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Abstract: Contextuality and entanglement are valuable resources for quantum computing and
quantum information. Bell inequalities are used to certify entanglement; thus, it is important to
understand why and how they are violated. Quantum mechanics and behavioural sciences teach
us that random variables ‘measuring’ the same content (the answer to the same Yes or No question)
may vary, if ‘measured’ jointly with other random variables. Alice’s and BoB′s raw data confirm
Einsteinian non-signaling, but setting dependent experimental protocols are used to create samples of
coupled pairs of distant ±1 outcomes and to estimate correlations. Marginal expectations, estimated
using these final samples, depend on distant settings. Therefore, a system of random variables
‘measured’ in Bell tests is inconsistently connected and it should be analyzed using a Contextuality-
by-Default approach, what is done for the first time in this paper. The violation of Bell inequalities and
inconsistent connectedness may be explained using a contextual locally causal probabilistic model in
which setting dependent variables describing measuring instruments are correctly incorporated. We
prove that this model does not restrict experimenters’ freedom of choice which is a prerequisite of
science. Contextuality seems to be the rule and not an exception; thus, it should be carefully tested.

Keywords: Bell inequalities; counterfactual definiteness and noncontextuality; quantum nonlocality;
Einsteinian non-signaling; entanglement; local realism; measurement independence; Kochen–Specker
contextuality; Bohr complementarity

1. Introduction

In classical physics, we describe a world, as we perceive it, in terms of non-contextual
and contextual properties. The dimensions and shape of a marble table are non-contextual.
They are believed to exist before they are measured and they do not depend on when and
how they are measured. Measurements, with a good approximation, are non-invasive and
their outcomes give the information about these pre-existing properties. On other hand, a
color of the chameleon is contextual, because it depends on where it is observed.

In quantum physics, measurements are invasive, and their outcomes are created in
interaction of a physical system with measuring instruments, in well defined experimental
context. If an experimental context is changed, quantum probabilistic description is modi-
fied. Therefore, we say that quantum observables are contextual. There exist incompatible
experimental contexts in which incompatible quantum observables are measured.

In Bell tests we have four incompatible random experiments. Local realistic and
stochastic hidden variables models failed to explain outcomes of Bell tests, because they
described ‘entangled photons’ as pairs of socks or as pairs of fair dice.

In this article, we discuss in detail non-contextual and contextual properties, along
with the random variables used to describe them. Some estimated marginal expectations
in Bell tests depend on distant settings, and the corresponding random variables are
inconsistently connected. Therefore, we use Contextuality-by-Default (CbD) to study them,
which is the main subject of this paper.

A population is a fundamental concept in mathematical statistics. It may be a set of
physical systems, objects, animals, or people (whose properties, behaviour and opinions
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at a given moment of time) we want to investigate. It is also an infinite set of outcomes,
which might have been obtained in subsequent repetitions of some random experiment
performed in an unchanged experimental context.

The information about statistical populations is inferred from properties of finite
samples. This information is reliable only; if we have at our disposal simple random
samples drawn from the population we are investigating.

Various physical observables and properties are coded using continuous or discrete
random variables, and ‘measured’ values of these random variables may be displayed in
various spreadsheets. We say that a set of properties and random variablesrepresenting
themare non-contextual, if they can be ‘measured’ in any order and a studied population
may be described by a joint probability distribution of these random variables.

In some sense, non-contextual properties, characterizing members of a population, are
believed to exist independently of the fact of being measured. This is why we may use joint
probability distributions of random variables to describe populations, for which not all of
these random variables can be measured jointly. In statistical physics, we even use with
success joint probability distributions of impossible to measure positions, linear momenta,
and energies of invisible molecules, in order to describe thermodynamics of materials.

Experiments in quantum physics also involve invisible physical systems and we
observe the macroscopic effects of their interactions with measuring instruments or envi-
ronment:traces left by charged particles in various ionization chambers, clicks on detectors,
etc. Clicks on detectors are interpreted as values of some physical observables ‘measured’
in the experiment. A statistical scatter of these values obtained in a series of ‘identical
repeated measurements’ performed on ‘identically prepared physical systems’ is compared
with quantum predictions.

In classical physics, measuring instruments ‘register’ (with limited precision and
possible errors) pre-existing values of non-contextual observable. If measurements are
performed on different members of a population, a scatter of outcomes is only due to the
fact, that a studied population is a mixed statistical ensemble. A simple example of such
an ensemble is a box which contains equal number of red and black ‘identical items’ from
which we draw with replacement one “item” at the time. Classical filters are devices which
select objects having different pre-existing properties.

