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Abstract: In this study, we theoretically investigated a generalized stochastic Loewner evolution 
(SLE) driven by reversible Langevin dynamics in the context of non-equilibrium statistical mechan-
ics. Using the ability of Loewner evolution, which enables encoding of non-equilibrium systems into 
equilibrium systems, we formulated the encoding mechanism of the SLE by Gibbs entropy-based 
information-theoretic approaches to discuss its advantages as a means to better describe non-equi-
librium systems. After deriving entropy production and flux for the 2D trajectories of the general-
ized SLE curves, we reformulated the system’s entropic properties in terms of the Kullback–Leibler 
(KL) divergence. We demonstrate that this operation leads to alternative expressions of the Jarzyn-
ski equality and the second law of thermodynamics, which are consistent with the previously sug-
gested theory of information thermodynamics. The irreversibility of the 2D trajectories is similarly 
discussed by decomposing the entropy into additive and non-additive parts. We numerically veri-
fied the non-equilibrium property of o ur model by simulating the long-time behavior of the en-
tropic measure suggested by our formulation, referred to as the relative Loewner entropy. 

Keywords: stochastic Loewner evolution (SLE); entropy production; non-equilibrium statistical me-
chanics; Langevin equation; Fokker-Planck equation; time irreversibility; information theory 
 

1. Introduction 
Although the irreversibility of non-equilibrium systems has been discussed in nu-

merous fields for decades, the difficulties accompanying their theoretical formulation es-
sentially involve the definition of the concept of entropy [1–3]. Since the pioneering study 
by Prigogine et al. [4], entropy production describing the dissipative open systems far 
from equilibrium has been studied by employing Gibbs entropy-based approaches [5–14]. 
These formulations assume that time irreversibility in non-equilibrium states is character-
ized by a non-zero-entropy production rate of the system, and time reversibility (or time 
symmetry) holds only when the system is in an equilibrium state with a zero-entropy 
production rate [7–9]. The validity of the assumptions has been proven by various types 
of the fluctuation theorem (FT) [15–17] combined with the stochastic dynamics described 
by Langevin and Fokker–Planck equations [8,9,18–20], etc. One of the advantages of the 
Gibbs entropy-based approach is that it is compatible with the Shannonian information 
entropy. Whereas the information entropy was originally a measure of uncertainty of the 
events consistently used for describing equilibrium systems, the concept of information is 
often adopted into the theory of thermodynamics as a quantity we obtain by the measure-
ment of the system [2,21,22]. Due to its utility, the Gibbs–Shannon entropy-based ap-
proaches (i.e., information-theoretic perspectives) for non-equilibrium systems have also 
been developed based on several different methodologies [23–27]. In particular, the recent 
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advance of this perspective has enabled investigation of the generic properties of the en-
tropy production rate [25,26], and the related results were found to be applicable to spe-
cific physical problems (e.g., heat conduction [27]). 

However, even with the above-mentioned approaches, the characterization of non-
equilibrium systems using quantities from equilibrium physics still includes several con-
troversial issues (e.g., the measure describing non-equilibrium stationary states). Notably, 
as an attempt to overcome this difficulty, an alternative form of the Gibbs–Shannon en-
tropy was proposed in a different context, based on the non-additivity of the ensembles 
of non-equilibrium states [28,29]. These problems concerning non-equilibrium entropy can 
be reduced to the estrangement between non-equilibrium physics and well-established 
equilibrium physics. 

A previous study by the authors indicated that the stochastic Loewner evolution 
(SLE) proposed by Schramm [30,31] provides a bridge between the equilibrium and non-
equilibrium (i.e., reversible and irreversible) statistical mechanics systems [32]. The SLE 
theory typically describes the conformally invariant geometries (curves) in various two-
dimensional (2D) statistical mechanics models, whose time evolutions are determined by 
the Loewner equation [33] driven by Brownian motion (Wiener process). In ref. [32], the 
authors reported that the framework of the SLE can be regarded as a system that encodes 
the (microscopically) irreversible trajectories of the curves into the reversible driving func-
tions. This shows, in other words, that the 2D non-equilibrium trajectories described by 
the SLE are the images of the equilibrium systems under the conformal transformations 
uniquely determined by the Loewner equation. 

In this study, we developed this perspective by using a generalized SLE framework, 
employing a driving function governed by the Langevin equation (described in Section 
2). We present an information-theoretic perspective for the thermodynamics of the SLE to 
show the advantages of encoding non-equilibrium systems into equilibrium systems. Mo-
tivated by the above, our aim was to formulate the Gibbs–Shannon entropy-based rela-
tions between curves in the physical plane and driving functions in the mathematical 
plane in a generalized SLE framework (presented in Section 3). The main tools of the first 
step of our analysis are the Langevin and Fokker–Planck equations describing the trajec-
tories of the tip of the curve, which are available only when the corresponding driving 
function satisfies the time symmetric property [31,34–37]. After deriving several basic 
non-equilibrium entropic relations (e.g., entropy production and flux, Jarzynski equality 
[38]), we deduce these relations in terms of the Kullback–Leibler (KL) divergence [39–42] 
to introduce an extended second law of the thermodynamics. Subsequently, by consider-
ing the phase space deformation induced by the conformal maps determined by the 
Loewner equation, we suggest a novel irreversibility measure, which we call the relative 
Loewner entropy. We also remark that the relative Loewner entropy, defined as a probabil-
istic divergence between the trajectory of the curve and the driving function, is closely 
related to the Lyapunov-type exponent of the conformal map in the Loewner equation. 
Using these quantities, numerical simulations were performed to verify non-equilibrium 
states of the generalized SLE curves (in Section 4). In the discussion (Section 5), we rein-
terpret the statistical physical meanings of our results, most of which rely on information 
theory, in relation to the problem of the determination of a non-equilibrium entropy. 

