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Abstract: Quantum information theory, an interdisciplinary field that includes computer science,
information theory, philosophy, cryptography, and entropy, has various applications for quantum
calculus. Inequalities and entropy functions have a strong association with convex functions. In this
study, we prove quantum midpoint type inequalities, quantum trapezoidal type inequalities, and the
quantum Simpson’s type inequality for differentiable convex functions using a new parameterized
g-integral equality. The newly formed inequalities are also proven to be generalizations of previously
existing inequities. Finally, using the newly established inequalities, we present some applications
for quadrature formulas.

Keywords: Hermite-Hadamard inequality; midpoint and trapezoid inequalities; g-calculus; convex
functions

1. Introduction

In convex functions theory, Hermite-Hadamard (HH) inequality is very important
and was discovered by C. Hermite and J. Hadamard independently (see also [1] and [2]

(p- 137)),

Yol
T+ T 1 / F(m)+F(m)
< <
]-"( 5 >_ F——— F(v)ydv < > 1)
7T

where F is a convex function. In the case of concave mappings, the above inequality is
satisfied in reverse order.

In [3], Kirmaci proved the following inequality connected to the left-side of inequality (1).

Theorem 1. For a mapping F : I C R — R, which is differentiable on I°, m, mp € I°,
m < 1 with |F'| convex on [ 11y, 7112], then

ot [ Zn (B )| < R 4 () @

In [4], the authors proved the following inequality linked to the right part of inequality (1).

Theorem 2. For a mapping F : I C R — R, which is differentiable on I°, m, mp € I°,
m < 710 with |F'| convex on | 71, 73], then
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Sarikaya et al. [5] proved the following Simpson’s type inequalities for differentiable
convex functions.

Theorem 3. For a mapping F : I C R — R, which is differentiable on I°, 11, mp € I°,
m < 1 with | F'| convex on [ 1y, 112], then

’i{f( m)+4f<m;ﬂz> + 7 ”2)} - nzim/:f(v)dv
< WHF’( )|+ | F ()] X

Theorem 4. For a mapping F : I C R — R, which is differentiable on 1°, 71, 7o € I° with
m < mand if |F'|P, p > 1is a convex mapping on | 7y, 1|, then the following inequality
holds:
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On the other hand, several studies have been carried out in the domain of g-analysis;
beginning with Euler, the quantum computation of g-calculus, which is regarded as a
relationship between physics and mathematics, must be studied in order to gain profi-
ciency in mathematics. It has a wide range of applications in mathematics, including in
combinatorics, simple hypergeometric functions, number theory, orthogonal polynomi-
als, and other sciences, as well as mechanics, relativity theory, and quantum theory [6,7].
Quantum calculus also has many applications in quantum information theory, which is an
interdisciplinary area that encompasses computer science, information theory, philosophy,
and cryptography, among other areas [8-10]. Euler is thought to be the inventor of this
significant branch of mathematics. He used the g-parameter in Newton’s work on infinite
series. Later, Jackson presented g-calculus, which is also known as no-limits calculus,
in a methodical manner [11,12]. In 1966, Al-Salam [13] introduced a g-analogue of the
g-fractional integral and g-Riemann-Liouville fractional. Since then, the amount of related
research has gradually increased. In particular, in 2013, Tariboon and Ntouyas introduced
the r, D;-difference operator and g r,-integral in [14]. In 2020, Bermudo et al. introduced
the notion of the ™D, derivative and g "2-integral in [15]. Sadjang generalized this to
quantum calculus and introduced the notions of post-quantum calculus or shortly (p, g)-
calculus in [16]. In [17], Tung and G6v gave the post-quantum variant of the , D;-difference
operator and g,-integral. Recently, in 2021, Chu et al. introduced the notions of the ? Dy,
derivative and (p, q)h—integral in [18].