There is a fundamental difference between classical and quantum measurements, thus
as Bohr [1–3] insisted we should rather talk about quantum experiments and quantum
phenomena.

Quantum theory teaches us that the outcomes of measurements are created in an in-
teraction of a physical system with a measuring instrument in a well-defined experimental
context [4]. Incompatible quantum instruments/filters ‘create’ complementary physical
properties which may not be measured jointly, and their values may not be assigned ‘to the
same physical system’ at the same time [5].

Let us consider, for example, a monochromatic laser beam linearly polarized in a
direction n. Its intensity is measured by number of clicks on a single-photon detector. Since
the intensity of the beam is not significantly changed, if we pass this beam by another
polarization filter directed in the direction n, we conclude that all ‘photons’ are polarized in
the same direction n. However, if we pass this beam by another polarization filter directed
in the direction m 6= n, the intensity of the beam diminishes according to the Malus law
and all remaining ‘photons’ are polarized now in the direction m. It may be easily checked
that they are no longer polarized in the direction n.

It is difficult to construct consistent ‘mental images’ of ‘quantum objects’ because
atomic phenomena are characterized by: “the impossibility of any sharp separation between
the behaviour of atomic objects and the interaction with the measuring instruments which serve to
define the conditions under which the phenomena appear”(Bohr ([1], v. 2, pp. 40–41).

In a recent paper, Andrei Khrennikov resumed these fundamental features of atomic
phenomena in two principles [6]:
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Bohr-contextuality: The output of any quantum observable is indivisibly composed of the
contributions of the system and the measurement apparatus.

Bohr-complementarity: There exist incompatible observables (complementary experimen-
tal contexts).

If (A, B, C) are only pair-wise measurable observables, then to ‘measure’ A and B
on a physical system we must use different experimental instruments/contexts, than
when we ‘measure’ A and C. Thus Bohr-contextuality allows qualitative understanding of
Kochen–Specker-contextuality [7] (as we define it):

KS-contextuality: A measurement of an observable does not need to yield the same value
independently of what other measurements may be made simultaneously [7–16].

KS-contextuality is not limited to quantum mechanics. In cognitive sciences answers to
Yes-or-NO questions given by an individual depend on which other questions are asked
at the same time and on a whole experimental context. Therefore, Dzhafarov and Kujala
pointed out, that random variables describing outcomes of these experiments should be
labelled not only by content but also by a context of an experiment. In their approach
called Contextuality-by-Default (CbD) [17], the same questions are represented by different
random variables depending on what other questions are asked at the same time.

Their approach applies also to experiments in physics and in other domains of sci-
ence [17–23] and even it may be generalised. In physics we register time series of results
subdivided often into successive runs of the same experiment. It is not sure that all re-
producible properties of this time series may be explained completely using a probability
distribution of a single random variable. As we pointed out several years ago [24–26], it has
to be tested and not taken for granted. Therefore, to be on safe grounds, each experimental
run may be described by a different random variable, and one has to verifywhether they
are identically distributed or not.

Similarly, in behavioural and cognitive sciences, outcomes of experiments performed
on different samples drawn from the same population might be described by different
random variables. Only by comparing gathered data we can decide whether these, a priori
different, random variables may be considered as the same or not (in different words
whether our finite samples are simple random samples drawn from the same population).

Differences between finite samples drawn from the same population have nothing to
do with KS-contextuality, which is an intimate context dependent relation between studied
random variables.

In mathematical statistics, multivariate random variables and joint probability distri-
butions are only used to describe random experiments or population surveys, in which
each trial/individual is described not by one, but by several data items. In this case we say
that these data items are ‘measured’ values of commeasurable random variables.

Einstein believed that quantum pure ensembles are in fact mixed statistical ensembles
of physical systems [27,28], which may be described by joint probability distributions of
non-contextual hidden variables (NCHV). In such probabilistic models, pairwise marginal
expectations must obey some noncontextuality inequalities (NCI) which are violated by
quantum expectations and by experimental data.

The violation of NCI, in Bell tests [29–36] is often interpreted as the violation of local
realism. In our opinion one should rather talk about naïve realism = noncontextuality or
non-invasive measurability. This violation, as we explain in this paper, is only a manifestation
of Bohr- and KS-contextuality and has nothing to do with the locality or non-locality of
nature. Outcomes of experiments in quantum physics and in cognitive sciences are not
predetermined, before the experiments are done, and they depend strongly on experimental
protocols, and on experimental contexts.