2. Model 
2.1. Chordal Loewner Evolution  

We consider the chordal Loewner evolution described as follows. Let 𝛾[ , ] be a sim-
ple curve parametrized by time 𝑡 on the upper half complex plane ℍ, starting from the 
origin. The following Loewner equation yields a family of time-dependent conformal 
maps 𝑔  from ℍ ∖ 𝛾[ , ] to ℍ: 
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𝜕𝑔 (𝑧)𝜕𝑡 = 2𝑔 (𝑧) − (𝜉 − 𝜉 ) ,  𝑔 (𝑧) = 𝑧 ,     𝑧 ∈ ℍ, (1)

where 𝜉  is a one-dimensional real-valued time function called the driving function 
[30,31,33] defined in the following subsection. 𝜉  is the initial condition of the driving 
function. When 𝜉  corresponds to the Brownian motion (i.e., Wiener process), Equation 
(1) describes the SLE process in a usual sense. The conformal map satisfying the Loewner 
equation in Equation (1) is given as follows [33]: 𝑔 (𝑧) = 𝑧 + 2𝑡𝑧 + 𝑂(|𝑧 |),     as   𝑧 → ∞ . (2)

The relation between the tip of the curve 𝛾  and the driving function 𝜉  is expressed as 
follows [33]: lim→ 𝑔 (𝑧) = 𝜉 − 𝜉 .  (3)

Therefore, from Equations (1) and (3), it is evident that the family of 𝑔  encodes the his-
tory of the time evolution of the tip 𝛾[ , ] into the driving function 𝜉[ , ] Notably, this 
transformation has a one-to-one correspondence between the curves and driving func-
tions, and is reversible in the sense of the uniqueness of the inverse transformation, i.e.,  lim→ 𝑔 (𝑤) = 𝛾  , (𝑤 ∈ ℍ). However, in practice, the exact determination of 𝑔  is dif-

ficult and specific algorithms are required. Indeed, this encoding mechanism is a physi-
cally non-trivial and meaningful process, as we show later. In the following, we refer to 
the upper half-plane where the driving function evolves on the real axis as the mathemat-
ical plane, and that where the curve evolves as the physical plane. 

2.2. Langevin Dynamics as a Driving Function 
We consider that the driving function 𝜉  of the Loewner evolution is governed by 

the following Langevin equation [43]: 𝑑𝜉𝑑𝑡 = 𝛼(𝜉 ) + √𝜅 𝑑𝐵𝑑𝑡 ,    (4)

where 𝐵  is the standard Brownian motion and 𝜅 is a diffusion parameter. Note that 𝜅 
is a main factor to determine the fractal dimension of the curve in the physical plane. The 
drift term 𝛼(𝜉 ) is assumed to be a conservative force that has a potential function 𝑉(𝜉, 𝑡) 
satisfying: 𝛼(𝜉, 𝑡) = − 𝜕𝑉(𝜉, 𝑡)𝜕𝜉 .      (5)

This condition guarantees that 𝜉  can be a time-reversible process [44]. The associ-
ated Fokker–Planck equation is described as [7]: 𝜕𝑝(𝜉, 𝑡)𝜕𝑡 = 𝜅2 𝜕𝜕𝜉 − 𝜕𝜕𝜉 𝛼(𝜉) 𝑝(𝜉, 𝑡).  (6)

Here, 𝑝(𝜉, 𝑡) = 〈𝛿(𝜉 − 𝜉 )〉, where the brackets denote the ensemble average. For conven-
ience, we define the probability current as: 𝐽(𝜉, 𝑡) = − 𝜅2 𝜕𝜕𝜉 − 𝛼(𝜉) 𝑝(𝜉, 𝑡). (7)

Then, the Fokker–Planck equation in Equation (6) is expressed as: 𝜕𝑝(𝜉, 𝑡)𝜕𝑡 = − 𝜕𝜕𝜉 𝐽(𝜉, 𝑡).         (8)

We assume the scenario where 𝜉  is in the equilibrium state is characterized by: 
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𝑝(𝜉, 𝑡) =  𝑝 (𝜉 ) = 1𝑍 𝑒 ( ) .     (9)

Here, 𝑍 is a normalization constant, and 𝑝 (𝜉 ) is a stationary probability distribution 
that satisfies 𝐽(𝜉, 𝑡) = 0 [7–9]. In addition, we assume that 𝑉(𝜉, 𝑡) is symmetric in 𝜉 such 
that the driving function satisfies the relation that 𝜉  and −𝜉  have the same probability 
distribution. 

3. General Formulation 
3.1. Equilibrium Condition on Mathematical Plane 

In the following formulations, we impose the equilibrium condition on the driving 
function in the mathematical plane from the initial condition, which is characterized by 
the zero-entropy production rate of 𝜉  constructed above. Let us define the Gibbs entropy 
of 𝜉  as follows: 𝑆 = − 𝑝(𝜉, 𝑡) ln 𝑝(𝜉, 𝑡) 𝑑𝜉 = 〈𝑠 〉  ,  (10)

where 𝑠 = − ln 𝑝(𝜉, 𝑡) [= − ln 𝑝 (𝜉 )] and 〈 ∙ 〉  denotes the ensemble average over all 
realizations of the driving function. Here, the Boltzmann constant 𝑘  is regarded as 1. 𝑆 > 0 and 𝑑𝑆 /𝑑𝑡 = 0 can be derived from Equations (9) and (10), indicating the non-
negative and time-independent properties of the equilibrium entropy. 

Furthermore, we assume the following detailed balance condition for the driving 
function [43]: 𝑝(𝜉 |𝜉 )𝑝(𝜉 |𝜉 ) ⋯ 𝑝(𝜉 |𝜉 )𝑝 (𝜉 ) = 𝑝(𝜉 |𝜉 )𝑝(𝜉 |𝜉 ) ⋯ 𝑝(𝜉 |𝜉 )𝑝 (𝜉 ).   (11)

Here, 𝑝(A|B) is the transition probability from state B to A and 𝑛 (≥ 1) is the integer in-
dex satisfying 𝑡 = 𝑛𝜏, where 𝜏 is a sufficiently small-time interval. Let us define: 𝑃 𝜉 (𝑛) = 𝑝(𝜉 |𝜉 )𝑝(𝜉 |𝜉 ) ⋯ 𝑝(𝜉 |𝜉 )𝑝 (𝜉 ),  (12)

and: 𝑃 𝜉 (𝑛) = 𝑝(𝜉 |𝜉 )𝑝(𝜉 |𝜉 ) ⋯ 𝑝(𝜉 |𝜉 )𝑝 (𝜉 ).   (13)

Then, we define the ratio between these probabilities as 𝑅 ≡ 𝑃 𝜉 (𝑛) /𝑃 𝜉 (𝑛) , so 
that: ln 𝑅 = ln 𝑃 𝜉 (𝑛)𝑃 𝜉 (𝑛) = 0,             (14)

which follows from Equation (11). From the formulation using the master equations [7–
10,45], ln 𝑅 = 0 suggests that there is no entropy production inside the system for each 
trajectory and the microscopic time reversibility is guaranteed for all time. 

