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Abstract: Langevin dynamics (LD) has been extensively studied theoretically and practically as
a basic sampling technique. Recently, the incorporation of non-reversible dynamics into LD is at-
tracting attention because it accelerates the mixing speed of LD. Popular choices for non-reversible
dynamics include underdamped Langevin dynamics (ULD), which uses second-order dynamics
and perturbations with skew-symmetric matrices. Although ULD has been widely used in practice,
the application of skew acceleration is limited although it is expected to show superior performance
theoretically. Current work lacks a theoretical understanding of issues that are important to prac-
titioners, including the selection criteria for skew-symmetric matrices, quantitative evaluations of
acceleration, and the large memory cost of storing skew matrices. In this study, we theoretically and
numerically clarify these problems by analyzing acceleration focusing on how the skew-symmetric
matrix perturbs the Hessian matrix of potential functions. We also present a practical algorithm that
accelerates the standard LD and ULD, which uses novel memory-efficient skew-symmetric matrices
under parallel-chain Monte Carlo settings.

Keywords: Markov Chain Monte Carlo; Langevin dynamics; Hamilton Monte Carlo; non-reversible
dynamics

1. Introduction

Sampling is one of the most widely used techniques for the approximation of posterior
distribution in Bayesian inference [1]. Markov Chain Monte Carlo (MCMC) is widely
used to obtain samples. In MCMC, Langevin dynamics (LD) is a popular choice for
sampling from high-dimensional distributions. Each sample in LD moves toward a gradient
direction with added Gaussian noise. LD efficiently explore around a mode of a target
distribution using the gradient information without being trapped by local minima thanks
to added Gaussian noise. Many previous studies theoretically and numerically proved
LD’s superior performance [2–5]. Since non-reversible dynamics generally improves
mixing performance [6,7], research on introducing non-reversible dynamics to LD for better
sampling performance is attracting attention [8].

There are two widely known non-reversible dynamics for LD. One is underdamped
Langevin dynamics (ULD) [9], which uses second-order dynamics. The other introduces
perturbation, which consists of multiplying the skew-symmetric matrix by a gradient [8].
Here, we refer to the matrix as skew matrices for simplicity and this perturbation tech-
nique as skew acceleration. Much research has been done on ULD theoretically [9–11]
and ULD is widely used in practice, which is also known as stochastic gradient Hamil-
ton Monte Carlo [12]. In contrast, the application of the skew acceleration for standard
Bayesian models is quite limited even though it is expected to show superior performance
theoretically [8].
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For example, skew acceleration has been analyzed focusing on sampling from Gaus-
sian distributions [13–17], although assuming Gaussian distributions in Bayesian models
is restrictive in practice. A recent study [8] theoretically showed that skew acceleration
accelerates the dynamics around the local minima and saddle points for non-convex func-
tions. Another work [18] clarified that the skew acceleration theoretically and numerically
improves mixing speed when used as interactions between chains in parallel sampling
schemes for non-convex Bayesian models.

Compared to ULD, what seems to be lacking for skew acceleration is a theoretical
understanding of issues that are important to practitioners. The most significant problem
is that no theory exists for selecting skew matrices. In existing studies, introducing a skew
matrix into LD results in equal or faster convergence, denoting that a bad choice of skew
matrix results in no acceleration. Thus, choosing appropriate skew matrices is critical.
Furthermore, although ULD’s acceleration has been analyzed quantitatively, existing
studies have only analyzed skew acceleration qualitatively. Thus, it is difficult to justify
the usefulness of skew acceleration in practice compared to ULD. Another issue is that
introducing skew matrices requires a vast memory cost in many practical Bayesian models.

The purpose of this study is to solve these problems from theoretical and numerical
viewpoints and establish a practical algorithm for skew acceleration. The following are the
two major contributions of this work.

Our contribution 1: We present a convergence analysis of skew acceleration for
standard Bayesian model settings, including non-convex potential functions using Poincaré
constants [19]. The major advantage of Poincaré constants is that we can analyze skew
acceleration through a Hessian matrix and its eigenvalues and develop a practical theory
about the selection of J and the quantitative assessment of skew acceleration.

Furthermore, we propose skew acceleration for ULD and present convergence anal-
ysis for the first time. Since ULD shows faster convergence than LD, combining skew
acceleration with ULD is promising.

Our contribution 2: We develop a practical skew accelerated sampling algorithm
for a parallel sampling setting with novel memory-efficient skew matrices. Since a naive
implementation of skew acceleration requires a large memory cost to store skew matrices,
memory-efficiency is critical in practice. We also present a non-asymptotic theoretical
analysis for our algorithm in both LD and ULD settings under a stochastic gradient and
Euler discretization. We clarify that introducing skew matrices accelerates the convergence
of continuous dynamics, although it increases the discretization and stochastic gradient
error. Then to the best of our knowledge, we propose the first algorithm that adaptively
controls this trade-off using the empirical distribution of the parallel sampling scheme.

Finally, we verify our algorithm and theory in practical Bayesian problems and com-
pare it with other sampling methods.

Notations: Id denotes a d × d identity matrix. Capital letters such as X represent
random variables, and lowercase letters such as x represent non-random real values. ·, ‖ · ‖
and | · | denote Euclidean inner products, distances and absolute values.

2. Preliminaries

In this section, we briefly introduce the basic settings of LD and non-reversible dy-
namics for the posterior distribution sampling in Bayesian inference.

2.1. LD and Stochastic Gradient LD

First, we introduce the notations and the basic settings of LD and stochastic gradient
LD (SGLD), which is a practical extension of LD. Here zi denotes a data point in space Z,
|Z| denotes the total number of data points, and x ∈ Rd corresponds to the parameters of a
given model, which we want to sample. Our goal is to sample from the target distribution
with density dπ(x) ∝ e−βU(x)dx, where potential function U(x) is the summation of

u : Rd × Z → R, i.e., U(x) =
1
|Z|

|Z|
∑
i=1

u(x, zi). Function u(·, ·) is continuous and non-
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convex. The explicit assumptions made for it are discussed in Section 3.1. The SGLD
algorithm [2,3] is given as a recursion:

Xk+1 = Xk − h∇Û(Xk) +
√

2hβ−1εk, (1)

where h ∈ R+ is a step size, εk ∈ Rd is a standard Gaussian random vector, β is a
temperature parameter of π, and ∇Û(Xk) is a conditionally unbiased estimator of true
gradient ∇U(Xk). This unbiased estimate of the true gradient is suitable for large-scale
data set since we can use not the full gradient, but a stochastic version obtained through
a randomly chosen subset of data at each time step. This means that we can reduce the
computational cost to calculate the gradient at each time step.

The discrete time Markov process in Equation (1) is the discretization of the continuous-
time LD [2]:

dXt = −∇U(Xt)dt +
√

2β−1dwt, (2)

where wt denotes the standard Brownian motion in Rd. The stationary measure of
Equation (2) is dπ(x) ∝ e−βU(x)dx.

2.2. Poincaré Inequality and Convergence Speed

In sampling, we are interested in the convergence speed to the stationary measure.
The speed is often characterized by the the generator associated with Equation (2) and
defined as:

L f (Xt) : = lim
s→0+

E( f (Xt+s)|Xt)− f (Xt)

s

=
(
−∇U(Xt) · ∇+ β−1∆

)
f (Xt), (3)

where ∆ denotes a standard Laplacian on Rd and f ∈ D(L) and D(L) ⊂ L2(π) denote
the L domain. This −L is a self-adjoint operator, which has only discrete spectrums
(eigenvalues). π with L has a spectral gap if the smallest eigenvalue of −L (other than 0) is
positive. We refer to it as ρ0(>0). This spectral gap is closely related to Poincaré inequality.
Internal energy is defined:

E( f ) := −
∫
Rd

fL f dπ. (4)

Please note that E( f ) > 0 is satisfied. Then π with L satisfies the Poincaré inequality
with constant c, if for any f ∈ D(L), π with L satisfies:

∫
f 2dπ −

(∫
f dπ

)2
≤ cE( f ). (5)

The spectral gap characterizes this constant c ≤ 1
ρ0

, which holds (see Appendix A.2 for
details). We refer to best constant c as the Poincaré constant [19]. For notational simplicity,
we define m0 := 1

c and refer to this m0 as the Poincaré constant.
In sampling, crucially, Poincaré inequality dominates the convergence speed in

χ2 divergence:

∫ (dµt

dπ
− 1
)2

dπ := χ2(µt‖π) ≤ e−
2m0

β t
χ2(µ0‖π), (6)

where µt denotes the measure at time t induced by Equation (2) and µ0 is the initial
measure (see Appendix A.3 for details). Thus, the larger Poincaré constant m0 is, the faster
convergence we have.
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2.3. Non-Reversible Dynamics

In this section, we introduce the non-reversible dynamics. π with L is reversible if for
any test function f , g ∈ D(L), π with L satisfies∫

Rd
fLgdπ =

∫
Rd

gL f dπ. (7)

If this is not satisfied, π with L is non-reversible [19].
We introduce two non-reversible dynamics for LD. The first is ULD, which is given as

dXt = Σ−1Vtdt,

dVt = −∇U(Xt)dt− γΣ−1Vtdt +
√

2γβ−1dwt,
(8)

where V ∈ Rd is an auxiliary random variable, γ ∈ R is a positive constant, and Σ is the
variance of the stationary distribution of auxiliary random variable V. The stationary distri-
bution is π̃ := π ⊗N (0, Σ) ∝ e−βU(x)− 1

2 Σ−1‖v‖2
, where N denotes a Gaussian distribution.

The superior performance of ULD compared with LD has been studied rigorously [9–11].
ULD’s convergence speed is also characterized by the Poincaré constant [20]. In practice,
we use discretization and the stochastic gradient for ULD, which is called the stochastic
gradient Hamilton Monte Carlo (SGHMC) [10]. The second non-reversible dynamics is the
skew acceleration given as

dXt = −(I + αJ)∇U(Xt)dt +
√

2β−1dwt, (9)

where J is a real value skew matrix and α ∈ R+ is a positive constant. We call this dynamics
S-LD. The stationary distribution of S-LD is still π, and S-LD shows faster convergence and
smaller asymptotic variance [13–15,18].

3. Theoretical Analysis of Skew Acceleration

In this section, we present a theoretical analysis of skew acceleration in LD and ULD
in standard Bayesian settings. We analyze acceleration through the Poincaré constant and
connect it with the eigenvalues of the Hessian matrix, which allows us to obtain a practical
criterion to choose skew matrices and quantitatively evaluate acceleration. We focus on a
setting where a continuous SDE and a full gradient of the potential function is used in this
section. The discretized SDE and stochastic gradient are discussed in Section 4.

3.1. Acceleration Characterization by the Poincaré Constant

First, we introduce the same four assumptions as a previous work [2], which showed
the existence of the Poincaré constant about m0 for LD (see Appendix C for details).

Assumption 1. (Upper bound of the potential function at the origin) Function u takes nonnegative
real values and is twice continuously differentiable on Rd, and constants A and B exist such that
for all z ∈ Z,

|u(0, z)| ≤ A, ‖∇u(0, z)‖ ≤ B. (10)

Assumption 2. (Smoothness) Function u has Lipschitz continuous gradients; for all z ∈ Z,
positive constant M exists for all x, y ∈ Rd,

‖∇u(x, z)−∇u(y, z)‖ ≤ M‖x− y‖. (11)
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Assumption 3. (Dissipative condition) Function u satisfies the (m,b)-dissipative condition for all
z ∈ Z; for all x ∈ Rd, m > 0 and b ≥ 0 exist such that

−x · ∇u(x, z) ≤ −m‖x‖2 + b. (12)

Assumption 4. (Initial condition) Initial probability distribution µ0 of X0 has a bounded and
strictly positive density p0, and for all x ∈ Rd,

κ0 := log
∫
Rd

e‖x‖
2
p0(x)dx < ∞. (13)

Please note that these assumptions allow us to consider the non-convex potential
functions, which are common in practical Bayesian models. Furthermore, we make the
following assumption about J.

Assumption 5. The operator norm of J is bounded:

‖J‖2 ≤ 1. (14)

This means that the largest singular value of J is below 1.

Under these assumptions, we present the convergence behavior of skew acceleration
using the Poincaré constant. First, we present the following S-LD result.

Theorem 1. Under Assumptions 1–5, the S-LD of Equation (9) has exponential convergence,

χ2(µα
t ‖π) ≤ e−

2m(α)
β t

χ2(µ0‖π), (15)

where µα
t is the measure at time t induced by S-LD and m(α) is the Poincaré constant of S-LD

defined by its generator

Lα f (x) :=
(
−(I + αJ)∇U(x) · ∇+ β−1∆

)
f (x). (16)

Furthermore, m(α) satisfies m(α) ≥ m0.

The proof is shown in Appendix C. This theorem states that introducing the skew
matrices accelerates the convergence of LD by improving the convergence rate from m0 to
m(α). Although [18] obtained a similar result, we used the Poincaré constant and derived
an explicit criterion when m(α) = m0 holds, as we discuss below.

Next, we also introduce skew acceleration in ULD. Since ULD shows faster conver-
gence than LD in standard Bayesian settings [10,11], it is promising to combine skew
acceleration with ULD to obtain a more efficient sampling algorithm. For that purpose,
we propose the following SDE:

dXt = Σ−1Vtdt + α1 J1∇U(Xt)dt, (17)

dVt = −∇U(Xt)dt− γ(Σ−1 + α2 J2)Vtdt +
√

2γβ−1dwt, (18)

where J1 and J2 are real value skew matrices and α1 and α2 are positive constants. We
assume that J1 and J2 satisfy Assumption 5. We refer to this method as skew under-
damped Langevin dynamics (S-ULD) whose stationary distribution is π̃ = π ⊗N (0, Σ) ∝
e−βU(x)− 1

2 Σ−1‖v‖2
. See Appendix B for details, which include discussions on other combina-

tions of skew matrices. As for S-ULD, we need an additional assumption about the initial
condition of V0:
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Assumption 6. (Initial condition) Initial probability distribution µ0(x, v) of (X0, V0) has a
bounded and strictly positive density p0 that satisfies,

κ0 := log
∫
R2d

e‖x‖
2+‖v‖2

p0((x, v))dxdv < ∞. (19)

We then provide the following convergence theorem that resembles S-LD.

Theorem 2. Under Assumptions 1–3, 5, 6, S-ULD has exponential convergence in χ2 divergence
and its convergence rate is also characterized by m(α) as defined in Theorem 1. S-ULD’s convergence
equals or exceeds ULD, of which convergence rate is characterized by m0.

See Appendix C.2 for details. From these theorems, we confirmed that skew accelera-
tion is effective in both S-LD and S-ULD, and the convergence speed is characterized by
Poincaré constant m(α) defined by Equation (16).