Many authors tried to explain the true meaning of Bell-type inequalities and of their
violations [37–89]. They arrived, often independently to the conclusion, that Bell inequali-
ties are only the necessary and sufficient conditions for the existence of a counterfactual
joint probability distribution describing outcomes of incompatible random experiments.
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They pointed out that, if hidden variables describing measuring instruments are correctly
incorporated in the probabilistic models, Bell inequalities may not be derived. Titles of
the cited papers are self- explanatory, but the discussion of them is out of the scope of this
article.

Nevertheless, speculations about quantum nonlocality and quantum magic are still
quite frequent in blogs, books, and scientific papers. Such unfounded speculations are not
only motivated by the violation of Bell inequalities but also by incorrect interpretations of
quantum mechanics, as it was clearly explained in several recent papers [53–55,66–70,89–97].

NCI are also violated in experiments in social, behavioural and cognitive sciences
[20,98–101], this is why when discussing the results of Bell tests, we will only talk about con-
textuality and not about non-locality. We also agree with Peres that unperformed experiments
have no results [76].

The paper is organized as follows.
In Section 2, we explain what we mean by contextuality of a set of random variables, and

we present general n-cyclic NCI [101].
In Section 3, we recall the main assumptions and definitions used in CbD [17–19,23].
In Section 4, we discuss experimental protocols used in Bell tests. We explain observed

context dependence of marginal distributions (inconsistent connectedness of random vari-
ables) and we derive modified CHSH inequality allowing studying contextuality of these
random variables more in detail.

In Section 5, we explain inconsistent connectedness in Bell Tests, using a contextual lo-
cally causal model, in which setting dependent variables describing measuring instruments
are correctly introduced.

In Section 6, we reject the incorrect and often repeated claim that setting dependence
of variables in a probabilistic model restricts experimenters’ freedom of choice.

In Section 7, we explain why contextuality should be the rule in spin polarization
correlation experiments and we propose new experimental tests.

2. Contextuality and Non-Contextuality

If physical systems/individuals have properties/opinions, at a given moment of
time, which do not depend on, whether they are ‘measured’/asked–for, then we may
describe various statistical populations of these systems/individuals by a joint probability
distribution of non-contextual random variables.

Contextual properties/opinions of systems/individuals do not exist before being
‘measured’/asked-for in a particular experimental context. Therefore, if we have a set
of random variables which are not all commeasurable usually there is a deep reason for
it and the results of experiments may not be explained by assuming the existence of a
counterfactual joint probability distribution of all these variables.

Let us consider a set of random variables X = {X0 . . . Xn−1} which may be measured
on members of a statistical population. We propose a general and experimentally testable
definition of contextuality.

If not all variables in a set X are commeasurable, then a set X is called contextual, if
one may reject a statistical hypothesis that a studied population is described by a joint
probability distribution of all these variables. Otherwise, the set is called non-contextual.

A set X of dichotomous random variables, taking values ±1, is contextual, if and only if
various NCI are significantly violated.

Of particular importance are NCI satisfied by cyclic expectation values of pairs of
random variables <X0 X1>, <X1 X2> . . . <Xn−1X0>:

< X0X1 > + < X1X2 > + . . .+ < Xn−2Xn−1 > − < Xn−1X0 >≤ n− 2 (1)

The inequality (1) follows immediately from a simple arithmetic inequality: x0x1 +
x1x2 + . . . + xn−2xn−1 − xn−1x0 ≤ n− 2, which is always satisfied by xi = ±1. For n = 3 the
inequality (1) is in fact one of Boole [102] or Suppes–Zanotti–Legett–Garg (SZLG) inequali-
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ties [103,104]. For n = 4 we obtain Clauser–Horn–Shimony–Holt (CHSH) inequality [105]
and for n = 5 we obtain Klyachko–Can–Binicioglu–Shumovsky (KCBS) inequality [106].

In a similar way one proves all generalized n-cyclic NCI for n ≥3:

n−1

∑
i=0

γi < XiXi+1 > ≤ n− 2 (2)

where Xn = X0, γi ∈ {−1, 1} and the number of γi = −1 is odd [19,101].

3. Contextuality-by-Default Approach

In CbD approach, random variables measuring the same content in different contexts
are stochastically unrelated, and they are labelled by contexts, in which they are measured.
Dzhafarov and Kujala explain it clearly in several articles [19–23]. In this paper we use a
simplified notation, similar to that of Araujo et al. [101], which suits better our discussion
of Bell tests.

Let us consider an n-cycle scenario of binary random variables X = {X0, . . . , Xn−1}
such that only all successive pairs {Xi, Xi+1} are commeasurable and Xn = X0.

