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Abstract: In this study, we theoretically investigated a generalized stochastic Loewner evolution (SLE)
driven by reversible Langevin dynamics in the context of non-equilibrium statistical mechanics. Using
the ability of Loewner evolution, which enables encoding of non-equilibrium systems into equilibrium
systems, we formulated the encoding mechanism of the SLE by Gibbs entropy-based information-
theoretic approaches to discuss its advantages as a means to better describe non-equilibrium systems.
After deriving entropy production and flux for the 2D trajectories of the generalized SLE curves,
we reformulated the system’s entropic properties in terms of the Kullback–Leibler (KL) divergence.
We demonstrate that this operation leads to alternative expressions of the Jarzynski equality and
the second law of thermodynamics, which are consistent with the previously suggested theory of
information thermodynamics. The irreversibility of the 2D trajectories is similarly discussed by
decomposing the entropy into additive and non-additive parts. We numerically verified the non-
equilibrium property of our model by simulating the long-time behavior of the entropic measure
suggested by our formulation, referred to as the relative Loewner entropy.

Keywords: stochastic Loewner evolution (SLE); entropy production; non-equilibrium statistical
mechanics; Langevin equation; Fokker-Planck equation; time irreversibility; information theory

1. Introduction

Although the irreversibility of non-equilibrium systems has been discussed in nu-
merous fields for decades, the difficulties accompanying their theoretical formulation
essentially involve the definition of the concept of entropy [1–3]. Since the pioneering study
by Prigogine et al. [4], entropy production describing the dissipative open systems far
from equilibrium has been studied by employing Gibbs entropy-based approaches [5–14].
These formulations assume that time irreversibility in non-equilibrium states is charac-
terized by a non-zero-entropy production rate of the system, and time reversibility (or
time symmetry) holds only when the system is in an equilibrium state with a zero-entropy
production rate [7–9]. The validity of the assumptions has been proven by various types of
the fluctuation theorem (FT) [15–17] combined with the stochastic dynamics described by
Langevin and Fokker–Planck equations [8,9,18–20], etc. One of the advantages of the Gibbs
entropy-based approach is that it is compatible with the Shannonian information entropy.
Whereas the information entropy was originally a measure of uncertainty of the events
consistently used for describing equilibrium systems, the concept of information is often
adopted into the theory of thermodynamics as a quantity we obtain by the measurement of
the system [2,21,22]. Due to its utility, the Gibbs–Shannon entropy-based approaches (i.e.,
information-theoretic perspectives) for non-equilibrium systems have also been developed
based on several different methodologies [23–27]. In particular, the recent advance of this
perspective has enabled investigation of the generic properties of the entropy produc-
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tion rate [25,26], and the related results were found to be applicable to specific physical
problems (e.g., heat conduction [27]).

However, even with the above-mentioned approaches, the characterization of non-
equilibrium systems using quantities from equilibrium physics still includes several con-
troversial issues (e.g., the measure describing non-equilibrium stationary states). Notably,
as an attempt to overcome this difficulty, an alternative form of the Gibbs–Shannon en-
tropy was proposed in a different context, based on the non-additivity of the ensembles
of non-equilibrium states [28,29]. These problems concerning non-equilibrium entropy can
be reduced to the estrangement between non-equilibrium physics and well-established
equilibrium physics.

A previous study by the authors indicated that the stochastic Loewner evolution
(SLE) proposed by Schramm [30,31] provides a bridge between the equilibrium and non-
equilibrium (i.e., reversible and irreversible) statistical mechanics systems [32]. The SLE
theory typically describes the conformally invariant geometries (curves) in various two-
dimensional (2D) statistical mechanics models, whose time evolutions are determined
by the Loewner equation [33] driven by Brownian motion (Wiener process). In ref. [32],
the authors reported that the framework of the SLE can be regarded as a system that
encodes the (microscopically) irreversible trajectories of the curves into the reversible
driving functions. This shows, in other words, that the 2D non-equilibrium trajectories
described by the SLE are the images of the equilibrium systems under the conformal
transformations uniquely determined by the Loewner equation.

In this study, we developed this perspective by using a generalized SLE framework,
employing a driving function governed by the Langevin equation (described in Section 2).
We present an information-theoretic perspective for the thermodynamics of the SLE to
show the advantages of encoding non-equilibrium systems into equilibrium systems.
Motivated by the above, our aim was to formulate the Gibbs–Shannon entropy-based
relations between curves in the physical plane and driving functions in the mathematical
plane in a generalized SLE framework (presented in Section 3). The main tools of the
first step of our analysis are the Langevin and Fokker–Planck equations describing the
trajectories of the tip of the curve, which are available only when the corresponding driving
function satisfies the time symmetric property [31,34–37]. After deriving several basic non-
equilibrium entropic relations (e.g., entropy production and flux, Jarzynski equality [38]),
we deduce these relations in terms of the Kullback–Leibler (KL) divergence [39–42] to
introduce an extended second law of the thermodynamics. Subsequently, by considering
the phase space deformation induced by the conformal maps determined by the Loewner
equation, we suggest a novel irreversibility measure, which we call the relative Loewner
entropy. We also remark that the relative Loewner entropy, defined as a probabilistic
divergence between the trajectory of the curve and the driving function, is closely related
to the Lyapunov-type exponent of the conformal map in the Loewner equation. Using
these quantities, numerical simulations were performed to verify non-equilibrium states of
the generalized SLE curves (in Section 4). In the discussion (Section 5), we reinterpret the
statistical physical meanings of our results, most of which rely on information theory, in
relation to the problem of the determination of a non-equilibrium entropy.

