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Abstract: We developed a novel approximate Bayesian computation (ABC) framework, ABCDP,
which produces differentially private (DP) and approximate posterior samples. Our framework
takes advantage of the sparse vector technique (SVT), widely studied in the differential privacy
literature. SVT incurs the privacy cost only when a condition (whether a quantity of interest is
above/below a threshold) is met. If the condition is sparsely met during the repeated queries, SVT
can drastically reduce the cumulative privacy loss, unlike the usual case where every query incurs
the privacy loss. In ABC, the quantity of interest is the distance between observed and simulated
data, and only when the distance is below a threshold can we take the corresponding prior sample as
a posterior sample. Hence, applying SVT to ABC is an organic way to transform an ABC algorithm
to a privacy-preserving variant with minimal modification, but yields the posterior samples with a
high privacy level. We theoretically analyzed the interplay between the noise added for privacy and
the accuracy of the posterior samples. We apply ABCDP to several data simulators and show the
efficacy of the proposed framework.

Keywords: approximate Bayesian computation (ABC); differential privacy (DP); sparse vector
technique (SVT)

1. Introduction

Approximate Bayesian computation (ABC) aims to identify the posterior distribution
over simulator parameters. The posterior distribution is of interest as it provides the
mechanistic understanding of the stochastic procedure that directly generates data in many
areas such as climate and weather, ecology, cosmology, and bioinformatics [1–4].

Under these complex models, directly evaluating the likelihood of data is often in-
tractable given the parameters. ABC resorts to an approximation of the likelihood function
using simulated data that are similar to the actual observations.

In the simplest form of ABC called rejection ABC [5], we proceed by sampling multiple
model parameters from a prior distribution π: θ1, θ2, . . . ∼ π. For each θt, a pseudo dataset
Yt is generated from a simulator (the forward sampler associated with the intractable
likelihood P(y|θ)). The parameter θt for which the generated Yt are similar to the observed
Y∗, as decided by ρ(Yt, Y∗) < εabc, is accepted. Here, ρ is a notion of distance, for instance,
L2 distance between Yt and Y∗ in terms of a pre-chosen summary statistic. Whether the
distance is small or large is determined by εabc, a similarity threshold. The result is samples
{θt}M

t=1 from a distribution, P̃ε(θ|Y∗) ∝ π(θ)P̃ε(Y∗|θ), where P̃ε(Y∗|θ) =
∫

Bε(Y∗)
P(Y|θ)dY

and Bε(Y∗) = {Y : ρ(Y, Y∗) < εabc}. As the likelihood computation is approximate, so
is the posterior distribution. Hence, this framework is named by approximate Bayesian
computation, as we do not compute the likelihood of data explicitly.

Most ABC algorithms evaluate the data similarity in terms of summary statistics
computed by an aggregation of individual datapoints [6–11]. However, this seemingly
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innocuous step of similarity check could impose a privacy threat, as aggregated statistics
could still reveal an individual’s participation to the dataset with the help of combining
other publicly available datasets (see [12,13]). In addition, in some studies, the actual
observations are privacy-sensitive in nature, e.g., Genotype data for estimating tuberculosis
transmission parameters [14]. Hence, it is necessary to privatize the step of similarity check
in ABC algorithms.

In this light, we introduce an ABC framework that obeys the notion of differential
privacy. The differential privacy definition provides a way to quantify the amount of
information that the distance computed on the privacy-sensitive data contains, whether or
not a single individual’s data are included (or modified) in the data [15]. Differential privacy
also provides rigorous privacy guarantees in the presence of arbitrary side information such
as similar public data.

A common form of applying DP to an algorithm is by adding noise to outputs of
the algorithm, called output perturbation [16]. In the case of ABC, we found that adding
noise to the distance computed on the real observations and pseudo-data suffices for the
privacy guarantee of the resulting posterior samples. However, if we choose to simply
add noise to the distance in every ABC inference step, this DP-ABC inference imposes
an additional challenge due to the repeated use of the real observations. The composition
property of differential privacy states that the privacy level degrades over the repeated
use of data. To overcome this challenge, we adopt the sparse vector technique (SVT) [17],
and apply it to the rejection ABC paradigm. The SVT outputs noisy answers of whether
or not a stream of queries is above a certain threshold, where privacy cost incurs only
when the SVT outputs at most c “above threshold” answers. This is a significant saving in
privacy cost, as arbitrarily many “below threshold” answers are privacy cost free.

We name our framework, which combines ABC with SVT, as ABCDP (approximate
Bayesian computation with differential privacy). Under ABCDP, we theoretically ana-
lyze the effect of noise added to the distance in the resulting posterior samples and the
subsequent posterior integrals. Putting together, we summarize our main contributions:

1. We provide a novel ABC framework, ABCDP, which combines the sparse vector technique
(SVT) [17] with the rejection ABC paradigm. The resulting ABCDP framework can
improve the trade-off between the privacy and accuracy of the posterior samples,
as the privacy cost under ABCDP is a function of the number of accepted posterior
samples only.

2. We theoretically analyze ABCDP by focusing on the effect of noisy posterior samples
in terms of two quantities. The first quantity provides the probability of an output
of ABCDP being different from that of ABC at any given time during inference.
The second quantity provides the convergence rate, i.e., how fast the posterior integral
using ABCDP’s noisy samples’ approaches that using non-private ABC’s samples.
We write both quantities as a function of added noise for privacy to better understand
the characteristics of ABCDP.

3. We validate our theory in the experiments using several simulators. The results of
these experiments are consistent with our theoretical findings on the flip probability
and the average error induced by the noise addition for privacy.

Unlike other existing ABC frameworks that typically rely on a pre-specified set of
summary statistics, we use a kernel-based distance metric called maximum mean discrepancy
following K2-ABC [18] to eliminate the necessity of pre-selecting a summary statistic. Using
a kernel for measuring similarity between two empirical distributions was also proposed in
K-ABC [19]. K-ABC formulates ABC as a problem of estimating a conditional mean embed-
ding operator mapping (induced by a kernel) from summary statistics to corresponding
parameters. However, unlike our algorithm, K-ABC still relies on a particular choice of
summary statistics. In addition, K-ABC is a soft-thresholding ABC algorithm, while ours is
a rejection-ABC algorithm.