3.2. Skew Acceleration from the Hessian Matrix

Our goal is to clarify what choices of J induce m(α) > m0, which leads to acceleration.
Therefore, we discuss how Poincaré constant m(α) is connected to the eigenvalues and
eigenvectors of the perturbed Hessian matrix (I + αJ)∇2U(x). Next, we introduce the
notations. We express the Hessian of U(x) as H(x) and the perturbed Hessian matrix
as H′(x) := (I + αJ)H(x). Please note that H is a real symmetric matrix, which has
real eigenvalues and diagonalizable. On the other hand, since H′ is not symmetric, it has
complex eigenvalues, although diagonalization is not assured (see Appendix E). We express
pairs of eigenvectors and eigenvalues of H′(x) as {(vα

i (x), λα
i (x))}d

i=1, which are ordered as
Re(λα

1(x))) ≤ · · · ≤ Re(λα
d(x)). Here, Re(λα

1(x)) expresses the real part of complex value
λα

1 and Im denotes the imaginary part. We express those of H(x) as {(v0
i (x), λ0

i (x))}d
i=1

and order them as λ0
1(x) ≤ · · · ≤ λ0

d(x).

3.2.1. Strongly Convex Potential Function

Assume that U is an m-strongly convex function, where for all x ∈ Rd, m ≤ λ0
1(x)

holds. Poincaré constant m0 of LD satisfies m0 = m [19]. For the skew acceleration, since
Poincaré constant satisfies m(α) = m′(α), where m′(α) is the best constant that satisfies,
for all x, m′(α) ≤ Re

(
λα

1(x)
)

(see Appendix D.1). Therefore, studying the Poincaré constant
is equivalent to studying the smallest (real part of the) eigenvalue of the Hessian matrix.
Thus, the relation between λ0

1(x) and Re
(
λα

1(x)
)

must be studied. The following theorem
describes how the skew matrices change the smallest eigenvalue.

Theorem 3. For all x ∈ Rd, the real parts of the eigenvalues of H′ satisfy

m ≤ λ0
1(x) ≤ Re(λα

1(x)) ≤ · · · ≤ Re(λα
d(x)) ≤ λ0

d(x). (20)

The condition of λ0
1(x) = Re

(
λα

1
(
x)) is shown in Remark 1.

Remark 1. Denote the set of the eigenvectors of eigenvalue λ0
1(x) as V0

1 . If V0
1 = {v} and

Jv = 0, then λ0
1(x) = Re

(
λα

1
(

x)) holds. If the cardinality of set V0
1 is larger than 1, and vectors

v, v′ ∈ V0
1 exist, such that λ0

1αJv = (Im
(
λα

1
)
)v′ and λ0

1αJv′ = −(Im
(
λα

1
)
)v, then λ0

1(x) =
Re
(
λα

1
(

x)) holds.

Refer to Appendix F for the proof. This is an extension of previous work [8,13].
If λ0

1(x) < Re
(
λα

1(x)
)

is satisfied for all x, we have m0 < m(α), i.e., acceleration occurs.
We discuss how to construct J such that λ0

1(x) < Re
(
λα

1(x)
)

holds in Section 3.3.
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3.2.2. Non-Convex Potential Function

The previous work [21] clarified that the Poincaré constant of the non-convex function
is characterized by the negative eigenvalue of the saddle point. As shown in Figure 1,
denote x1 as the global minima, and x2 is the local minima which has the second smallest
value in U(x). We express the saddle point with index one, i.e., there is only one negative
eigenvalue at the point, between x1 and x2 as x∗. This means that the eigenvalues of H(x∗)
satisfies λ0

1(x∗) < 0 < λ0
2(x∗) < · · · < λ0

d(x∗). Ref. [21] clarified that the saddle point x∗

characterizes the Poincaré constant as

m−1
0 ∝

1
|λ1(x∗)| e

β(U(x∗)−U(x1)−U(x2)). (21)

When skew matrices are introduced, [8] clarified the following relation:

Theorem 4. ([8]) λα
1(x∗) ≤ λ0

1(x∗) < 0 and equality holds only if Jvα
1(x∗) = 0.

Note λα
1(x∗) is not a complex number. Thus, the skew acceleration reduces the

negative eigenvalue and leads to a larger Poincaré constant (see Appendix D.2) and results
in faster convergence.

−5 −4 −3 −2 −1 0 1 2

−1000

−500

0

500

1000 U(x)
Saddle x∗

Local minima x2

Global minima x1

Figure 1. Double-potential example: Poincaré constant is related to the eigenvalue at x∗.

In conclusion, introducing the skew matrix changes the Hessian’s eigenvalues and
increase the Poincaré constant. If λ0

1(x) 6= Re
(
λα

1(x)
)

is satisfied, this leads to faster
convergence for both convex and non-convex potential functions.

3.3. Choosing J

In this section, we present a method for choosing J that leads to λ0
1(x) 6= Re

(
λα

1(x)
)

to
ensure the acceleration based on the equality conditions in Theorems 3 and 4. Combining
these theorems, we obtain the following criterion:

Remark 2. Given a point x, λ0
1(x) 6= Re

(
λα

1(x)
)

holds if either the following conditions are
satisfied: (i) when V0

1 = {v}, Jv 6= 0 is satisfied. (ii) when |V0
1 | > 1, Jv 6= 0 holds for

any v ∈ V0
1 , and for any v, v′ ∈ V0

1 , λ0
1αJv = (Im

(
λα

1
)
)v′ and λ0

1αJv′ = −(Im
(
λα

1
)
)v are

not satisfied.

The first condition (i) is easily satisfied if we choose J such that KerJ = {0}. On the
other hand, the second condition (ii) is difficult to verify since H and its eigenvalues
and eigenvectors generally depend on the current position of Xt. Instead of evaluating
eigenvalues and eigenvectors of H and H′ directly, we use the random matrix property
shown in the next theorem.
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Theorem 5. Suppose the upper triangular entries of J follow a probability distribution that is
absolutely continuous with respect to the Lebesgue measure. If KerJ = {0} is satisfied, then given
a point x ∈ Rd, λ0

1(x) 6= Re
(
λα

1(x)
)

holds with probability 1.

The proof is given in Appendix G.1. From this theorem, we simply generate J from
some probability distribution, such as the Gaussian distribution. Then, we check whether
KerJ = {0} holds. If KerJ = {0} does not hold, we generate a random matrix J again.

The above theorem is valid only at a given evaluation point x. We can extend the above
theorem to all the points over the path of the discretized dynamics (see Appendix G.3).
With this procedure, we can theoretically ensure that acceleration occurs with probability
one for discretized dynamics.

3.4. Qualitative Evaluation of The Acceleration

So far, we have discussed skew acceleration qualitatively but not quantitatively. Al-
though acceleration’s quantitative evaluation is critical for practical purposes, to the best
of our knowledge, no existing work has addressed it. In this section, we present a for-
mula that quantitatively assesses skew acceleration by analyzing the eigenvalues of the
Hessian matrix.

Theorem 6. With the identical notation as in Theorem 3, for all x, we have

Re(λα
1(x)) = λ0

1(x) + α2
d

∑
k=2

λ0
1(x)λ0

k(x)|v0
k(x)Jv0

1(x)|2
λ0

k(x)− λ0
1(x)

+O(α3). (22)

In particular, at saddle point x∗, we have

λα
1(x∗) = λ0

1(x∗) + α2
d

∑
k=2

λ0
1(x∗)λ0

k(x∗)|v0
k(x∗)Jv0

1(x∗)|2
λ0

k(x∗)− λ0
1(x∗)

+O(α3). (23)

The proofs are shown in Appendix H. When focusing on Equation (22), if U(x) is a
strongly convex function, since for all k > 1, λk(x) > λ1(x) > 0 holds and the second
term in Equation (22) is positive. From this, Re

(
λα

1(x)
)
> λ0

1(x) holds. A similar relation
holds for Re(λα

d(x)). In Equation (23), λα
1(x∗) < λ0

1(x∗) < 0 holds. Thus, the changes of
the Poincaré constants are proportional to α2. With these formulas, we can quantitatively
evaluate the acceleration. We present numerical experiments to confirm our theoretical
findings in Section 6.1.

4. Practical Algorithm for Skew Acceleration

In this section, we discuss skew acceleration in more practical settings compared to
Section 3. First, we discuss the memory issue for storing J and the discretization of SDE and
the stochastic gradient, which are widely used techniques in Bayesian inference. Finally,
we present a practical algorithm for skew acceleration.

4.1. Memory Issue of Skew Acceleration and Ensemble Sampling

For d-dimensional Bayesian models, we need O(d2) memory space to store skew
matrices Js, and this is difficult for high-dimensional models. Instead of storing J, we can
randomly generate Js at each time step following Theorem 5. However, we experimen-
tally confirmed that using different Js at each step does not accelerate the convergence
(see Section 6). Thus, we need to use a fixed J during the iterations.

As discussed below, we found that the previously proposed accelerated parallel
sampling [18] can be a practical algorithm to resolve this memory issue. In that method,
we simultaneously updated N samples of the model’s parameters with correlation. In such
a parallel sampling scheme, a correlation exists among multiple Markov chains, it is
more efficient than a naive parallel-chain MCMC, where the samples are independent.
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We express the n-th sample at time t as X(n)
t ∈ Rd and the joint state of all samples at

time t as X⊗N
t := (X(1)

t , . . . , X(N)
t )> ∈ RdN . We express the joint stationary measure as

π⊗N := π ⊗ · · · ⊗ π(x⊗N) ∝ e−β ∑N
i=1 U(x(i)). We express the sum of the potential function

as U⊗N := ∑N
i=1 U(x(i)). We then consider the following dynamics:

dX⊗N
t =−(IdN + αJ)∇U⊗N(X⊗N

t )dt+
√

2β−1dwt, (24)

∇U⊗N(X⊗N
t ) :=

(
∇U(X(1)

t ), . . . ,∇U(X(N)
t )

)>
. (25)

We call this dynamics skew parallel LD (S-PLD). N-independent parallel LD (PLD) is
coupled with the skew matrix. Since each chain in PLD is independent of the other,
the Poincaré constant of PLD is also m0. Ref. [18] argued that the Poincaré constant of
S-PLD, m(α, N), satisfies m(α, N) ≥ m0. This means S-PLD shows faster convergence
than PLD. As discussed in Section 3.2, these Poincaré constants are characterized by the
smallest eigenvalue of the Hessian matrix ∇2U⊗N(x⊗N) and (IdN + αJ)∇2U⊗N(x⊗N)
where x⊗N ∈ RdN . We denote these smallest eigenvalues as λ0

1(x⊗N) and Reλα
1(x⊗N).

As discussed in Section 3.2, acceleration occurs if λ0
1(x⊗N) 6= Reλα

1(x⊗N) is satisfied.
In [18], they failed to specify the choice of J whose naive construction of J requires

O(d2N2) memory cost. To reduce the memory cost, we propose the following skew matrix:

J := J0 ⊗ Id, (26)

where J0 is a N × N skew matrix and ⊗ is a Kronecker product. We then have the follow-
ing lemma:

Lemma 1. If J0 is generated based on Theorem 5 and KerJ0 = {0} is satisfied, then given a
point x⊗N , J does not satisfy the equality condition in Theorems 3,4, which means λ0

1(x⊗N) 6=
Reλα

1(x⊗N) with probability 1.

See Appendix G.2 for the proof. Thus, from this lemma, we only need to prepare and
store J0, which requires O(N2) memory, which does not depend on d. In practical settings,
this is a significant reduction of the memory size since the number of parallel chains is
smaller than the dimension of models. Please note that we can ensure the acceleration with
this J.

Lemma 2. Under Assumptions 1–5, assume J satisfies the condition of Lemma 1. Then S-PLD shows

χ2(µα,⊗N
t ‖π⊗N) ≤ e−

2m(α,N)
β t

χ2(µ⊗N
0 ‖π⊗N), (27)

where µα,⊗N
t is the measure at time t induced by S-PLD, and µ⊗N

0 is the initial measure defined as
the product measure of µ0.

See Appendix I.1 for the proofs. Thus, combined with Lemma 2, S-PLD converges
faster than PLD. We also considered the ensemble version of ULD (parallel ULD (PULD))
and its skew accelerated version:

dX⊗N
t = Σ−1V⊗N

t dt + α1 J1∇U⊗N(X⊗N
t )dt,

dV⊗N
t = −∇U⊗N(X⊗N

t )dt− γ(Σ−1 + α2 J2)V⊗N
t dt +

√
2γβ−1dwt,

(28)

where J1 and J2 ∈ RdN×dN are real-valued skew-symmetric matrices, and α1 and α2 ∈ R+

are positive constants and V⊗N
t =

(
V(1)

t , . . . , V(N)
t

)>
∈ RdN. We refer to this dynamics as

skew PULD (S-PULD) whose faster convergence can be assured similar to Lemma 2 as
shown in Appendix I.2.
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4.2. Discussion of the Discretization of SDE and Stochastic Gradient and Practical Algorithm

In this section, we further consider practical settings for S-PLD and S-PULD. We dis-
cretize these continuous dynamics, e.g., by the Euler-Maruyama method, and approximate
the gradient by the stochastic gradient. Although introducing skew matrices accelerates
the convergence of continuous dynamics, it simultaneously increases the discretization
and stochastic gradient error, resulting in a trade-off. We present a practical algorithm that
controls this trade-off.

4.2.1. Trade-Off Caused by Discretization and Stochastic Gradient

We consider the following discretization and stochastic gradient for S-PLD and S-PULD:

X⊗N
k+1 = X⊗N

k − h(IdN + αJ)∇Û⊗N(X⊗N
k ) +

√
2hβ−1εk, (29)

and

X⊗N
k+1 = X⊗N

k + Σ−1V⊗N
k h + αJ∇Û⊗N(X⊗N

k )h

V⊗N
k+1 = V⊗N

k −∇Û⊗N(X⊗N
k )h−γΣ−1V⊗N

k h+
√

2γβ−1hεk,
(30)

where εk ∈ RdN is a standard Gaussian random vector. ∇Û⊗N(X⊗N) is an unbiased
estimator of the gradient ∇U⊗N(X⊗N). We refer to Equation (29) as skew-SGLD and
Equation (30) as skew-SGHMC. For skew-SGHMC, we dropped J2 of S-PULD to decrease
the parameters, shown in Appendix B. Please note that skew-SGLD is the identical as the
previous dynamics [18]. We introduce an assumption about the stochastic gradient:

Assumption 7. (Stochastic gradient) There exists a constant δ ∈ [0, 1) such that

E[‖∇Û(x)−∇U(x)‖2] ≤ 2δ
(

M2‖x‖2 + B2
)

. (31)

Given a test function f with L f lipschitzness, we approximate
∫

f dπ by skew-SGLD

or skew-SGHMC, with estimator 1
N ∑N

n=1 f (X(n)
k ). The bias of skew-SGLD is upper-

bounded as

Theorem 7. Under Assumptions 1–7, for any k ∈ N and any h ∈ (0, 1 ∧ m
4M2 ) obeying kh ≥ 1

and βm ≥ 2, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f (C1(α)kh︸ ︷︷ ︸
(i)

+C2e−β−1m(α,N)kh︸ ︷︷ ︸
(ii)

) (32)

and C1 and C2 depends on the constants of Assumptions 1–7, for the details see Appendix J.