Since each pair of random variables defines a different experimental context, thus we
have a new system containing 2n binary random variables X′ = {X0, X′0, . . . Xn−1, X′n−1}.We
have still n pairwise measurable expectation values <XiX′i+1>, but now random variables
Xi 6= X′i are stochastically unrelated (our system is not cyclic) and we may not derive
inequalities (2).

If marginal expectation values measured in different contexts violate marginal se-
lectivity/parameter independence <Xi>m 6= <X′i>m, we say that these random variables,
representing the same content in different contexts, are inconsistently connected (NCC), other-
wise they are consistently connected (CC). Inconsistent connectedness is the first indication that
a system exhibits KS-contextuality, but in CbD one wants to obtain more detailed answers
to two questions [23]:

“A: For any two random variables, sharing content, how different are they when taken in
isolation from their contexts?

B: Can these differences be preserved when all pairs of content-sharing variables are taken
within their contexts (i.e., taking into account their joint distributions with other random
variables in their contexts)?”

This is why Dzhafarov and Kujala generalised NCI for NCC systems. Any set con-
taining stochastically related and stochastically unrelated random variables can always
be coupled (imposed a counterfactual joint probability distribution upon) [17–19]. If such
probability distribution is imposed, expectations <XiX′i> are defined and we have a new 2n-
cyclic system/scenario for which one may derive immediately NCI similar to (1) and (2):

< X0X′0 > + < X′0X1 > + < X1X′1 > + . . .+ < Xn−1X′n−1 > − < X′n−1X0 > ≤ 2n− 2 (3)

n−1

∑
i=0

γi < X′i Xi+1 >+
n−1

∑
i=0

< XiX′i > ≤ 2n− 2 (4)

Since the random variables Xi and X′i correspond to the same content in different
contexts, they should be as similar as possible, what imposes constraints on <XiX′i>. If such
constraints are imposed, then a counterfactual joint probability distribution of 2n variables,
consistent with experimental data, does not always exist and the violation of the inequalities
(3) and (4} allows us to study a degree of contextually of the system X′.

In CbD we impose the maximal coupling on each pair of random variables {Xi, X′i}
replacing <XiX′i> by its maximal value consistent with observed marginal expectations
<Xi>m and <X′i>m. As it was proven in [19] (Lemma 3):
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Jointly distributed ±1-valued random variables A and B with given expectations <A>;
<B>; <AB> exist if and only if:

|〈A〉+ 〈B〉|−1 ≤ 〈AB〉 ≤ 1−|〈A〉 − 〈B〉| (5)

After replacing <XiX′i> in (4) by their maximal values, evaluated using the
Equation (5), we obtain (in our notation) Dzhafarov-Kujala NCI:

n−1

∑
i=0

γi < X′i Xi+1 >+
n−1

∑
i=0

[1−
∣∣〈Xi〉m −

〈
X′i

〉
m

∣∣ ≤ 2n− 2 (6)

By rearranging terms in (6) and replacing <Xi>m by <Xi> we obtain a simpler and
more transparent NCI:

Sn =
n−1

∑
i=0

γi < X′i Xi+1 > −
n−1

∑
i=0

∣∣〈Xi〉 −
〈

X′i
〉∣∣ ≤ n− 2 (7)

where n ≥ 3, γi ∈ {−1, 1} and the number of γi = −1 is odd.
If all <Xi> = <X′i>, the maximal coupling becomes the identical coupling <XiX′i> = 1

and we recover inequalities (2) after replacing X′i by Xi. Thus for CC systems and n = 4,
S4 = S and (7) is the well-known CHSH inequality.

If the maximal coupling exists, then according to CbD the system X′ has maximally
non-contextual description and is called non-contextual. However one should not forget
that the significant inconsistent connectedness is already a manifestation of KS-contextuality,
as we define it, and that the violation of inequalities (7) by experimental data is an
additional important measure of contextuality of X′.

Kujala, Dzhafarov, and Larsson studied the violation of the inequality (7) for KCBS
system [106], using experimental data of Lapkiewicz et al. [107]. They assessed the sig-
nificance of the violation of (7) using Bonferroni confidence intervals. This method can
be easily generalised for any values of n ≥ 3. If Iα(y) = [lα, uα] is an estimated (1−α)100%
confidence interval for an unknown population parameter y, then there is (1−α)100%
chance, (Pr(y ∈ Iα(y)) = 1− α), that the value of this parameter is included in Iα(y).