To avoid the necessity of pre-selecting summary statistics, one could resort to methods
that automatically or semi-automatically learn the best summary statistics given in a
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dataset, and use the learned summary statistics in our ABCDP framework. An example is
semi-auto ABC [6], where the authors suggest using the posterior mean of the parameters
as a summary statistic. Another example is the indirect-score ABC [20], where the authors
suggest using an auxiliary model which determines a score vector as a summary statistic.
However, the posterior mean of the parameters in semi-auto ABC as well as the parameters
of the auxiliary model in indirect-score ABC need to be estimated. The estimation step
can incur a further privacy loss if the real data need to be used for estimating them. Our
ABCDP framework does not involve such an estimation step and is more economical in
terms of privacy budget to be spent than semi-auto ABC and indirect-score ABC.

2. Background

We start by describing relevant background information.

2.1. Approximate Bayesian Computation

Given a set Y∗ containing observations, rejection ABC [5] yields samples from an
approximate posterior distribution by repeating the following three steps:

θ ∼ π(θ), (1)

Y = {y1, y2, . . .} ∼ P(y|θ), (2)

Pεabc(θ|Y
∗) ∼ Pεabc(Y

∗|θ)π(θ), (3)

where the pseudo dataset Y is compared with the observations Y∗ via:

Pεabc(Y
∗|θ) =

∫
Bεabc (Y

∗)
P(Y|θ)dY,

Bεabc(Y
∗) = {Y|ρ(Y, Y∗) ≤ εabc}, (4)

where ρ is a divergence measure between two datasets. Any distance metric can be used
for ρ. For instance, one can use the L2 distance under two datasets in terms of a pre-chosen
set of summary statistics, i.e., ρ(Y, Y∗) = D(S(Y), S(Y∗)), with an L2 distance measure D
on the statistics computed by S.

A more statistically sound choice for ρ would be maximum mean discrepancy (MMD, [21])
as used in [18]. Unlike a pre-chosen finite dimensional summary statistic typically used in
ABC, MMD compares two distributions in terms of all the possible moments of the random
variables described by the two distributions. Hence, ABC frameworks using the MMD
metric such as [18] can avoid the problem of non-sufficiency of a chosen summary statistic
that may occur in many ABC methods. For this reason, in this paper, we demonstrate our
algorithm using the MMD metric. However, other metrics can be used as we illustrated in
our experiments.

Maximum Mean Discrepancy

Assume that the data Y ⊂ X and let k : X × X be a positive definite kernel. MMD
between two distributions P, Q is defined as

MMD2(P, Q) = Ex,x′∼Pk(x, x′) +Ey,y′∼Qk(y, y′)− 2Ex∼PEy∼Qk(x, y). (5)

By following the convention in kernel literature, we call MMD2 simply MMD.
The Moore–Aronszajn theorem states that there is a unique Hilbert spaceH on which

k defines an inner product. As a result, there exists a feature map φ : X → H such that
k(x, y) = 〈φ(x), φ(y)〉H, where 〈·, ·〉H = 〈·, ·〉 denotes the inner product onH. The MMD
in (5) can be written as

MMD2(P, Q) =
∥∥Ex∼P[φ(x)]−Ey∼Q[φ(y)]

∥∥2
H,
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where Ex∼P[φ(x)] ∈ H is known as the (kernel) mean embedding of P, and exists if
Ex∼P

√
k(x, x) < ∞ [22]. The MMD can be interpreted as the distance between the

mean embeddings of the two distributions. If k is a characteristic kernel [23], then
P 7→ Ex∼P[φ(x)] is injective, implying that MMD(P, Q) = 0, if and only if P = Q.
When P, Q are observed through samples Xm = {xi}m

i=1 ∼ P and Yn = {yi}n
i=1 ∼ Q,

MMD can be estimated by empirical averages [21] (Equation (3)): M̂MD
2
(Xm, Yn) =

1
m2 ∑m

i,j=1 k(xi, xj) +
1

n2 ∑n
i,j=1 k(yi, yj) − 2

mn ∑m
i=1 ∑n

j=1 k(xi, yj). When applied in the ABC

setting, one input to M̂MD is the observed dataset Y∗ and the other input is a pseudo
dataset Yt ∼ p(·|θt) generated by the simulator given θt ∼ π(θ).

2.2. Differential Privacy

An output from an algorithm that takes in sensitive data as input will naturally
contain some information of the sensitive data D. The goal of differential privacy is to
augment such an algorithm so that useful information about the population is retained,
while sensitive information such as an individual’s participation in the dataset cannot
be learned [17]. A common way to achieve these two seemingly paradoxical goals is by
deliberately injecting a controlled level of random noise to the to-be-released quantity.
The modified procedure, known as a DP mechanism, now gives a stochastic output due to
the injected noise. In the DP framework, a higher level of noise provides stronger privacy
guarantee at the expense of less accurate population-level information that can be derived
from the released quantity. Less noise added to the output thus reveals more about an
individual’s presence in the dataset.

More formally, given a mechanism M (a mechanism takes a dataset as input and
produces stochastic outputs) and neighboring datasets D, D′ differing by a single entry
(either by replacing one’s datapoint with another, or by adding/removing a datapoint
to/from D), the privacy loss of an outcome o is defined by

L(o) = log
P(M(D) = o)
P(M(D′) = o)

. (6)

The mechanismM is called ε-DP if and only if |L(o)| ≤ ε, for all possible outcomes o and
for all possible neighboring datasets D,D′. The definition states that a single individual’s
participation in the data does not change the output probabilities by much; this limits the
amount of information that the algorithm reveals about any one individual. A weaker
or an approximate version of the above notion is (ε, δ)-DP: M is (ε, δ)-DP if |L(o)| ≤ ε,
with probability 1− δ, where δ is often called a failure probability which quantifies how
often the DP guarantee of the mechanism fails.

Output perturbation is a commonly used DP mechanism to ensure the outputs of
an algorithm to be differentially private. Suppose a deterministic function h : D 7→ Rp

computed on sensitive data D outputs a p-dimensional vector quantity. In order to make
h private, we can add noise to the output of h, where the level of noise is calibrated to
the global sensitivity [24], ∆h, defined by the maximum difference in terms of some norm
||h(D)− h(D′)|| for neighboring D and D′ (i.e., differ by one data sample).