We present a tighter bias bound in Section 4.3 under a stronger assumption. We can
show a similar upper bound for the skew-SGHMC using the same proof strategy. This bound
resembles of a previous one [18]; ours shows improved dependency on kh. The previous
results of [18] are also limited to LD, not including skew-SGHMC.

Please note that (i) corresponds to the discretization and stochastic gradient error and
(ii) corresponds to the convergence behavior of S-PLD, which is continuous dynamics.
Since C1(α) ≥ C1(α = 0), skew acceleration increases the discretization and stochastic
gradient error. On the other hand, since m(α, N) ≥ m0, the convergence of the continuous
dynamics is accelerated. Thus, skew acceleration causes a trade-off. When α is suffi-
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ciently small, we derive the explicit dependency of α for this trade-off from an asymptotic
expansion. Using the quantitative evaluation of skew acceleration in Theorem 6, we obtain∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ (d1α + d2α2)kh︸ ︷︷ ︸
(i)

− α2d0e−β−1m0kh︸ ︷︷ ︸
(ii)

+O(α3) + const, (33)

where d0 to d2 are positive constants obtained by the asymptotic expansion. See Appendix K
for the details. In the above expression, (i) and (ii) correspond to (i) and (ii) of Equation (32).
Thus, by choosing appropriate α, we can control the trade-off.

4.2.2. Practical Algorithm Controlling the Trade-Off

Since calculating the optimal α that minimizes Equation (33) at each step is com-
putationally demanding, we adaptively tune the value of α by measuring the acceler-
ation with kernelized Stein discrepancy (KSD) [22]. Our idea is to update samples un-
der different α and α + η, and compare KSD between the stationary and empirical dis-
tributions of these different interaction strengths. Here, η ∈ R+ is a small increment of
α. We denote the samples at the (k + 1)th step, which is obtained by Equation (29) as
X⊗N

k+1,α := X⊗N
k,α − h(IdN + αJ)∇Û⊗N(X⊗N

k,α ) +
√

2hβ−1εk, (or (30) as X⊗N
k+1,α := X⊗N

k +

Σ−1V⊗N
k h + αJ∇Û⊗N(X⊗N

k )h). We denote the samples, which are obtained by replac-
ing the above α by α + η, as X⊗N

k+1,α+η . We denote the KSD between the measure of X⊗N
k+1,α

and stationary measure π as KSD(k + 1, α) and estimate the differences of empirical KSD:

∆ := ˆKSD(k + 1, α)− ˆKSD(k + 1, α + η), (34)

where KSD is estimated by

ˆKSD(k, α) =
1

N(N − 1)

N

∑
i=1

uq(X(i)
k,α, X(j)

k,α), (35)

uq(x, x′) := ∇x log π(x)>l(x, x′)∇x log π(x′) +∇x log π(x)>∇x′ l(x, x′)

+∇xl(x, x′)>∇x log π + Tr∇x,x′ l(x, x′), (36)

where l denotes a kernel and we use an RBF kernel. If ∆ > 0, which indicates that the
empirical distribution of X⊗N

k+1,α+η is closer to the stationary distribution than that of X⊗N
k+1,α.

Thus, we should increase the interaction strength from α to α+ η. If ∆ < 0, we decrease it to
α− η. We also update η to cη where c ∈ (0, 1]. The overall process is shown in Algorithm 1.
Detailed discussions of the algorithm including how to select α0, η0, and c are shown in
Appendix L.

Algorithm 1 Tuning α

Input: X⊗N
k , ηk, αk, c

Output: αk+1, ηk+1
1: Calculate X⊗N

k+1,αk
and X⊗N

k+1,αk+ηk
.

2: Calculate ∆ := ˆKSD(k + 1, αk)− ˆKSD(k + 1, αk + ηk)
3: if ∆ > 0 then
4: Update αk+1 = αk + ηk
5: Update ηk+1 = ηk
6: else
7: Update αk+1 = |αk − ηk|
8: Update ηk+1 = cηk
9: end if

Finally, we present Algorithm 2, which describes the whole process. We update the
value of α once every k′ step. Please note that its computational cost is not much larger
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than that of Equation (30). We only calculate the eigenvalues of J once, which requires
O(N3). The calculation of different KSDs is computationally inexpensive since we can
re-use the gradient, which is the most computationally demanding part.

Algorithm 2 Proposed algorithm

Input: X⊗N
0 , h, α0, η, k′, K, c, (V⊗N

0 , γ, Σ−1)

Output: X⊗N
K

1: Make a N × N random matrix J0 and check kerJ0 = {0}
2: Set J = J0 ⊗ Id
3: for k = 0 to K do
4: if b k

k′ c = 0 then
5: Update α by Algorithm 1
6: end if
7: Update X⊗N

k by Equation (29) (for skew-SGLD)
8: (Update (X⊗N

k , V⊗N
k ) by Equation (30) for skew-SGHMC)

9: end for

4.3. Refined Analysis for the Bias of Skew-SGLD

When using a constant step size for skew-SGLD, the bound in Theorem 7 is meaning-
less since the first term of Equation (32) will diverge. Here, following [23], we present a
tighter bound for the bias of skew-SGLD under a stronger assumption.

Theorem 8. Under Assumptions 1–7, for any k ∈ N and any h ∈ (0, 1∧ λ(α,N)

4
√

2M2 ∧ m
4M2 ) obeying

kh ≥ 1 and βm ≥ 2, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(µ0|π) +

C3(α)

λ(α, N)
, (37)

where

λ(α, N) :=
(

1
(1 + m(α, N)−1βC(m0))2πe2 +

3
2

m(α, N)−1
)−1

(38)

and constants C3(α) and C(m0) depend on the constants of Assumptions 1–7. Moreover, λ(α, N)
satisfies λ(α, N) ≥ λ(α = 0, N). For the details, see Appendix M.

Proof is shown in Appendix M. Please note that even if we use a constant step size
for skew-SGLD, the bound in Theorem 8 will not diverge. Here we need the stronger
assumption about a step size compared to Theorem 7. From Equation (37), the convergence
behavior is characterized by λ(α, N) and the bias bound become smaller when λ(α, N)
become larger. From the definition of λ(α, N), the larger m(α, N) is, the larger λ(α, N) we
obtain. Thus, as we had seen so far, introducing the skew matrices leads to the larger
Poincaré constant, and thus, this leads to larger λ(α, N).

Previous work [18] clarified that if α is sufficiently small, introducing skew ma-
trices improves the Poincaré constant by a constant factor, which means that we have
m(α, N)−m0 ≈ O(α2), where O(α2) depends on the eigenvector and eigenvalues of the
generator L. On the other hand, from Theorem 8, for any ξ > 0, to achieve the bias smaller

than ξ, it suffice to run skew-SGLD at least for k ≥ 2
λ(α,N)h ln

L f
ξ

√
KL(µ0|π)
2λ(α,N)

iterations us-

ing the appropriate step size h and under the assumption that δ and α are small enough
(see Appendix M.2 for details). Combined with these observations, introducing skew
matrices into SGLD improves the computational complexity for a constant order. Our
numerical experiments show that even constant improvement results in faster convergence
in practical Bayesian models.
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5. Related Work

In this section, we discuss the relationship between our method and other sam-
pling methods.

5.1. Relation to Non-Reversible Methods

As we discussed in Section 1, our work extends the existing analysis of non-reversible
dynamics [8,18] and presents a practical algorithm. Compared to those previous works,
we focus on the practical setting of Bayesian sampling and derive the explicit condition
about J for acceleration. We also derived a formula to quantitatively evaluate skew accel-
eration based on the asymptotic expansion of the eigenvalues of the perturbed Hessian
matrix. A previous work [24], which derived the optimal skew matrices when the target
distribution is Gaussian, requires O(d3) computational cost to derive optimal skew matri-
ces, and it is unclear whether it works for non-convex potential functions. On the other
hand, our construction method for skew matrices is simple, computationally cheap, and
can be applied to general Bayesian models.

Our work analyzes skew acceleration for ULD, which is more effective than LD in
practical problems. Another work [8,18] only analyzed skew acceleration for LD. A previ-
ous work [17] combined a non-reversible drift term with ULD. Unlike our method, this
work’s purpose was to reduce the asymptotic variance of the expectation of a test function
and is mainly focusing on sampling from Gaussian distribution.

To the best of our knowledge, our work is the first to focus on the memory issue of
skew acceleration and develop a memory-efficient skew matrix for ensemble sampling.
Our work also presents an algorithm that controls the trade-off for the first time. Another
work [18] identified the trade-off and handled it by cross-validation, which is computation-
ally inefficient, unfortunately.

Finally, we point out an interesting connection between our skew-SGHMC and the
magnetic HMC (M-HMC) [25]. M-HMC accelerates HMC’s mixing time by introducing a
“magnetic” term into the Hamiltonian. That magnetic term is expressed by special skew
matrices. Although a previous work [25] argued that M-HMC is numerically superior to a
standard HMC, its theoretical property remains unclear. Thus, our work can analyze the
theoretical behavior of magnetic HMC.

5.2. Relation to Ensemble Methods

Our proposed algorithm is based on ensemble sampling [26]. Ensemble sampling,
in which multiple samples are simultaneously updated with interaction, has been attracting
attention numerically and theoretically because of improvements in memory size, compu-
tational power, and parallel processing computation schemes [26]. There are successful,
widely used ensemble methods, including SVGD [27] and SPOS [28], with which we com-
pare our proposed method numerically in Section 6. Although both show numerically
good performance, it is unclear how the interaction term theoretically accelerates the
convergence since they are formulated as a McKean–Vlasov process, which is non-linear
dynamics, complicating establishing a finite sample convergence rate. Our algorithm is an
extension of another work [18], where the interaction was composed of a skew-acceleration
term and can be rigorously analyzed. Compared to that previous work [18], we analyzed
skew acceleration, focused on the Hessian matrix, and developed practical algorithms,
as discussed in Section 4.2, and derived the explicit condition when acceleration occurs,
which was unclear [18].

Another difference among SPOS, SVGD, and [18] is that they use first-order methods;
our approach uses the second-order method. Little work has been done on ensemble
sampling for second-order dynamics. Recently a second-order ensemble method was pro-
posed [29], based on gradient flow analysis. Although its method showed good numerical
performance, its theoretical property for finite samples remains unclear since it proposed a
scheme as a finite sample approximation of the gradient flow. In contrast, our proposed
method is a valid sampling scheme with a non-asymptotic guarantee.
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6. Numerical Experiments

The purpose of our numerical experiments is to confirm the acceleration of our
algorithm proposed in Section 4 in various commonly used Bayesian models including
Gaussian distribution (toy data), latent Dirichlet allocation (LDA), and Bayesian neural
net regression and classification (BNN). We compared our algorithm’s performance with
other ensemble sampling methods: SVGD, SPOS, standard SGLD, and SGHMC. In all
the experiments, the values and the error bars are the mean and the standard deviation
of repeated trials. For all the experiments we set γ = 1 and Σ−1 = 300 for SGHMC
and Skew-SGHMC. As for the hyperparameters of our proposed algorithm, the selection
criterion is discussed in Appendix L.

6.1. Toy Data Experiment

The target distribution is the multivariate Gaussian distribution, π = N(µ, Ω) where
we generated Ω−1 = A>A and each element of A ∈ R2d×d is drawn from the standard
Gaussian distribution. The dimension of the target distribution is d = 50, we approximate
by 20 samples using the proposed ensemble methods. We tested these toy data because
the LD for this target distribution is known as the Ornstein–Uhlenbeck process, and
its theoretical properties have been studied extensively e.g., [30]. Thus, by studying
the convergence behavior of these toy data, we can understand our proposed method
more clearly.

First, we confirmed how the skew-symmetric matrix affects the eigenvalues of the
Hessian matrix, as discussed in Section 3, where we only showed the asymptotic expansion
for the smallest real part of the eigenvalues and saddle point. Here we can show a similar
expansion for the largest real part:

Re(λα
dN) = λ0

dN + α2
dN−1

∑
k=1

λdN0λ0
k |v0

k Jv0
dN |2

λ0
k − λ0

dN
+O(α3). (39)

Re
(
λα

dN
)
≤ λα

dN holds.
Then we observed how the largest and smallest real parts of the eigenvalues of

(I + αJ)Ω−1 depend on α. The results are shown in Figure 2, where we averaged 10 trials
over a randomly made J with fixed A. The upper-left, upper-right, and lower figures
show Re(λ1(α)), Re(λdN(α)), and Re(λ1(α))/Re(λdN(α)). These behaviors are consistent
with Theorem 3. When α is small, its behavior is close to the quadratic function proved in
Theorem 3.

Next, we observed the convergence behavior of skew-SGLD and skew-SGHMC. We
measured the convergence by maximum mean discrepancy (MMD) [31] between the
empirical and stationary distributions. For MMD, we used 2000 samples for the target
distribution, and we used the Gaussian kernel whose bandwidth is set to the median
distance of these 2000 samples. We used gradient descent (GD), with step size h = 1× 10−4.
The results are shown in Figure 3. The proposed method shows faster convergence than
naive parallel sampling, which is consistent with Table 2.
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Figure 2. Eigenvalue changes (averaged over ten trials).
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Figure 3. Convergence behavior of toy data in MMD (averaged over ten trials).

6.2. LDA Experiment

We tested with an LDA model using the ICML dataset [32] following the same setting
as [33]. We used 20 samples for all the methods. Minibatch size is 100. We used step size
h = 5× 10−4. First, we confirmed the effectiveness of our proposed Algorithm 1, which
adaptively tunes α values. For that purpose, we compared the final performance obtained
by our methods with a previous method [18], in which α is selected by cross-validation
(CV). Here instead of CV, we just fixed α during the sampling and refer to it as fixed
α. We also tested the case when J is generated randomly at each step with fixed α, as
discussed in Section 4.1. We refer to it as random J. The results are shown in Figure 4 where
skew-SGLD was used. We found that our method showed competitive performance with
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the best performance of fixed α. For the computational cost, we used k′ = 2 in Algorithm 2,
and our method needed twice the wall clock time than each fixed α. This means that
our algorithm greatly reduces the total computational time since we tried more than two
αs in the fixed α for CV. We also found that since using different Js at each step did not
accelerate the performance, we need to store and fix J during the sampling for acceleration.
Next, we compared our method with other ensemble sampling schemes and observed
the convergence speed. The result is shown in Figure 5. Skew-SGLD and skew-SGHMC
outperformed SGLD and SGHMC, which is consistent with our theory.
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Figure 4. Final performances of LDA under different values of α (averaged over ten trials).
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Figure 5. LDA experiments (Averaged over 10 trials).

6.3. BNN Regression and Classification

We tested with the BNN regression task using the UCI dataset [34], following a
previous setting Liu and Wang [27]. We used one hidden layer neural network model with
ReLU activation and 100 hidden units. We used 10 samples for all the methods. We used the
minibatch size 100. We used step size h = 5× 10−5. The results are shown in Tables 1 and 2.
We also tested on BNN classification task using the MNIST dataset. The result is shown
in Figure 6. We used one hidden layer neural network model with ReLU activation and
100 hidden units. Batchsize is 500 and we set step size h = 5× 10−5. Our proposed methods
outperformed other ensemble methods. Please note that skew-SGHMC and skew-SGLD
consistently outperformed SGHMC and SGLD.
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Table 1. Benchmark results on test RMSE for regression task.

