

(a) 25 node networks.

0.2 0.3 0.4
0

1

2

·107

network utilization

m
em

or
y

w
or

ds

(b) 50 node networks.

0.2 0.3
0

0.5

1

1.5

·108

network utilization

m
em

or
y

w
or

ds

(c) 100 node networks.

permanent labels tentative labels priority queue elements

Figure 6. Simulation results: the maximum number of required words for networks with 320 units, and γ = 10.

Entropy 2021, 23, 1116 18 of 21

0.1 0.2 0.3 0.4 0.510−1

100

network utilization

ba
nd

w
id

th
bl

oc
k-

in
g

pr
ob

ab
ili

ty

(a) memory used for γ = 10, and 25 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.410−1

100

network utilization

ba
nd

w
id

th
bl

oc
k-

in
g

pr
ob

ab
ili

ty

(b) memory used for γp = 10%, and 25 nodes

0.1 0.2 0.3 0.4 0.5

10−1

100

network utilization

ba
nd

w
id

th
bl

oc
k-

in
g

pr
ob

ab
ili

ty

(c) memory used for γ = 10, and 50 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4

10−1

100

network utilization

ba
nd

w
id

th
bl

oc
k-

in
g

pr
ob

ab
ili

ty

(d) memory used for γp = 10%, and 50 nodes

0.1 0.2 0.3 0.4 0.5

10−1

100

network utilization

ba
nd

w
id

th
bl

oc
k-

in
g

pr
ob

ab
ili

ty

(e) memory used for γ = 10, and 100 nodes

0.1 0.15 0.2 0.25 0.3 0.35 0.4

10−1

100

network utilization

ba
nd

w
id

th
bl

oc
k-

in
g

pr
ob

ab
ili

ty

(f) memory used for γp = 10%, and 100 nodes

proposed algorithm, 160 units proposed algorithm, 320 units proposed algorithm, 640 units
edge-exclusion, 160 units edge-exclusion, 320 units edge-exclusion, 640 units

Figure 7. Simulation results: the sample means of the bandwidth blocking probability.

Entropy 2021, 23, 1116 19 of 21

We did not add the edge-exclusion algorithm to the time and memory performance
comparison, since it is a heuristic algorithm with the worst-case computational complexity
of the dynamic routing problem without DPP, i.e., O(|Ω|2|V|log|V|) [6]. In addition, we
were unable to add the brute-force algorithm to the comparison because of its exponential
complexity.

Admittedly, the reported time and memory consumption of the proposed algorithm
seems large: for a network of 100 nodes and 640 units, the algorithm can run even for
thousands of seconds, and use even 10 GBs of operating memory. However, to put these
results in perspective, we report that, for a far smaller network of 15 nodes and 640 units,
the brute-force algorithm ran for thousands of seconds, and it requested more than 120
GBs of operating memory in the corroborative runs.

6. Conclusions

The proposed algorithm is capable of solving various dynamic routing problems
with dedicated path protection in optical networks, but not all of them, e.g., the algorithm
cannot be applied when signal regeneration or spectrum conversion are used. However, the
proposed algorithm can solve those routing problems that meet the minimal requirements
of the stated research problem. If not, then perhaps the proposed algorithm and its novel
principles could be used as a basis for devising more capable algorithms.

The proposed algorithm can also be used to find a pair of paths to different (primary,
and secondary) data centers. The algorithm could even be useful in routing with inverse
multiplexing, and multipath routing.

We are unable to compare the performance results of the proposed algorithm to some
efficient and exact algorithm because, to the best of our knowledge, no such competing algo-
rithm exists. For that large problem size, we could not have used the existing exact methods
(e.g., the brute-force algorithm, integer linear programming) since they are inefficient, nor
could we have used the existing efficient methods (e.g., the edge-exclusion algorithm, the
tabu search), since they are suboptimal.

Dedicated path protection can be implemented at the multiplex section (fiber protec-
tion), the optical layer (optical signal protection), or the digital layer (the digital signal
protection). We presented our algorithm in the setting of the optical signal protection, where
we take into account the spectrum continuity and contiguity constraints, but the same
principles could be used for other layers (e.g., the Internet protocol layer with multiprotocol
label switching) and networks, too.

The algorithm can be adapted for further constraints, e.g., node-disjoint paths or
the same spectrum fragments on both paths. Node-disjoint paths can be found if we do
not relax the edges of the search graph that leave vertex (vx,1, vx,2) when vx,1 == vx,2.
The same spectrum fragment on both paths can be enforced by making sure during edge
relaxation that the intersection of two fragments meet the requirements of a demand.