There are two important properties of differential privacy. First, the post-processing
invariance property [24] tells us that the composition of any arbitrary data-independent
mapping with an (ε, δ)-DP algorithm is also (ε, δ)-DP. Second, the composability theo-
rem [24] states that the strength of privacy guarantee degrades with the repeated use of
DP-algorithms. Formally, given an ε1-DP mechanismM1 and an ε2-DP mechanismM2,
the mechanismM(D) := (M1(D),M2(D)) is (ε1 + ε2)-DP. This composition is often-
called linear composition, under which the total privacy loss linearly increases with the
number of repeated use of DP-algorithms. The strong composition [17] [Theorem 3.20]
improves the linear composition, while the resulting DP guarantee becomes weaker (i.e.,
approximate (ε, δ)-DP). Recently, more refined methods further improve the privacy loss
(e.g., [25]).
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2.3. AboveThreshold and Sparse Vector Technique

Among the DP mechanisms, we will utilize AboveThreshold and sparse vector technique
(SVT) [17] to make the rejection ABC algorithm differentially private. AboveThreshold
outputs 1 when a query value exceeds a pre-defined threshold, or 0 otherwise. This
resembles rejection ABC where the output is 1 when the distance is less than a chosen
threshold. To ensure the output is differentially private, AboveThreshold adds noise to
both the threshold and the query value. We take the same route as AboveThreshold to
make our ABCDP outputs differentially private. Sparse vector technique (SVT) consists of
c calls to AboveThreshold, where c in our case determines how many posterior samples
ABCDP releases.

Before presenting our ABCDP framework, we first describe the privacy setup we
consider in this paper.

3. Problem Formulation

We assume a data owner who owns sensitive data Y∗ and is willing to contribute to the
posterior inference.

We also assume a modeler who aims to learn the posterior distribution of the parameters
of a simulator. Our ABCDP algorithm proceeds with the two steps:

1. Non-private step: The modeler draws a parameter sample θt ∼ π(θ); then generates a
pseudo-dataset Yt, where Yt ∼ P(y|θt) for t = 1, · · · , T for a large T. We assume these
parameter-pseudo-data pairs {θt, Yt}T

t=1 are publicly available (even to an adversary).
2. Private step: the data owner takes the whole sequence of parameter-pseudo-data pairs

{(θt, Yt)}T
t=1 and runs our ABCDP algorithm in order to output a set of differentially

private binary indicators determining whether or not to accept each θt.

Note that T is the maximum number of parameter-pseudo-data pairs that are publicly
available. We will run our algorithm for T steps, while our algorithm can terminate as soon
as we output the c number of accepted posterior samples. So, generally, c� T. The details
are then introduced.

4. ABCDP

Recall that the only place where the real data Y∗ appear in the ABC algorithm is when
we judge whether the simulated data are similar to the real data, i.e., as in (4). Our method
hence adds noise to this step. In order to take advantage of the privacy analysis of SVT, we
also add noise to the ABC threshold and to the ABC distance. Consequently, we introduce
two perturbation steps.

Before we introduce them, we describe the global sensitivity of the distance, as this
quantity tunes the amount of noise we will add in the two perturbation steps. For
ρ(Y∗, Y) = M̂MD(Y∗, Y) with a bounded kernel, then the sensitivity of the distance is
∆ρ = O(1/N) as shown in Lemma 1.

Lemma 1 (∆ρ = O(1/N) for MMD). Assume that Y∗ and each pseudo dataset Yt are of
the same cardinality N. Set ρ(Y∗, Y) = M̂MD(Y∗, Y) with a kernel k bounded by Bk > 0,
i.e., supx,y∈X k(x, y) ≤ Bk < ∞. Then:

sup
(Y∗ ,Y∗′ ),Y

|ρ(Y∗, Y)− ρ(Y∗
′
, Y)| ≤ ∆ρ :=

2
N

√
Bk

and supY∗ ,Y ρ(Y∗, Y) ≤ 2
√

Bk.

A proof is given in Appendix B. For ρ = M̂MD using a Gaussian kernel, k(x, y) =

exp
(
− ‖x−y‖2

2l2

)
where l > 0 is the bandwidth of the kernel, Bk = 1 for any l > 0.

Now, we introduce the two perturbation steps used in our algorithm summarized in
Algorithm 1.
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Algorithm 1 Proposed c-sample ABCDP

Require: Observations Y∗, Number of accepted posterior sample size c, privacy tolerance
εtotal , ABC threshold εabc, distance ρ, and parameter-pseudo-data pairs {(θt, Yt)}T

t=1,
and option RESAMPLE.

Ensure: εtotal-DP indicators {τ̃t}T
t=1 for corresponding samples {θt}T

t=1

1: Calculate the noise scale b by Theorem 1.
2: Privatize ABC threshold: ε̂abc = εabc + mt via (7)
3: Set count=0
4: for t = 1, . . . , T do
5: Privatize distance: ρ̂t = ρ(Y∗, Yt) + νt via (8)
6: if ρ̂t ≤ ε̂abc then
7: Output τ̃t = 1
8: count = count+1
9: if RESAMPLE then

10: ε̂abc = εabc + mt via (7)
11: end if
12: else
13: Output τ̃t = 0
14: end if
15: if count ≥ c then
16: Break the loop
17: end if
18: end for

Step 1: Noise for privatizing the ABC threshold.

ε̂abc = εabc + mt (7)

where mt ∼ Lap(b), i.e., drawn from the zero-mean Laplace distribution with a scale
parameter b.

Step 2: Noise for privatizing the distance.

ρ̂t = ρ(Y∗, Yt) + νt (8)

where νt ∼ Lap(2b).
Due to these perturbations, Algorithm 1 runs with the privatized threshold and

distance. We can choose to perturb the threshold only once, or every time we output 1
by setting RESAMPLE to false or true. After outputting c number of 1’s, the algorithm is
terminated. How do we calculate the resulting privacy loss under the different options
we choose?

We formally state the relationship between the noise scale and the final privacy loss
εtot for the Laplace noise in Theorem 1.