If we define: [a, b] + [c, d] = [a + c, b + d] and −[a, b] = +[−b, −a], then a conservative
Iα (Sn) may be written as follows:

Iα(Sn) =
n−1

∑
i=0

γi I α
2n
(< X′i Xi+1 >) −

n−1

∑
i=0

I α
2n
(|〈Xi〉 −

〈
X′i

〉
|) (8)

If the lower bound of Iα (Sn) is greater than n − 2, then with (1 − α) 100% confidence,
we may conclude that X′ is strongly contextual (it does not allow maximally non-contextual
description). If an upper bound of Iα (Sn) is smaller than n − 2, then we may conclude with
(1 − α) 100% confidence that X′ allows maximally non-contextual description.

It is often believed that the CbD approach is not of much use for Bell tests, because
according to Einsteinian non-signaling principle random variables measured by Alice and
Bob should not depend onwhat is measured in a distant location.

In the next section, we show that Einsteinian non-signaling is not violated in Bell tests.
Nevertheless, random variables describing samples, extracted from raw data and used
to estimate correlations, exhibit inconsistent connectedness and they should be analyzed
using CbD approach. The violation of Bell-type inequalities is due to the contextuality of
quantum observables and to context dependent protocols needed to establish coupling
between outcomes of distant measurements. It has nothing to do with quantumnonlocality
[53–55,66–70,89–97].
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4. Contextuality-by-Default Description of Bell Tests

There are essential differences between impossible to implement experimental protocol
of EPRB experiment [108,109] and experimental protocols used in SPCE to demonstrate
the violation of CHSH inequality [30,31].

In the EPRB thought experiment we have a steady flow of twin-electron or twin-
photon pairs. Alice and Bob, working in distant laboratories, measure spin projections
using 4 pairs of settings (i, j) = (x, y), (x, y′), (x′, y), and (x′, y′), which define contexts of
four incompatible experiments. Outcomes for each twin- photon pair are coded by values
of random variables (Ai, Bj), where Ai = ±1 and Bj = ±1. There are strict correlations and
anti-correlations for some settings and marginal expectations <Ai> = <Bj> = 0 as predicted
by QM. There are no losses of pairs, and all expectations <AiBj> may be unambiguously
estimated using experimental data [67].

In a typical spin polarization correlation experiment (SPCE), two correlated signals
(“twin-photon beams”) are sent from a source to Alice’s and BoB′s polarization beam
splitters and detectors, which we call:PBS-detector modules. Pair emissions are governed
by some stochastic process not described by QM. A click on a detector is interpreted as the
detection of a photon with “spin up” or “spin down” in a particular direction. There are
black counts, laser intensity drifts, photon registration time delays, etc. Each detected click,
coded as 1 or −1, has its time tag and raw data are samples of two stochastically unrelated
time-series. Several steps are needed to extract from raw data final samples, allowing to
establish a coupling between distant outcomes and to estimate correlations between them.
A much more detailed discussion may be found in [67,84,85,110]. Here, we enumerate only
3 steps of the experimental protocol for a fixed setting (x, y):

1. Raw time-tagged data are two samples: SA(x, y) = {(ak, tk)|k = 1 . . . nx} and
SB(x, y) = {(bm, t’m)|j = 1 . . . ny}, with ak = ±1 and bm = ±1.

2. Using fixed synchronized time-windows of width W and keeping only windows, in
which there is no click at all or a click on one of Alice’s or/and BoB′s detectors, new
samples are created: SA(x, y, W) = {as|s = 1, . . . Nx} and, SB(x, y, W) = {bt|t = 1 . . . Ny},
with as = 0, ±1 and bt =0, ±1.

3. Now by keeping only synchronized time-windows, in which both Alice and Bob
observed a click on one of their detectors, a new sample of paired outcomes is obtained:
S’AB(x, y, W) = {(ar, br)|r = 1, . . . Nxy}, with ar = ±1 and br = ±1.

In fact we have a large family of samples labelled by W and a corresponding family
of random variables [67], but one chooses the optimal value of W which maximizes the
number of coincidences.

If samples constructed in the step 2 are used, then <A|x, y, W> ≈ <A|x, y′, W> and
<B|x, y, W> ≈ <B|x′, y, W>, thus Einsteinian non-signaling (parametric independence) is
not violated in SPCE.

In step 2, the random variables A and B are equal to 0 or ±1. To test CHSH inequality
we have to estimate expectations <A′B′|x, y, W>, <A′ B′|x, y′, W>, <A′ B′|x′, y, W> and
<A′B′|x′, y′, W′> using samples constructed in step 3. Now A′ and B′ are new random
variables equal to ±1.