Dataset
Avg. Test RMSE

SVGD SPOS SGLD Skew-SGLD SGHMC Skew-SGHMC

Concrete 5.709 ± 0.040 5.239 ± 0.199 5.009 ± 0.091 4.973 ± 0.057 4.949 ± 0.144 4.790 ± 0.081
Kin8nm 0.0731 ± 0.0006 0.0688 ± 0.0003 0.0693 ± 0.0006 0.0689 ± 0.0005 0.0687 ± 0.0001 0.0683 ± 0.0003
Energy 0.520 ± 0.060 0.456 ± 0.030 0.428 ± 0.045 0.412 ± 0.045 0.406 ± 0.019 0.403 ± 0.008

Bostonhousing 3.306 ± 0.005 3.107 ± 0.173 2.948 ± 0.084 2.930 ± 0.095 3.053 ± 0.093 2.986 ± 0.143
Winequality 0.619 ± 0.001 0.618 ± 0.007 0.641 ± 0.003 0.634 ± 0.004 0.614 ± 0.004 0.613 ± 0.004
PowerPlant 4.219 ± 0.012 4.160 ± 0.009 4.129 ± 0.002 4.118 ± 0.006 4.112 ± 0.009 4.105 ± 0.008

Yacht 0.475 ± 0.049 0.467 ± 0.110 0.464 ± 0.058 0.442 ± 0.046 0.464 ± 0.078 0.432 ± 0.051

Table 2. Benchmark results on test negative log likelihood for regression task.

Dataset
Avg. Test Negative Log Likelihood

SVGD SPOS SGLD Skew-SGLD SGHMC Skew-SGHMC

Concrete −3.157 ± 0.008 −3.124 ± 0.025 −3.052 ± 0.009 −3.049 ± 0.012 −3.046 ± 0.025 −3.033 ± 0.021
Kin8nm 1.153 ± 0.0084 1.212 ± 0.008 1.223 ± 0.002 1.223 ± 0.005 1.230 ± 0.0015 1.235 ± 0.0025
Energy −0.816 ± 0.102 −0.976 ± 0.079 −0.867 ± 0.056 −0.845 ± 0.021 −0.843 ± 0.045 −0.844 ± 0.041

Bostonhousing −2.98 ± 0.000 −2.644 ± 0.027 −2.548 ± 0.016 −2.539 ± 0.002 −2.574 ± 0.019 −2.561 ± 0.017
Winequality −1.012 ± 0.000 −0.959 ± 0.007 −0.976 ± 0.006 −0.968 ± 0.005 −0.941 ± 0.007 −0.938 ± 0.005
PowerPlant −2.871 ± 0.004 −2.850 ± 0.004 −2.844 ± 0.002 −2.842 ± 0.001 −2.838 ± 0.004 −2.835 ± 0.003

Yacht −1.184 ± 0.06 −1.372 ± 0.07 −1.077 ± 0.066 −1.078 ± 0.030 −1.083 ± 0.030 −1.079 ± 0.051
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Figure 6. MNIST classification (Averaged over ten trials).

7. Conclusions

We studied skew acceleration for LD and ULD from practical viewpoints and con-
cluded that the improved eigenvalues of the perturbed Hessian matrix caused acceleration
and derived the explicit condition for acceleration. We described a novel ensemble sam-
pling method, which couples multiple SGLD or SGHMC with memory-efficient skew
matrices. We also proposed a practical algorithm that controls the trade-off of faster con-
vergence and larger discretization and stochastic gradient error and numerically confirmed
the effectiveness of our proposed algorithm.
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Appendix A. Additional Backgrounds

We introduce additional backgrounds which are used in our Proof.

Appendix A.1. Wasserstein Distance and Kullback–Leibler Divergence

In this paper, we use the Wasserstein distance. Let us define the Wasserstein dis-
tance. Let (E, d) be a metric space (appropriate space such as Polish space) with σ field
A, where d(·, ·) is A×A-measurable. Let µ, ν are probability measures on E, and p ≥ 1.
The Wasserstein distance of order p with cost function d between µ and ν is defined as

Wd
p (µ, ν) = inf

π∈Π(µ,ν)

(∫ ∫
d(x, y)pdπ(x, y)

)1/p
, (A1)

where Π(µ, ν) is the set of all joint probability measures on E× E with marginals µ and ν.
In this paper, we work on the space Rd. As for the distance, we use the Euclidean distance,
‖ · ‖. For simplicity, we express the p-Wasserstein distance with the Euclidean distance as
Wp. The various properties of Wasserstein distance are summarized in [35]. We define the
Kullback–Leibler (KL) divergence as

KL(ν‖µ) =
{∫

log dν
dµ dν, ν� µ,

+∞, otherwise.
(A2)

http://archive.ics.uci.edu/ml
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Appendix A.2. Markov Diffusion and Generator

Here we introduce the additional explanation about the generator of the Markov
diffusion process. Given an SDE,

dXt = −∇U(Xt)dt +
√

2β−1dw(t), (A3)

and we denote the corresponding Markov semigroup as P = {Pt}t>0 and define the Kol-
mogorov operator as Ps which is defined as Ps f (Xt) = E[ f (Xt+s)|X(t)], where f : Rd → R
is some bounded test function in L2(µ). A property Ps+t = Ps ◦ Pt is called Markov property.
A probability measure π is the stationary distribution when it satisfies for all measurable
bounded function f and t,

∫
Rd Pt f dπ =

∫
Rd f dπ.

We denote the infinitesimal generator of the associated Markov group as L and we
call it a generator for simplicity. The linearity of the operators of Pt with the semigroup
property indicates that L is the derivative of Pt as

1
h
(Pt+h − Pt) = Pt

1
h
(Ph − Id) =

1
h
(Ph − Id)Pt, (A4)

where Id is the identity map. In addition, taking h→ 0, we have ∂Pt = LPt = PtL. From
the Hille–Yoshida theory [19], there exists a dense linear subspace of L2(π) on which
L exists. We refer it as D(L). If the Markov semigroup is associated with the SDE of
Equation (A3), the generator can be written as

L f (Xt) : = lim
h→0+

E( f (Xt+h)|Xt)− f (Xt)

h
=
(
−∇U(Xt) · ∇+ β−1∆

)
f (Xt), (A5)

where ∆ is the Laplacian in the standard Euclidean space. The generator satisfies
L1 = 0,

∫
Rd L f dπ = 0.

Appendix A.3. Poincaré Inequality

We use the Poincaré inequality to measure the speed of convergence to the stationary
distribution. In this section, we summarize definitions and useful properties of them and
see [19] for more details. We define the Dirichlet form E( f ) for all bounded functions
f ∈ D(L) where D(L) denotes the domain of L as

E( f ) := −
∫
Rd

fL f dπ. (A6)

E( f ) > 0 is satisfied. By the partial integration, we have E( f ) = −
∫
Rd fL f dπ =

1
β

∫
Rd ‖∇ f ‖2dπ. We define a Dirichlet domain, D(E), which is the set of functions

f ∈ L2(π) and satisfies E( f ) < ∞.
We say that π with L satisfies a Poincaré inequality with a positive constant c if for any

f ∈ D(E), π with L satisfies,

∫
f 2dπ −

(∫
f dπ

)2
≤ cE( f ). (A7)

This constant c is closely related to a spectral gap. If the smallest eigenvalue of L, λ, is
greater than 0, then it is called the spectral gap. If the spectral gap λ > 0 exists, then it is
written as

λ := inf f∈D(E)

{ E( f )∫
f 2dπ

: f 6= 0,
∫

f dπ = 0
}

. (A8)
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From this, a constant c which satisfies c ≥ 1/λ, can also satisfy the Poincaré inequality.
To check the existence of the spectral gap, one approach is to use the Lyapunov function,
which is developed by Bakry et al. [36].

We can also express the Poincaré inequality via chi divergence. Let us define the χ2

divergence for µ� π as

χ2(µ‖π) :=
∥∥∥∥ dµ

dπ
− 1
∥∥∥∥2

L2
π

=
∫
Rd

∣∣∣∣ dµ

dπ
− 1
∣∣∣∣2dπ. (A9)

Then, we express the Poincaré inequality with a constant c for all µ� π as

χ2(µ‖π) ≤ c E
(√

dµ

dπ

)
. (A10)

We obtain the following exponential convergence results from the above functional
inequalities for measures.

Theorem A1. (Exponential convergence in the variance, Theorem 4.2.5 in [19]) When π satisfies
the Poincaré inequality with a constant c, it implies the exponential convergence in the variance
with a rate 2/c, i.e., for every bounded function f : Rd → R,

Varπ(Pt f ) ≤ e−2t/cVarπ( f ), (A11)

where Varπ( f ) :=
∫
Rd f 2dπ −

(∫
Rd f dπ

)2.

We also introduce the important property of Poincaré inequality as for the product
measures. These relations play important roles in our analysis.

Theorem A2. (Stability under the product, Proposition 4.3.1 in [19]) If µ1 and µ2 on Rd satisfy
the Poincaré inequalities with a constant c1 and c2, then the product µ1 ⊗ µ2 on Rd ⊗Rd satisfies
the Poincaré inequality with the constant max(c1, c2).

Appendix B. Generator of the Underdamped Langevin Dynamics (ULD)

Following [10], we define the infinitesimal generator of the ULD as

L f (x, v) := −(γv +∇U(x))∇v f (x, v) + γβ−1∆ f (x, v) + v∇x f (x, v). (A12)

Then, we define the generator of S-ULD as

L f (x, v) := −(γv +∇U(x))∇v f (x, v) + γβ−1∆ f (x, v)

+ v∇x f (x, v) + α1 J1∇U(x)∇x f (x, v) + α1 J2Σ−1v∇v f (x, v), (A13)

where the second line corresponds to the interaction terms. Then it is easily to confirm∫
R2d L f (x, v)dπ̃ = 0, where π̃ := π ⊗N (0, Σ) ∝ e−βU(x)− 1

2 Σ−1‖v‖2
. Thus, the stationary

distribution of S-ULD is π̃. We can prove this by simply using the partial integral and using
the property of the skew-symmetric matrix. Thus, the stationary distribution of S-ULD
is π̃.

We consider other combinations the skew matrices with ULD. For example, we can
consider the following more general combination;

dXt = Σ−1Vtdt + α1 J1∇U(Xt)dt + α2Σ−1 J2Vtdt

dVt = −∇U(Xt)dt− γΣ−1Vtdt + α3 J3Vtdt + α4 J4∇U(Xt)dt +
√

2γβ−1dwt,
(A14)



Entropy 2021, 23, 993 21 of 45

compared to S-ULD, there are new two terms are included. We can also derive the in-
finitesimal generator of this Markov process. We express it as L̃. Then we calculate the
infinitesimal change of the expectation of f∫

R2d
L̃ f (x, v)dπ̃ 6= 0, (A15)

which suggests that the stationary distribution of Equation (A14) is different form π̃.
It is widely known that underdamped Langevin dynamics converges to (overdamped)

Langevin dynamics. Here we observe that S-ULD converges to Skew-LD in [18]. The limit-
ing procedure is widely known, for example, see [17,37,38]. We cite Proposition 1 in [17];
given a stochastic process

dXt = Σ−1Vtdt + α1 J1∇U(Xt)dt,

dVt = −∇U(Xt)dt− γΣ−1Vtdt− α2Σ−1 J2Vtdt +
√

2γdwt,
(A16)

and we rescale it by introducing ε which expresses the small mass limit as

dXt =
1
ε

Σ−1Vtdt + α1 J1∇U(Xt)dt,

dVt = −
1
ε
∇U(Xt)dt− 1

ε2 γΣ−1Vtdt− 1
ε

2
α2Σ−1 J2Vtdt +

1
ε

√
2γdwt,

(A17)

and by taking the limit ε→ 0, the dynamics converges to

dXt = −(α2 J2 + γ)−1∇U(Xt)dt− α1 J1∇U(Xt) + (α2 J2 + γ)−1
√

2γdwt. (A18)

See Proposition 1 in [17], for the precise statements. Please note that the term related J2
works as preconditioning. Thus, if we set α2 J2 = 0, the obtained dynamics are equivalent to
the continuous dynamics of skew-SGLD. Thus, our skew-SGHMC is the natural extension
of skew-SGLD.

Appendix C. Proof of Theorem 1

Appendix C.1. Proof for S-LD

First, under Asuumptions 1–5, LD has a spectral gap, and its Poincaré constant is
upper bounded as

1
m0
≤ 2C(d + bβ)

mβ
exp

(
2
m
(M + B)(bβ + d) + β(A + B)

)
+

1
mβ(d + bβ)

. (A19)

and this is derived in [2].
Next, we introduce the generator of S-LD

Lα f (x) =
(
−∇Uα(x) · ∇+ β−1∆

)
f (x),

where ∇Uα(x) := ∇U(x) + αJ∇U(x).
The proof is almost similar to [18] of Theorem 12.

Proof of Theorem 1. Since the generator Lα=0 is self-adjoint, and the suitable growth con-
dition, the spectral of Lα=0 is discrete [19]. We denote the spectrum of Lα=0 as {λk}∞

k=0 ∈ R
and corresponding normalized eigenvectors as {ek}∞

k=0, which are the real functions. We or-
der the spectrum as 0 > λ0 > λ1 > . . . . Thus, m0 = −λ0.

As for Lα, although it is not a self-adjoint operator, from Proposition 1 in Franke et al. [39],
it has discrete complex spectrums. We denote the spectrum of Lα as λ + iµ ∈ C where
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λ, µ ∈ R and corresponding normalized eigenvector as u + iv where u, v are the real
functions and then we have

Lα(u + iv) = (λ + iµ)(u + iv). (A20)

From this definition, by checking the real parts and complex parts, following relations
are derived

Lαu = λu− µv, (A21)

Lαv = λv + µu. (A22)

Due to the divergence-free drift property, for any bounded real value test func-
tion g(x), ∫

g(Lα=0 −Lα)gdπ =
∫

αgγ · ∇gdπ = −
∫

αgγ · ∇gdπ, (A23)

where we used the partial integral. This means that for any bounded real function g(x),∫
gLα=0gdπ =

∫
gLαgdπ. (A24)

(This only holds for real functions.) Then, we can evaluate the real part of the eigen-
value λ as follows,∫

uLα=0udπ +
∫

vLα=0vdπ =
∫

uLαudπ +
∫

vLαvdπ = λ

(∫
u2dπ +

∫
v2dπ

)
= λ. (A25)

Then, by expanding the eigenfunction u, v by the eigenfunction {ek},

λ =
∫

uLα=0udπ +
∫

vLα=0vdπ = ∑
k

λk

((∫
uekdπ

)2
+

(∫
vekdπ

)2
)

≤ λ0 ∑
k

((∫
uekdπ

)2
+

(∫
vekdπ

)2
)
≤ λ0. (A26)

Thus, the real part of the eigenvalue of Lα is smaller than the smallest eigenvalue of Lα.
This means that the spectral gap of Lα is larger than that of Lα=0, i.e., m(α) ≥ m0 holds.