Theorem 1 (Algorithm 1 is εtotal-DP). For any neighboring datasets Y∗, Y∗
′

of size N and
any dataset Y, assume that ρ is such that 0 < sup(Y∗ ,Y∗′ ),Y |ρ(Y

∗, Y)− ρ(Y∗
′
, Y)| ≤ ∆ρ < ∞.

Algorithm 1 is εtotal-DP, where:

εtotal =

{
(c+1)∆ρ

b if RESAMPLE is False,
2c∆ρ

b if RESAMPLE is True.
(9)

A proof is given in Appendix A. The proof uses linear composition, i.e., the privacy
level linearly degrading with c. However, using the strong composition or more advanced
compositions can reduce the resulting privacy loss, while these compositions turn pure-DP



Entropy 2021, 23, 961 7 of 20

into a weaker, approximate-DP. In this paper, we focus on the pure-DP. For the case of
RESAMPLE = True, the proof directly follows the proof of the standard SVT algorithm
using the linear composition method [17], with an exception that we utilize the quantity
representing the minimum noisy value of any query evaluated on Y∗, as opposed to the
maximum utilized in SVT. For the case of RESAMPLE= False, the proof follows the proof
of Algorithm 1 in [26].

Note that the DP analysis in Theorem 1 holds for other types of distance metrics
and not limited to only MMD, as long as there is a bounded sensitivity ∆ρ under the
chosen metric. When there is no bounded sensitivity, one could impose a clipping bound
C to the distance by taking the distance from min[ρ(Yt, Y∗), C], such that the resulting
distance between any pseudo data Yt and Y∗

′
with modifying one datapoint in Y∗ cannot

exceed that clipping bound. In fact, we use this trick in our experiments when there is no
bounded sensitivity.

4.1. Effect of Noise Added to ABC

Here, we would like to analyze the effect of noise added to ABC. In particular, we
are interested in analyzing the probability that the output of ABCDP differs from that of
ABC: P[τ̃t 6= τt|τt] at any given time t. To compute this probability, we first compute the
probability density function (PDF) of the random variables mt − νt in the following Lemma.

Lemma 2. Recall mt ∼ Lap(b), νt ∼ Lap(2b). The subtraction of these yields another random
variable Z = mt − νt, where the PDF of Z is given by

fZ(z) =
1
6b

[
2 exp

(
−|z|

2b

)
− exp

(
−|z|

b

)]
. (10)

Furthermore, for a ≥ 0, Gb(a) :=
∫ ∞

a fZ(z)dz = 1
6
[
4 exp

(
− a

2b
)
− exp

(
− a

b
)]

, and the CDF of
Z is given by FZ(a) = H[a] + (1− 2H[a])Gb(|a|) where H[a] is the Heaviside step function.

See Appendix C for the proof. Using this PDF, we now provide the following proposition:

Proposition 1. Denote the output of Algorithm 1 at time t by τ̃t ∈ {0, 1} and the output of ABC
by τt ∈ {0, 1}. The flip probability, the probability that the outputs of ABCDP and ABC differ
given the output of ABC, is given by P[τ̃t 6= τt|τt] = Gb(|ρt − εabc|), where Gb(a) is defined in
Lemma 2, and ρt := ρ(Y∗, Yt).

See Appendix D for proof.
To provide an intuition of Proposition 1, we visualize the flip probability in Figure 1.

This flip probability provides a guideline for choosing the accepted sample size c given the
datasize N and the desired privacy level εtotal . For instance, if a given dataset is extremely
small, e.g., containing datapoints on the order of 10, c has to be chosen such that the flip
probability of each posterior sample remains low for a given privacy guarantee (εtotal). If a
higher number of posterior samples are needed, then one has to reduce the desired privacy
level for the posterior sample of ABCDP to be similar to that of ABC. Otherwise, with a
small εtotal with a large c, the accepted posterior samples will be poor. On the other hand,
if the dataset is bigger, then a larger c can be taken for a reasonable level of privacy.
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Figure 1. Visualization of flip probability derived in Proposition 1, the probability that the outputs of ABCDP and
ABC differ given an output of ABC, with different dataset size N and accepted posterior sample size c. We simulated
ρ ∼ Uniform[0, 1] (drew 100 values for ρ) and used εabc = 0.2: (A) This column shows the flip probability at a regime
of extremely small datasets, N = 10. Top plot shows the probability at c = 10, middle plot at c = 100, and bottom plot
at c = 1000. In this regime, even εtotal = 100 cannot reduce the flip probability to perfectly zero when c = 10. The flip
probability remains high when we accept more samples, i.e., c = 1000; (B) the flip probability at N = 100; (C) the flip
probability at N = 1000. As we increase the dataset size N (moving from the left to right columns), the flip probability
approaches zero at a smaller privacy loss εtotal .

4.2. Convergence of Posterior Expectation of Rejection-ABCDP to Rejection-ABC.

The flip probability studied in Section 4.1 only accounts for the effect of noise added
to a single output of ABCDP. Building further on this result, we analyzed the discrepancy
between the posterior expectations derived from ABCDP and from the rejection ABC. This
analysis requires quantifying the effect of noise added to the whole sequence of outputs of
ABCDP. The result is presented in Theorem 2.

Theorem 2. Given Y∗ of size N, and {(θt, Yt)}T
t=1 as input, let τ̃t ∈ {0, 1} be the output from

Algorithm 1 where τ̃t = 1 indicates that (θt, Yt) is accepted, for t = 1, . . . , T. Similarly, let τt denote
the output from the traditional rejection ABC algorithm, for t = 1, . . . , T. Let f be an arbitrary
vector-valued function of θ. Assume that the numbers of accepted samples from Algorithm 1, and the
traditional rejection ABC algorithm are c := ∑T

t=1 τ̃t ≥ 1 and c′ := ∑T
t=1 τt ≥ 1, respectively. Let

b = 4c
√

Bk
εtotal N if RESAMPLE=True, and b = 2(c+1)

√
Bk

εtotal N if RESAMPLE=False (see Theorem 1). Define
KT := maxt=1,...,T ‖ f (θt)‖2. Then, the following statements hold for both RESAMPLE options:

1. Eτ̃1,...,τ̃T

∥∥∥∥ 1
c ∑T

t=1 f (θt)τ̃t − 1
c′ ∑T

t=1 f (θt)τt

∥∥∥∥
2
≤ 2KT

c′ ∑T
t=1 Gb(|ρt − εabc|), where the

decreasing function Gb(x) ∈ (0, 1
2 ] for any x ≥ 0 is defined in Lemma 2;

2. Eτ̃1,...,τ̃T

∥∥∥∥ 1
c ∑T

t=1 f (θt)τ̃t − 1
c′ ∑T

t=1 f (θt)τt

∥∥∥∥
2
→ 0 as N → ∞;
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3. For any a > 0:

P
(∥∥∥∥1

c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ a

)
≥ 1− 4KT

3ac′
T

∑
t=1

exp
(
−|ρt − εabc|

2b

)
where the probability is taken with respect to τ̃1, . . . , τ̃T .

