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Abstract: Since the 1960s, many rivers have been destroyed as a consequence of the process of rapid
urbanization. As accurate figures are important to repair rivers, there have been many research
reports on methods to obtain the exact river slope and elevation. Until now, many research efforts
have analyzed the river using measured river topographic factors, but when the flow velocity changes
rapidly, such as during a flood, surveying is not easy; and due to cost, frequent measurements are
difficult. Previous research has focused on the cross section of the river, so the information on the river
longitudinal profile is insufficient. In this research, using informational entropy theory, equations are
presented that can calculate the average river slope, river slope, and river longitudinal elevation for a
river basin in real time. The applicability was analyzed through a comparison with the measured
data of river characteristic factors obtained from the river plan. The parameters were calculated
using informational entropy theory and nonlinear regression analysis using actual data, and then the
longitudinal elevation entropy equation for each river and the average river slope were calculated.
As a result of analyzing the applicability of the equations presented in this study by R2 and Root
Mean Square Error, all R2 values were over 0.80, while RMSE values were analyzed to be between
0.54 and 2.79. Valid results can be obtained by calculating river characteristic factors.

Keywords: informational entropy; mean river slope; river slope; nonlinear regression analysis;
longitudinal elevation

1. Introduction

While there has been a lot of research on the cross-section of rivers, there is not enough
information on the longitudinal section, as there has not been much research on it. The
longitudinal elevation and river slope are difficult to measure directly, especially when
the flow velocity changes rapidly. However, owing to the development of measurement
technology, it is now easy to obtain data such as river slopes and river longitudinal
elevations through Light Detection and Ranging (LIDAR), which makes it easier to produce
a Digital Elevation Model. However, using the data obtained through LIDAR, there are
indisputable errors between the digital elevation models and measured values [1]. To
resolve this problem, entropy theory was applied as a means of obtaining topographic
factor data while minimizing errors.

2. Methodology

In recent years, the concepts of statistics, entropy, and probability have been often
used to analyze rivers, and the method of calculating river Longitudinal Elevation studied
in this paper can also be induced by maximizing entropy.

Lienhard derived the dimensionless unit water level of the drainage basin in a statis-
tical method using the concept of the maximum entropy expression [2]. The concept of
entropy was studied as a scientific discipline by Wilson [3], while Leopold and Langbein
applied the concept of entropy to study river behavior [4]. Yang derived the river mean ele-
vation law using the concept of physical entropy [5]. Singh and Fiorentino broadened the
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scope of the concept of information entropy [6]. Meanwhile, Chapman [7] used the concept
of information entropy for the quantitative analysis of the uncertainty of hydrologic data.

Chiu introduced the concept of information entropy to calculate a two-dimensional
flow velocity formula and calculated a flow velocity probability density function that
satisfied the constraints on the maximum entropy law [8–10]. Fiorentino et al. defined
the river longitudinal section by identifying the relationship between information entropy
and the basin average elevation, and compared the river longitudinal section with actual
measurements [11,12].

Recently, Mirauda et al. [13] and Kundu [14] analyzed the location of the dip phe-
nomenon occurring in an open channel using entropy models. Although the concept of
entropy has been widely studied as a scientific discipline, not many cases have been used
to study river longitudinal sections.

In this study, formulae for calculating the river slopes, average river slopes, and river
longitudinal elevation are suggested using concepts similar to those of Chiu. Maximizing
entropy theory can be used to determine the parameters and to obtain the river longitudinal
elevation before destruction. This can be used to make the river restoration model.

3. Theoretical Background
3.1. Nonlinear Regression

In statistics, regression analysis is used to model correlations between dependent and
independent variables. Nonlinear regression models regress expressions using nonlinear
prediction functions, and unknown parameters are estimated from the equation, which
are called regression models. In general, for regression analysis, the basic method is to
obtain parameters that minimize the sum of squares of residuals. For nonlinear regression,
it is impossible to mathematically represent the error, and this can only be obtained by
iterative methods. The regression model is conducted using the least squares method. If
the purpose of the regression model is prediction rather than interpretation, nonlinear
regression is used. This is because nonlinear models can also be modeled on data with
complex patterns. Therefore, nonlinear regression analysis is used in this paper to predict
the river longitudinal section by calculating river slopes and river longitudinal altitudes.