Appendix C.2. Proof of Theorem 2 (S-ULD)

Proof of Theorem 2 . To prove the S-ULD, we use the result of [20], which characterize the
convergence of ULD via the Poincaré constant. Let us denote µ̃t as the measure induced by
ULD. Then from Theorem 1 of [20], if π with L has the Poincaré constant m0, we have

χ2(µ̃t‖π̃) ≤ 1 + ε̄

1− ε̄
e−λγtχ2(µ̃t‖π̃). (A27)

where ε̄ and λγ is given as follows.

λγ =
Λ(γ, ε̄ min(γ, γ−1))

1 + ε̄ min(γ, γ−1)
, (A28)
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where

Λ(γ, ε) =

γΣ−1 − 1

1+ m0Σ−1
β

2
− 1

2

√
(S−− − S++)2 + (S−+)2, (A29)

S−− = ελham, (A30)

S−+ = −ε(Rham + γΣ−1/2), (A31)

S++ = γΣ−1 − ε, (A32)

λham = 1−
(

1 +
m0Σ−1

β

)−1

, (A33)

ε = ε̄ min(γ, γ−1), (A34)

where ε̄ is arbitrary sufficiently small positive value such that Λ(γ, ε̄ min(γ, γ−1)) > 0 is
satisfies. As for Rham, if there exists a positive constant K, such that ∇2U ≥ −KI, then
Rham ≤

√
max{K, 2}. In our assumption, this corresponds to βM, thus

Rham ≤
√

max{βM, 2}. From the above definitions, we can see that the larger m0 is,
i.e., the larger the Poincaré constant is the faster convergence ULD shows.

This can also be confirmed numerically, see Figure A1, which shows how the Λ
changes under different m0. We set Σ−1 = 100. From the figure, the larger the Poincaré
constant is, the larger Λ becomes.

0.0 0.2 0.4 0.6 0.8 1.0

m0

0.01
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0.09

Λ

Λ(γ = 1.0, ǫ = 0.05, )

Λ(γ = 0.1, ǫ = 0.1, )

Figure A1. The convergence rate of ULD under the different Poincaré constants.

So far, we confirmed that the convergence speed of S-ULD is characterized by the
Poincaré constant of L. When we consider S-ULD, we simply add the skew matrices term
to the generator of the ULD in the proof of Proposition 1 in [20]. This means that we simply
replace the Poincaré constant from m0 to m(α) in the proof of Proposition 1 in [20]. Then,
m0 will be replaced with m(α) that indicates the faster convergence.

Appendix D. Eigenvalue and Poincaré Constant

In this section, we discuss the relation between eigenvalues of the Hessian matrix and
Poincaré constant.

Appendix D.1. Strongly Convex Potential Function

When we consider LD with m-strongly convex potential function, then the Poincaré
constant is m, this means exponential convergence with rate m (See [19] for the detail).
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We then consider the S-LD with m-strongly convex function. In this setting, by con-
sidering the synchronous coupling technique [11], we can show that the variance decays
exponentially with the rate of the smallest real part of the eigenvalue. This is because that
by preparing two S-LD (Xt, Yt) given as

dXt = −(I + αJ)∇U(Xt)dt +
√

2β−1dwt, dYt = −(I + αJ)∇U(Yt)dt +
√

2β−1dw′t. (A35)

Then we evaluate the behavior of ‖Xt − Yt‖2. From Ito lemma and considering the
synchronous coupling, we obtain

d
dt
‖Xt −Yt‖2 = −(Xt −Yt) ·

(I + αJ)
β

(∇U(Xt)−∇U(Yt)) ≤ −
2m(α)

β
‖Xt −Yt‖2, (A36)

where m(α) is the constant that satisfies m(α) ≤ Reλα
1(x) for all x, see Appendix E for

details. This means that variance decays exponentially with the rate 2m(α)
β . From the

fundamental property of the Poincaré constant (Theorem 4.2.5 in [19]), m(α) is the Poincaré
constant. Thus the imaginary part has no effect on the continuous dynamics. Thus,
the Poincaré inequality is the smallest real part of the perturbed Hessian matrix.

Appendix D.2. Non-Convex Potential Function

As we discussed in Section 3.1, [21] derived the sharper estimation for the Poincaré
constant for the non-convex potential function. It is easy to verify that their assumptions
are satisfied under our assumption 1–5. Following the main paper, we denote x1 global
minima, and x2 is the local minima which have the second smallest value in U(x). We
express the saddle point between x1 and x2 as x∗. To be more precise, the saddle point that
characterizes the Poincaré constant is known as the critical point with index one defined as

U(x∗) = inf
{

max
s∈[0,1]

U(γ(s)) : γ ∈ C([0, 1],Rd), γ(0) = x1, γ(1) = x2

}
, (A37)

and the eigenvalue of∇2U(x∗) has one negative eigenvalue and d− 1 positive eigenvalues.
We express them as λ1(x∗) < 0 < λ2(x∗) < . . . , λd(x∗).

Ref. [21] studied the Poincaré constant by decomposing the non-convex potential
focusing on attractors. By focusing on attractors, they showed that the non-convex potential
can be decomposed into the sum of approximately Gaussian distributions. They proved that
the Poincaré constant is characterized by the local Poincaré constants, these are derived
by the approximate Gaussian distribution on the attractors and their surrounding regions.
In addition, they proved that the dominant term of the Poincaré constant is specified by the
saddle points between the global minima and the point which takes the second smallest
value for U(x). From Theorem 2.12 and Corollary 2.15 in [21], the Poincaré constant is
characterized by

m−1
0 ≈

√
detH(x∗)√

Z|λ1(x∗)|detH(x1)
√

detH(x2)
eβ(U(x∗)−U(x1)−U(x2)) ∝

1
|λ1(x∗)| e

β(U(x∗)−U(x1)−U(x2)), (A38)

where Z is the normalizing constant of e−βU(x).
Next, we discuss how this estimate changes when skew matrices are applied. When

the skew matrices are introduced, from lemma A.1 in [40], at the saddle point, there exists
a unique negative real eigenvalue λα

1(x∗) < 0 for the perturbed Hessian matrix even if
(I + αJ)H is not a symmetric matrix.

Then from Proposition 5 in [8], that negative eigenvalue of the perturbed Hessian is
smaller than that of the un-perturbed Hessian matrix at the saddle point. This means that
λα

1(x∗) ≤ λ1(x∗) < 0 holds.
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Finally, from Theorem 5.1 in [41] and Theorem 2.12 in [21], this improvement of the
negative eigenvalue of the saddle point directly leads to the larger Poincaré constant.

Appendix E. Properties of a Skew-Symmetric Matrix

Here, we introduce the basic properties of the skew-symmetric matrices. Let us con-
sider assume that d× d matrix H′ = (I + αJ)H is diagonalizable. Then assume that matrix
H′ has l real eigenvalues λ1, . . . , λl and 2m complex eigenvalues, µ1 = α1 ± iβ1, . . . , µm =
αm ± iβm. Thus, d = l + 2m. We denote the corresponding eigenvectors as {vj}l

j=1 for
real eigenvalues and {wj = aj + ibj}m

j=1 for complex eigenvalues {µj}m
j=1 and {w̄j} for

corresponding conjugate eigenvalues. Then, let us define a d× d matrix V as

V = [v1, . . . , vl , a1, b1, . . . , am, bm]. (A39)

Then, we can decompose H′ into a block diagonal matrix [42];

H′V = VD (A40)

D =



λ1
. . .

λl
α1 0
0 α1

. . .
αm 0
0 αm


︸ ︷︷ ︸

:=A

+



0
. . .

0
0 β1
−β1 0

. . .
0 βm
−βm 0


︸ ︷︷ ︸

:=B

. (A41)

Thus, D := A + B. Then, from the Taylor expansion and expressing its residual by
integral, by defining H(x) := ∇2U(x) we have

(x− y)>(I + αJ)(∇U(x)−∇U(y)) = (x− y)>
(∫ 1

0
(I + αJ)H(y + τ(x− y))(x− y)dτ

)
. (A42)

Then, let us apply the Jordan canonical form here. If (I + αJ)H is diagonalizable,
and it is decomposable by the Jordan canonical form shown in Equation (A40). Then, we
can decompose (I + αJ)H as

(I + αJ)H(x∗ + τ(x(t)− x∗)) = VDV−1. (A43)

Then, we obtain

(x− y)>(I + αJ)(∇U(x)−∇U(y)) = (x− y)>
(∫ 1

0
(I + αJ)H(y + τ(x− y))(x− y)dτ

)
=

(∫ 1

0
(x− y)>V(A + B)V−1(x− y)dt

)
=

(∫ 1

0
(x− y)>VAV−1(x(t)− x∗)dt

)
≤ m(α)‖x(t)− x∗‖2. (A44)

where m(α) is the constant that satisfies m(α) ≤ min{λ1, . . . , λl , α1, . . . , αm} for all x. Thus,
the imaginary part never appears to the upper bound and we only need to focus on the
largest real part of the eigenvalues, if the matrix is diagonalizable. Next subsection describes
when the non-symmetric matrix H′ is diagonalizable by focusing on the random matrix.
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Appendix F. Proof of Theorem 3

Proof. Since the potential function is m-strongly convex, the smallest eigenvalue of the
Hessian matrix H is m, which is larger than 0. Thus, H and H1/2 are regular matrices. With
this in mind, we consider H + H1/2 JH1/2 as a similar matrix of H′ := (I + J)H. This is
easily confirmed by

H−1/2(H + H1/2 JH1/2)H1/2 = H′. (A45)

This means that to study the eigenvalues of H′, we only need to study the similar
matrix A := H + H1/2 JH1/2. By doing this, A is composed of symmetric and skew-
symmetric matrices, which are easy to treat compared to H′, where the term JH is difficult
to analyze. For simplicity, we omit the dependency of H and H′ on x in this section.

Remark A1. Please note that we can eliminate the strong convexity of U, if H is a regular matrix.
This means that H does not have 0 as an eigenvalue.

For simplicity, we assume that the dimension d is an even number. We assume that
the eigenvalues and eigenvectors of A are expressed as

Awj = µjwj ⇔ A(aj + ibj) = (αj + iβ j)(aj + ibj). (A46)

and αj is ordered as α1 ≤ α2, . . . . In this section, we only consider the setting where all the
eigenvalue and eigenvector are imaginary for notational simplicity. The extension to the
general settings similar to Appendix E and the setting when is d is odd is straightforward.

We denote the eigenvalues and eigenvectors of H as {λj, vj}d
j=1 and vjs are linearly

independent. In addition, we assume that λ1 ≤, . . . , λd. From this definition, by checking
the real parts and complex parts, the following relations are derived

Aaj = αjaj − βbj, (A47)

Abj = αjbj + βaj. (A48)

thus, by the skew-symmetric property

a>j Aaj + b>j Abj = αj(‖aj‖2 + ‖bj‖2) = αj (A49)

= a>j Haj + b>j Hbj, (A50)

and in the third equality, we used the property

a>j H1/2 JH1/2aj = b>j H1/2 JH1/2bj = 0, (A51)

since H1/2 JH1/2 is a skew-symmetric matrix. Then, we expand aj and bj by vj as

ak =
d

∑
j=1

a>k vj (A52)

bk =
d

∑
j=1

b>k vjvj, (A53)

since vjs are eigenvalues of H, which can be used as the basis for Rd. Then we substitute
this into Equation (A50) and we have

αk =
d

∑
j=1

λj(a>k vj)
2 +

d

∑
j=1

λj(b>k vj)
2 ≥ λ1

d

∑
j=1

(a>k vj)
2 + (b>k vj)

2) = λ1. (A54)



Entropy 2021, 23, 993 27 of 45

This means that any real part of the eigenvalue of A is larger than λ1 which is the
smallest eigenvalue of H. Thus, if the α1 is the smallest real part of the eigenvalue of A,
that is larger than the smallest eigenvalue of H. This concludes the proof.

In the same way,

αk =
d

∑
j=1

λj(a>k vj)
2 +

d

∑
j=1

λj(b>k vj)
2 ≤ λd

d

∑
j=1

(a>k vj)
2 + (b>k vj)

2) = λd, (A55)

which means any real part of the eigenvalues of A is smaller than the largest eigenvalue of
H. Thus, if α is the largest real part of the eigenvalues of A, it is smaller than the largest
eigenvalue of H.

Equality condition:

Next, we discuss when the equality holds for α1 = λ1. First, we assume that eigen-
values of H are distinct, thus, there is only one eigenvector for λ1. Later, we discuss if
eigenvalues are not distinct. From Equation (A54), we have

α1 =
d

∑
j=1

λj(a>1 vj)
2 +

d

∑
j=1

λj(b>1 vj)
2 ≥ λ1

d

∑
j=1

(a>1 vj)
2 + (b>1 vj)

2) = λ1, (A56)

in general. Please note that if a1 and b1 does not correspond to v1, then λj 6=1 > λ1 must
appear in the summation and equality never holds. So, the condition is

a1, b1 ∝ v1, (A57)

must hold for the equality.
Based on this, let us assume that w1 = ca1 + ic′b1 where c2 + c

′2 = 1. We consider the
case a1 = b1 = v1. Then we need to solve the simultaneous equations

A(ca1 + ic′b1) = (λ1 + iβ1)(ca1 + ic′b1) = (λ1c− c′β1)v1 + i(cβ1 + λ1c′)v1, (A58)

this is obtained by the definition of the eigenvalue of A and

A(ca1 + ic′b1) = λ1/2
1 c(Iλ1/2

1 + αH1/2 J)v1 + iλ1/2
1 c′(Iλ1/2

1 + αH1/2 J)v1, (A59)

this is obtained from the definition of eigenvalues of H. Then multiplying v1 from the left,
we obtain cβ1 = 0 and c′β1 = 0. Thus, β1 = 0. β1 = 0 meansb1 = 0 from the property of
the complex eigenvectors. Thus, we obtain w1 = a1 = v1 for λ1 = α1. Then, the following
relation holds,

λ1v1 = Av1 = Hv1 + αH1/2 JH1/2v1 = λ1v1 + αλ1/2
1 H1/2 Jv1. (A60)

Since λ1 6= 0 and H1/2 has the inverse matrix, this condition indicates that

αJv1 = 0. (A61)

This is the condition that λ1 = α1 holds. The same relation can be derived for λd = αd.
Next, we assume that eigenvalues of H are not distinct. Let us denote the set of

eigenvectors of the eigenvalue λ0
1 as {v0

1}. Please note that if a1 and b1 does not included in
V0

1 , then λj 6=1 > λ1 must appear and equality never holds. Thus

a1, b1 ∈ V0
1 (A62)
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must hold for equality. Based on this, let us assume that w1 = ca1 + ic′b1 where c2 + c
′2 = 1.