Future work could concentrate on applying the algorithm to related problems (e.g.,
establishing protected content-oriented connections to data centers), and further improving
its performance with parallel computing.

Furthermore, perhaps the principle of the incomparability of solutions could be
applied to the path augmentation technique, thus making, e.g., the Suurballe algorithm,
even faster than the proposed algorithm.

The provided implementation does not require proprietary software, is implemented
in modern C++ using the Boost Graph Library, and with modern functionality, such as
concepts, smart pointers, in-place object creation, and move semantics. The implementation
can be used to replicate the presented results, as well as stress-test the proposed algorithm.

Author Contributions: Conceptualization, I.S. and I.O.; methodology, I.S., I.O. and B.W.-S.; software,
I.S.; validation, I.S., I.O. and B.W.-S., writing—original draft preparation, I.S.; writing—review and
editing, I.S., I.O. and B.W.-S. All authors have read and agreed to the published version of the
manuscript.

Entropy 2021, 23, 1116 20 of 21

Funding: This research was funded by the Polish Ministry of Science and Higher Education grant
number 020/RID/2018/19.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We ran the simulations using PL-Grid, the Polish supercomputing infrastructure.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, G.; Guo, H.; Bose, S.K. Survivable elastic optical networks: Survey and perspective. Photonic Netw. Commun. 2016, 31, 71–87.

[CrossRef]
2. Goścień, R.; Walkowiak, K.; Klinkowski, M.; Rak, J. Protection in elastic optical networks. IEEE Netw. 2015, 29, 88–96. [CrossRef]
3. Simmons, J.M. Optical Network Design and Planning; Optical Networks; Springer: New York, NY, USA, 2014.
4. Gerstel, O.; Jinno, M.; Lord, A.; Yoo, S. Elastic optical networking: A new dawn for the optical layer? IEEE Commun. Mag. 2012,

50, s12–s20. [CrossRef]
5. Szcześniak, I. The Implementation of the Efficient and Optimal Algorithm for the Dynamic Dedicated Path Protection. 2019.

Available online: http://www.irkos.org/ddpp (accessed on 26 August 2021).
6. Szcześniak, I.; Jajszczyk, A.; Woźna-Szcześniak, B. Generic Dijkstra for optical networks. IEEE/OSA J. Opt. Commun. Netw. 2019,

11, 568–577. [CrossRef]
7. Andersen, R.; Chung, F.; Sen, A.; Xue, G. On disjoint path pairs with wavelength continuity constraint in WDM networks. In

Proceedings of the IEEE INFOCOM 2004, Hong Kong, China, 7–11 March 2004; pp. 524–535.
8. Kishi, Y.; Kitsuwan, N.; Ito, H.; Chatterjee, B.C.; Oki, E. Modulation-Adaptive Link-Disjoint Path Selection Model for 1 + 1

Protected Elastic Optical Networks. IEEE Access 2019, 7, 25422–25437. [CrossRef]
9. Christodoulopoulos, K.; Kokkinos, P.; Varvarigos, E.M. Indirect and direct multicost algorithms for online impairment-aware

RWA. Trans. Netw. 2011, 19, 1759–1772. [CrossRef]
10. Wang, X.; Kuang, K.; Wang, S.; Xu, S.; Liu, H.; Liu, G.N. Dynamic routing and spectrum allocation in elastic optical networks

with mixed line rates. J. Opt. Commun. Netw. 2014, 6, 1115–1127. [CrossRef]
11. Yang, L.; Nan, H.; Xiaoping, Z.; Hanyi, Z.; Bingkun, Z. Polynomial-time adaptive routing algorithm based on spectrum scan in

dynamic flexible optical networks. China Commun. 2013, 10, 49–58. [CrossRef]
12. Liu, Y.; Hua, N.; Wan, X.; Zheng, X.; Liu, Z. A spectrum-scan routing scheme in flexible optical networks. In Proceedings of the

2011 Asia Communications and Photonics Conference and Exhibition, Shanghai, China, 13–16 November 2011; pp. 1–6.
13. Shen, G.; Bose, S.; Cheng, T.; Lu, C.; Chai, T. Efficient heuristic algorithms for light-path routing and wavelength assignment in

WDM networks under dynamically varying loads. Comput. Commun. 2001, 24, 364–373. [CrossRef]
14. Wang, C.; Shen, G.; Bose, S.K. Distance adaptive dynamic routing and spectrum allocation in elastic optical networks with shared

backup path protection. J. Light. Technol. 2015, 33, 2955–2964. [CrossRef]
15. Chen, C.; Banerjee, S. A new model for optimal routing in all-optical networks with scalable number of wavelength converters.