3.2. Entropy Production in Physical Plane 
We investigate the entropy production of the trajectory of the curve in the physical 

plane. We demonstrate the irreversible and dissipative character of the SLE curve, which 
differs from that of the driving function. We mainly use the Langevin and Fokker–Planck 
equations for SLE curve, which are available due to the detailed balanced condition. The 
formulation using the backward Loewner evolution [31,34–37] shows that if the driving 
function is time-symmetric (i.e., −𝜉  and 𝜉  have the same probability distribution) and 
has stationary increments, the probability distribution for the time evolution of the tip of 
the curve 𝑧  is the same of that of (𝑥 , 𝑦 ), described by the following two-dimensional 
Langevin equation: 
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𝑑𝑥𝑑𝑡 = − 2𝑥𝑥 + 𝑦 − 𝛼(𝜉 ) − √𝜅 𝑑𝐵𝑑𝑡  

𝑑𝑦𝑑𝑡 = 2𝑦𝑥 + 𝑦 .                                       
(15)

Here, we adopt the initial condition of 𝑥 = 0 and 𝑦 = 𝜀, where 𝜀 is an infinitesimal 
positive constant [35]. In the limit of 𝑥 → ±∞ and 𝑦 → ∞, we obtain 𝑑𝑥 /𝑑𝑡 → −𝛼(𝜉 ) −√𝜅𝑑𝐵 /𝑑𝑡 and 𝑑𝑦 /𝑑𝑡 → 0. We note that this condition is an equilibrium state of the curve 
trajectory characterized by the probability that is the same as that of the driving function. 
The Fokker–Planck equation associated with Equation (15) is expressed as follows: 𝜕𝑝(𝑥, 𝑦, 𝑡)𝜕𝑡 = 𝜅2 𝜕𝜕𝑥 + 𝜕𝜕𝑥 2𝑥𝑥 + 𝑦 + 𝛼(𝜉) − 𝜕𝜕𝑦 2𝑦𝑥 + 𝑦 𝑝(𝑥, 𝑦, 𝑡).        (16)

Here, 𝑝(𝑥, 𝑦, 𝑡) = 〈𝛿(𝑥 − 𝑥 )𝛿(𝑦 − 𝑦 )〉, where the ensemble average is calculated over all 
realizations of the curves. For the latter formulations, we take: 𝜒(𝑥, 𝑦, 𝑡) = 𝑝(𝑥, 𝑦, 𝑡) + + 𝛼(𝜉) 𝑝(𝑥, 𝑦, 𝑡)       (17)

and: 𝜓(𝑥, 𝑦, 𝑡) = 𝑝(𝑥, 𝑦, 𝑡).  (18)

Substituting Equations (17) and (18) into Equation (16), the Fokker–Planck equation for 
the trajectory of curve is expressed as: 𝜕𝑝(𝑥, 𝑦, 𝑡)𝜕𝑡 = 𝜕𝜕𝑥 𝜒(𝑥, 𝑦, 𝑡) − 𝜕𝜕𝑦 𝜓(𝑥, 𝑦, 𝑡).   (19)

Subsequently, we define the time-dependent Gibbs entropy for the trajectory of the curve 
as 𝑆 (𝑡), which is expressed as: 𝑆 (𝑡) = − 𝑝(𝑥, 𝑦, 𝑡) ln 𝑝(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦 = 〈𝑠 〉 , ,           (20)

where 𝑠 = − ln 𝑝(𝑥, 𝑦, 𝑡), and 〈 ∙ 〉 ,  denotes the ensemble average over all possible re-
alizations of (𝑥 , 𝑦 ). We are interested in the changing rate of 𝑆 (𝑡), which was formu-
lated by Prigogine et al. as the following [4,7,8,32]: 𝑑𝑆 (𝑡)𝑑𝑡 = 𝑑𝑆 (𝑡)𝑑𝑡 − 𝑑𝑆 (𝑡)𝑑𝑡 ,             (21)

where 𝑑𝑆 (𝑡)/𝑑𝑡 is the entropy production rate inside the system, which is non-negative 
because of the second law of thermodynamics. The second term on the right-hand side of 
Equation (21), 𝑑𝑆 (𝑡)/𝑑𝑡, is the entropy flux rate from the system to the external environ-
ment. If the system is stationary, 𝑑𝑆 (𝑡)/𝑑𝑡 = 𝑑𝑆 (𝑡)/𝑑𝑡, whereas if the system is in equi-
librium, 𝑑𝑆 (𝑡)/𝑑𝑡 = 𝑑𝑆 (𝑡)/𝑑𝑡 =0. In both scenarios, 𝑆 (𝑡) assumes a constant value, 
otherwise 𝑆 (𝑡) changes depending on the time and the system is in non-equilibrium 
[7,8]. For subsequent discussions, we define the entropy production 𝑠  and entropy flux 𝑠  for the individual trajectories of the tips of the curves as those satisfying 𝑑𝑆 (𝑡)/𝑑𝑡 =𝑑𝑠 /𝑑𝑡 ,  and 𝑑𝑆 (𝑡)/𝑑𝑡 = 𝑑𝑠 /𝑑𝑡 , . 