We consider the case a1 6= b1. Then

H−1/2 A(ca1 + ic′b1) = λ−1/2
1 (λ1 + iβ1)(ca1 + ic′b1)

H−1/2(H + αH1/2 JH1/2)(ca1 + ic′b1) = λ1/2
1 c(I + αJ)a1 + iλ1/2

1 c′(I + αJ)b1, (A63)

then we obtain the condition

λ1cαJa1 = −β1c′b1 (A64)

λ1c′αJb1 = β1ca1. (A65)

Appendix G. Proofs of Random Matrices

Appendix G.1. Proof of Theorem 5

Proof. The proof is the straightforward consequence of lemma in [43], that is
Lemma in ([43]) If f (x1, . . . , xm) is a polynomial in real variables x1, . . . , xm, which is

not identically zero, then the subset Nm = {(x1, . . . , xm)| f (x1, . . . , xm) = 0} of the Euclidean
m-space Rm has the Lebesgue measure zero.

We use this lemma to prove that the probability of λ1 = α1 is 0 by showing that the
probability mass of λ1 = α1 has Lebesgue measure zero.

We use the same notation as in Appendix F. Recall Equation (A64), which is the condi-
tion of equality about λ1 = α1. We express the elements of a1 and b1 as a1 = (a1

1, . . . , ad
1)
>

and b1 = (b1
1, . . . , bd

1)
>. Then the equality condition can be written as

d

∑
i=1

(
d

∑
j=1

λ1cαJi,ja
j
1 + β1c′bi

1))
2 +

d

∑
i=1

(
d

∑
j=1

λ1c′αJi,jb
j
1 − β1cai

1))
2 = 0. (A66)

Then we define the polynomial about {Ji.j}

f (J1,2, . . . , Jd−1,d) =
d

∑
i=1

(
d

∑
j=1

λ1cαJija
j
1 + β1c′bi

1))
2 +

d

∑
i=1

(
d

∑
j=1

λ1c′αJijb
j
1 − β1cai

1))
2. (A67)

To apply lemma of [43], we must confirm that f (J1,2, . . . , Jd−1,d) is not always 0. This
is clear from the definition of f since we generate J1,2, . . . , Jd−1,d randomly from the distri-
bution that is absolutely continuous with respect to Lebesgue measure and λ1 6= 0 and
c2 + c′2 = 1 and either a1, b1 6= 0.

Then, given an evaluation point x, from lemma of [43], the subset of {Ji,j} ∈ Rd(d−1)/2

that satisfies f (J1,2, . . . , Jd−1,d) = 0 has Lebesque measure zero. Thus, if we generate {Ji,j}
from the probability measure which is absolutely continuous with respect to Lebesque
measure, (such as Gaussian distribution), f (J1,2, . . . , Jd−1,d) = 0 holds probability 0. This
concludes the proof.

Appendix G.2. Proof of Lemma 1

Proof. We first discuss the condition about KerJ0 = {0}. Since J = J0 ⊗ Id, and we denote
the set of eigenvalues of J0 as {ωi}. In general, the eigenvalues of the matrix that is
composed of the Kronecker product with two matrices, e.g., A and B, are given as the
product of each eigenvalue of A and B [44]. Thus, since J is the Kronecker product of J0
and Id, if J0 does not have 0 as an eigenvalue, J does not have 0 as an eigenvalue.

Next, we discuss another equality condition. We use the similar notation as in
Appendix F, but now the dimension of the matrix J is dN. We express the eigenvalue which
has the smallest real part as λα

1 and its eigenvector as ωα
1 = a1 + ib1. The elements of a1 and
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b1 as a1 = (a1
1, . . . , ad

1, ad+1
1 , . . . , adN

1 )> ∈ RdN and b1 = (b1
1, . . . , bd

1 , . . . , bd+1
1 , . . . , bdN

1 )>. We

also express these as a1 = (a(1)1 , . . . , a(N)
1 )> ∈ RdN where a(i)1 = (a(i−1)d+1

1 , . . . , aid
1 )
> ∈ Rd.

We use the Kronecker product property:

Ja1 = (J0 ⊗ Id)a1 =

(
N

∑
i=1

J0|i,1a(i)1 , . . . ,
N

∑
i=1

J0|i,N a(i)1

)>
, (A68)

where J0|i,j indicates the element of i-th row and j-th column of J0 where we use the property
of the Kronecker product and the Vec operator in the second equality [44].

The proof is almost similar to Appendix G.1. Then the equality condition can be
written as

N

∑
n=1

∥∥∥∥∥λ1cα ∑
i

J0|i,na(i)1 + β1c′b(n)1

∥∥∥∥∥
2

+
N

∑
n=1

∥∥∥∥∥λ1c′α ∑
i

J0|i,nb(i)1 + β1ca(n)1

∥∥∥∥∥
2

= 0, (A69)

where ‖ · ‖ is the d-dimensional Euclidean norm since a(n)1 , b(n)1 ∈ Rd. Then we define the
polynomial about {Ji.j}

f (J1,2, . . . , JN−1,N) =
N

∑
n=1

∥∥∥∥∥λ1cα ∑
i

J0|i,na(i)1 + β1c′b(n)1

∥∥∥∥∥
2

+
N

∑
n=1

∥∥∥∥∥λ1c′α ∑
i

J0|i,nb(i)1 + β1ca(n)1

∥∥∥∥∥
2

. (A70)

In a similar discussion with Appendix G.1, it is clear that f is not always 0. Thus,
given an evaluation point x, from lemma of [43], the subset of {Ji,j} ∈ RN(N−1)/2 that
satisfies f (J1,2, . . . , JN−1,d) = 0 has Lebesque measure zero. Thus, if we generate {Ji,j} from
the probability measure which is absolutely continuous with respect to Lebesque measure,
(such as Gaussian distribution), f (J1,2, . . . , JN−1,N) = 0 holds probability 0. This concludes
the proof.

Appendix G.3. Extending the Theorem to the Path

About Theorem 5 and Lemma 1, the statement holds true when we fix an evaluation
point x. To ensure the acceleration, we need to extend Theorem 5 and Lemma 1 from
a single evaluation point to the path of the stochastic process for S-LD, S-PLD, S-ULD,
and S-PULD.

First, the condition of KerJ0 = {0} is not related to the evaluation point. Thus, we
need to consider the equality condition for Reλα

1 = λ0
1. As for this condition, as we had

seen in Theorem 5 and Lemma 1, if we generate the random matrix J which is absolutely
continuous with respect to Lebesgue measure, then the equality condition is not satisfied
with probability 1 at the given evaluation point. The important point in those proof is
to prove that the event when the equality holds has Lebesgue measure 0 at the given
evaluation point using the lemma of [43].

Let us consider when two evaluation points are given (e.g., x1, x2), and we check
whether the random matrix J satisfies the above equality condition or not. We can eas-
ily prove that at each evaluation point, such an event (we express them as S1 and S2)
has Lebesgue measure 0 using the lemma of [43] (We refer to this as P(S1) = 0 and
P(S2) = 0 where P is the law induced by generating the random matrix that has inde-
pendent d(d− 1)/2 elements). So, the volume of the event of sum of S1 and S2 are also
0 (P(S1

⋃
S2 = 0). By repeating this procedure, when given a finite number of evaluation

points, (x1, . . . , xk), the sum of such probability is 0 (this indicates P(S1
⋃

S2, . . . ,
⋃

Sk) = 0).
When we consider the discretized dynamics of S-LD, S-PLD, and so on, and update

samples up to k-iterations, then there exist k evaluation points. So, by applying the above
discussion, we can ensure that along the path of the discretized dynamics, the equality con-
dition does not hold with probability 1. On the other hand, as for the continuous dynamics,
the evaluation point is infinite, thus when we cannot conclude that the probability that the
equality does not hold is 1.
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Appendix H. Proof of Theorem 6

We use the same notation as in Appendix F. We consider the expansion concerning α
and we consider the following setting,

wj := vj + δvj (A71)

µj := λj + δλj, (A72)

which indicates that by introducing the skew-acceleration terms, the pairs of eigenvalues
and eigenvectors of H′ are expressed by the small perturbation for the eigenvalues and
eigenvectors of H. Since {vj}d

j=1 are the eigenvalues of H and they can be used as an
orthogonal basis, thus we expand δv by this basis. We obtain

δvj =
d

∑
k 6=j

cjkvk, (A73)

where cjk = δv>j vk.

Appendix H.1. Asymptotic Expansion When the Smallest Eigenvalue of H(x) Is Positive

We work on the similar matrix of H′, that is H + αV where V := H1/2 JH1/2. See
Appendix G.1 for the detail. Please note that this similar matrix only exists when the
smallest eigenvalue of H(x) is positive. Thus, the following discussion cannot apply to the
case at the saddle point, where negative eigenvalues appear. We discuss the saddle point
expansion later.

From the definition, we have

H′wj = Hwj + αVwj = µjwj = (λj + δλj)(vj + δvj), (A74)

We rearrange this equation as

Hvj + Hδvj + αVvj + αVδvj = λjvj + δλjvj + λjδvj + δλjδvj. (A75)

First, we focus on the first-order expansion. This means we neglect high-order terms.
Then, we have

Hvj + Hδvj + αVvj = λjvj + δλjvj + λjδvj. (A76)

By multiplying vj to Equation (A76) from the left-hand side, we have

λj + λjv>j δvj + αv>j Vvj = λj + δλj + λjv>j δvj, (A77)

Since v>j Vvj = 0 due to the skew-symmetric property of V. Thus, we have

δλj = 0, (A78)

up to the first-order expansion. Then we substitute this into Equation (A76) and multiplying
vi where i 6= j, we have

λicji + αv>i Vvj = λjcji. (A79)

Then we have

cji =
αv>i Vvj

λj − λi
. (A80)
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Then we obtain

δvj = α
d

∑
i 6=j

v>i Vvj

λj − λi
vi. (A81)

We substitute this into Equation (A75), and multiplying v>j , we have

v>j Hα
d

∑
i 6=j

v>i Vvj

λj − λi
vi + αv>j Vvj + αv>j Vα

d

∑
i 6=j

v>i Vvj

λj − λi
vi

= δλjv>j vj + λjv>j α
d

∑
i 6=j

v>i Vvj

λj − λi
vi + δλjv>j α

d

∑
i 6=j

v>i Vvj

λj − λi
vi. (A82)

Since v>j Vvj = 0 and v>j vi = 0 and v>j vj = 1, we have

α2
d

∑
i 6=j

v>i Vvj

λj − λi
v>j Vvi = δλj. (A83)

Thus, we have

µj − λj = αj + iβ j − λj = −α2
d

∑
i 6=j

(v>i Vvj)
2

λj − λi
. (A84)

Thus, by taking the real part, and note that Reλj(α) = αj, we have

Reλj(α)− λj = α2Re
d

∑
i 6=j

(v>i Vvj)
2

λi − λj
+O(α3) = α2

d

∑
i 6=j

λiλj(v>i Jvj)
2

λi − λj
+O(α3). (A85)

This concludes the proof.

Appendix H.2. Expansion of the Eigenvalue at the Saddle Point

Here we derive the formula of the expansion of the eigenvalue at the saddle point.
Since the smallest eigenvalue is negative, we cannot use the similar matrix as shown above.
Instead, we use the relation,

µjHwj = Hµjwj = H(I + αJ)Hwj (A86)

where we used the definition of the eigenvalues and eigenvectors. Here, we express
H′ := (I + αJ)H and its pairs of eigenvalues and eigenvectors as {(µi, wi)}d

i=1. As intro-
duced in the above, we substitute the expansion to Equation (A86), then we obtain

(λj + δλj)H(vj + δvj) = H(I + αJ)H(vj + δvj) (A87)

Then, in the same way as above, since {vj}d
j=1 are the eigenvalues of H and they can

be used as an orthogonal basis, we expand δv by this basis. This means

δvj =
d

∑
k=1

cjkvk, (A88)

where cjk = δv>j vk. By multiplying vi to Equation (A87) where i 6= j from left-hand side
and neglecting high-order terms, we have

cji =
λj

λj − λi
(v>i αJvi). (A89)
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Next, Then by multiplying vj to Equation (A87) from left-hand side, we have

vj H(αJ)Hδvj = (δλj)(λj + λjv>j δvj) (A90)

Then by substituting δvj with coefficient Equation (A89), we have

δλj = α2
d

∑
i 6=j

λiλj(v>i Jvj)
2

λi − λj
+O(α3) (A91)

This concludes the proof.

Appendix I. Convergence Rate of Parallel Sampling Schemes

Appendix I.1. Proof of Lemma 2

First, we introduce the notations. We express the random variables of S-PLD as Y⊗N
t .

We express the measure induced by S-PLD as µ⊗N
t (α), which uses the αJ as an interaction

term. Thus, we express the measure of PLD as µ⊗N
kh (0), we can decompose the measure

as marginals. We also denote the marginal measure of S-PLD for Y(n)
t ν

(n)
t (α). Please note

that initial distribution is µ⊗N
0 and its marginals are µ0 as defined in Assumption 4.

Please note that the marginal measure of PLD is the same as those of LD if the initial
measures are all the same, thus each marginal satisfy the Poincaré constant m0. This is also the
result of the tensorization property of the spectral gap (Proposition 4.3.1 in Bakry et al. [19]).

As for the initial condition, from the fact that χ2 divergence is the special case of
Renyi divergence (α = 4), and from the tensorization property of the Renyi divergence
(see Theorem 28 in [45]), we have

χ2(µ⊗N
t (0), π⊗N) ≤ e−2β−1m0tχ2(µ⊗N

0 , π⊗N) =
N

∑
n=1

e−2β−1m0tχ2(µ0, π). (A92)

Then we have

χ2(µ⊗N
t (0), π⊗N) ≤ e−2β−1m0tχ2(µ⊗N

0 , π⊗N) = Ne−2β−1m0tχ2(µ0, π). (A93)

If the skew acceleration is applied, from the same discussion as S-LD (see Appendix C.1),
S-PLD has the Poincaré constant which is larger than m0. We express it as m(α, N)(≥ m0).
Then we have

χ2(µ⊗N
t (α), π⊗N) ≤ Ne−2β−1m(α,N)tχ2(µ0, π). (A94)

At first, since there exists a constant N in the convergence bound, this bound seems
not useful. However, as we discussed below, when we bound the bias or variance, these
bound is meaningful. For example, let us consider approximating the true expectation∫

f (x)dπ(x) by the ensemble samples 1
N ∑N

n=1 f (X(n)
t ). Then we are interested in bounding

the error ∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣. (A95)

For this purpose, we can bound this by 2-Wasserstein distance as∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣,≤ L f√
N

W2(µ
⊗N
kh (α), π⊗N) (A96)

where we assumed that f shows L f lipschitzness and used the fact that 1
N ∑N

n=1 f (x(n))
shows L f /

√
N lipschitzness.
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To bound the distance, we use the basic relation

W2
2 (νkh(α), π⊗N) ≤ 2

1
m(α, N)

χ2(µ⊗N
kh (α), π⊗N), (A97)

where m(α, N) is the Poincaré constant. This is established by the definition of Wasserstein
distance and χ2-divergence, see [46] for the detail. Then combined with above relations,
we obtain the bias bound of S-PLD as∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

m(α, N)
e−β−1m(α,N)khχ2(µ0, π)1/2. (A98)

In the same way, we obtain the bias bound of PLD as∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

m0
e−β−1m0khχ2(ν0, π)1/2. (A99)

Thus, while the explicit dependency on N disappeared, but S-PLD shows faster
convergence through the relation of m(α, N) ≥ m0. Moreover, if we use the skew matrices,
which does not satisfy the equality condition, we have m(α, N) > m0.