Adenier and Khrennikov [110] and De Raedt, Jin, and Michielsen [84,85] analyzed
the raw data of Weihs et al. [31] and discovered that marginal expectations <A′|i, j>
and <B′|i, j> depended on distant settings. This apparent violation of parameter indepe
ndence/non-signaling, could not be explained by the violation of a fair sampling assump-
tion, and was in conflict with quantum predictions.

Similar anomalies were discovered by Adenier and Khrennikov [111] and by Bed-
norz [112] in Hensen et al. data [33].Liang, using the work of Lin et al. [113] and of Zhang
et al. [114] analyzed the data from [115] and reported, at FQMT2017, that the probabil-
ity (p-value) of observing some data points, under the assumption of non-signaling, was
smaller than 3.17 × 10−55. The results were derived assuming that measurement settings
were randomly chosen, but it turned out that this assumption was not respected in the
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experiment of [115]. A detailed discussion of these results was published in a recent
paper [116].

Moreover, in this experiment, as in many other Bell tests [65,117], it was not checked
carefully enough that trials are independent and identically distributed. We demonstrated
with Hans de Raedt [118], that without such verification the standard statistical inference
is not reliable. A detailed discussion of experimental protocols and possible loopholes in
Bell tests may be found in Larsson [119].

Apparent violation of Einsteinian non-signaling reported in [110–114,116] is only
the effect of context dependent experimental protocols required to establish correlations
between clicks on distant detectors. It is also a manifestation of Bohr-contextuality and
may be explained in a locally causal way using context dependent variables describing
PBS-detector modules [67,70].

Random variables A′ and B′ measuring, in different contexts, the same content (pres-
ence of a click on one of Alice’s and BoB′s detectors) are inconsistently connected, thus CbD
is the appropriate approach to study more in detail contextuality of this NCC system.

In CbD the random variables A′ and B′ are labelled by corresponding contexts/settings
(i, j). To simplify the notation, we replace (x, y) by (1, 1) etc.

We have now a system X′ = {A11, A12, A21, A22, B11, B12, B21, B22} of 8 binary random
variables (describing 4 samples obtained in step 3 of the experimental protocol), which is in-
consistently connected (<A11> 6= <A12>, <A21> 6= <A22>, <B11> 6= <B21>, <B12> 6= <B22>).
After introducing maximal couplings, as it was explained in the preceding section, the
system X′ is transformed into 8-cyclic system.

Therefore, instead of CHSH inequality:

S =< A1B1 > + < A1B2 > + < A2B1 > − < A2B2 >≤ 2 (9)

we obtain in CbD a new inequality for S4:

S4 =< A11B11 > + < A12B12 > + < A21B21 > − < A22B22 > −D4 ≤ 2 (10)

where D4 is the contribution from 4 counterfactual maximal couplings:

D4 =|< A11 > − < A12 >|+|B11 > − < B21 >|+|< A21 > − < A22 >|+|< B12 > − < B22 >| (11)

The violation of inequality (10) allows assessing more precisely a degree of contextuality
of x′. It may be done using conservative confidence intervals (8) for S4.

Iα(S4) = I α
8
(< A11B11 >) + . . . I α

8
(< A21B21 >)− I α

8
(< A22B22 >)− I α

2
(D4) (12)

In the Bell tests, we have 4 random experiments performed in incompatible experimen-
tal settings. Each of these experiments may be described by its own Kolmogorov probability
space and the only constraint, which may be derived, without assuming noncontextuality or
by imposing maximal couplings, is |S| ≤ 4.

In the next section, we present a contextual probabilistic model able to explain in a
locally causal way data obtained in step 3 of the experimental protocol discussed above.

5. Contextual Locally Causal Probabilistic Model

The inconsistently connected random variables describing the experimental data may
neither be explained using quantum mechanical model for EPRB nor by local realistic
hidden variable models, because in these models the parameter independence is strictly
obeyed.

As demonstrated in [67,70], the apparent violation of non-signaling and inconsistent
connectedness may be explained by a contextual probabilistic model in which setting
dependent variables describing measuring devices are correctly introduced.

• Photonic signals arriving to PBS-detector modules are described by variables
(λ1, λ2) ∈ Λ1 ×Λ2 and p(λ1, λ2).
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• In a setting (x, y), Alice’s and BoB′s instruments, at the moment of measurement, are
described by variables (λx, λy) ∈ Λx ×Λy and probability distributions px(λx) and
py(λy).

• Outcomes 0, ±1 are the values of functions Ax (λ1, λx) and By (λ2, λy) = 0, ±1.