2. Model
2.1. Chordal Loewner Evolution

We consider the chordal Loewner evolution described as follows. Let γ[0, t] be a simple
curve parametrized by time t on the upper half complex plane H, starting from the origin.
The following Loewner equation yields a family of time-dependent conformal maps gt
from Hr γ[0, t] to H:

∂gt(z)
∂t

=
2

gt(z)− (ξt − ξ0)
, g0(z) = z, z ∈ H, (1)
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where ξt is a one-dimensional real-valued time function called the driving function [30,31,33]
defined in the following subsection. ξ0 is the initial condition of the driving function.
When ξt corresponds to the Brownian motion (i.e., Wiener process), Equation (1) describes
the SLE process in a usual sense. The conformal map satisfying the Loewner equation in
Equation (1) is given as follows [33]:

gt(z) = z +
2t
z
+ O

(∣∣∣z−2
∣∣∣), as z→ ∞ . (2)

The relation between the tip of the curve γt and the driving function ξt is expressed as
follows [33]:

lim
z→γt

gt(z) = ξt − ξ0. (3)

Therefore, from Equations (1) and (3), it is evident that the family of gt encodes the
history of the time evolution of the tip γ[0, t] into the driving function ξ[0, t] Notably,
this transformation has a one-to-one correspondence between the curves and driving
functions, and is reversible in the sense of the uniqueness of the inverse transformation,
i.e., lim

w→ξt−ξ0
gt
−1(w) = γt , (w ∈ H). However, in practice, the exact determination of

gt is difficult and specific algorithms are required. Indeed, this encoding mechanism is
a physically non-trivial and meaningful process, as we show later. In the following, we
refer to the upper half-plane where the driving function evolves on the real axis as the
mathematical plane, and that where the curve evolves as the physical plane.

2.2. Langevin Dynamics as a Driving Function

We consider that the driving function ξt of the Loewner evolution is governed by the
following Langevin equation [43]:

dξt

dt
= α(ξt) +

√
κ

dBt

dt
, (4)

where Bt is the standard Brownian motion and κ is a diffusion parameter. Note that κ is
a main factor to determine the fractal dimension of the curve in the physical plane. The
drift term α(ξt) is assumed to be a conservative force that has a potential function V(ξ, t)
satisfying:

α(ξ, t) = −∂V(ξ, t)
∂ξ

. (5)

This condition guarantees that ξt can be a time-reversible process [44]. The associated
Fokker–Planck equation is described as [7]:

∂p(ξ, t)
∂t

=

[
κ

2
∂2

∂ξ2 −
∂

∂ξ
α(ξ)

]
p(ξ, t). (6)

Here, p(ξ, t) = 〈δ(ξ − ξt)〉, where the brackets denote the ensemble average. For conve-
nience, we define the probability current as:

J(ξ, t) = −
[

κ

2
∂

∂ξ
− α(ξ)

]
p(ξ, t). (7)

Then, the Fokker–Planck equation in Equation (6) is expressed as:

∂p(ξ, t)
∂t

= − ∂

∂ξ
J(ξ, t). (8)

We assume the scenario where ξt is in the equilibrium state is characterized by:

p(ξ, t) = ps(ξt) =
1
Z

e
−2V(ξt)

κ . (9)
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Here, Z is a normalization constant, and ps(ξt) is a stationary probability distribution
that satisfies J(ξ, t) = 0 [7–9]. In addition, we assume that V(ξ, t) is symmetric in ξ such
that the driving function satisfies the relation that ξt and −ξt have the same probability
distribution.

3. General Formulation
3.1. Equilibrium Condition on Mathematical Plane

In the following formulations, we impose the equilibrium condition on the driving
function in the mathematical plane from the initial condition, which is characterized by the
zero-entropy production rate of ξt constructed above. Let us define the Gibbs entropy of ξt
as follows:

Sm = −
∫

p(ξ, t) ln p(ξ, t)dξ = 〈sm〉ξt , (10)

where sm = − ln p(ξ, t)[= − ln ps(ξt)] and 〈 · 〉ξt
denotes the ensemble average over all

realizations of the driving function. Here, the Boltzmann constant kB is regarded as
1. Sm > 0 and dSm/dt = 0 can be derived from Equations (9) and (10), indicating the
non-negative and time-independent properties of the equilibrium entropy.

Furthermore, we assume the following detailed balance condition for the driving
function [43]:

p(ξn|ξn−1)p(ξn−1|ξn−2) · · · p(ξ1|ξ0)ps(ξ0) = p(ξ0|ξ1)p(ξ1|ξ2) · · · p(ξn−1|ξn)ps(ξn). (11)

Here, p(A|B) is the transition probability from state B to A and n (≥ 1) is the integer index
satisfying t = nτ, where τ is a sufficiently small-time interval. Let us define:

P
[
ξpath(n)

]
= p(ξn|ξn−1)p(ξn−1|ξn−2) · · · p(ξ1|ξ0)ps(ξ0), (12)

and:
P̃
[
ξ̃path(n)

]
= p(ξ0|ξ1)p(ξ1|ξ2) · · · p(ξn−1|ξn)ps(ξn). (13)

Then, we define the ratio between these probabilities as Rm ≡ P
[
ξpath(n)

]
/P̃
[
ξ̃path(n)

]
, so

that:

ln Rm = ln
P
[
ξpath(n)

]
P̃
[
ξ̃path(n)

] = 0, (14)

which follows from Equation (11). From the formulation using the master equations [7–10,45],
ln Rm = 0 suggests that there is no entropy production inside the system for each trajectory
and the microscopic time reversibility is guaranteed for all time.