3.2. Entropy Theory

Since natural phenomena proceed in the direction of increasing entropy, the entropy
equation can explain natural phenomena. From a mathematical point of view, river slopes
and river altitudes can also be expressed using maximum entropy laws. There are three
types of entropy that can quantify the characteristics of the system and be used to build a
model of the system: thermodynamic entropy, statistical entropy, and information entropy.
The probability distribution function of a mathematical variable can be determined by
maximizing the entropy of the variable in a particular way, and from a physical point of
view the maximized entropy of a river longitudinal section creates a constant probability
distribution under constraints. Thus, the probability law of arbitrary river longitudinal
sections and the corresponding entropy generally depends on constraints, and the most
important point of an entropy-based approach is to determine how to constrain a situation.
The probability density function p(x) for continuous state variables x is quantitatively
represented by entropy, such as in Equation (1):

H = −
∫ ∞

−∞
p(x)lnp(x)dx (1)

Entropy H, defined as Equation (1), represents the uncertainty or randomness of the
state variable x, and p(x)·dx represents the probability between the state variable x and the
state variable x+dx. Equation (2) is defined as the mean of a continuous random variable x:

x =
∫ ∞

−∞
xp(x)dx (2)
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∫ ∞

−∞
p(x)dx = 1 (3)

Figure 1 shows the longitudinal section of a stream, which is the altitude z at any
elevation from its initial point, y is the horizontal distance, and the slope at that point is i.
The slope of the initial point is tan θ0 = i0, and the slope of the end point is tan θmax = imax.
If a river basin is considered a system in which i is a river slope, and the state variable
x of the system is defined in Equation (1), the entropy of the basin can depend on the
probability. The probability density function of the basin is the same as Equation (4):

H = −
∫ imax

i0
p(i)lnp(i)di (4)

where p(i) is probability density function for slope i.
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The first constraint is Equation (5), expressed using river slopes instead of state
variations in Equation (2), and the second constraint is Equation (6), using the definition of
general probability. By maximizing entropy, the probability density function p(i) for river
slopes i can be obtained. The p(i)·di is the probability of a state variable I and is expressed
as Equation (6):

i =
∫ imax

i0
ip(i)di (5)

∫ imax

i0
p(i)di = 1 (6)

Arranging the independent constraint conditions can be given as Equation (7):

∫ b

a
Φj(i, p)di j = 1, 2 (7)

where a is the minimum value of i, b is the maximum value of i, and j is the constraint
number (j = 1 is Equation (5), j = 2 is Equation (6)).

Therefore, p(i), which maximizes the entropy, can be obtained using the method by
Lagrange as Equations (8)–(10):

∂I(i, p)
∂p

+
2

∑
j=1

λj
∂φj(i, p)

∂p
= 0 (8)

I(i, p) = −p(i)lnp(i) (9)
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where φ1(i, p) = p(i), φ2(i, p) = i·p(i).

∂φ1(i, p)
∂p

= 1,
∂φ2(i, p)

∂p
= i (10)

where λ1 and λ2 are Lagrange multipliers.
Substituting Equations (12) and (13) into Equation (11) can be constructed as the

following Equation (14):
− 1 − lnp(i) + λ1 + λ2i = 0 (11)

where λ1 − 1 = b1, λ2 = b2 are the Lagrange multipliers.
Differentiating Equation (11) by p(i), Equation (12) shows the probability density

function p(i).
Here, λ1 − 1 is b1, and λ is b2.
The organized formula is as follows:

p(i) = eb1+b2i (12)

Then, b1 is obtained by substituting the probability density function p(i) expressed in
Equation (12) into the constraint Equation (6). The result is Equation (13), and the Lagrange
multiplier b1 is Equation (14):

∫ imax

i0
p(i)di =

∫ imax

0
p(i)di −

∫ i0

0
p(i)di =

eb1

b2

(
eb2·imax − eb2·i0

)
= 1 (13)

eb1 =
b2

eb2imax − eb2i0
(14)

The variable b1 of the probability density function Equation (12) is eliminated by
substituting b1 into Equation (14), and the probability density function p(i) follows as
Equation (15):

p(i) = eb1+b2·i =
b2

eMmax − eM0
·eb2·i (15)

3.3. River Mean Slope Formula Development

The probability density function p(i) is applied to the river mean slope i of Equation (5).
Equation (16) is integrated, and Mmax is substituted for b·imax., and M0 for b·i0. The result
is the same as Equation (17):

i =
∫ imax

i0
ieb1+b2idi = eb1

∫ imax

i0
ieb2idi (16)

∫ imax
i0

ieb2idi =
∫ imax

0 ieb2idi −
∫ i0

0 ieb2idi = 1
b2

(
MmaxeMmax − M0eM0 − eMmax + eM0

)
=
(

imax+i0
Mmax+M0

)2
×
(

MmaxeMmax − M0eM0 − eMmax + eM0
) (17)