Expectation values of inconsistently connected random variables A′ = Axy and B′ =
Bxy, describing data obtained in step 3 of the experimental protocol are given by:

E(AxyBxy) = E(AxBy|AxBy 6= 0) = ∑
λ∈Λ′xy

Ax(λ1, λx)By(λ2, λy)pxy(λ) (13)

E(Axy) = E(Ax|AxBy 6= 0) = ∑
λ∈Λ′xy

Ax(λ1, λx)pxy(λ) (14)

E(Bxy) = E(By|AxBy 6= 0) = ∑
λ∈Λ′xy

By(λ2, λy)pxy(λ) (15)

where pxy(λ) = px(λx)py(λy)p(λ1, λ2), Λxy = Λ1 ×Λ2 ×Λx ×Λy and

Λ′xy =
{

λε Λxy
∣∣Ax(λ1, λx) 6= 0 , By

(
λ2, λy

)
6= 0

}
(16)

For each setting (x, y), data obtained in step 2 of the experimental protocol are de-
scribed, by random variables Ax and Ay obeying a joint probability distribution pxy(λ) on a
specific probability space Λxy. Since Λxy ∩Λxy′ ∩Λx′y ∩Λx′y′ = ∅, CHSH and other Bell
inequalities may not be derived.

It is incorrectly believed, that the dependence of hidden variables on settings in a
probabilistic model restricts experimenters’ freedom of choice or measurement independence. In
the next section, we explain why it is not true.

6. Contextuality Does Not Restrict Experimenters’ Freedom of Choice

Despite the fact that there is no agreement as to why Bell-type inequalities are violated,
most of authors agree that the proof of these inequalities is based on 3 main assump-
tions [120]:

1. Realism;
2. Locality;
3. Freedom of choice, measurement independence or no-conspiracy.

In a recent paper Blasiak et al. [121] conclude that the violation of the free choice
assumption is an important resource in Bell experiments. It is surprising, because as Bell
said [120,122,123]:

“It has been assumed that the settings of instruments are in some sense free variables—
say at the whim of the experimenters—or in any case not determined in the overlap
of the backward light cones. Indeed without such freedom I would not know how to
formulateanyidea of local causality, even the modest human one.”

This point of view is probably shared by the majority of physicists [36].
Fortunately, the assumption 3, as it is used to prove Bell inequalities, has nothing to

do with experimenters’ freedom of choice. The misunderstanding consists on an incorrect
interpretation of conditional probabilities and Bayes Theorem [66,124].

Measurement independence is often defined as: measurement settings can be chosen inde-
pendently of any underlying variables describing the system. This definition is rephrased using
conditional probabilities [121,125]:

p(x, y, λ) = p(x, y) p(λ), p(x y|λ) = p(x, y), p(λ|x, y) = p(λ) (17)

Equation (17) resumes correctly a mathematical content of the assumption 3, but
p(λ |x, y) = p(λ) means only that variables λ, describing signals, do not depend on a choice
of settings, and that there exists a joint probability distribution of these variables on a unique
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probability space Λ, which may be used to describe the outcomes of four incompatible
random experiments. Therefore, Equation (17) is only noncontextuality assumption, which
is closely related to realism (the assumption 1), as we defined it in the introduction.

By measurement independence or freedom of choice we understand something more gen-
eral: measurement settings can be chosen independently of any underlying variables describing
the experiment and its outcomes.

In our contextual model (13)–(16):

p(x, y, λ) = pxy(λ) p(x, y) = p(λ), p(λ|x, y) = pxy(λ), p(x y|λ) = p(x, y, λ)/p(λ) = 1. (18)

The equation p(x y|λ) = 1 means only: if an ‘event {λ = (λ1, λ2λx, λy)}’ occurred, thus, the
settings (x, y) were used. It does not mean that {λ} had any causal influence on a choice of the
settings [66,124]. It is visualized in Figure 1.

Figure 1. Experimenters choose freely their settings. A choice of settings is not only a choice of
labels (x, y), but also it is a choice of spaces Λx and Λy describing the instruments in these settings.
The outcomes Ax and Ay are created in a locally causal way. They are determined by the variables
describing instruments and the variables Λ describing photonic signals at the moment of their
interaction.

In our model p(λ|x, y) 6= p(λ) and p(x, y|λ) 6= p(x, y) but experimenters’ freedom of choice,
which is a prerequisite of science, is fully respected. A much more detailed discussion of
conditional probabilities and of Equation (17) may be found in [66].

7. Discussion

The violation of various Bell-type inequalities clearly demonstrated that the values±1,
denoting clicks on detectors are not pre-existing properties of incoming signals, as it was
assumed in local realistic hidden variable models. Clicks are macroscopically magnified
effects of an interaction of correlated signals with PBS-detector modules.