3.2. Entropy Production in Physical Plane

We investigate the entropy production of the trajectory of the curve in the physical
plane. We demonstrate the irreversible and dissipative character of the SLE curve, which
differs from that of the driving function. We mainly use the Langevin and Fokker–Planck
equations for SLE curve, which are available due to the detailed balanced condition. The
formulation using the backward Loewner evolution [31,34–37] shows that if the driving
function is time-symmetric (i.e., −ξt and ξ−t have the same probability distribution) and
has stationary increments, the probability distribution for the time evolution of the tip of
the curve zt is the same of that of (xt, yt), described by the following two-dimensional
Langevin equation:

dxt
dt = − 2xt

xt2+yt2 − α(ξt)−
√

κ dBt
dt

dyt
dt = 2yt

xt2+yt2 .
(15)

Here, we adopt the initial condition of x0 = 0 and y0 = ε, where ε is an infinitesimal positive
constant [35]. In the limit of xt → ±∞ and yt → ∞ , we obtain dxt/dt→ −α(ξt)−

√
κdBt/dt
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and dyt/dt→ 0. We note that this condition is an equilibrium state of the curve trajec-
tory characterized by the probability that is the same as that of the driving function. The
Fokker–Planck equation associated with Equation (15) is expressed as follows:

∂p(x, y, t)
∂t

=

{
κ

2
∂2

∂x2 +
∂

∂x

[
2x

x2 + y2 + α(ξ)

]
− ∂

∂y
2y

x2 + y2

}
p(x, y, t). (16)

Here, p(x, y, t) = 〈δ(x− xt)δ(y− yt)〉, where the ensemble average is calculated over all
realizations of the curves. For the latter formulations, we take:

χ(x, y, t) =
κ

2
∂

∂x
p(x, y, t) +

[
2x

x2 + y2 + α(ξ)

]
p(x, y, t) (17)

and:
ψ(x, y, t) =

2y
x2 + y2 p(x, y, t). (18)

Substituting Equations (17) and (18) into Equation (16), the Fokker–Planck equation for the
trajectory of curve is expressed as:

∂p(x, y, t)
∂t

=
∂

∂x
χ(x, y, t)− ∂

∂y
ψ(x, y, t). (19)

Subsequently, we define the time-dependent Gibbs entropy for the trajectory of the curve
as Sp(t), which is expressed as:

Sp(t) = −
x

p(x, y, t) ln p(x, y, t)dxdy = 〈sp〉xt ,yt , (20)

where sp = − ln p(x, y, t), and 〈 · 〉xt ,yt
denotes the ensemble average over all possible real-

izations of (xt, yt). We are interested in the changing rate of Sp(t), which was formulated
by Prigogine et al. as the following [4,7,8,32]:

dSp(t)
dt

=
dSp

i (t)
dt

− dSp
e (t)
dt

, (21)

where dSp
i (t)/dt is the entropy production rate inside the system, which is non-negative

because of the second law of thermodynamics. The second term on the right-hand side
of Equation (21), dSp

e (t)/dt, is the entropy flux rate from the system to the external envi-
ronment. If the system is stationary, dSp

i (t)/dt = dSp
e (t)/dt, whereas if the system is in

equilibrium, dSp
i (t)/dt = dSp

e (t)/dt = 0. In both scenarios, Sp(t) assumes a constant value,
otherwise Sp(t) changes depending on the time and the system is in non-equilibrium [7,8].
For subsequent discussions, we define the entropy production sp

i and entropy flux sp
e for the

individual trajectories of the tips of the curves as those satisfying dSp
i (t)/dt =

〈
dsp

i /dt
〉

xt ,yt

and dSp
e (t)/dt =

〈
dsp

e /dt
〉

xt ,yt
.

Hereafter, we apply the entropic formulation in Equation (21) to the SLE curve in our
model, using Equations (17)–(20), and performing partial integrations. The time derivative
of Sp(t) can be calculated as [32]:

dSp

dt
=

x 2
κ

[χ(x, y, t)]2

p(x, y, t)
dxdy−

x 2
κ

(
2x

x2 + y2 + α(ξ)

)
χ(x, y, t)dxdy−

x 2y
x2 + y2

∂

∂y
p(x, y, t)dxdy. (22)

Here, we dropped the boundary terms whose p(x, y, t) tends to zero when x → ±∞ or
y→ ±∞ . Because the first term of the right-hand side of Equation (22) is non-negative,
we can identify it with the entropy production rate, that is:

dSp
i (t)
dt

=
x 2

κ

[χ(x, y, t)]2

p(x, y, t)
dxdy ≥ 0. (23)
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The equality holds when χ(x, y, t) = 0, and this is a necessary condition for thermal
equilibrium. In this framework, the entropy production rate is described in terms of the
free energy F of the system as dSp

i (t)/dt = −dF/dt [13]. Therefore, by combination with
Equation (23), dF/dt ≤ 0 can be derived. This outcome is interpreted as the H-theorem
for the trajectory of the SLE curve, and it ensures that the system is thermodynamically
irreversible in time, except for the equilibrium condition [46].