Hereafter, we apply the entropic formulation in Equation (21) to the SLE curve in our 
model, using Equations (17)–(20), and performing partial integrations. The time derivative 
of 𝑆 (𝑡) can be calculated as [32]: 𝑑𝑆𝑑𝑡 = 2𝜅 [𝜒(𝑥, 𝑦, 𝑡)]𝑝(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦 − 2𝜅 2𝑥𝑥 + 𝑦 + 𝛼(𝜉) 𝜒(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦 − 2𝑦𝑥 + 𝑦 𝜕𝜕𝑦 𝑝(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦.       (22)
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Here, we dropped the boundary terms whose 𝑝(𝑥, 𝑦, 𝑡) tends to zero when 𝑥 → ±∞ or 𝑦 → ±∞. Because the first term of the right-hand side of Equation (22) is non-negative, we 
can identify it with the entropy production rate, that is: 𝑑𝑆 (𝑡)𝑑𝑡 = 2𝜅 [𝜒(𝑥, 𝑦, 𝑡)]𝑝(𝑥, 𝑦, 𝑡) 𝑑𝑥𝑑𝑦 ≥ 0. (23)

The equality holds when 𝜒(𝑥, 𝑦, 𝑡) = 0, and this is a necessary condition for thermal equi-
librium. In this framework, the entropy production rate is described in terms of the free 
energy 𝐹  of the system as 𝑑𝑆 (𝑡)/𝑑𝑡 = −𝑑𝐹/𝑑𝑡  [13]. Therefore, by combination with 
Equation (23), 𝑑𝐹/𝑑𝑡 ≤ 0 can be derived. This outcome is interpreted as the H-theorem 
for the trajectory of the SLE curve, and it ensures that the system is thermodynamically 
irreversible in time, except for the equilibrium condition [46]. 

In addition, the second and third terms of the right-hand side of Equation (22) are 
interpreted as the contributions for the entropy flux rate. Performing the partial integra-
tion and using the definition of the ensemble average, the entropy flux rate is expressed 
as [32]: 𝑑𝑆 (𝑡)𝑑𝑡 = 2𝜅 2𝑥𝑥 + 𝑦 + 𝛼(𝜉 ) − 𝜕𝛼(𝜉 )𝜕𝑥 ,

. (24)

Then, the entropy flux (from 𝑡 = 0) for individual trajectories, 𝑠 , is calculated by the fol-
lowing integral: 

𝑠 = 2𝜅 2𝑥𝑥 + 𝑦 + 𝛼(𝜉 ) − 𝜕𝛼(𝜉 )𝜕𝑥 𝑑𝑡,     (25)

which is the total amount of entropy dissipated to the external environment for each tra-
jectory of the curves. Note that (𝑥 , 𝑦 ) and (Re(𝑧 ), Im(𝑧 )) have the same joint probability 
distribution. The increase in 𝑠  indicates that the generalized SLE curve remains in a non-
equilibrium state, contrary to the fact that the corresponding driving function is in an 
equilibrium state from the initial conditions. 

3.3. Jarzynski Equality for Generalized SLE Curve 
We derive the equality governing the time-irreversible trajectories of the SLE curve, 

which was originally derived by Jarzynski [38] and applied to stochastic trajectories by 
Seifert [10]. Let us denote the discretized points on curve 𝛾[ , ]  as 𝛾[ , ] = 𝑧 (=0), 𝑧 , 𝑧 , … , 𝑧  . Then, in the same manner as Equations (12) and (13), we define: 𝑃 𝑧 (𝑛) = 𝑝(𝑧 |𝑧 )𝑝(𝑧 |𝑧 ) ⋯ 𝑝(𝑧 |𝑧 )𝑝(𝑧 )    (26)

and: 𝑃 �̃� (𝑛) = 𝑝(𝑧 |𝑧 )𝑝(𝑧 |𝑧 ) ⋯ 𝑝(𝑧 |𝑧 )𝑝(𝑧 ).           (27)

Subsequently, we define the ratio of these probabilities as 𝑅 ≡ 𝑃 𝑧 (𝑛) /𝑃 �̃� (𝑛) . 
From the formulations using master equations, ln 𝑅  is expressed in terms of the entropy 
flux as follows [8,10]: ln 𝑅 = ln 𝑃 𝑧 (𝑛)𝑃 �̃� (𝑛) = 𝑠 + ln 𝑝(𝑧 )𝑝(𝑧 ) .       (28)

Here, the individual entropy flux 𝑠  is given by Equation (25). From Equation (28), 
Jarzynski equality can be derived as [8,10]: 
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〈𝑒 〉 = 𝑃 𝑧 (𝑛) 𝑒          
      = 𝑃 �̃� (𝑛)   

= 1 .                       
(29)

Here, 〈 ∙ 〉  denotes the ensemble average over the forward path of the curve. Us-
ing Equations (25) and (28), Equation (29) is expressed as: 

exp − 2𝜅 2𝑥𝑥 + 𝑦 + 𝛼(𝜉 ) − 𝜕𝛼(𝜉 )𝜕𝑥 𝑑𝑡 + ln 𝑝(𝑧 )𝑝(𝑧 ) = 1.      (30)

This is the Jarzynski equality for the generalized SLE curve, which is applicable re-
gardless of whether the curve trajectory is in an equilibrium or non-equilibrium state. 

3.4. KL Divergence Approach 
Although we showed the underlying entropic law in the trajectories of generalized 

SLE curves using previously studied formulations, the non-equilibrium characteristic of 
the 2D trajectory in the physical plane is generated by the transformation of the reversible 
driving function. To clarify this encoding property of the SLE in terms of information the-
ory, we take an approach using the KL divergence. In the following formulation, we elim-
inate the restrictions on initial conditions, assuming that the driving function is in a relax-
ation process to the equilibrium state, which requires a certain length of time. 