Many integral inequalities have been studied using quantum integrals for various
types of functions. For example, in [15,19-25], the authors used , Dy, T Dg-derivatives
and g ,,q "™-integrals to prove HH integral inequalities and their left-right estimates for
convex and coordinated convex functions. In [26], Noor et al. presented a generalized
version of quantum HH integral inequalities. For generalized quasi-convex functions,
Nwaeze et al. proved certain parameterized quantum integral inequalities in [27]. Khan
et al. proved quantum HH inequality using the Green function in [28]. Budak et al. [29],
Ali et al. [30,31], and Vivas-Cortez et al. [32] developed new quantum Simpson’s and
quantum Newton’s type inequalities for convex and coordinated convex functions. For
quantum Ostrowski’s inequalities for convex and co-ordinated convex functions, one
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can consult [33-35]. Kunt et al. [36] generalized the results of [21] and proved HH type
inequalities and their left estimates using the , D, 4-difference operator and (p, q),-integral.
Recently, Latif et al. [37] found the right estimates of HH type inequalities proved by
Kunt et al. [36]. To prove Ostrowski’s inequalities, Chu et al. [18] used the concepts of the
pr,q—difference operator and (p, q)b—integral. Recently, Vivas-Cortez et al. [38] generalized
the results of [15] and proved HH type inequalities and their left estimates using the
bD, 4-difference operator and (p, q)b—integral.

Inspired by these ongoing studies, we establish a generalized form of quantum mid-
point and quantum trapezoid type inequalities; these newly established inequalities are
the generalizations of inequalities (2)—(5) and the inequalities proved in the work by
Sarikaya et al. [39].

The structure of this paper is as follows: a brief overview of the concepts of g-calculus,
as well as some related works, is given in Section 2. In Section 3, we show the relationship
between the results presented here and comparable results in the literature by proving
some new quantum integral inequalities. We present some applications of quadrature
formulas in Section 4. Section 5 concludes with some recommendations for future studies.

2. Preliminaries of g-Calculus and Some Inequalities

In this section, we recall some basic concepts about g-calculus and integral inequalities
in this area. Further, here and in the following, we use q € (0, 1) and the following notation
(see [7]):

1—
[n], = 1_qq =14+q+¢*+...+4", g€ (0,1).

In [12], from 0 to 713, Jackson gave the g-Jackson integral as follows:

s

[F) dyr = (-9 m &g F ) ©
0 n=

provided the sum converges absolutely.

Definition 1 ([14]). The q r,-derivative of a mapping F : [ 1, o] — Rat v € [ my, mp] is

defined as

F(v) = Flqv+(1—q) m)
(1=g)(v— m)

If v= my, wedefine 7, DyF (i) =Um r 7 DgF(v) ifitexistsand it is finite.

7T1D17]:<V) = , VF#E . )

Definition 2 ([15]). The q ™2-derivative of a mapping F : [y, o] — Rat v € [y, mp] is

defined as

Flgv+(1—9q) m) - F(v)
(1—=g)(m2—v)

If v = 1o, we define ™Dy F(mp) = lim y—, r, ™D,F(v) ifitexists and it is finite.

D, F(v) = , V#E .

Definition 3 ([14]). The q ,-integral of a mapping F : [ 71, 2] — R is defined as

[0 mdyp = (0= a) (v ) g F v (1) ),

where v € [ 1, mM2).
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Definition 4 ([15]). The g ™-integral of a mapping F : [ 71, mp] — R is defined as

7 = (- 0 X Fe v () ),

where v € [ 1, T2).

In the literature, we have the following two different quantum variants of the HH
inequality (1) (see [15,21]).

Theorem 5. For the convex mapping F : [ 11y, 1] — R, the following inequalities are valid:

F(qﬂl—i- 7T2>< 1 /7T2 ]:(1/) mdqvgqf(n1>+ ]:(7'[2) (®)

[z]q oM mJm [z]q
and
T+ q 1 o - F(m)+qF(m)
AP < gt [ P s FEIEL g

Recently, Budak [40] proved the following quantum variants of inequalities (2) and (3)
linked to inequality (9).