The river mean slope i is expressed in Equations (18) and (19):

i =
eb1

b22

(
MmaxeMmax − M0eM0 − eMmax + eM0

)
(18)

i =
(

imax + i0
Mmax + M0

)
×
(

MmaxeMmax − M0eM0 − eMmax + eM0
)

(eMmax − eM0)
(19)

The river mean slope i is determined by the slope of the initial and final points, and
the entropy parameter M0, Mmax.∫

eb2·idi =
1
L
· 1
eb1

∫
dy (20)
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Integrating Equation (20) yields Equation (21), and the river slope is expressed in
Equation (22):

eb2·i =
b2

L·eb1
·y + eM0 (21)

i =
1
b2

ln
[

y
L
· b2

eb1
+ eM0

]
(22)

Then, b1, b2 are eliminated by substituting b1 of Equation (14) into Equation (22), and
the result follows as Equation (23):

i =
(

imax + i0
Mmax + M0

)
ln
[ y

L

(
eMmax − eM0

)
+ eM0

]
(23)

The river slope of a random point i is defined as dz/dy, and dz follows as Equation (24):

dz =

(
imax + i0

Mmax + M0

)
× ln

[ y
L

(
eMmax − eM0

)
+ eM0

]
dy (24)

By integrating Equation (24), the river elevation z can be obtained as Equation (27):

z =
(

imax+i0
Mmax+M0

)(
L

eMmax−eM0

)
×
[{

eM0 +
(
eMmax − eM0

) y
L
}
× ln

{
eM0 +

(
eMmax − eM0

) y
L
}
−
{
+
(
eMmax − eM0

) y
L
}
+ c
] (25)

Here, c is an integral constant, so if the horizontal distance is y = 0, then the river
longitudinal elevation is z = 0. Therefore, the integral constant is c = eMmax − M0eM0 .
Substituting c into Equation (25), the river elevation z can be shown as Equation (26).

We defined Mmax as the product of b and imax, and M0 as the product of b and i0.
Thus, Equation (25) could be written as Equations (26) and (27):

z =
(

imax−i0
Mmax−M0

)(
L

eMmax−eM0

)
×
[{

eM0 +
(
eMmax − eM0

) y
L
}
× ln

{
eM0 +

(
eMmax − eM0

) y
L
}
−
{
+
(
eMmax − eM0

) y
L
}
+ eMmax − M0eM0

] (26)

z = 1
b

(
L

eMmax−eM0

)
×
[{

eM0 +
(
eMmax − eM0

) y
L
}
× ln

{
eM0 +

(
eMmax − eM0

) y
L
}
−
{
+
(
eMmax − eM0

) y
L
}
+ eMmax − M0eM0

] (27)

3.4. RMSE

The Root Mean Square Error, RMSE, is a measure of the residual, which is the dif-
ference between the values predicted by the model and the actual observed values. The
RMSE enables the predictive power to be integrated into a single unit of measurement. The
RMSE of the model’s prediction for the estimated variable Xest,i is defined as the square
root of the mean square error (Equation (28)):

RMSE =

√
∑n

i=1 (Xobs,i − Xest,i)
2

n
(28)

where Xobs,i indicates the actual observed value, and Xest,i is the predicted value obtained
from the model.

4. Application to Real River

This study compared and analyzed the measured and theoretical values obtained by
the river mean slope formula. The river longitudinal elevation was obtained by the River
Improvement Plan, which is considered reliable, and the initial slopes, last slopes, and
lengths of the seven rivers are shown in Table 1. The length of Nakdong river is 510 km,
but the data used in this research was only partial due to the long length. The river slope
used in this research was used by all positive river slopes.
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Table 1. River slopes and lengths.

River Length (km) i0 imax

Masan 18.57 (entire) 1.1 × 10−1 0.9 × 10−2

Samcheonpo 7 (entire) 6.3 × 10−2 1.1 × 10−1

Gacheon 21.19 (entire) 1.3 × 10−2 3.18 × 10−2

Gamcheon 13.13 (entire) 1.27 × 10−2 1.1 × 10−2

Geum 3.25 (entire) 3.0 × 10−2 3.81 × 10−2

Yudong 11.31 (entire) 4.29 × 10−4 5.25 × 10−3

Nakdong 21.42 (selected) 3.2 × 10−2 2.5 × 10−2

4.1. Determination of Parameter by Measured Values

Based on the river longitudinal section, the parameters were yielded by a nonlinear
regression analysis of the river longitudinal value z in order to make the error sum of
the predicted values as small as possible. The Equations (26) and (27) were used for the
calculation. Table 2 shows the parameter value, while Table 3 compares the average slope
of the river calculated by substituting the parameters of each river.