Subtracting Equation (28) from Equation (14) yields: 

ln(𝑅 /𝑅 ) = ln 𝑃 𝜉 (𝑛)𝑃 𝜉 (𝑛) − ln 𝑃 𝑧 (𝑛)𝑃 �̃� (𝑛)  

       = ln 𝑃 �̃� (𝑛)𝑃 𝜉 (𝑛) − ln 𝑃 𝑧 (𝑛)𝑃 𝜉 (𝑛) . (31)

We denote KL divergences between the forward paths of the driving function and the 
curve as the following: 𝐷(𝑧 𝜉 ) = 𝑃 𝑧 (𝑛)( ) ln 𝑃 𝑧 (𝑛)𝑃 𝜉 (𝑛) .    (32)

Similarly, for the backward paths we denote: 𝐷(�̃� 𝜉 ) = 𝑃 �̃� (𝑛)( ) ln 𝑃 �̃� (𝑛)𝑃 𝜉 (𝑛) .      (33)

Then, we define 𝑑(𝑧 𝜉 ) ≡ ln ( )( )  and 𝑑(�̃� 𝜉 ) ≡ ln ( )( ) , so that: 𝐷(𝑧 𝜉 ) = 〈𝑑(𝑧 𝜉 )〉 ,  

and: 𝐷(�̃� 𝜉 ) = 〈𝑑(�̃� 𝜉 )〉 .  (34)

Using these expressions, Equation (31) is expressed as: 𝑅 /𝑅 = exp 𝑑 �̃� 𝜉 − 𝑑(𝑧 𝜉 ) .       (35)
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For the left-hand side of Equation (35), we take the dual ensemble average with respect to 𝑧  and 𝜉 , hence: 

𝑅𝑅 ,   = 𝑃 𝑧 (𝑛) 𝑃 𝜉 (𝑛) 𝑒 /  

                   = 𝑃 �̃� (𝑛) 𝑃 𝜉 (𝑛)        
 = 1.                                                                                                 

(36)

Because we obtain the relation 𝑅 /𝑅 , = 1, using Equation (36), Equation (35) 

yields: exp 𝑑 �̃� 𝜉 − 𝑑(𝑧 𝜉 ) , = 1.         (37)

This is an alternative of the Jarzynski equality, which is applicable for the generalized SLE 
that we defined previously. From the Jensen inequality, the following relation is derived: exp 𝑑 �̃� 𝜉 − 𝑑(𝑧 𝜉 ) , ≥ exp 〈𝑑 �̃� 𝜉 〉 , − 〈𝑑 𝑧 𝜉 〉 ,  .  (38)

Substituting Equation (37) into Inequation (38), we obtain the following inequality: 〈𝐷(𝑧 𝜉 )〉 ≥ 〈𝑑(𝑧 𝜉 ) − ln 𝑅 + ln 𝑅 〉 , .    (39)

Using Equation (28), Inequation (39) is transformed as follows: 0 ≤ 𝑠 + ln 𝑝(𝑧 )𝑝(𝑧 ) − ln 𝑅 , .   (40)

Using the relation 𝑠 = 𝑠 + ln ( )( ), the following inequality is derived: 0 ≤ 𝑠 − ln 𝑅 ,   (41)

This relation can be interpreted as an extension of the second law of thermodynamics. In 
Inequation (41), the equality holds true if the trajectory is in an equilibrium state charac-
terized by 𝑠 = ln 𝑅 = 0. Note that 𝑠  in Equation (40) is expressed by Equation (25) 
only when the time reversibility of the driving function is guaranteed. Considering the 
above derivation process, the generalized Jarzynski equality in Equation (37) and second 
law-type relation in Inequations (40) and (41) are generic relations in the sense that they 
hold true for arbitrary 2D trajectories regardless of the entropic characteristics of corre-
sponding driving functions. 

3.5. Relative Loewner Entropy 
We showed that the non-equilibrium states of the trajectory of the SLE curves are 

formulated by the Shannon entropy-based KL divergence. Furthermore, we demonstrated 
the encoding property of the Loewner evolution by characterizing the entropy production 
and flux in terms of the path probabilities of the curves and the driving functions. In this 
subsection, we elucidate the intrinsic mechanism that affords this encoding by examining 
the phase space deformation induced by the conformal map 𝑔 , which is shown to be a 
fundamental factor of the irreversibility. We further incorporate a viewpoint of the non-
additivity of the entropy, which is a basic concept of non-extensive statistical mechanics 
[28,29]. In the following, we assume that the driving function is in an equilibrium state. 



Entropy 2021, 23, 1098 9 of 17 
 

 

The relation between the probability for 𝑧 and 𝑤  under the conformal map 𝑧 =𝑔 (𝑤) is expressed as [47,48]: 𝑝(𝑧) = 𝑝(𝑤) 𝑑𝑔 (𝑧)𝑑𝑧 .  (42)

Using the relation 𝜉 − 𝜉 = lim→ 𝑔 (𝑧), where 𝛾 = 𝑧  and 𝑝(𝜉 ) = 𝑝(𝜉 − 𝜉 ), in Equation 

(3) and taking the logarithms, the entropy 𝑠 (𝑧 ) for the tip on the curve is described as: 

𝑠 (𝑧 ) = 𝑠 (𝜉 ) − ln 𝑑𝑔 (𝑧 )𝑑𝑧 ,  (43)

where from Equation (2) for large 𝑧 : 𝑑𝑔 (𝑧 )𝑑𝑧 = 1 − 2𝑡𝑧 + 𝑂(|𝑧 |) .  (44)

Here, the entropy 𝑠 (𝑧 ) is decomposed into an equilibrium entropy 𝑠 (𝜉 ) and the rest 

of the part − ln ( ) . Because 𝑠 (𝜉 ) is associated with the time-independent canon-
ical distribution 𝑝 (𝜉 ) described by Equation (9), it can be referred to as the additive part. 

Contrarily, ln ( ) is time dependent as we numerically show later, and referred to as 
the non-additive part in the sense of the non-extensive statistical mechanics [28,29,49]. No-
tably, the behavior of the non-additive part characterizes non-equilibrium (irreversible) 

properties of the generalized SLE curve. Let us define 𝑑(𝑧 ∥ 𝜉 ) ≡ ln ( )( ) = ln ( ) . 
From Equation (43), the time derivative of 𝑠 (𝑧 ) is expressed as: 𝑑𝑠 (𝑧 )𝑑𝑡 = − 𝑑𝑑𝑡 𝑑(𝑧 ∥ 𝜉 ).    (45)

Here, we used 𝜕𝑝 (𝜉, 𝑡) 𝜕𝑡⁄ = 0 from 𝐽 = 0. In Equation (45), non-zero of 𝑑𝑠 (𝑧 ) 𝑑𝑡⁄  in-
dicates the time-dependence of 𝑠 (𝑧), and the non-equilibrium states of the individual 
curve trajectories. Furthermore, 𝑑(𝑧 ∥ 𝜉 ) → 0 indicates 𝑝(𝑧 ) → 𝑝 (𝜉 ), which means the 
relaxation to a thermal equilibrium state, and 𝑑(𝑧 ∥ 𝜉 ) → 𝑐𝑜𝑛𝑠𝑡. (≠ 0) indicates the con-
vergence to other (non-equilibrium) stationary states. 