Theorem 2 contains three statements. The first states that the expected error between
the two posterior expectations of an arbitrary function f is bounded by a constant factor
of the sum of the flip probability in each rejection/acceptance step. As we have seen
in Section 4.1, the flip probability is determined by the scale parameter b of the Laplace
distribution. Since b = O(1/N) (see Theorem 1 and Lemma 1), it follows that the expected
error decays as N increases, giving the second statement.

The third statement gives a probabilistic bound on the error. The bound guarantees
that the error decays exponentially in N. Our proof relies on establishing an upper bound
on the error as a function of the total number of flips ∑T

t=1 |τ̃t − τt| which is a random
variable. Bounding the error of interest then amounts to characterizing the tail behavior
of this quantity. Observe that in Theorem 2, we consider ABCDP and rejection ABC with
the same computational budget, i.e., the same total number of iterations T performed.
However, the number of accepted samples may be different in each case (c for ABCDP and
c′ for reject ABC). The fact that c itself is a random quantity due to injected noise presents
its own technical challenge in the proof. Our proof can be found in Appendix E.

5. Related Work

Combining DP with ABC is relatively novel. The only related work is [27], which
states that a rejection ABC algorithm produces posterior samples from the exact posterior
distribution given perturbed data, when the kernel and bandwidth of rejection ABC are
chosen in line with the data perturbation mechanism. The focus of [27] is to identify the
condition when the posterior becomes exact in terms of the kernel and bandwidth of the
kernel through the lens of data perturbation. On the other hand, we use the sparse vector
technique to reduce the total privacy loss. The resulting theoretical studies including the
flip probability and the error bound on the posterior expectation are new.

6. Experiments
6.1. Toy Examples

We start by investigating the interplay between εabc and εtotal , in a synthetic dataset
where the ground truth parameters are known. Following [18], we also consider a symmet-
ric Dirichlet prior π and a likelihood p(y|θ) given by a mixture of uniform distributions as

π(θ) = Dirichlet(θ; 1),

P(y|θ) =
5

∑
i=1

θiUniform(y; [i− 1, i]). (11)

A vector of mixing proportions is our model parameters θ, where the ground truth is
θ∗ = [0.25, 0.04, 0.33, 0.04, 0.34]> (see Figure 2). The goal is to estimate E[θ|Y∗] where Y∗ is
generated with θ∗.

We first generated 5000 samples for Y∗ drawn from (11) with true parameters θ∗. Then,
we tested our two ABCDP frameworks with varying εabc and εtotal . In these experiments,
we set ρ = M̂MD with a Gaussian kernel. We set the bandwidth of the Gaussian kernel
using the median heuristic computed on the simulated data (i.e., we did not use the real
data for this, hence there is no privacy violation in this regard).

We drew 5000 pseudo-samples for Yt at each time. We tested various settings,
as shown in Figure 3, where we vary the number of posterior samples, c = {10, 100, 1000},
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εabc = {0.05, 0.1, 0.2, 0.5} and εtotal = {0.5, 1.0, 10, ∞}. We showed the result of ABCDP for
both RESAMPLE options in Figure 3.

1

0

0.2

0.4

00

100

1 2 3 4 5

2 3 4 5

(a) True parameters.

1

0

0.2

0.4

00

100

1 2 3 4 5

2 3 4 5

(b) Observations, where the x axis
indicates the range of the values of

observations.

Figure 2. Synthetic data. (a): 5-dimensional true parameters; (b): observations sampled from the
mixture of uniform distributions in (11) with the true parameters.
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Figure 3. ABCDP on synthetic data. Mean-squared error (between true parameters and posterior
mean) as a function of similarity threshold εabc given each privacy level. We ran ABCDP with
the following options: RESAMPLE = True (denoted by R and solid line); or RESAMPLE = False
(without R and dotted line) for 60 independent runs. (Top Left) When cstop = 10 at different values
of εabc, ABCDP and non-private ABC (black trace) achieved the highest accuracy (lowest MSE) at the
smallest εabc (εabc = 0.01). Notice that ABCDP RESAMPLE = False (dotted) outperformed ABCDP
RESAMPLE=True (solid) for the same privacy tolerance (εtotal) at small values of εabc. (Top Right)
MSE for cstop = 100 at different values of εabc; (Bottom Left) MSE for cstop = 1000 at different values
of εabc. We can observe when εabc is large, ABCDP (gray) marginally outperforms non-private ABC
(black) due to the excessive noise added in ABCDP.
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6.2. Coronavirus Outbreak Data

In this experiment, we modelled coronavirus outbreak in the Netherlands using a poly-
nomial model consisting of four parameters a0, a1, a2, a3, which we aimed to infer, where:

y(t) = a3 + a2t + a1t2 + a0t3. (12)

The observed (https://www.ecdc.europa.eu/en/publications-data/download-todays-
data-geographic-distribution-COVID-19-cases-worldwide, accessed on 10 October 2020)
data are the number of cases of the coronavirus outbreak from 27 February to 17 March
2020, which amounts to 18 datapoints (N = 18). The presented experiment imposes privacy
concern as each datapoint is a count of the individuals who are COVID positive at each
time. The goal is to identify the approximate posterior distribution P̃(a0, a1, a2, a3|y∗) over
these parameters, given a set of observations.