Theorem 6. For a mapping F : I C R — R, g-differentiable on I°, 71, mp € I°, m1 < 112
with | ™Dy F| convex mapping on [ 1y, 1), then

R e I METRY
PO+, (L3¢ +29°) |,
< (m—m) 3], 21 | ™2Dg F( )| + 3], 21 | 2Dy F( m2)|

and

Tip — 711 J m

s
1 / 2]:_(1/) nquv_]__<7r1+q7r2>|

2q[2] —1
%Wr)qf( 712)’]. (10)

q

< q(ﬁz—ﬂl)[ 5| 2Dy F(m1)| +

81,121

2]

q q

3. Main Results

In this section, we prove, for g-differentiable convex functions, some g-integral in-
equalities of midpoint and trapezoidal formula types.

Lemmal. Let F : [ ry, 1t2] — R bea q ™-differentiable functions such that ™Dy F is integrable
and ¢ € [0,1]. Then, we have
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pbaﬂn“&j”””—(pbg—gf<”j%j”)—7Q1nl;ffu>M%v

1
2,
= (m- m)[/ozqq(g— u) DgF(pm+ (11— p) m)dg p
1
T/, A=g—qpu) ®DgF(pm+ (11— p 7T2)dqﬂ]- (1)
2,

Proof. From the fundamental concepts of g-integrals, we have

1

(12— m)[/omqq(g— u) DgF(p o+ (1= p) m)dg p

+/11 (1= ¢—qu) PDyF(pm+(1- p) nz)dq”]

ap

=(m—nnm%ﬁmgﬁ)”%ﬂﬂm+ﬂ—MMWw

1
+ [0 e qm) D F (ot (1= ) ma)dy
= (m— m)h+h] (12)

Definitions 2 and 4 give us the following:

1
/qu 2Dy F(p 4 (1= ) mo)dg p

py Flapm+A—qp) m)—F(pum+ (01— p) m)
[Z]qg_l)/o 1 (1—'1);(”2— 7T1)1 :

e e g gt v q" g9
[,q%f(mq "1*<1 mq>”z> Ef([ﬂq "l*<l mﬂmﬂ

2l,6—1 T +q T
- S ()|

q

dqy

1 1
L= (= [ ™DuF(um+ (1= p)mdgp—q [ p "DpF(pm+ (1 p)m)dyp

(1_(5) 1 Uy - 1
o (M) = F(m)] = [M/ﬂl Fv) Ty = ———F(m)|.

By putting the computed values of I; and I, in equality (12), we obtain the resultant
equality (11). O

Remark 1. If we take the limit as g — 1~ in Lemma 1, then it becomes [39], Lemma 1.
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Theorem 7. Under the conditions of Lemma 1, if | ™Dy F| is a convex mapping, then

2] ]:(nl)+q]:(n2)—<[2]qg—l)]f< 7'cl+q7'cz)_ 1 /m}"(v) ", v

7° 2, 2, -

{ A1(g; )| ™Dy F( )|+ Bi(g; 6)| ™Dy F( m2)
(72— 7m1)

Lif0 < g<ﬁ,

if L
/lj‘[z}q S (;Sl/

< (13)

Ax(q; 6)| ™Dy F(m1)|+ Ba(g; )| ™Dy F( m2)

where
¢ 0=’
[2],13], [2],13],

4 1 29 5,3 14
B, P R @,

_ 3
gt e+ 2

NP L S 1
(“" ”(w*[21q>+[3}q<”[z];m’

ly

‘7[‘1

and
q

1 2
By(q; g):m(q+2—g)+[2]3[3]q+(g— ) — o Bl

Proof. Using the properties of the modulus, after taking the modulus in Lemma 1, we can

obtain
p FLIC) () g n) (B2 ) - L [ (o) vy

1
< (m— 771)[‘7/0[2]'7‘5_ ul | 72DgF (o + (1 — ) mm)|dg

1
+ 1|1gwl\”quF(mﬁ(lu)ﬂz)\dqu]. (14)

ap

Since | ™D, F| is a convex mapping, we therefore have
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2], ¢ ”l)[}jﬂ ) ([Z]qg—l)}'< o ”2> - [T E)