Taking the ensemble average with respect to 𝑧 , the KL divergence between 𝑧  and 𝜉  is derived as: 𝐷(𝑧 ∥ 𝜉) = 〈𝑑(𝑧 ∥ 𝜉 )〉 ≃ ln 1 − 2𝑡𝑧 + 𝑂(|𝑧 |) ,          (46)

From Equation (45), one can find that this quantity works as an indicator of the irreversi-
bility and stationarity of the whole ensemble of the trajectories of the curves. We call 𝐷(𝑧 ∥ 𝜉) (or 𝑑(𝑧 ∥ 𝜉 ) depending on the situations) expressed by Equation (46) the rela-
tive Loewner entropy, which is used to evaluate the non-equilibrium state of the 2D trajec-
tory on ℍ. 
The relative Loewner entropy has a connection with phase space deformation under the 
conformal map 𝑔 . If we take the time average of the non-additive part in Equation (43) 
after calculus, we obtain a form like the Lyapunov exponent [50] for the conformal map 𝑔 , 

𝜆 = lim→ 1𝑇 ln 𝑑𝑔 (𝑧 )𝑑𝑧 = 12 𝑑(𝑧 ∥ 𝜉 ),      (𝑇 ≫ 0).            (47)

Note that the overbar represents the time average. Here, the Lyapunov-type exponent 𝜆 
defined by Equation (47) measures, rather than the sensitivity to the initial condition, the 
time-averaged phase space expansion (𝜆 > 0) and contraction (𝜆 < 0) of the neighborhood 
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of the tip of the curve on ℍ under the map 𝑔 (𝑧 ). Equations (45) and (47) show that it 
closely related to the total entropy production rate of 𝑆 (𝑧). Note that an equilibrium state 
is characterized by 𝜆 = 0 from Equation (47). 

4. Numerical Tests 
To realize the curves 𝛾[ , ] of our model, numerical simulations were performed us-

ing the following methods. First, Langevin dynamics in Equation (4) was simulated by 
choosing the potential function as 𝑉(𝜉) = (1/2)𝑎𝜉 , such that 𝛼(𝜉 ) = −𝑎𝜉 , where 𝑎 is 
a positive constant. Consequently, the driving function can be described by a linear Lange-
vin equation. The discretization of the Langevin equation is performed using a method 
similar to that in ref. [51], that is: 𝜉 = 𝜉 − 𝑎𝜏𝜉 + √𝜅𝜏𝑊  , (𝑖 ≥ 1).     (48)

Here, 𝜏 is a sufficiently small unit time interval (𝑡 = 𝑖𝜏), and 𝑊  is the white Gaussian 
noise with mean 0 and variance 1.0. 𝜅 is the diffusion parameter, which is the same as 
that in Equation (4). The initial condition is set as 𝜉 = 𝜅 2𝑎⁄ , which is the condition, 
derived from fluctuation dissipation theorem [52], that the driving function is in an equi-
librium state from the initial state. After simulating Langevin dynamics using Equation 
(48), the shifted driving function 𝜉 − 𝜉  was calculated such that its initial condition is 
zero. We note that this operation makes the curves start at the origin in the theoretical 
scheme; however, this is not necessary for our numerical computation algorithm de-
scribed below, because we use the time differences of 𝜉  only. For the numerical realiza-
tions of the curves 𝛾[ , ], we employed the zipper algorithm using the map derived from 
the vertical slit map [53,54], which is described as follows: 𝛾[ , ] = 𝑧 (= 0), 𝑧 = 𝑓 (0), 𝑧 = 𝑓 ∘ 𝑓 (0), … , 𝑧 = 𝑓 ∘ ⋯ ∘ 𝑓 ∘ 𝑓 (0) ,      (49)

where: 𝑓 (𝑧) = ∆𝜉 + √𝑧 − 4𝜏,        ∆𝜉 ≡ 𝜉 − 𝜉 .            (50)

Figure 1 shows the examples of the curves 𝛾[ , ] calculated using the above algorithm 
(𝑛 = 1.0 × 10  and 𝜏 = 1.0 × 10 ). The drift term was chosen as 𝑎 = 1.5 (Figure 1a 𝜅 =2.0, Figure 1b 𝜅 = 4.0, Figure 1c 𝜅 = 6.0, and Figure 1d 𝜅 = 8.0). It was observed that the 
phase of the curves varies depending on 𝜅 in a similar manner to that in the usual SLE 
[31] although the rigorous mathematical analysis is required to discuss this problem for-
mally. 

First, the numerical experiments using the relative Loewner entropy are aimed to-
wards verifying the non-stationary properties of the individual trajectories of the tip 𝑧  
on ℍ calculated by the above procedures. Particularly, we estimate 𝜅- and 𝑎- depend-
ences to their dynamical regimes. Figure 2a–c shows the temporal behaviors of 𝑑(𝑧 ∥ 𝜉 ), 

calculated by ln 1 −  , for 𝑎 = 0.5, 1.0, and 1.5, respectively. Each figure includes the 
plots for 𝜅 = 2.0, 4.0, 6.0, and 8.0. For 𝑎 = 0.5, 𝑑(𝑧 ∥ 𝜉 ) fluctuated violently, particu-
larly for large 𝜅, even after a long time passed (Figure 2a). For 𝑎 = 1.0, there were less 
violent fluctuations in 𝑑(𝑧 ∥ 𝜉 ) than those for 𝑎 = 0.5, and they seemed to loosely con-
verge to positive values except for 𝜅 = 8.0 (Figure 2b). For 𝑎 = 1.5, the convergence of 𝑑(𝑧 ∥ 𝜉 ) was more valid than that for 𝑎 = 1.0, indicating the non-equilibrium stationary 
state of the trajectory of 𝑧  (Figure 2c). These results indicate the tendency that smaller 𝑎 
and larger 𝜅 result in the non-stationary states of the trajectories. 