Recalling from Figure 1 that the small size of data worsens the privacy and accuracy
trade-off, the inference is restricted to a small number of posterior samples (we chose
c = 5) since the number of datapoints is extremely limited in this dataset. We used the
same prior distributions for the four parameters as ai ∼ N (0, 1) for all i = 0, 1, 2, 3. We
drew 50, 000 samples from the Gaussian prior, and performed our ABCDP algorithm with
εtotal = {13, 22, 44} and εabc = 0.1, as shown in Figure 4.

time time

esp_tot = 44

esp_tot = 13esp_tot = 22

Figure 4. COVID-19 outbreak data (N = 18) and simulated data under different privacy guarantees.
Red dots show observed data, and gray dots show simulated data drawn from 5 posterior samples
accepted in each case. The blue crosses are simulated data given the posterior mean in each case:
(Top left) simulated data by non-private ABC; (Top right) simulated data by ABCDP with εtotal = 44
are relatively well aligned with regard to the extremely small size of the data. Note that we use a
different scale for left and right plots for better visibility. If we use the same y scale in both plots,
the simulated and observed points are not distinguishable on the left plot: (Bottom left) the simulated
data given 5 posterior samples exhibit a large variance when εtotal = 22; and (Bottom right) when
εtotal = 13, the simulated data exhibit an excessively large variance.

6.3. Modeling Tuberculosis (TB) Outbreak Using Stochastic Birth–Death Models

In this experiment, we used the stochastic birth–death models to model Tubercu-
losis (TB) outbreak. There are four parameters that we aim to infer, which go into the

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-COVID-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-COVID-19-cases-worldwide
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communicable disease outbreak simulator as inputs: burden rate β, transmission rate
t1, reproductive numbers R1 and R2. The goal is to identify the approximate posterior
distribution p̃(R1, t1, R2, β|y∗) over these parameters given a set of observations. Please
refer to Section 3 in [28] for the description of the birth–death process of the model. We
used the same prior distributions for the four parameters as in [28]: β ∼ N (200, 30),
R1 ∼ Unif(1.01, 20), R2 ∼ Unif(0.01, (1− 0.05R1)/0.95), t1 ∼ Unif(0.01, 30).

To illustrate the privacy and accuracy trade-off, we first generated two sets of obser-
vations y∗ (n = 100 and n = 1000) by some true model parameters (shown as black bars
in Figure 5). We then tested our ABCDP algorithm with a privacy level ε = 1. We used
the summary statistic described in Table 1 in [28] and used a weighted L2 distance as ρ as
done in [28], together with εabc = 150. Since there is no bounded sensitivity in this case, we
impose an artificial boundedness by clipping the distance by C (we set C = 200) when the
distance goes beyond C.

As an error metric, we computed the mean absolute distance between each posterior
mean and the true parameter values. The top row in Figure 5 shows that the mean of the
prior (red) is far from the true value (black) that we chose. As we increase the data size from
n = 100 (middle) to n = 1000 (bottom), the distance between true values and estimates
reduces, as reflected in the error from 4.71 to 2.20 for RESAMPLE = True; and from 4.51 to
2.10 for RESAMPLE=False.

Figure 5. Posterior samples for modeling tuberculosis (TB) outbreak. In all ABCDP methods, we set
εtotal = 1. True values in black. Mean of samples in red: (R) indicates ABCDP with Resampling = True.
(1st row): Histogram of 50 samples drawn from the prior (we used the same prior as [28]); (2nd row):
10 posterior samples from ABCDP with (R) given n = 100 observations; (3rd row): 10 posterior
samples from ABCDP without (R) given n = 100 observations; (4th row): 10 posterior samples from
ABCDP with (R) given n = 1000 observations; and (5th row): 10 posterior samples from ABCDP
without (R) given n = 1000 observations. The distance between the black bar (true) and red bar
(estimate) reduces as the size of data increases from 100 to 1000. ABCDP with Resampling=False
performs better regardless of the data size.

7. Summary and Discussion

We presented the ABCDP algorithm by combining DP with ABC. Our method outputs
differentially private binary indicators, yielding differentially private posterior samples.
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To analyze the proposed algorithm, we derived the probability of flip from the rejection
ABC’s indicator to the ABCDP’s indicator, as well as the average error bound of the
posterior expectation.

We showed experimental results that output a relatively small number of posterior
samples. This is due to the fact that the cumulative privacy loss increases linearly with the
number of posterior samples (i.e., c) that our algorithm outputs. For a large-sized dataset
(i.e., N is large), one can still increase the number of posterior samples while providing a
reasonable level of privacy guarantee. However, for a small-sized dataset (i.e., N is small),
a more refined privacy composition (e.g., [29]) would be necessary to keep the cumulative
privacy loss relatively small, at the expense of providing an approximate DP guarantee
rather than the pure DP guarantee that ABCDP provides.

When we presented our work to the ABC community, we often received the question
of whether we could apply ABCDP to other types of ABC algorithms such as the sequential
Monte Carlo algorithm which outputs the significance of each proposal sample, as opposed
to its acceptance or rejection as in the rejection ABC algorithm. Directly applying the
current form of ABCDP to these algorithms is not possible, while applying the Gaussian
mechanism to the significance of each proposal sample can guarantee differential privacy
for the output of the sequential Monte Carlo algorithm. However, the cumulative privacy
loss will be relatively large, as now it is a function of the number of proposal samples,
whether they are taken as good posterior samples or not.

A natural by-product of ABCDP is differentially private synthetic data, as the simulator
is a public tool that anybody can run and hence differentially private posterior samples
suffice for differentially private synthetic data without any further privacy cost. Applying
ABCDP to generate complex datasets is an intriguing future direction.
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Appendix A. Proof of Theorem 1

Proof of Theorem 1. Case I: RESAMPLE = True. We prove the case of c = 1 first. The case
of c > 1 is a c-composition of the case of c = 1, where the privacy loss linearly increases
with c.

Given any neighboring datasets Y∗ and Y∗
′

of size N and any dataset Y, assume that
ρ is such that 0 < sup(Y∗ ,Y∗′ ),Y | ρ(Y∗, Y)− ρ(Y∗

′
, Y) |< ∆ρ < ∞ and ρ is bounded by Bρ.