The violation of Bell-type inequalities has nothing to do with magical quantum non-
locality. It is a manifestation of Bohr- contextuality. As Karl Svozil wrote in a recent
paper [126]:

“One could understand Bohr and Bell also by their insistence that the value definite
properties (characterizing its physical state) of the object become “amalgamated” with
(properties of) the measurement apparatus, so that an observation signals the combined
information both of the object as well as of the measurement apparatus.”

A particularity of Bell tests is that we want to estimate correlations between outcomes
of distant experiments. We have to create a coupling of these outcomes (a procedure which
is rarely unambiguous) in order to obtain a sample described by a generalized joint prob-
ability distribution of two random variables. As we explained in [5] a standard joint
probability distribution does not exist for the outcomes of distant experiments. In Bell tests
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we have four incompatible random experiments and only rarely such experiments may
be described using a generalized joint probability distribution on the unique probability
space.

The inconsistent connectedness reported in Bell tests [84,85,110–114,116] is neither
consistent with quantum description of EPRB experiments nor with local realistic hidden
variable models. It may easily be explained using a contextual probabilistic model in
which setting dependent variables describing measuring instruments are correctly incorpo-
rated [66,67,70].

As we explained in the preceding section the so-called measurement independence
assumption is simply noncontextuality assumption. Therefore, its violation in our contextual
model does not restrict experimenters’ freedom of choice.

The important message for the quantum information community is that contrary to
what was claimed [121], the true resource in Bell experiments is neither nonlocality nor
freedom of choice but contextuality.

Inconsistent connectedness seems to challenge a quantum mechanical description
of Bell Tests. Similarly, as Calude et al. reported [127], large sequences of random bits,
generated from the detection of photons, were incapable of passing some randomness tests
like Borel normality. Martinez et al. [128] explained, that the unwanted correlations are
introduced by the APD detectors due to after pulsing and dead time. Because of these
and other biases quantum random number generators (QRNGs) actually perform rather
poorly in tests of randomness as compared to classical pseudo-random number generators
(PRNGs).

In SPCE the context dependent step 3 of experimental protocol does not depend on
how signals are correlated at the source. Moreover Bohr-contextuality should not depend
on how settings are chosen. Therefore, one could expect that inconsistent connectedness and
a violation of inequalities [10] may be observed not only for particular (angles), choices of
settings, and not only for beams of “entangled twin–photon pairs”, but also for different
photonic signals. In order to gather larger samples, settings do not need to be changed
randomly, when photons are in flight. They could be fixed in advance and kept the same
during a long experimental run. One may even check whether the results depend on how
the settings are chosen and changed. We do not believe that it will make a difference.

Such tests focused on studying the inconsistent connectedness and other anomalies in
SPCE are needed to answer the following question:

What is more important cause of the violation of Bell-type inequalities: a particular
entanglement of incoming signals and a choice of particular settings or Bohr- and KS-
contextuality and context dependent experimental protocols?

In our opinion contextuality in SPCE should be the rule and not an exception. Our-
conjecture seems to be confirmed by Iannuzzi, Francini, Messi and Moricciani [129], who
recently reported the violation of Bell inequalities in the experiments with independent
sources of polarized photons:

“We present a Bell-type polarization experiment using two independent sources of
polarized optical photons and detecting the temporal coincidence of pairs of uncorrelated
photons which have never been entangled in the apparatus. The outcome of the experiment
gives evidence of violation of the Bell-like inequalities”.

They used different experimental protocols, than the protocols discussed in this article.
Nevertheless, their results seem to prove that, in their experiment, the inequalities are
violated mainly because of contextuality and not because of entanglement.

The violation of NCI in Bell scenario is often called nonlocality instead of contextuality.
Contextuality has nothing to do with nonlocality, by which one usually understands spooky
influences, or instantaneous transfer of information between distant experimental set-
ups [54,70]. Such influences would have been necessary, if perfect fair dices had produced
perfectly correlated outcomes in distant locations. Fortunately, such experiments do not
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exist. Our model (13)–(16) explains imperfect correlation in Bell tests in a locally causal
way, without requiring any interactions between distant signals and instruments.

In this article, we concentrated on (probabilistic) contextuality, and on CbD ap-
proach. Since contextuality is an important resource for quantum computing [130–132],
thus its different aspects and measures have been studied intensively using several
different approaches. Let us mention here the sheaf-theoretic approach of Abramsky–
Brandenburger [133], the graph approach of Cabello–Severini–Winter [134], the hypergraph
approach of Acin et al. [135], and the operational approach of Spekkens [136].
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