Appendix I.2. Proof for S-ULD

We can characterize the convergence rate almost in the same way as Appendix C.2.
The derivation is the same above, thus we only show the result∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

m(α, N)

√
1 + ε̄

1− ε̄
e−λγ/2khχ2(ν0

0 , π)1/2. (A100)

where ε̄ and λγ is given as follows.

λγ =
Λ(γ, ε̄ min(γ, γ−1))

1 + ε̄ min(γ, γ−1)
, (A101)

and

Λ(γ, ε) =

γΣ−1 − 1

1+ m0Σ−1
β

2
− 1

2

√
(S−− − S++)2 + (S−+)2, (A102)

S−− = ελham, (A103)

S−+ = −ε(Rham + γΣ−1/2), (A104)

S++ = γΣ−1 − ε, (A105)

λham = 1−
(

1 +
m(α, N)Σ−1

β

)−1

, (A106)

ε = ε̄ min(γ, γ−1), (A107)

where ε̄ is arbitrary sufficiently small positive value such that Λ(γ, ε̄ min(γ, γ−1)) > 0 is
satisfies. and

Rham ≤
√

max{M, 2}. (A108)

Appendix J. Proof of Theorem 7

We show our theorem again with explicit constants
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Theorem A3. Under Assumptions 1–7, for any k ∈ N and any h ∈ (0, 1∧ m
4M2 ) obeying kh ≥ 1

and βm ≥ 2, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤ L f

√
C̃2

0

√
δ + C̃2

1

√
hkη + L f

√
2

m(α, N)
χ2(µ0, π)1/2e−β−1m(α,N)kh. (A109)

where

C̃2
0 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
βC0 +

√
βC0

)
, (A110)

C̃2
1 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
C1 +

√
C1

)
(A111)

C0 = (1 + α)2
(

M2
(

κ0 + 2
(

1∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
, (A112)

C1 = 6(1 + α2)M2(βC0 + d), (A113)

Then obtained bound is O(kh · h1/4), which is independent of N. Thus, this result is
much better than those in [18]. Additionally, note that we can derive the similar bias bound
for skew-SGHMC in the same way as skew-SGLD.

Proof. For notational simplicity, we express the random variables of skew-SGLD which
uses the αJ as an interaction term as X⊗N

k and those of S-PLD as Y⊗N
k . In this section,

for simplicity, we express them as Xk and Yk. We denote the measure of Xk and Yk as ν⊗N
kh

and µ⊗N
kh . We also denote the marginal measure of X(n)

k and Y(n)
k as µ

(n)
kh and ν

(n)
kh .

Then, we first decompose the bias as∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
=

∣∣∣∣∣E∑N
n=1 f (X(n)

k )

N
−E∑N

n=1 f (Y(n)
k )

N
+E∑N

n=1 f (Y(n)
k )

N
−
∫
Rd

f dπ

∣∣∣∣∣
≤
∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−E 1

N

N

∑
n=1

f (Y(n)
k )

∣∣∣∣∣+
∣∣∣∣∣E 1

N

N

∑
n=1

f (Y(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤

L f

N

N

∑
i=1

W2(ν
(n)
kh (α), µ

(n)
kh (α)) +

L f√
N

W2(µ
⊗N
kh (α), π⊗N)︸ ︷︷ ︸

(i)

, (A114)

where we used the Jensen inequality for the first term in the last inequality and we move
1
N ∑N

i=1 outside the | · |. In addition, each expectation only depends on the marginal
measures µ(i) in the first term and we use the property of the 2-Wasserstein (2-W) distance.
Furthermore, we decompose the first term as

L f

N

N

∑
n=1

W2(µ
(n)
kh (α), ν

(n)
kh (α)) ≤

L f

N

 N

∑
n=1

W2(ν
(n)
kh (α), µ

(n)
kh (0))︸ ︷︷ ︸

(ii)

+W2(µ
(n)
kh (α), µ

(n)
kh (0))︸ ︷︷ ︸

iii)

, (A115)

where µ
(n)
kh (0) denotes the measure induced by PLD, which is the naive parallel sampling

without a skew-symmetric interaction.
In conclusion, our task is to bound each (i), (ii), (iii) terms in the above. Bounding (i)

is already discussed in Appendix I.1.
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Next, we work on (ii) and(iii). Following [10], we use weighted CKP inequality to
bound the 2-W distance. From Bolley and Villani [47], using the weighted CKP inequality,
we can bound each 2-W distance by the relative entropy (KL divergence). This weighted
CKP inequality indicates that

W2(ν
(n)
kh (α), µ

(n)
kh (0)) ≤ C

µ
(n)
kh (0)

KL(ν(n)kh (α)|µ(n)
kh (0))1/2 +

KL(ν(n)kh (α)|µ(n)
kh (0))

2

1/4
, (A116)

with

C
µ
(n)
kh (0)

= 2 inf
λ>0

(
1
λ

(
3
2
+ log

∫
Rd

eλ‖x(n)‖2
dµ

(n)
kh (0)

))1/2
. (A117)

and

W2(µ
(n)
kh (α), µ

(n)
kh (0)) ≤ C

µ
(n)
kh (0)

KL(µ(n)
kh (α)|µ(n)

kh (0))1/2 +

KL(µ(n)
kh (α)|µ(n)

kh (0))
2

1/4
, (A118)

with

C
µ
(n)
kh (0)

= 2 inf
λ>0

(
1
λ

(
3
2
+ log

∫
Rd

eλ‖x(n)‖2
dµ

(n)
kh (0)

))1/2
. (A119)

We point out that using C
µ
(i)
kh (0)

not C
ν
(i)
kh (α)

and C
µ
(i)
kh (α)

in weighted CKP inequality is

important. This is because since µ
(i)
kh (0) is the constant based on the parallel-chain Monte

Carlo without skew-symmetric term, thus the parallel chain can be decomposed each
independent chains. Thus, C

µ
(i)
kh

actually does not depend on i and it does not depend on

N and shows O(d) dependency. However, C
ν
(i)
kh (α)

and C
µ
(i)
kh (α)

show O(dN) which shows

linear dependency on N since there is an interaction term between parallel chains and we
cannot decompose the parallel chain easily. Thus, this results in unsatisfactory dependency
on N. This is the reason we introduced µ

(i)
kh (0) in our theoretical analysis.

Please note that since µ
(n)
kh (0) is induced by the naive parallel chain, each marginal

is independent with each other and takes the same measure if the initial measure is the
same. Thus, µ

(1)
kh (0) = · · · = µ

(N)
kh (0). From now on, we express the marginal as µkh(0) for

simplicity. Thus, C
µ
(1)
kh (0)

= · · · = C
µ
(N)
kh (0)

= Cµkh(0).

Then substituting the above WKP inequalities and using the Jensen inequality, we ob-
tain ∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−E 1

N

N

∑
n=1

f (Y(n)
k )

∣∣∣∣∣
≤ L f Cµkh(0)

1
N

N

∑
n=1

KL(ν(n)kh (α)|µkh(0))
1/2 +

(
KL(ν(n)kh (α)|µkh(0))

2

)1/4

+KL(µ(n)
kh (α)|µkh(0))

1/2 +

(
KL(µ(n)

kh (α)|µkh(0))
2

)1/4
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≤ L f Cµkh(0)

( N

∑
n=1

KL(ν(n)kh (α)|µkh(0))
N

) 1
2

+

(
N

∑
n=1

KL(ν(n)kh (α)|µkh(0))
2N

) 1
4

+

(
N

∑
n=1

KL(µ(n)
kh (α)|µkh(0))

N

) 1
2

+

(
N

∑
n=1

KL(µ(n)
kh (α)|µkh(0))

2N

) 1
4

. (A120)

To analyze the discretization error, we use the following key lemma:

Lemma A1. Assume that there exist random variables {Xi ∈ Ωi}N
i=1 and {Yi ∈ Ωi}N

i=1. We
denote the product space as Ω⊗N := Ω1 × . . . ΩN . Let us introduce X = (X1, . . . , XN) ∈ Ω⊗N

and Y = (Y1, . . . , YN) ∈ Ω⊗N . Let us express their joint probability measures as expressed as
P(X) := P(X1, . . . , XN), Q(Y) := Q(Y1, . . . , YN), let us denote the marginal measures of each
Xs and Ys as {Pi(Xi)}N

i=1 and {Qi(Yi)}N
i=1. If Pi << Qi holds, we have

N

∑
i=1

KL(Pi(Xi)‖Qi(Yi)) ≤ KL(P(X)‖Q(Y)), (A121)

A proof is given in Appendix J.1. We apply this lemma as

N

∑
n=1

KL(µ(n)
kh |µkh(0)) ≤ KL(ν⊗N

kh |µ⊗N
kh (0)), (A122)

N

∑
n=1

KL(µ(n)
kh (α)|µkh(0)) ≤ KL(µ⊗N

kh (α))|µ⊗N
kh (0))). (A123)

Combining these results with the above bias bound, we obtain∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−E 1

N

N

∑
n=1

f (Y(n)
k )

∣∣∣∣∣
≤ L f Cµkh(0)

(KL(ν⊗N
kh (α)|µ⊗N

kh (0))
N

) 1
2

+

(
KL(ν⊗N

kh (α)|µ⊗N
kh (0))

2N

) 1
4

+

(
KL(µ⊗N

kh (α)(α)|µ⊗N
kh (0))

N

) 1
2

+

(
KL(µ⊗N

kh (α)|µ⊗N
kh (0))

2N

) 1
4
. (A124)

Thus, we need to bound KL(µ(i)
kh (α)|µ⊗N

kh (0)) and KL(ν⊗N
kh (α)|µ⊗N

kh (0)) and Cµkh(0).
We can upper-bound them using the results of [2]. For that purpose, we need to replace
the constants in [2] as we show in the below. Here, we discuss how the constants in the
assumption are changed in the ensemble scheme. We define

∇u⊗N(x⊗N) := (∇u(x(1)), . . . ,∇u(x(N))) (A125)

First, we focus on the smoothness condition. From Assumption 2 and lemma 8 in [18],
we have

‖(I + αJ)∇u⊗N(x⊗N , z)− (I + αJ)∇u⊗N(y⊗N , z))‖ ≤ M(1 + α)‖x⊗N − y⊗N‖. (A126)

where the norm in the right-hand side is the Euclidean norm in RdN .
Next, we discuss the smoothness condition. Define ∇Uα(x⊗N) := ∇U⊗N(x⊗N) +

αJ∇U⊗N(x⊗N). Then, Let x⊗N ∈ RdN and under the assumptions 1 to 6, we have

x⊗N · ∇Uα(x⊗N) ≥ m‖x⊗N‖2 − bN. (A127)
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Next, we check about the condition of the drift function at the origin: ‖∇u(0, z)‖ ≤ B.
We can calculate in the same way as the smoothness condition. Then we have

‖(I + αJ)∇U⊗N(0⊗N)‖ ≤ B
√

N(1 + α). (A128)

Next, we study the condition about the stochastic gradient: E[‖∇Û(x)−∇U(x)‖2] ≤
2δ
(

M2‖x‖2 + B2). This can be easily modified to

E[‖(I + αJ)∇Û⊗N(x⊗N)− (I + αJ)∇U⊗N(x⊗N)‖2]

≤ (1 + α)2E[∇Û⊗N(x⊗N)−∇U⊗N(x⊗N)‖2]

≤ (1 + α)2
N

∑
i=1

E[∇Û(x(i))−∇U(x(i))‖2] (A129)

≤ (1 + α)2
N

∑
i=1

2δ
(

M2‖x(i)‖2 + B2
)

≤ 2δ(1 + α)2
(

M2‖x⊗N‖2 + NB2
)

.

Finally, we discuss about the initial condition: κ0 := log
∫
Rd e‖x‖

2
p0(x)dx < ∞. We

assume that the initial probability distribution is µ⊗N
0 (X⊗N

0 ) = µ0(X(1)
0 )× · · · × µ0(X(N)

0 ),
which means that all the marginal probability is the same. Then

κ⊗N
0 := log

∫
RdN

e‖x
⊗N‖2

µ⊗N
0 (x⊗N)dx⊗N = log

N

∏
n=1

(∫
Rd

e‖x
(n)‖2

µ0(x(n))dx
)
= Nκ0. (A130)

In this way, the constants in the assumptions are modified and expressed with N and
α. Then combined with the results of [2], we can derive the following relations

Cνkh(0) ≤ 12 + 8
(

κ0 + 2b +
2d
β

)
, (A131)

KL(ν⊗N
kh |µ⊗N

kh (0)) ≤ N(C0βδ + C1η)kη, (A132)

KL(µ⊗N
kh (α)|µ⊗N

kh (0)) ≤ N
β

2
α2M2(κ0 +

b + d/β

m
)kη, (A133)

where

C0 = (1 + α)2
(

M2
(

κ0 + 2
(

1∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
, (A134)

C1 = 6(1 + α2)M2(βC0 + d). (A135)

This concludes the proof.

Appendix J.1. Proof of Lemma A1

Proof. We prove this lemma using the Donsker–Varadhan representation of the relative
entropy [48]. The relative entropy admits the dual representation as:

KL(P(X)‖Q(Y)) = sup
T:Ω⊗N→R

EP(X)[T]− logEQ(Y)[e
T ], (A136)

where supremum is taken over all function T of which the expectation of eT and T are finite.
We then restrict the function class into a class F (T) = {T(X)|∃Ti : Ωi → R, s.t.T(X) =

∑N
i=1 Ti(Xi)} where each expectation of eTi and Ti are finite. Then by definition,

KL(P(X)‖Q(Y)) = sup
T:Ω→R

EP(X)[T]− logEQ(Y)[e
T ] ≥ sup

T∈F
EP(X)

[
∑

i
Ti

]
− logEQ(Y)

[
e∑i Ti

]
. (A137)
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Then we have

KL(P(X)‖Q(Y)) ≥ sup
T∈F

∑
i
EPi(Xi)

[Ti]− log ∏
i
EQi(Yi)

[
eTi
]

= sup
T∈F

∑
i

(
EPi(Xi)

[Ti]− logEQi(Yi)

[
eTi
])

= ∑
i

sup
Ti :Ωi→R

EPi(Xi)
[Ti]− logEQi(Yi)

[
eTi
]

=
N

∑
i=1

KL(Pi(Xi)‖Qi(Yi)). (A138)

Appendix K. Order Expansion

Bias Expansion for S-PLD

Recall that the bias of S-PLD is∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤ L f

√
C̃2

0

√
δ + C̃2

1

√
hkη + L f

√
2

m(α, N)
χ2(µ0), π)1/2e−β−1m(α,N)kh. (A139)

where

C̃2
0 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
βC0 +

√
βC0

)
, (A140)

C̃2
1 =

(
12 + 8

(
κ0 + 2b +

2d
β

))(
C1 +

√
C1

)
(A141)

C0 = (1 + α)2
(

M2
(

κ0 + 2
(

1∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
, (A142)

C1 = 6(1 + α2)M2(βC0 + d), (A143)

First, we discuss the convergence of the continuous dynamics. Using the eigenvalue
expansion in Theorem 6 , with some positive constant d0, we have

m(α, N) ≈ m0 + α2d0 +O(α3). (A144)

Then by assuming α2 is small enough and considering the Tayler expansion, we have

L f

√
2

m(α, N)
χ2(µ0, π)1/2e−β−1m(α,N)t ≈ L f χ2(µ0, π)1/2

√
2

(
1√
m0
− d0

2m3/2
0

α2

)
e−β−1m0t. (A145)

As for the discretization and stochastic gradient error, using the Taylor expansion,
there exists a positive constant d1 and d2, such that

L f

√
C̃2

0

√
δ + C̃2

1

√
hkη ≈ (d1α + d2α2 + Const)kh. (A146)

Combining these terms, we have∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ (d1α + d2α2)kh− α2L f χ2(µ0, π)1/2 1√
2m3/2

0

e−β−1m0t + Const. (A147)
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Thus, there exists an optimal α∗, which minimizes the bias. Please note that at k = 0,
acceleration always occurs. As k goes to infinity, the second third terms 0, thus the first term
will be dominant, which means we have larger discretization and stochastic gradient error.