In addition, the second and third terms of the right-hand side of Equation (22) are
interpreted as the contributions for the entropy flux rate. Performing the partial integration
and using the definition of the ensemble average, the entropy flux rate is expressed as [32]:

dSp
e (t)
dt

=

〈
2
κ

(
2xt

xt2 + yt2 + α(ξt)

)2
− ∂α(ξt)

∂x

〉
xt ,yt

. (24)

Then, the entropy flux (from t = 0) for individual trajectories, sp
e , is calculated by the

following integral:

sp
e =

t∫
0

[
2
κ

(
2xt

xt2 + yt2 + α(ξt)

)2
− ∂α(ξt)

∂x

]
dt, (25)

which is the total amount of entropy dissipated to the external environment for each trajec-
tory of the curves. Note that (xt, yt) and (Re(zt), Im(zt)) have the same joint probability
distribution. The increase in sp

e indicates that the generalized SLE curve remains in a
non-equilibrium state, contrary to the fact that the corresponding driving function is in an
equilibrium state from the initial conditions.

3.3. Jarzynski Equality for Generalized SLE Curve

We derive the equality governing the time-irreversible trajectories of the SLE curve, which
was originally derived by Jarzynski [38] and applied to stochastic trajectories by Seifert [10].
Let us denote the discretized points on curve γ[0, t] as γ[0, n] = {z0(= 0), z1, z2, . . . , zn}. Then, in
the same manner as Equations (12) and (13), we define:

P
[
zpath(n)

]
= p(zn|zn−1)p(zn−1|zn−2) · · · p(z1|z0)p(z0) (26)

and:
P̃
[
z̃path(n)

]
= p(z0|z1)p(z1|z2) · · · p(zn−1|zn)p(zn). (27)

Subsequently, we define the ratio of these probabilities as Rp ≡ P
[
zpath(n)

]
/P̃
[
z̃path(n)

]
.

From the formulations using master equations, ln Rp is expressed in terms of the entropy
flux as follows [8,10]:

ln Rp = ln
P
[
zpath(n)

]
P̃
[
z̃path(n)

] = sp
e + ln

p(z0)

p(zn)
. (28)

Here, the individual entropy flux sp
e is given by Equation (25). From Equation (28), Jarzynski

equality can be derived as [8,10]:

〈e− ln Rp〉zpath = ∑
zpath

P
[
zpath(n)

]
e− ln Rp

= ∑
z̃path

P̃
[
z̃path(n)

]
= 1.

(29)
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Here, 〈 · 〉zpath
denotes the ensemble average over the forward path of the curve. Using

Equations (25) and (28), Equation (29) is expressed as:〈
exp

−
t∫

0

[
2
κ

(
2xt

xt2 + yt2 + α(ξt)

)2
− ∂α(ξt)

∂x

]
dt + ln

p(zn)

p(z0)


〉

zpath

= 1. (30)

This is the Jarzynski equality for the generalized SLE curve, which is applicable
regardless of whether the curve trajectory is in an equilibrium or non-equilibrium state.

3.4. KL Divergence Approach

Although we showed the underlying entropic law in the trajectories of generalized
SLE curves using previously studied formulations, the non-equilibrium characteristic of
the 2D trajectory in the physical plane is generated by the transformation of the reversible
driving function. To clarify this encoding property of the SLE in terms of information
theory, we take an approach using the KL divergence. In the following formulation, we
eliminate the restrictions on initial conditions, assuming that the driving function is in a
relaxation process to the equilibrium state, which requires a certain length of time.

Subtracting Equation (28) from Equation (14) yields:

ln(Rm/Rp) = ln
P[ξpath(n)]
P̃[ξ̃path(n)]

− ln
P[zpath(n)]
P̃[z̃path(n)]

= ln
P̃[z̃path(n)]
P̃[ξ̃path(n)]

− ln
P[zpath(n)]
P[ξpath(n)]

.
(31)

We denote KL divergences between the forward paths of the driving function and the curve
as the following:

D
(

zpath ‖ ξpath

)
= ∑

zpath(n)
P
[
zpath(n)

]
ln

P
[
zpath(n)

]
P
[
ξpath(n)

] . (32)

Similarly, for the backward paths we denote:

D̃
(

z̃path ‖ ξ̃path

)
= ∑

z̃path(n)
P̃
[
z̃path(n)

]
ln

P̃
[
z̃path(n)

]
P̃
[
ξ̃path(n)

] . (33)

Then, we define d
(

zpath ‖ ξpath

)
≡ ln

P[zpath(n)]
P[ξpath(n)]

and d̃
(

z̃path ‖ ξ̃path

)
≡ ln

P̃[z̃path(n)]
P̃[ξ̃path(n)]

, so

that:

D
(

zpath ‖ ξpath

)
=

〈
d
(

zpath ‖ ξpath

)〉
zpath

,

and:

D̃
(

z̃path ‖ ξ̃path

)
=

〈
d̃
(

z̃path ‖ ξ̃path

)〉
z̃path

. (34)

Using these expressions, Equation (31) is expressed as:

Rm/Rp = exp
[
d̃
(

z̃path ‖ ξ̃path

)
− d
(

zpath ‖ ξpath

)]
. (35)



Entropy 2021, 23, 1098 8 of 16

For the left-hand side of Equation (35), we take the dual ensemble average with respect to
zpath and ξ̃path, hence:〈

Rm
Rp

〉
zpath, ξ̃path

= ∑
ξ̃path

∑
zpath

P
[
zpath(n)

]
P̃
[
ξ̃path(n)

]
eln (Rm/Rp)

= ∑
ξpath

∑
z̃path

P̃
[
z̃path(n)

]
P
[
ξpath(n)

]
= 1.