Subsequently, we estimated the non-equilibrium (irreversible) characteristic of the 
ensemble of the trajectories by calculating 𝐷(𝑧 ∥ 𝜉) and 𝜆. Figure 3a shows the 𝜅-de-
pendence of 𝐷(𝑧 ∥ 𝜉) at 𝑡 = 10.0 for 𝑎 = 0.5, 1.0, and 1.5. The ensemble average was 
taken over 50 realizations of 𝑑(𝑧 ∥ 𝜉 ). For 𝑎 = 0.5, the increase of 𝜅 results in the de-
crease in 𝐷(𝑧 ∥ 𝜉), which indicates the loss of irreversibility. Contrarily, for 𝑎 = 1.0 and 𝑎 = 1.5, 𝐷(𝑧 ∥ 𝜉) takes a relatively constant value independent of 𝜅. This result suggests 
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that the larger drift term in the driving function stabilizes 𝐷(𝑧 ∥ 𝜉) regardless of the 
strength of the diffusion parameter 𝜅. Figure 3b shows the 𝜅-dependence of 𝜆 for 𝑎 =0.5, 1.0, and 1.5. The time average in Equation (47) was taken over the range 𝑡 = 5.0-10.0, 

where the approximation of 𝑑(𝑧 ∥ 𝜉 ) using ln 1 −  is most valid. It was found that 
the behavior of the average values of 𝜆 has a similarity to that of 𝐷(𝑧 ∥ 𝜉). The significant 𝜅-dependence of 𝜆 was observed only for 𝑎 = 0.5, and 𝜆 tends to be a relatively con-
stant value for 𝑎 = 1.0 and 1.5. Consequently, we found that the system with smaller 𝑎 
and larger 𝜅 tends to approach a possible equilibrium state (i.e., the driving function) at 
an ensemble level, although the trajectory-level stationarity becomes ambiguous. This re-
sult is related to the fractal dimension and phase of the curve. Furthermore, the similarity 
between the behavior of 2𝜆 and that of 𝐷(𝑧 ∥ 𝜉) implies the ergodicity of the curve tra-
jectories, i.e., the existence of their (non-equilibrium) stationary distribution. 

 
Figure 1. Typical examples of numerically realized curves 𝛾[ , ] of a generalized SLE on upper half-plane ℍ. Simulations 
were performed with 𝑛 = 1.0 × 10  and 𝜏 = 1.0 × 10 . The drift term was chosen as 𝑎 = 1.5. (a) 𝜅 = 2.0, (b) 𝜅 = 4.0, 
(c) 𝜅 = 6.0, and (d) 𝜅 = 8.0. 
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Figure 2. Temporal behaviors of relative Loewner entropy 𝑑(𝑧 ∥ 𝜉 ) calculated as ln 1 −  . (a) 𝑎 = 0.5, (b) 𝑎 = 1.0, and (c) 𝑎 = 1.5. Each figure includes plots for 𝜅 = 2.0, 4.0, 6.0, and 8.0. Note 
that we omitted the term 𝑂(|𝑧 |) in Equation (44), assuming the long-time behavior of 𝑑(𝑧 ∥ 𝜉 ). 
The numerically estimated (maximum) absolute errors (A. E.) of this approximation exponentially 
decrease to A. E. ≃ 0.2 in the range 𝑡 ≃ 1.5-2.0, and converge to A. E. ≃ 0.08 in 𝑡 ≃ 5.0. After these 

time regions, the relation ln 1 − − A. E. < 𝑑(𝑧 ∥ 𝜉 ) < ln 1 − + A. E. is guaranteed to be 
independent of 𝑎 and 𝜅. 

 
Figure 3. Parameter dependence of relative Loewner entropy 𝐷(𝑧 ∥ 𝜉) and the Lyapunov-type exponent 𝜆. (a) 𝜅-depend-
ence of 𝐷(𝑧 ∥ 𝜉) at 𝑡 = 10.0 for 𝑎 = 0.5, 1.0, and 1.5. The ensemble average was taken over 50 realizations of 𝑑(𝑧 ∥ 𝜉 ) 
and error bars show the standard error (S. E.). (b) 𝜅-dependence of 𝜆 for 𝑎 = 0.5, 1.0, and 1.5. The time average in Equa-
tion (47) was taken over the range 𝑡 = 5.0-10.0, where the approximation of 𝑑(𝑧 ∥ 𝜉 ) is most valid. The markers repre-
sent the mean value of 𝜆 calculated from 50 realizations and error bars show the S. E. 
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5. Discussions 
We formulated non-equilibrium statistical mechanics of a generalized SLE using an 

information-thermodynamical approach. The SLE framework provides a unique infor-
mation-theoretic scheme, in which irreversible non-equilibrium systems (i.e., the curves 
in the physical plane) are encoded into reversible equilibrium systems (i.e., the driving 
functions in the mathematical plane). We showed that this encoding operation is available 
due to the one-to-one correspondence between the curves and driving functions, and the 
phase space deformation of the conformal map 𝑔 . The advantages of encoding a 2D non-
equilibrium trajectory into reversible Langevin dynamics are summarized as follows. 
1. The Jarzynski equality and the second law of thermodynamics were generalized in 

terms of information theory. Our result 0 ≤ 𝑠 − ln 𝑅  in Eq. (41) is an extension 
of Seifert’s expression 0 ≤ ⟨∆𝑠 ⟩ (see, refs. 10 and 19). Furthermore, the term ln 𝑅  
can also be interpreted as the feedback information term, denoted as 𝐼 in ref. 23, in 
Sagawa’s information thermodynamics. Hence, incorporating the relaxation process 
of an equilibrium state into the theory of the non-equilibrium dynamics enables us 
to extend the existing thermodynamical laws in an information-theoretic sense. This 
means that for an arbitrary 2D trajectory on ℍ in our model, the validity of the sec-
ond law in the usual sense 0 ≤ 𝑠  is supported by the complete time reversibility 
of the corresponding driving function, and otherwise (i.e., if the driving function in-
cludes several irreversible characters), we must reuptake the generalized second law 0 ≤ 𝑠 − ln 𝑅 .  