Let A denote the random variable that represents the outputs Algorithm 1 given
({(θt, Yt)}T

t=1, Y∗, ρ, εabc, ε) and A′ the random variable that represents the outputs given
({(θt, Yt)}T

t=1, Y∗
′
, ρ, εabc, ε). The output of the algorithm is some realization of these

variables, τ ∈ {1, 0}k where 0 < k ≤ T and for all t < k, τt = 0 and τk = 1. For the rest
of the proof, we will fix the arbitrary values of ν1, ..., νk−1 and take probabilities over the
randomness of νk and εabc. We define the deterministic quantity (ν1, ..., νk−1 are fixed):

g(Y∗) = min
t<k

(ρ(Yt, Y∗) + νt) (A1)

that represents the minimum noised value of the distance evaluated on any dataset Y∗.

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://github.com/ParkLabML/ABCDP
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Let P[ε̂abc = a] be the pdf of ε̂abc evaluated on a and P[νk = v] the pdf of νk evaluated
on v, and 1[x] the indicator function of event x. We have:

Pêabc ,νk [A = τk] = P[ε̂abc < g(Y∗)

and:
ρ(Yk, Y∗) + νk ≤ ε̂abc] = P[ε̂abc ∈ [ρ(Yk, Y∗) + νk, g(Y∗))]

=
∫ ∞

−∞

∫ ∞

−∞
P[νk = v]P[ε̂abc = a]1[a ∈ [ρ(Yk, Y∗) + νk, g(Y∗))]dvda

Now, we define the following variables:

â = a + g(Y∗)− g(Y∗
′
)

v̂ = vs. + g(Y∗)− g(Y∗
′
) + ρ(Yk, Y∗

′
)− ρ(Yk, Y∗)

We know that for each Y∗, Y∗
′
, ρ is ∆ρ-sensitive and hence, the quantity g(Y∗) is ∆ρ-

sensitive as well. In this way, we obtain that | â− a |≤ ∆ρ and | v̂− vs. |≤ 2∆ρ. Applying
these changes of variables, we have:

=
∫ ∞

−∞

∫ ∞

−∞
P[νk = v̂]P[ε̂abc = â]1[a + g(Y∗)− g(Y∗

′
) ∈ [v + g(Y∗)− g(Y∗

′
)+

ρ(Yk, Y∗
′
), g(Y∗))]dvda

=
∫ ∞

−∞

∫ ∞

−∞
P[νk = v̂]P[ε̂abc = â]1[a ∈ [v + ρ(Yk, Y∗

′
), g(Y∗

′
))]dvda

≤
∫ ∞

−∞

∫ ∞

−∞
exp

( ε

2

)
P[νk = v] exp

( ε

2

)
P[ε̂abc = a]1[a ∈ [v + ρ(Yk, Y∗

′
), g(Y∗

′
))]dvda

≤ exp (ε)
∫ ∞

−∞

∫ ∞

−∞
P[νk = v]P[ε̂abc = a]1[a ∈ [v + ρ(Yk, Y∗

′
)), g(Y∗

′
))]dvda

= exp (ε)P[ε̂abc < g(Y∗
′
) and ρ(Yk, Y∗

′
) + νk ≤ ε̂abc] = exp (ε)Pêabc ,νk [A

′
= τk]

where the inequality comes from the bounds considered throughout the proof (i.e.,
| â− a |≤ ∆ρ and | v̂− vs. |≤ 2∆ρ) and the form of the cdf for the Laplace distribution.

Case II: RESAMPLE = False. In this case, the proof follows the proof of Algorithm 1
in [26], with an exception that positive events for [26] become negative events for us and
vice versa as we find the value below a threshold, where [26] finds the value above a
threshold.

Appendix B. Proof of Lemma 1

Proof of Lemma 1. We will establish ∆ρ when ρ is MMD. Recall that (Y∗, Y∗
′
) is a pair of

neighboring datasets, and Y is an arbitrary dataset. Without loss of generality, assume
that Y∗ = {x1, . . . , xN}, Y∗

′
= {x′1, . . . , x′N} such that xi = x′i for all i = 1, . . . , N − 1, and

Y = {y1, . . . , ym}. We start with:
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sup
(Y∗ ,Y∗′ ),Y

|ρ(Y∗, Y)− ρ(Y∗
′
, Y)|

= sup
(Y∗ ,Y∗′ ),Y

|M̂MD(Y∗, Y)− M̂MD(Y∗
′
, Y)|

= sup
(Y∗ ,Y∗′ ),Y

∣∣∣∣ ∥∥∥∥ 1
N

N

∑
i=1

φ(xi)−
1
m

m

∑
j=1

φ(yj)

∥∥∥∥
H
−
∥∥∥∥ 1

N

N

∑
i=1

φ(x′i)−
1
m

m

∑
j=1

φ(yj)

∥∥∥∥
H

∣∣∣∣
(a)
≤ sup

(X,X′)

∥∥∥∥ 1
N

N

∑
i=1

φ(xi)−
1
N

N

∑
i=1

φ(x′i)
∥∥∥∥
H

= sup
(xN ,x′N)

∥∥∥∥ 1
N

φ(xN)−
1
N

φ(x′N)
∥∥∥∥
H

= sup
(xN ,x′N)

1
N

√
k(xN , xN) + k(x′N , x′N)− 2k(xN , x′N)

≤ 2
N

√
Bk,

where at (a), we use the reverse triangle inequality. Furthermore:

sup
Y∗ ,Y

ρ(Y∗, Y)

≤ sup
Y∗ ,Y

√√√√∥∥∥∥ 1
N

N

∑
i=1

φ(xi)−
1
m

m

∑
i=1

φ(yi)

∥∥∥∥2

H

= sup
Y∗ ,Y

√√√√ 1
N2

N

∑
i,j=1

k(xi, xj) +
1

m2

m

∑
i,j=1

k(yi, yj)−
2

mn

N

∑
i=1

m

∑
j=1

k(xi, yj)

=
√

Bk + Bk + 2Bk = 2
√

Bk.