(36)

Because we obtain the relation
〈

Rm/Rp
〉

zpath, ξ̃path
= 1, using Equation (36), Equation (35)

yields: 〈
exp

[
d̃
(

z̃path ‖ ξ̃path

)
− d
(

zpath ‖ ξpath

)]〉
zpath, ξ̃path

= 1. (37)

This is an alternative of the Jarzynski equality, which is applicable for the generalized SLE
that we defined previously. From the Jensen inequality, the following relation is derived:〈

exp
[
d̃
(

z̃path ‖ ξ̃path

)
− d
(

zpath ‖ ξpath

)]〉
zpath, ξ̃path

≥ exp
[〈

d̃
(

z̃path ‖ ξ̃path

)〉
zpath, ξ̃path

− 〈d
(

zpath ‖ ξpath

)〉
zpath , ξ̃path

]
. (38)

Substituting Equation (37) into Inequation (38), we obtain the following inequality:〈
D
(

zpath ‖ ξpath

)〉
ξ̃path
≥
〈

d
(

zpath ‖ ξpath

)
− ln Rp + ln Rm

〉
zpath, ξ̃path

(39)

Using Equation (28), Inequation (39) is transformed as follows:

0 ≤
〈

sp
e + ln

p(z0)

p(zn)
− ln Rm

〉
zpath, ξ̃path

. (40)

Using the relation sp
i = sp

e + ln p(z0)
p(zn)

, the following inequality is derived:

0 ≤
〈

sp
i − ln Rm

〉
zpath, ξ̃path

(41)

This relation can be interpreted as an extension of the second law of thermodynamics.
In Inequation (41), the equality holds true if the trajectory is in an equilibrium state
characterized by sp

i = ln Rm = 0. Note that sp
e in Equation (40) is expressed by Equation (25)

only when the time reversibility of the driving function is guaranteed. Considering the
above derivation process, the generalized Jarzynski equality in Equation (37) and second
law-type relation in Inequations (40) and (41) are generic relations in the sense that they hold
true for arbitrary 2D trajectories regardless of the entropic characteristics of corresponding
driving functions.

3.5. Relative Loewner Entropy

We showed that the non-equilibrium states of the trajectory of the SLE curves are
formulated by the Shannon entropy-based KL divergence. Furthermore, we demonstrated
the encoding property of the Loewner evolution by characterizing the entropy production
and flux in terms of the path probabilities of the curves and the driving functions. In this
subsection, we elucidate the intrinsic mechanism that affords this encoding by examin-
ing the phase space deformation induced by the conformal map gt, which is shown to
be a fundamental factor of the irreversibility. We further incorporate a viewpoint of the
non-additivity of the entropy, which is a basic concept of non-extensive statistical mechan-
ics [28,29]. In the following, we assume that the driving function is in an equilibrium
state.
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The relation between the probability for z and w under the conformal map z = g−1
t (w)

is expressed as [47,48]:

p(z) = p(w)

∣∣∣∣dgt(z)
dz

∣∣∣∣2. (42)

Using the relation ξt− ξ0 = lim
z→γt

gt(z), where γt = zt and p(ξt) = p(ξt − ξ0), in Equation (3)

and taking the logarithms, the entropy sp(zt) for the tip on the curve is described as:

sp(zt) = sm(ξt)− ln
∣∣∣∣dgt(zt)

dz

∣∣∣∣2, (43)

where from Equation (2) for large zt:∣∣∣∣dgt(zt)

dz

∣∣∣∣ = ∣∣∣∣1− 2t
zt2 + O

(∣∣∣zt
−3
∣∣∣)∣∣∣∣. (44)

Here, the entropy sp(zt) is decomposed into an equilibrium entropy sm(ξt) and the rest of

the part − ln
∣∣∣ dgt(zt)

dz

∣∣∣2. Because sm(ξt) is associated with the time-independent canonical
distribution ps(ξt) described by Equation (9), it can be referred to as the additive part.

Contrarily, ln
∣∣∣ dgt(zt)

dz

∣∣∣2 is time dependent as we numerically show later, and referred to
as the non-additive part in the sense of the non-extensive statistical mechanics [28,29,49].
Notably, the behavior of the non-additive part characterizes non-equilibrium (irreversible)

properties of the generalized SLE curve. Let us define d(zt ‖ ξt) ≡ ln p(zt)
p(ξt)

= ln
∣∣∣ dgt(zt)

dz

∣∣∣2.
From Equation (43), the time derivative of sp(zt) is expressed as:

dsp(zt)

dt
= − d

dt
d(zt ‖ ξt). (45)

Here, we used ∂ps(ξ, t)/∂t = 0 from J = 0. In Equation (45), non-zero of dsp(zt)/dt
indicates the time-dependence of sp(z), and the non-equilibrium states of the individual
curve trajectories. Furthermore, d(zt ‖ ξt)→ 0 indicates p(zt)→ ps(ξt) , which means
the relaxation to a thermal equilibrium state, and d(zt ‖ ξt)→ const. ( 6= 0) indicates the
convergence to other (non-equilibrium) stationary states.