2. The entropy describing the non-equilibrium states of the individual trajectories is de-
composed into additive and non-additive parts. This provides us with a novel non-
equilibrium entropic measure, which we refer to as the relative Loewner entropy. In 
the sense that the non-equilibrium ensemble is decomposed into an equilibrium en-
semble and a certain function, our result in Eq. (43) is analogous to the result of Pen-
rose et al. [55].  

3. If the driving function is in an equilibrium state, the relative Loewner entropy is used 
to determine the non-equilibrium properties (i.e., non-stationarity and changing rate 
of Gibbs entropy) of the 2D trajectories in the physical plane. This quantity indicates 
the phase space deformation under the conformal map 𝑔 , and is closely related to 
the Lyapunov-type exponent.  

These advantages suggest that non-equilibrium states are well understood when we as-
sume the associated processes in an equilibrium in the theoretical framework. The equi-
librium driving function works as an idealized thermal state, which is one of the station-
ary states that the curves potentially reach in the long-time limit. If the entropy of the 
curve trajectory completely coincides with that of driving function, in which the KL di-
vergences become zero, the thermal equilibrium of the physical and mathematical planes 
can be equally characterized. 

Then, we encounter the problem of providing the information-theoretic and physical 
meanings of the driving function. In the information-theoretic sense, the driving function 
is interpreted as an information source manipulating the 2D curve trajectories, which has 
full information about their equilibrium states. In this view, from the results of this study, 
we can conclude that: 
1. If the entropy (information) of the driving function is completely communicated to 

the physical plane, the 2D trajectories are in the equilibrium states.  
2. The non-equilibrium property of the trajectories is induced by the incomplete com-

munication of the entropy (information) between the physical and mathematical 
planes.  

3. The driving function can work as Maxwell’s Demon in the sense that it can control 
the feedback information ln 𝑅 . 

These statements will make better sense when the integration of the information theory 
and thermodynamics is successfully undertaken. In addition, in a thermodynamical sense, 
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the entropy of the driving function is interpreted as a conserved variable of the thermo-
dynamic potential for the 2D non-equilibrium trajectories. Although non-equilibrium sys-
tems typically lack the conserved quantities, such as the Hamiltonian in the equilibrium 
physics, our result indicates that the entropy (or associated energy function) of the driving 
function is conserved, even if the corresponding curve retains the non-equilibrium state. 
A similar type of perspective was suggested in the mathematical context [56,57], where 
the invariance of the Dirichlet energy of the Loewner driving function (referred to as the 
Loewner energy) was demonstrated. For these reasons, we suggest that entropy of the 
Loewner driving function may be referred to as the Loewner entropy. 

Most importantly, the two thermodynamically different systems in our model are 
linked via a family of conformal maps 𝑔 , determined by the Loewner equation, and 
mathematically convertible. Hence, in a generalized SLE framework, the microscopically 
irreversible process can arise from a reversible (but time-dependent) transformation to the 
microscopically reversible process. This means that the Boltzmann paradox [58] in our 
model is caused by the small deviation between the two entropies (as shown in Equation 
(43)) induced by conformal transformations. In this regard, the relative Loewner entropy 
explicitly represents an exact difference between non-equilibrium and equilibrium states; 
therefore, it can be considered to be a candidate of a non-equilibrium entropy. 

The growth processes of the SLE-type curve have been investigated as a problem of 
Laplacian random walk (LRW) [34,59], which is applied to the dielectric breakdown and 
polymer growth model, etc. [60,61]. By comparing the SLE processes with these physical 
models, it can be also found that the capacity 𝑡 in the conformal map 𝑔 (𝑧) is analogous 
to the usual physical time in the present model [54]. However, the time 𝑡 in the Loewner 
evolution, referred to as the Loewner time, often has specific randomized time increments, 
which are obtained when we calculate the driving functions of arbitrary 2D trajectories 
[54]. In ref. [25], a similar type of random time was introduced to demonstrate the generic 
properties of entropy production as the entropic time, which enables mapping the entropy 
production in the non-equilibrium steady states into drift-diffusion processes. This result 
has a connection with the present results in the sense that the time-dependent transfor-
mation is implemented for the purpose of investigating non-equilibrium systems. 

To apply our formulations, including the suggested irreversibility measure, to other 
various 2D self-organization phenomena (e.g., Ising systems, percolation models, turbu-
lence, or biological/chemical morphologies), we must extend the descriptive ability of the 
SLE framework. In the present model, we chose the driving function as Langevin dynam-
ics with a (linear or nonlinear) drift term. This is an example of a generalization of the SLE; 
however, numerous other possibilities remain for the extension of the SLE framework 
(e.g., combining with chaotic dynamical systems [32,37,62], q-deformation [63]). There-
fore, future research following this study will clarify how our theoretical concepts aid the 
understanding of real self-organization phenomena, by considering appropriate ap-
proaches to the generalization of the SLE. We note that our formulations are still limited 
to the estimation of the entropic behavior of the non-equilibrium systems, and revealing 
other physical properties from the 2D trajectories requires further individual investigation 
of real systems, including experimental studies. 

6. Conclusions 
We formulated the generalized SLE driven by Langevin dynamics in the equilibrium 

state from the context of non-equilibrium statistical mechanics. The entropy production 
of the curve trajectories in the physical plane assumed a form of irreversible non-equilib-
rium systems, whereas the driving function was prepared in the reversible equilibrium 
system. We derived alternative types of the Jarzynski equality and the second law of ther-
modynamics by information-theoretic quantities. Furthermore, we showed, from the 
phase deformation ratio of the conformal maps, that the entropy of the curve can be de-
composed into additive and non-additive parts. The non-additive part was numerically 
examined to estimate non-equilibrium properties of the system, and we refer to it as the 
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relative Loewner entropy. These results suggest a novel perspective for non-equilibrium 
statistical physics to answer the question concerning the definition of a non-equilibrium 
entropy and the mechanisms of irreversibility. 
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