In Proceedings of the GLOBECOM ’95, Singapore, 14–16 November 1995; Volume 2, pp. 993–997.
16. Hsu, C.F.; Chang, Y.C.; Sie, S.C. Graph-model-based dynamic routing and spectrum assignment in elastic optical networks. J. Opt.

Commun. Netw. 2016, 8, 507–520. [CrossRef]
17. Ehrgott, M.; Gandibleux, X. A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum

2000, 22, 425–460. [CrossRef]
18. Varvarigos, E.M.; Sourlas, V.; Christodoulopoulos, K. Routing and scheduling connections in networks that support advance

reservations. Comput. Netw. 2008, 52, 2988–3006. [CrossRef]
19. Mieghem, P.V.; Kuipers, F.A. Concepts of exact QoS routing algorithms. IEEE/ACM Trans. Netw. 2004, 12, 851–864.
20. Wang, Z.; Crowcroft, J. Quality-of-service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. 1996,

14, 1228–1234. [CrossRef]
21. Hansen, P. Bicriterion path problems. In Multiple Criteria Decision Making Theory and Application; Lecture Notes in Economics and

Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1980; Volume 177, pp. 109–127.
22. Martins, E.Q.V. On a multicriteria shortest path problem. Eur. J. Oper. Res. 1984, 16, 236–245. [CrossRef]
23. Tarapata, Z. Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard

algorithms. Int. J. Appl. Math. Comput. Sci. 2007, 17, 269–287. [CrossRef]
24. Suurballe, J.W. Disjoint paths in a network. Networks 1974, 4, 125–145. [CrossRef]
25. Bhandari, R. Survivable Networks: Algorithms for Diverse Routing; Kluwer Academic Publishers: Boston, MA, USA, 1999.
26. Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B. Network Flows: Theory, Algorithms, and Applications; Prentice Hall: Englewood Cliffs, NJ,

USA, 1993.
27. Szcześniak, I.; Woźna-Szcześniak, B. Adapted and constrained Dijkstra for elastic optical networks. In Proceedings of the

2016 International Conference on Optical Network Design and Modeling (ONDM), Cartagena, Spain, 9–12 May 2016; pp. 1–6.
[CrossRef]

http://doi.org/10.1007/s11107-015-0532-0
http://dx.doi.org/10.1109/MNET.2015.7340430
http://dx.doi.org/10.1109/MCOM.2012.6146481
http://www.irkos.org/ddpp
http://dx.doi.org/10.1364/JOCN.11.000568
http://dx.doi.org/10.1109/ACCESS.2019.2901018
http://dx.doi.org/10.1109/TNET.2011.2138717
http://dx.doi.org/10.1364/JOCN.6.001115
http://dx.doi.org/10.1109/CC.2013.6506930
http://dx.doi.org/10.1016/S0140-3664(00)00236-X
http://dx.doi.org/10.1109/JLT.2015.2421506
http://dx.doi.org/10.1364/JOCN.8.000507
http://dx.doi.org/10.1007/s002910000046
http://dx.doi.org/10.1016/j.comnet.2008.06.016
http://dx.doi.org/10.1109/49.536364
http://dx.doi.org/10.1016/0377-2217(84)90077-8
http://dx.doi.org/10.2478/v10006-007-0023-2
http://dx.doi.org/10.1002/net.3230040204
http://dx.doi.org/10.1109/ONDM.2016.7494087

Entropy 2021, 23, 1116 21 of 21

28. Cetinkaya, E.; Alenazi, M.; Cheng, Y.; Peck, A.; Sterbenz, J. On the fitness of geographic graph generators for modelling physical
level topologies. In Proceedings of the 2013 5th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), Almaty, Kazakhstan, 10–13 September 2013; pp. 38–45. [CrossRef]

29. Wan, X.; Hua, N.; Zheng, X. Dynamic routing and spectrum assignment in spectrum-flexible transparent optical networks. J. Opt.
Commun. Netw. 2012, 4, 603–613. [CrossRef]

http://dx.doi.org/10.1109/ICUMT.2013.6798402
http://dx.doi.org/10.1364/JOCN.4.000603

	Introduction
	Related Works
	Problem Statement
	Proposed Algorithm
	Preliminaries
	Search Graph
	Path Trait
	Solution Label
	Search Tree
	Priority Queue

	Algorithm
	Example
	Worst-Case Analysis

	Simulations
	Simulation Setting
	Network Model
	Traffic Model
	Signal Modulation Model
	The Cost and Decision Functions

	Runs and Populations
	Simulation Results

	Conclusions
	References