Taking the ensemble average with respect to zt, the KL divergence between zt and ξt
is derived as:

D(z ‖ ξ) =
〈

d (zt ‖ ξt)〉zt
'
〈

ln
∣∣∣∣1− 2t

zt2 + O
(∣∣∣zt

−3
∣∣∣)∣∣∣∣2

〉
zt , (46)

From Equation (45), one can find that this quantity works as an indicator of the irreversibil-
ity and stationarity of the whole ensemble of the trajectories of the curves. We call D(z ‖ ξ)
(or d(zt ‖ ξt) depending on the situations) expressed by Equation (46) the relative Loewner
entropy, which is used to evaluate the non-equilibrium state of the 2D trajectory on H.

The relative Loewner entropy has a connection with phase space deformation under
the conformal map gt. If we take the time average of the non-additive part in Equation (43)
after calculus, we obtain a form like the Lyapunov exponent [50] for the conformal map gt,

λ = lim
T→∞

1
T

T

∑
t=0

ln
∣∣∣∣dgt(zt)

dz

∣∣∣∣ = 1
2

d(zt ‖ ξt), (T � 0). (47)

Note that the overbar represents the time average. Here, the Lyapunov-type exponent λ
defined by Equation (47) measures, rather than the sensitivity to the initial condition, the
time-averaged phase space expansion (λ > 0) and contraction (λ < 0) of the neighborhood
of the tip of the curve on H under the map gt(zt). Equations (45) and (47) show that it
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closely related to the total entropy production rate of Sp(z). Note that an equilibrium state
is characterized by λ = 0 from Equation (47).

4. Numerical Tests

To realize the curves γ[0, t] of our model, numerical simulations were performed
using the following methods. First, Langevin dynamics in Equation (4) was simulated by
choosing the potential function as V(ξ) = (1/2)aξ2, such that α(ξt) = −aξt, where a is a
positive constant. Consequently, the driving function can be described by a linear Langevin
equation. The discretization of the Langevin equation is performed using a method similar
to that in ref. [51], that is:

ξi = ξi−1 − aτξi−1 +
√

κτWi−1, (i ≥ 1). (48)

Here, τ is a sufficiently small unit time interval (t = iτ), and Wi is the white Gaussian noise
with mean 0 and variance 1.0. κ is the diffusion parameter, which is the same as that in
Equation (4). The initial condition is set as ξ0 =

√
κ/2a, which is the condition, derived

from fluctuation dissipation theorem [52], that the driving function is in an equilibrium
state from the initial state. After simulating Langevin dynamics using Equation (48), the
shifted driving function ξi− ξ0 was calculated such that its initial condition is zero. We note
that this operation makes the curves start at the origin in the theoretical scheme; however,
this is not necessary for our numerical computation algorithm described below, because
we use the time differences of ξi only. For the numerical realizations of the curves γ[0, n],
we employed the zipper algorithm using the map derived from the vertical slit map [53,54],
which is described as follows:

γ[0,n] = {z0(= 0), z1 = f1(0), z2 = f1 ◦ f2(0), . . . , zn = f1 ◦ · · · ◦ fn−1 ◦ fn(0)}, (49)

where:
fi(z) = ∆ξi +

√
z2 − 4τ, ∆ξi ≡ ξi − ξi−1. (50)

Figure 1 shows the examples of the curves γ[0, n] calculated using the above algorithm
(n = 1.0× 105 and τ = 1.0× 10−4). The drift term was chosen as a = 1.5 (Figure 1a κ = 2.0,
Figure 1b κ = 4.0, Figure 1c κ = 6.0, and Figure 1d κ = 8.0). It was observed that the
phase of the curves varies depending on κ in a similar manner to that in the usual SLE [31]
although the rigorous mathematical analysis is required to discuss this problem formally.

Figure 1. Typical examples of numerically realized curves γ[0, n] of a generalized SLE on upper half-plane H. Simulations
were performed with n = 1.0× 105 and τ = 1.0× 10−4. The drift term was chosen as a = 1.5. (a) κ = 2.0, (b) κ = 4.0,
(c) κ = 6.0, and (d) κ = 8.0.



Entropy 2021, 23, 1098 11 of 16

First, the numerical experiments using the relative Loewner entropy are aimed to-
wards verifying the non-stationary properties of the individual trajectories of the tip zt on
H calculated by the above procedures. Particularly, we estimate κ- and a-dependences to
their dynamical regimes. Figure 2a–c shows the temporal behaviors of d(zt ‖ ξt), calculated

by ln
∣∣∣1− 2t

zt2

∣∣∣2, for a = 0.5, 1.0 and 1.5, respectively. Each figure includes the plots for
κ = 2.0, 4.0, 6.0 and 8.0. For a = 0.5, d(zt ‖ ξt) fluctuated violently, particularly for large κ,
even after a long time passed (Figure 2a). For a = 1.0, there were less violent fluctuations
in d(zt ‖ ξt) than those for a = 0.5, and they seemed to loosely converge to positive values
except for κ = 8.0 (Figure 2b). For a = 1.5, the convergence of d(zt ‖ ξt) was more valid
than that for a = 1.0, indicating the non-equilibrium stationary state of the trajectory of
zt (Figure 2c). These results indicate the tendency that smaller a and larger κ result in the
non-stationary states of the trajectories.