IN

(1 — ﬂl)[‘i/omqg— pllu| Dy F(m)| + (1= u)| ™DyF( m2)|]dg p

1
+/LI1— c—qul[#] ™DgF(m)|+ (1= w)| ™DgF(m2)|]d, V]
0P

1 1
2]
| ™Dy 7 ( m)![q/oz" ulg— uquu+/1 ult— gwdqu]
e

1

T 1
+| ™Dy F ()| [q(/omq (1= wle— udgp+ [, (1= w1~ ¢ quld, V]-

ap

One can easily observe that for 0 < ¢ < %,
ﬁ 1
/0 Tqulc— V|dqﬂ+/1 ul—c—quldgp
2,

¢ ar
= /0 qu(— #)dqwr/:"w(u— ¢)dy p

=< 1
+/j p(l— g—w)dqw/l;g =1+ ¢+ qu)dgp
q

1 1
[2]
/0 Tl =)o — uldgp+ [, A= )1 — g—qpuldgp

2l

‘ e
= [ 0= o= wdgn+ [0 - (= o)y
S

1-¢

e 1
+/ - - g—w)dqwr/l,g(l— W(=1+ ¢ +q u)dg
2y T
= Bi(g ¢).
Now, for 4+ < ¢ <1, one can see

2], =

o 1
2]
/OZWVIQ— #quﬂ+/1 Hll— ¢ —quldyp
o

1

1
= /Om”w(g— u)dqwr/l H(=1+ ¢+qp)dy p
2l

= Axg )
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and

1 1
2]
/0 Ta(l—pw)l¢— V|dqﬂ+/L(1— I — ¢ —quldgp

2l

1
/qu(l— m(e— V)dqﬂ"‘/[;]q(l— ) (=14 G+ qu)dy p

= Ba(g o)
Thus, the proof is finished. [
Remark 2. Setting the limit as ¢ — 17 in Theorem 7, then it reduces to [39], Theorem 5.
Corollary 1. The inequality (13) in Theorem 7 reduces to the following quantum trapezoid type

inequality by assuming ¢ = ﬁ:
q

[2] q Ty — 7

|f<m>+qf<nz> S [ F) ey

T

< (m— m)

Ay (q; [21}1) ] 2Dy F( 7'(1)| + B, (q; [21}’) ] 2Dy F( 7'[2)’].

Remark 3. The inequality (13) in Theorem 7 reduces to (10) by assuming ¢ = 0.
Remark 4. In Corollary 1, if we set the limit as ¢ — 17, then we obtain the inequality (2).

Remark 5. In Theorem 7, if we set the limit as ¢ — 17 and later assume ¢ = 0, then we obtain
the inequality (3).

Corollary 2. In Theorem 7, if we set ¢ = ﬁ, then we obtain the following quantum Simpson’s
q
inequality:
1 7 1 +q 10 ™
— | F(m)+ 7 F| —=— | +9F(m —/ F(v) ™dgv
m[” [4L,< m, )R T

< (m—-m)

Ay <q; [;}q) | nqu]:( 7'[1)| + B <q; [61}‘1> | 7T2Dq]:( 7'[2)"| .

Remark 6. If we take the limit as g — 1~ in Corollary 2, then we recapture the inequality (4).

Theorem 8. Under the conditions of Lemma 1, if | ™Dy F| P,as p > 1is a convex mapping, then

(i) Ifo< ¢g< ﬁ then

g}"(nl)—l—q}'(m)_(mqg_l)]__( 711+q7r2>_ 1 /7‘[2}_(1/) 2, v

(72— m){Ag {0 6) (Bs(a; ©)] ™DyF ()| +Ci(g; ¢)| DeF(m2)|”)

[2] 7T — 701 el

2],
1—

q

==

T (Ba(a; )] ™DyF(m)|" +Calg; ¢)| ™Dy F( ﬂ2)|p)p}.
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(i) If 5 < ¢ <1,then
2,

2], ¢ 2 ”1)[;:“ G2 ([2]q§—1>}"< o ”2> - [P E)

<=

< (m- nl){A;;(q; 6) (Bs(g; 6)| ™DyF(m)|” +Calg; )| ™DyF(m2)|")