Appendix L. Hyperparameters of the Proposed Algorithm

Here we discuss how to set hyperparameters in the algorithm. There are three hy-
perparameters, α0, η, and c. We numerically found that setting c = 0.95 work well for
real dataset including LDA experiment, and Bayesian neural network regression and
classification. For toy dataset, we set c = 0.9.

As for α0 and η, we empirically found that using the following scaling trick works
well for real dataset including LDA experiment, and Bayesian neural network regression
and classification,

α0 ≈
1√

1
N2 ∑n∇U(x(n)0 )2

Nh. (A148)

and using η ≈ 0.1α0. The intuition is that the magnitude of the gradient can be very
different in each dimension, so we introduce the scaling by the gradient. We also multiply
h so that the stochastic gradient and discretization error of the skew term will not be
dominant compared to usual gradient term. Finally, we multiply some constant so that α0
will not be too small.

Appendix M. Proof of Theorem 8

In this section, we derive the upper-bound of the bias of skew-SGLD based on [23].
This approach requires us to use the logarithmic Sobolev inequality [19], which is stronger
than the Poincaré inequality. First, we present the definition of the logarithmic Sobolev
inequality. We say that π on Rd with L satisfies the logarithmic Sobolev inequality with
constant λ in case for all function f on Rd with

∫
Rd u2dπ = 1,∫

Rd
f 2 ln f 2dπ ≤ 2

λ

∫
Rd
− fL f dπ. (A149)

This logarithmic Sobolev inequality is stronger than the Poincaré inequality and
induces the convergence in KL divergence. See [19] for details. It was proved in [2,18]
that our dynamics, LD, SLD, PLD, S-PLD, and skew-SGLD satisfy the logarithmic Sobolev
inequalities under our assumptions. We express the constant of the logarithmic Sobolev
inequality for skew-SGLD as λ(α, N). This constant depends on the skew matrices and the
Poincaré constant. We estimate this constant in Appendix M.1.

To upper-bound the bias, here we control the KL divergence. We denote the law of
skew-SGLD at iteration k with interaction strength α as µ⊗N

kh (α). We upper-bound the bias
by 2-Wasserstein distance∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣,≤ L f√
N

W2(µ
⊗N
kh (α), π⊗N). (A150)

Then, from the transportation inequality [19],

W2(µk, π) ≤
√

2
λ(α, N)

KL(µ⊗N
kh (α)|π⊗N). (A151)

Thus, we will upper bound the KL divergence using the technique in [23]. However,
in the original proof, a full gradient∇U is used so we replace it with the stochastic gradient.
Moreover, we introduce the skew interaction term.
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First, Lemma 11 in [23] is modified to

Eπ⊗N‖∇U⊗N‖2 ≤ dNM
β

. (A152)

Then Lemma 12 in [23] is modified to

Eµ‖∇U⊗N‖2 ≤ 4M2λKL(µ|π⊗N) +
2dNM

β
, (A153)

for any integrable µ.
Herein after, we drop ⊗N from X⊗N , ∇U⊗N , and ∇Û⊗N for notational simplicity.

We focus on skew-SGLD at iteration k, we consider the following SDE for t ∈ (kh, (k + 1)h]

dXt = −(I + αJ)∇Ũ(Xk)dt +
√

2β−1dwt, (A154)

where ∇Ũ(Xk) is the stochastic gradient conditioned on Xk. The solution of this SDE is

X(k+1) = Xk − (I + αJ)∇Ũ(Xk)h +
√

2β−1ε. (A155)

We would like to derive the continuity equation correspond to Equation (A154).
Following [23], we express Xt as xt and Xk as x0 for simplicity. Let ρ0t(x0, xt) denote the
joint distribution of (x0, xt). Then, the conditional and marginal relations are written as

ρ0t(x0, xt) = ρ0(x0)ρt|0(xt|x0) = ρt(xt)ρ0|t(x0|xt). (A156)

The conditional density ρt|0(xt|x0) follows the FP equation

∂ρt|0(xt|x0)

∂t
= ∇ · (ρt|0(xt|x0)(I + αJ)∇Ũ(x0)) + β−1∆ρt|0(xt|x0), (A157)

Then following [23], to derive the evolution of ρt, we take the expectation over ρ0(x0)

∂ρt(x)
∂t

=
∫
Rd

∂ρt|0(xt|x0)

∂t
ρ0(x0)dx0

= ∇ · (ρt(xt)Eρ0|t [(I + αJ)∇Ũ(x0)|xt = x]) + β−1∆ρt(x). (A158)

Then, we take the expectation regarding for the stochastic gradient in the above
equation and include it into Eρ0|t for notational simplicity. Then following the discussion
of Lemma 3 in [23], we obtain

∂KL(µt|π)

∂t
≤ −3

4
I(µ⊗N

t |π⊗N) + 2Eρ0t [‖∇U(Xt)−∇U(X0)‖2]

+ 2(1 + α)2Eρ0t [‖∇U(X0)−∇Ũ(X0)‖2] + 2α2Eρ0t [∇U(x0)‖2], (A159)

where t ∈ (kh, (k + 1)h] and

Xt = Xk − t(I + αJ)∇U(Xk) +
√

2tβ−1ε. (A160)

Then, from [18], we can upper-bound the second term by

Eρ0t [‖∇U(X0)−∇Ũ(X0)‖2] ≤ NC′0δ, (A161)

C′0 := 2
(

M2
(

κ0 + 2
(

1∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
(A162)
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and the third term is upper-bounded by

Eρ0t [‖∇U(X0)−∇Eρ0t [∇U(x0)‖2] ≤ 2M2‖x0‖2 + 2NB2

≤ NC′0, (A163)

where we used lemma 2 and 7 in [2]. Finally, from the original proof of [23] we obtain

2Eρ0t [‖∇U(Xt)−∇U(X0)‖2] ≤ 8t2M4λKL(µ⊗N
k |π⊗N) +

4t2dNM3

β
+

4tdNM2

β
. (A164)

Then, in conclusion, under h ∈ (0, 1∧ m
4M2 ) obeying kh ≥ 1 and βm ≥ 2, we obtain

d
dt

KL(µ⊗N
t |π⊗N) ≤ −3

4
I(µ⊗N

t |π⊗N) + 8t2 M4λ(α, N)KL(µ⊗N
k |π⊗N)

+
4t2dNM3

β
+

4tdNM2

β
+ 2NC′0(δ(1 + α)2 + α2). (A165)

For simplicity, we assume that h ∈ (0, m
4M2 ) and m

4M2 < 1, then we obtain

d
dt

KL(µ⊗N
t |π⊗N) ≤ −3

4
I(µ⊗N

t |π⊗N)+8t2 M4λ(α, N)KL(µ⊗N
k |π⊗N)

+
t2dNM

β
(m + 4M) + 2NC′0(δ(1 + α)2 + α2). (A166)

Then using t ∈ (kh, (k + 1)h], we obtain

KL(µ⊗N
k+1|π⊗N) ≤e−

3
2 λ(α,N)h

(
1 + 16h3M4λ

)
KL(µ⊗N

k |π⊗N)

+ e−
3
2 λ(α,N)h

(
2hdNM

β
(m + 4M) + 8hNC′0(δ(1 + α)2 + α2)

)
. (A167)

If h ∈ (0, λ(α,N)

4
√

2M2 ), we obtain

KL(µ⊗N
k+1|π⊗N) ≤ e−λ(α,N)hKL(µ⊗N

k |π⊗N) +
2h2dNM

β
(m + 4M) + 8hNC′0(δ(1 + α)2 + α2). (A168)

From this one step inequality, we obtain

KL(µ⊗N
k |π⊗N)

≤ e−λ(α,N)khKL(µ⊗N
0 |π⊗N) +

1
1− e−λ(α,N)h

(
2h2dNM

β
(m + 4M) + 8hNC′0(δ(1 + α)2 + α2)

)
≤ e−λ(α,N)khKL(µ⊗N

0 |π⊗N) +
2N

λ(α, N)

(
hdM

β
(m + 4M) + 4C′0(δ(1 + α)2 + α2)

)
. (A169)

Then, finally we obtain∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣
≤ L f√

N

√
2

λ(α, N)
KL(µ⊗N

kh (α)|π⊗N)

≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(µ0|π) +

2
λ(α, N)

(
hdM

β
(m + 4M) + 4C′0(δ(1 + α)2 + α2)

)

≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(µ0|π) +

C3(α)

λ(α, N)
, (A170)
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where

C3(α) := 2
hdM

β
(m + 4M) + 8C′0(δ(1 + α)2 + α2), (A171)

C′0 := 2
(

M2
(

κ0 + 2
(

1∨ 1
m

)(
b + 2(1 + α)2B2 +

d
β

))
+ B2

)
. (A172)

Moreover, from Appendix M.1, the logarithmic Sobolev constant is

λ(α, N) :=
(

1
(1 + βm(α, N)−1|C(m0)|)2πe2 +

3
2m(α, N)

)
, (A173)

where

−C(m0) := Eπ⊗N [‖∇U⊗N(x)‖]1/2 +

√
8

m0
Eπ⊗N [‖∇U⊗N(x)‖2]1/2. (A174)

Appendix M.1. Estimation of the Logarithmic Sobolev Constant

In this section, we estimate the logarithmic Sobolev constants using the technique of
restricted logarithmic Sobolev inequality, which was introduced in [49].

The technique of [49] estimates the constant of the logarithmic Sobolev inequality as
follows. Assume that π on Rd with L satisfies the Poincaré inequality with constant m.
Then, for any function u on Rd that satisfies∫

Rd
udπ = 0 and

∫
Rd

u2dπ = 1, (A175)

we find a constant b that satisfies∫
Rd

u2 ln u2dπ ≤ b
∫
Rd
−uLudπ. (A176)

Then the logarithmic constant is larger than 2(b + 3
m )−1. Thus, we only need to focus

on the restricted function class to estimate a constant b. We slightly change the Lemma 3.2
of [49] that estimate the constant b in Equation (A176) to apply it in our setting. In
Lemma 3.2 of [49], it was proved that if u on Rd satisfies the conditions in Equation (A175),
then for any t ∈ (0, 1), we have∫

Rd
−uLudπ − tπe2

∫
Rd

u2 ln u2dπ ≥ (1− t)m + tβ
∫
Rd
(−1

2
LU(x)− πe2U(x))u2dπ, (A177)

where we assume that π ∝ e−βU(x) satisfies the Poincaré inequality with constant m. If there
exists a constant C such that

−C ≥ β
∫
Rd
(−1

2
LU(x)− πe2U(x))u2dπ > −∞, (A178)

then by setting t = m/(m + |C|), we can show that∫
Rd
−uLudπ −m/(m + |C|)πe2

∫
Rd

u2 ln u2dπ > 0. (A179)

Thus, the constant b in Equation (A176) is b = t = m/(m + |C|) and the logarithmic
constant is 2(m/(m + |C|) + 3

m )−1.
Thus, We analyze the constant C. The first term of the integral in Equation (A178) is

lower-bounded bounded by

−Eπ [LU(x)u2] ≥ −|Eπ [U(x)LU(x)]|1/2|Eπ [u2Lu2]|1/2 ≥ −2Eπ [‖∇U(x)‖2]1/2, (A180)
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where we used the property of L, see [19] for details. As for the second term, it is lower-
bounded by

−|Eπ [U(x)u2] ≥ −
√
|Eπ [U2(x)u2] ≥ −

√
1
m
|Eπ [(U(x)|u|)L(U(x)|u|)]|

≥ −
√

8
m
Eπ [‖∇U(x)‖2]1/2. (A181)

Thus, by setting

−C := Eπ [‖∇U(x)‖]1/2 +

√
8

m0
Eπ [‖∇U(x)‖2]1/2, (A182)

we can estimate the logarithmic constant as 2(m/(m + |C|) + 3
m )−1.

In our setting, this is modified to

λ(α, N) =

(
1

(1 + βm(α, N)−1|C(m0)|)2πe2 +
3

2m(α, N)

)−1
. (A183)

where

−C(m0) := Eπ⊗N [‖∇U⊗N(x)‖]1/2 +

√
8

m0
Eπ⊗N [‖∇U⊗N(x)‖2]1/2. (A184)

Finally, if we increase m(α, N), λ(α, N) increases. Thus, since m(α, N) ≥ m(α = 0, N),
we obtain λ(α, N) ≥ λ(α = 0, N).

Appendix M.2. Computational Complexity
To derive the computational complexity, for simplicity, we assume that δ ≤ h and We

also set α2 ≤ h for simplicity. This means that the variance of the stochastic gradient is
small enough and we use small α. Then the bias is∣∣∣∣∣E 1

N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ L f

√
2

λ(α, N)

√
e−λ(α,N)khKL(µ0|π) +

C3(α)

λ(α, N)

≤ L f

√
2

λ(α, N)

(√
e−λ(α,N)khKL(µ0|π) +

√
C3(α)

λ(α, N)

)
, (A185)

where

C3(α) := h
(

2
dM

β
(m + 4M) + 8C′0((1 + h1/2)2 + 1)

)
, (A186)

C′0 := 2
(

M2
(

κ0 + 2
(

1∨ 1
m

)(
b + 2(1 + h1/2)2B2 +

d
β

))
+ B2

)
. (A187)

Then we define

C′3 := 2
dM

β
(m + 4M) + 8C′0((1 + h1/2)2 + 1), (A188)

and use the step size that satisfies h = λ(α,N)ξ

2
√

2C′3L f
. Then when we use

k ≥ 2
λ(α, N)h

ln
L f

ξ

√
KL(µ0|π)

2λ(α, N)
, (A189)
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we have ∣∣∣∣∣E 1
N

N

∑
n=1

f (X(n)
k )−

∫
Rd

f dπ

∣∣∣∣∣ ≤ ξ

2
+

ξ

2
≤ ξ. (A190)
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