Figure 2. Temporal behaviors of relative Loewner entropy d(zt ‖ ξt) calculated as ln
∣∣∣1− 2t

zt2

∣∣∣2.
(a) a = 0.5, (b) a = 1.0, and (c) a = 1.5. Each figure includes plots for κ = 2.0, 4.0, 6.0 and 8.0.
Note that we omitted the term O

(∣∣zt
−3
∣∣) in Equation (44), assuming the long-time behavior of

d(zt ‖ ξt). The numerically estimated (maximum) absolute errors (A. E.) of this approximation expo-
nentially decrease to A. E. ' 0.2 in the range t ' 1.5–2.0, and converge to A. E. ' 0.08 in t ' 5.0. After

these time regions, the relation ln
∣∣∣1− 2t

zt2

∣∣∣2 −A.E. < d(zt ‖ ξt) < ln
∣∣∣1− 2t

zt2

∣∣∣2 + A.E. is guaranteed
to be independent of a and κ.

Subsequently, we estimated the non-equilibrium (irreversible) characteristic of the en-
semble of the trajectories by calculating D(z ‖ ξ) and λ. Figure 3a shows the κ-dependence
of D(z ‖ ξ) at t = 10.0 for a = 0.5, 1.0 and 1.5. The ensemble average was taken over
50 realizations of d(zt ‖ ξt). For a = 0.5, the increase of κ results in the decrease in D(z ‖ ξ),
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which indicates the loss of irreversibility. Contrarily, for a = 1.0 and a = 1.5, D(z ‖ ξ)
takes a relatively constant value independent of κ. This result suggests that the larger drift
term in the driving function stabilizes D(z ‖ ξ) regardless of the strength of the diffusion
parameter κ. Figure 3b shows the κ-dependence of λ for a = 0.5, 1.0, and 1.5. The time
average in Equation (47) was taken over the range t = 5.0–10.0, where the approximation

of d(zt ‖ ξt) using ln
∣∣∣1− 2t

zt2

∣∣∣2 is most valid. It was found that the behavior of the average
values of λ has a similarity to that of D(z ‖ ξ). The significant κ-dependence of λ was
observed only for a = 0.5, and λ tends to be a relatively constant value for a = 1.0 and
1.5. Consequently, we found that the system with smaller a and larger κ tends to approach
a possible equilibrium state (i.e., the driving function) at an ensemble level, although
the trajectory-level stationarity becomes ambiguous. This result is related to the fractal
dimension and phase of the curve. Furthermore, the similarity between the behavior of 2λ
and that of D(z ‖ ξ) implies the ergodicity of the curve trajectories, i.e., the existence of
their (non-equilibrium) stationary distribution.

Figure 3. Parameter dependence of relative Loewner entropy D(z ‖ ξ) and the Lyapunov-type exponent λ. (a) κ-dependence
of D(z ‖ ξ) at t = 10.0 for a = 0.5, 1.0 and 1.5. The ensemble average was taken over 50 realizations of d(zt ‖ ξt) and error
bars show the standard error (S. E.). (b) κ-dependence of λ for a = 0.5, 1.0 and 1.5. The time average in Equation (47) was
taken over the range t = 5.0–10.0, where the approximation of d(zt ‖ ξt) is most valid. The markers represent the mean
value of λ calculated from 50 realizations and error bars show the S. E.

5. Discussion

We formulated non-equilibrium statistical mechanics of a generalized SLE using
an information-thermodynamical approach. The SLE framework provides a unique
information-theoretic scheme, in which irreversible non-equilibrium systems (i.e., the
curves in the physical plane) are encoded into reversible equilibrium systems (i.e., the
driving functions in the mathematical plane). We showed that this encoding operation is
available due to the one-to-one correspondence between the curves and driving functions,
and the phase space deformation of the conformal map gt. The advantages of encoding
a 2D non-equilibrium trajectory into reversible Langevin dynamics are summarized as
follows.

1. The Jarzynski equality and the second law of thermodynamics were generalized

in terms of information theory. Our result 0 ≤
〈

sp
i − ln Rm

〉
in Equation (41) is an

extension of Seifert’s expression 0 ≤ 〈∆stot〉 (see refs. [10,19]). Furthermore, the
term ln Rm can also be interpreted as the feedback information term, denoted as
I in ref. [23], in Sagawa’s information thermodynamics. Hence, incorporating the
relaxation process of an equilibrium state into the theory of the non-equilibrium
dynamics enables us to extend the existing thermodynamical laws in an information-
theoretic sense. This means that for an arbitrary 2D trajectory on H in our model,
the validity of the second law in the usual sense 0 ≤

〈
sp

i

〉
is supported by the
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complete time reversibility of the corresponding driving function, and otherwise (i.e.,
if the driving function includes several irreversible characters), we must reuptake the
generalized second law 0 ≤

〈
sp

i − ln Rm

〉
.

2. The entropy describing the non-equilibrium states of the individual trajectories is
decomposed into additive and non-additive parts. This provides us with a novel
non-equilibrium entropic measure, which we refer to as the relative Loewner entropy.
In the sense that the non-equilibrium ensemble is decomposed into an equilibrium
ensemble and a certain function, our result in Equation (43) is analogous to the result
of Penrose et al. [55].