Table 2. Parameter by each method.

River
Mmax+M0 Mmax−M0

b
M0 Mmax M0 Mmax

Masan −44.778 −8.481 −53.336 −8.481 −104.898

Samcheonpo −1311.532 −708.388 −2.056 3.428 −5.911

Gacheon −48.3386 −21.8701 −21.2442 −47.2009 −602.821

Gamcheon 1 0.9944 −24.804 5.113 −88,000

Geum −2.6198 −101.655 −2.6195 −13.8264 −456.546

Yudong −15.179 −9.616 −2.517 −8.917 39.952

Nakdong −155.335 −20.034 −11.929 −91.464 −2458.048

Table 3. Mean slope comparison between the measured and the predicted values.

River Measured
Predicted

Mmax+M0 Mmax−M0 b

Masan 0.01818 0.022464 0.022648 0.019296

Samcheonpo 0.054015 0.05124 0.194054 0.054411

Gacheon 0.015634 0.015098 0.01483 0.014972

Gamcheon 0.001508 0.001588 0.001247 0.001284

Geum 0.001591 0.001052 0.000876 0.001145

Yudong 0.003771 0.002601 0.002624 0.002942

Nakdong 0.028358 0.003568 0.00355 0.003488

4.2. River Longitudinal Elevation

The parameters of the topological factors can be obtained through the measurement of
the elevation of the river and the nonlinear regression of the suggested formula, respectively.
The results are compared to the actual measurement of the river’s longitudinal elevation
calculated using the equation, and the accuracy of the prediction is evaluated using R2.
Figure 2 shows the comparison for each method. Table 4 shows the accuracy analysis
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comparison. Considering that the values of R2 were all above 0.80, the formula suggested
in this paper was meaningful in calculating the river elevation and slope.
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Table 4. Accuracy analysis results.

River
Mmax+M0 Mmax−M0 b

R2 RMSE R2 RMSE R2 RMSE

Masan 0.987 2.153 0.987 2.153 0.938 5.883

Samcheonpo 0.94 0.828 0.991 2.72 0.979 4.175

Gacheon 0.995 2.794 0.987 4.908 0.987 5.142

Gamcheon 0.998 0.549 0.992 1.321 0.966 2.862

Geum 0.998 10.821 0.955 1.605 0.815 15.775

Yoodong 0.995 2.687 0.949 0.822 0.94 3.831

Nakdong 0.993 1.369 0.995 0.834 0.994 0.801
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5. Conclusions

To date, many studies have analyzed rivers based on survey results, but there is the
disadvantage that in the event of disasters, such as floods, in situations where measurement
is impossible, many data cannot be obtained.

To resolve this, this study suggests obtaining the prediction formula of the river
longitudinal section using information entropy theory. In addition, while existing studies
have studied the river elevation with one parameter, in this study two parameters have
been considered in order to calculate river characteristic factors more accurately than in
conventional studies. In this study, information entropy theory was used to calculate
the average slope, river slope, and river longitudinal elevation. Using the suggested
river longitudinal elevation equation, parameters representing river characteristics were
determined based on the average slope and river longitudinal section in the basin.

(1) The verification of the accuracy of the equation in this paper is based on the nonlinear
regression analysis with SPSS 26 and SYSTAT 6.0. The value is 0.8150 to 0.9950.
The values show that the equation is valid, and the application to actual rivers is
considered significant.

(2) Gacheon river shows the highest accuracy of prediction (close to 0.99) out of all
methods. Yoodong river has parts that do not increase monotonically, and all three
methods predict that singularity similarly. The suggested formulae are able to predict
the section where the slope changes are large.

(3) Since Mmax and M0 are parameters of the river, once the parameter is calculated the
longitudinal section of the river can be obtained before it is destroyed. The reliability
of this method can be further enhanced by using the data measured over 40 years or
over 100 years.

(4) When making calculations using the equation presented in this study, it is easy to
calculate the slope and elevation at a random point in the river basin.

(5) It is expected that one use the river longitudinal section obtained through the equa-
tion to restore damaged rivers to their longitudinal elevations and ramps before
development.

(6) Using the method proposed in this paper, the river elevation can be obtained more
accurately, which can help more precisely in the production of a digital elevation
model or modify the data in places where it is hard to measure.
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