1-1 1
+45 " (; 6)(Bo(; 6)| ™DyF(m)|" +Calg; 6)| ™Dy F( ﬂz)\p)p}f

where
227 o, g9
AB(q Q) = ¢ [2]11 [2]11 + [2]$
B _ 9 _ 495 ., 3 g
3(4; 6) [2]3[3]q [2]2+ ¢ 2],13],
S I B Y P I
Cilg; ) = 2 [2];[3]q+2g 2], 2¢ 2],13],
_ 2
Asgig) = 2(1[2];) +[21}q(q Hg)+[§3+gl
_ L0 R N
By(q; 6) = 2[}‘1[3]‘7 +(¢ )<[2]3+[2]q> [3]q< +H3>
R € L N DU RIS SRY B hall
Cgg) = 2 7, +mq(g+q 1+ (g )+Ha 2], 13],
e[ Ly LY (L
<< N\t [2L,> B, (l " [212>>
and
N 4 g
As(g; 6) = gm_@’
Bs(g6) = G ——,
5(4; 6) 6[2]2 ZHE)
Cs(g; . q_g_( T >
T T T
As(a;6) = p1](1+q—g)—[2q]3+€—1'
q q
N T DR - A ol
Be(w: ) = GtV 253,
Calgig) = [Z]q(l‘Fq_G)_[zq]{:;—"g_l
(1 1—g[2]q+(1—€)‘72>
([3@*[21# v 21081,
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Proof. Applying this to (14), the power mean inequality, we obtain

2, ¢ 2 ”l)[;;’ﬂ ) ([2],,9—1>}"< ad [;]’”2> — [T R Ty

q 7T — 71 ™

1 -5/
2] 2]
< (7T2—7T1)I</0 q‘1|€_.”|dqll> (/0 qq|g—y|7T2Dq.7-"(y7r1+(1—y)n2)|pdq‘u>

1

1-1 1

1 Pl !

+(/1 |1—€—‘N‘|dq}4) (/1 |1—g—qy||”2Dq]:(y7T1+(1—y)nz)|pdqy> .
4 1

<=

ap

Since | ™Dy F

1 1-
2]

(/O Tqlg— V|dqﬂ>
1 1-3
[2]

(/OZWIQ— uldqu>

1
1 1 r
2] [2]
X<| 2Dy F( 7T1)|p/0 "qulc— pldgu+| ™D ( 772)|p/0 Tl = w)l ¢ — pldg ")

22 @ il_% m Y TR
- (gmq []ﬁ[z]) (’ Do () lmzmq [JHQPM%]

P for p > 1, is convex, therefore, for 0 < ¢ < ﬁ, we have

(

==

1 ’
/om” qlg— ul | DgF(pm+ (1~ ) m)|'d ”)

IN

[

N

N——— 2w
==

1
/1 1= ¢—quldgn
o

1 P
/Lll— c—qul | DgF(pm+(1- p) ﬂz)lpdqﬂ)

2l

20-¢* 1, g A\
< ([Z]q +[2]q(q 1+ g)+[2]3+g 1)

) p (1_ 9)3 _ L L i L
" (| DyF () [2 2., T ”(m; : m) B, <” [213)1
1= |

1 _ I I o
@, Tr eV g,

NN AT N RN
((g 1><[2]3+[2]q>+[3]q<1+[2]3>>D ‘

q

==

+| ™Dy F(m)|P

Similarly, for ﬁ < ¢ <1,wehave
q



Entropy 2021, 23, 996 11 of 15

1

1 -5/ 1 P
2] 2]

(AZ”MQ;WEV) (Azqqgm|”n%f(ynl+¢1y)ngv%y>
B -5
2]

(/Ozwlg— uldqu>

1 1
2l jan
X<| 2Dy F ( 7T1)|p/0 Tqulc— pldgp+| Dy F( 7T2)|p/0 "1 = )¢ — pldg ")

1—1
Y GO B I T (e I B
- @mq[%> 0 D”T”’FMS[ﬁm]

q qt=q

IN

1
P

P

1-1 1
1 P 1 ’
(/1|1— 9—1114|qu> (/1|l— g—qy||”2Dq]-"(y7r1+(l— y)n2)|pdqy)

1
B, e T e,

Therefore, the proof is finished. O
Remark 7. If we set the limit as ¢ — 1~ in Theorem 8, then it reduces to [39], Theorem 6.