3. If the driving function is in an equilibrium state, the relative Loewner entropy is used
to determine the non-equilibrium properties (i.e., non-stationarity and changing rate
of Gibbs entropy) of the 2D trajectories in the physical plane. This quantity indicates
the phase space deformation under the conformal map gt, and is closely related to the
Lyapunov-type exponent.

These advantages suggest that non-equilibrium states are well understood when
we assume the associated processes in an equilibrium in the theoretical framework. The
equilibrium driving function works as an idealized thermal state, which is one of the
stationary states that the curves potentially reach in the long-time limit. If the entropy of
the curve trajectory completely coincides with that of driving function, in which the KL
divergences become zero, the thermal equilibrium of the physical and mathematical planes
can be equally characterized.

Then, we encounter the problem of providing the information-theoretic and physical
meanings of the driving function. In the information-theoretic sense, the driving function
is interpreted as an information source manipulating the 2D curve trajectories, which has
full information about their equilibrium states. In this view, from the results of this study,
we can conclude that:

1. If the entropy (information) of the driving function is completely communicated to
the physical plane, the 2D trajectories are in the equilibrium states.

2. The non-equilibrium property of the trajectories is induced by the incomplete com-
munication of the entropy (information) between the physical and mathematical
planes.

3. The driving function can work as Maxwell’s Demon in the sense that it can control
the feedback information ln Rm.

These statements will make better sense when the integration of the information
theory and thermodynamics is successfully undertaken. In addition, in a thermodynamical
sense, the entropy of the driving function is interpreted as a conserved variable of the ther-
modynamic potential for the 2D non-equilibrium trajectories. Although non-equilibrium
systems typically lack the conserved quantities, such as the Hamiltonian in the equilibrium
physics, our result indicates that the entropy (or associated energy function) of the driving
function is conserved, even if the corresponding curve retains the non-equilibrium state.
A similar type of perspective was suggested in the mathematical context [56,57], where
the invariance of the Dirichlet energy of the Loewner driving function (referred to as the
Loewner energy) was demonstrated. For these reasons, we suggest that entropy of the
Loewner driving function may be referred to as the Loewner entropy.

Most importantly, the two thermodynamically different systems in our model are
linked via a family of conformal maps gt, determined by the Loewner equation, and
mathematically convertible. Hence, in a generalized SLE framework, the microscopically
irreversible process can arise from a reversible (but time-dependent) transformation to
the microscopically reversible process. This means that the Boltzmann paradox [58] in
our model is caused by the small deviation between the two entropies (as shown in
Equation (43)) induced by conformal transformations. In this regard, the relative Loewner
entropy explicitly represents an exact difference between non-equilibrium and equilibrium
states; therefore, it can be considered to be a candidate of a non-equilibrium entropy.
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The growth processes of the SLE-type curve have been investigated as a problem
of Laplacian random walk (LRW) [34,59], which is applied to the dielectric breakdown
and polymer growth model, etc. [60,61]. By comparing the SLE processes with these
physical models, it can be also found that the capacity t in the conformal map gt(z) is
analogous to the usual physical time in the present model [54]. However, the time t in
the Loewner evolution, referred to as the Loewner time, often has specific randomized time
increments, which are obtained when we calculate the driving functions of arbitrary 2D
trajectories [54]. In ref. [25], a similar type of random time was introduced to demonstrate
the generic properties of entropy production as the entropic time, which enables mapping
the entropy production in the non-equilibrium steady states into drift-diffusion processes.
This result has a connection with the present results in the sense that the time-dependent
transformation is implemented for the purpose of investigating non-equilibrium systems.

To apply our formulations, including the suggested irreversibility measure, to other
various 2D self-organization phenomena (e.g., Ising systems, percolation models, turbu-
lence, or biological/chemical morphologies), we must extend the descriptive ability of
the SLE framework. In the present model, we chose the driving function as Langevin
dynamics with a (linear or nonlinear) drift term. This is an example of a generalization
of the SLE; however, numerous other possibilities remain for the extension of the SLE
framework (e.g., combining with chaotic dynamical systems [32,37,62], q-deformation [63]).
Therefore, future research following this study will clarify how our theoretical concepts
aid the understanding of real self-organization phenomena, by considering appropriate
approaches to the generalization of the SLE. We note that our formulations are still limited
to the estimation of the entropic behavior of the non-equilibrium systems, and revealing
other physical properties from the 2D trajectories requires further individual investigation
of real systems, including experimental studies.

6. Conclusions

We formulated the generalized SLE driven by Langevin dynamics in the equilibrium
state from the context of non-equilibrium statistical mechanics. The entropy production of
the curve trajectories in the physical plane assumed a form of irreversible non-equilibrium
systems, whereas the driving function was prepared in the reversible equilibrium system.
We derived alternative types of the Jarzynski equality and the second law of thermody-
namics by information-theoretic quantities. Furthermore, we showed, from the phase
deformation ratio of the conformal maps, that the entropy of the curve can be decomposed
into additive and non-additive parts. The non-additive part was numerically examined
to estimate non-equilibrium properties of the system, and we refer to it as the relative
Loewner entropy. These results suggest a novel perspective for non-equilibrium statistical
physics to answer the question concerning the definition of a non-equilibrium entropy and
the mechanisms of irreversibility.
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