Corollary 3. Theorem 8 reduces to the following new quantum trapezoid type inequality by
assuming ¢ = ﬁ:
q

’fmm+ﬂwm_ [P F) ey

[2] q T — 7

T

1

< (m-— 7T1){A51;_’17 (q;[zl]) (BS (q[zl]q>! Dy F( )| +Cs (q[zl])\ 2Dy F( ﬂz)‘p>p
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Remark 8. Theorem 8 reduces to [40], Theorem 2 (page 212) by assuming ¢ = 0.

Corollary 4. In Theorem 7, if we set ¢ = ﬁ, then we obtain the following quantum Simpson’s
q

inequality:

2
e () vt

< (m— nl){A;_’l’<q;[61]q> <B5 (q;@)] D, F(m)|" +Cs <q;[61]q>\ ™D, F( ﬂz)\”)p
+A27% q;i gtz || 2DgF ()" + Ca| g o || ™D F ()| :
[6], [ [ q

Remark 9. If we take the limit as g — 1~ in Corollary 4, then we recapture the inequality (5).

s
—/ F(v) ™dgv
T

==

4. Applications to Quadrature Rule

In this section, we present some applications of quadrature formulas using the results
given in the last section.

Proposition 1. Under the assumptions of Theorem 7 with ¢ = 1, we have:

F(m)+qF(m) T +q 70 1 2 2
2, o - }'< 2 )- — m/ F(v) ™d,v

< (m— m)[A2g;1)| ™DgF(m)| + Ba(g;1)| ™Dy F ()]

Proposition 2. Under the assumptions of Theorem 7 with ¢ = ﬁ, we have
9

[31][;( n1)+q2f<”1[+2]”’”2> +qF( 7'(2)] — [T F() Ty
q q

< (m—m)lA

Proposition 3. Under the assumptions of Theorem 7 with ¢ = i, we have

i,

2y [F(m)+qF(m) | o m+am\| 1 = 7
PR g (B )| - T

4],
(‘7' [4] ) | 72Dy F ()| + By <ti; [41]‘) | 2D, F( 712)|].

< (m—m)|A
Proposition 4. Under the assumptions of Theorem 8 with ¢ = 1, we have

2] }'(m)—l—qf(nz)_q]__( n1+q7r2>_ 1

) 2 [, T ey

T — 7

q q

< (- m){ay @0 (Bl )] =D F(m)[ + Gl 1)| BDF ()

E\H
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Proposition 5. Under the assumptions of Theorem 8 with ¢ = ﬁ, we have
q

i R e

< (m-m) A:% (fi?[;]) (Ba(ﬂl;[;])’ 2Dy F( ﬂl)\p+cl<‘7/[ q>| "Dy F( 7 )|p>p
+Ai_% q;L By| 4; L | 2Dy F(m)|" +Co| g ! | ™Dy F(m)|P P
3] 3], 3],

Proposition 6. Under the assumptions of Theorem 8 with ¢ = ﬁ, we have
q
2y [F(m)+aF(m) | op( mtam)] 1 7 F ) g
[4]q [2‘]q [2]17 Tp— M Jm

1

< (m— m) A;_% (q,é)( (q,[ )‘ 2Dy F( 7T1)|p+C1 (q,[&i})! 2Dy F( TTZ)V’)IJ
q q
+A41;7% %L U ’ 2Dy F ( ﬂl)fpﬂLCZ VAT | Dy F( )‘p ’”
4], [ g [

5. Conclusions

In this investigation, we have proven a parameterized g-integral identity involving
g-derivatives and then used this result to prove some new g-integral inequalities for
differentiable convex functions. We also showed that the results established in this paper
are a potential generalization of the existing comparable results in the literature. The results
proved in this research can be used in quantum information theory, an interdisciplinary field
that includes computer science, information theory, philosophy, cryptography, and entropy.
As a future direction, similar inequalities could be found for co-ordinated convex functions.
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