Appendix C. Proof of Lemma 2

Proof of Lemma 2. The PDF is computed from the convolution of two PDFs:

fmt−νt(z) =
∫ ∞

−∞
fmt(x) fνt(x− z)dx, (A2)

where fmt(x) = 1
2b exp(− |x|b ) and fνt(y) =

1
4b exp(− |y|2b ):

fmt−νt(z) =
1

8b2

∫ ∞

−∞
exp

(
−|x|

b
− |x− z|

2b

)
dx (A3)

For case z ≥ 0:
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fmt−νt (z) =
1

8b2

∫ 0

−∞
exp

(
x
b
+

x− z
2b

)
dx +

1
8b2

∫ z

0
exp

(
− x

b
+

x− z
2b

)
dx

+
1

8b2

∫ ∞

z
exp

(
− x

b
− x− z

2b

)
dx, (A4)

=
1

8b2

∫ 0

−∞
exp

(
3x− z

2b

)
dx +

1
8b2

∫ z

0
exp

(
−x− z

2b

)
dx

+
1

8b2

∫ ∞

z
exp

(
−3x + z

2b

)
dx (A5)

=
exp

(−z
2b
)

8b2

∫ 0

−∞
exp

(
3x
2b

)
dx +

exp
(−z

2b
)

8b2

∫ z

0
exp

(
−x
2b

)
dx

+
exp

( z
2b
)

8b2

∫ ∞

z
exp

(
−3x
2b

)
dx (A6)

=
exp

(−z
2b
)

8b2
2b
3
−

exp
(−z

2b
)

8b2 2b
(

exp
(
−z
2b

)
− 1
)
+

exp
( z

2b
)

8b2
2b
3

exp
(
−3z
2b

)
, (A7)

=
1

12b

[
exp

(
−z
2b

)
+ 3 exp

(
−z
2b

)(
1− exp

(
−z
2b

))
+ exp

(
−z
b

)]
, (A8)

=
1

12b

[
4 exp

(
−z
2b

)
− 2 exp

(
−z
b

)]
, (A9)

=
1
6b

[
2 exp

(
−z
2b

)
− exp

(
−z
b

)]
(A10)

For case z < 0:

fmt−νt(z) =
1

8b2

∫ z

−∞
exp

(
x
b
+

x− z
2b

)
dx +

1
8b2

∫ 0

z
exp

(
x
b
− x− z

2b

)
dx

+
1

8b2

∫ ∞

0
exp

(
− x

b
− x− z

2b

)
dx, (A11)

=
1

8b2

∫ z

−∞
exp

(
3x− z

2b

)
dx +

1
8b2

∫ 0

z
exp

(
x + z

2b

)
dx

+
1

8b2

∫ ∞

0
exp

(
−3x + z

2b

)
dx (A12)

=
exp

(−z
2b
)

8b2

∫ z

−∞
exp

(
3x
2b

)
dx +

exp
( z

2b
)

8b2

∫ 0

z
exp

( x
2b

)
dx

+
exp

( z
2b
)

8b2

∫ ∞

0
exp

(
−3x
2b

)
dx (A13)

=
exp

(−z
2b
)

8b2
2b
3

exp
(

3z
2b

)
+

exp
( z

2b
)

8b2 2b
(

1− exp
( z

2b

))
+

exp
( z

2b
)

8b2
2b
3

, (A14)

=
1

12b

[
exp

( z
b

)
− 3 exp

( z
2b

)(
exp

( z
2b

)
− 1
)
+ exp

( z
2b

)]
, (A15)

=
1

12b

[
−2 exp

( z
b

)
+ 4 exp

( z
2b

)]
, (A16)

=
1
6b

[
2 exp

( z
2b

)
− exp

( z
b

)]
. (A17)

With the obtained PDF fZ(z) = 1
6b

[
2 exp

(
− |z|2b

)
− exp

(
− |z|b

)]
. for Z := mt − νt, it is

straightforward to compute Gb(a) :=
∫ ∞

a fZ(z)dz = 1
6
[
4 exp

(
− a

2b
)
− exp

(
− a

b
)]

for a ≥ 0.
In other words, Gb(a) = 1− FZ(a) for a ≥ 0 where FZ denotes the CDF of Z.

To show that the CDF of Z is FZ(a) = H[a] + (1− 2H[a])Gb(|a|) where H[a] is the
Heaviside step function, we note that the density fZ(z) is an even function, i.e., fZ(z) =
fZ(−z) for any z. It follows that if a < 0, 1− Fz(a) = 1− Gb(−a). This means that:

1− FZ(a) =

{
Gb(a) if a ≥ 0,
1− Gb(−a) if a < 0,



Entropy 2021, 23, 961 17 of 20

or equivalently:

FZ(a) =

{
1− Gb(a) if a ≥ 0,
Gb(−a) if a < 0.

More concisely:

FZ(a) = (1− Gb(|a|))I[a ≥ 0] + Gb(|a|)I[a < 0]

= I[a ≥ 0] + (I[a < 0]− I[a ≥ 0])Gb(|a|)
(a)
= H[a] + (1− 2H[a])Gb(|a|),

where at (a), we use (I[a < 0]− I[a ≥ 0]) = (1− 2H[a]).

Appendix D. Proof of Proposition 1

Proof of Proposition 1. Using this pdf above, we can compute the following probabilities:

P[τ̃t = 1|τt = 0] (A18)

= P[0 ≤ ρt − εabc ≤ Z], (A19)

=
∫ ∞

ρt−εabc

f (z)dz, where ρt − εabc ≥ 0 (A20)

=
∫ ∞

ρt−εabc

1
6b

[
2 exp

(
−|z|

2b

)
− exp

(
−|z|

b

)]
dz, by definition of f (z) (A21)

=
∫ ∞

ρt−εabc

1
6b

[
2 exp

(
− z

2b

)
− exp

(
− z

b

)]
dz, because ρt − εabc ≥ 0 (A22)

=
1
6b

[
4b exp

(
−ρt − εabc

2b

)
− b exp

(
−ρt − εabc

b

)]
, (A23)

=
1
6

[
4 exp

(
−ρt − εabc

2b

)
− exp

(
−ρt − εabc

b

)]
, where ρt − εabc ≥ 0, (A24)

and:

P[τ̃t = 0|τt = 1]

= P[Z ≤ ρt − εabc ≤ 0], (A25)

=
∫ ρt−εabc

−∞
f (z)dz, where ρt − εabc ≤ 0, (A26)

=
∫ ρt−εabc

−∞

1
6b

[
2 exp

( z
2b

)
− exp

( z
b

)]
dz, (A27)

=
1
6b

[
4b exp

(
ρt − εabc

2b

)
− b exp

(
ρt − εabc

b

)]
, (A28)

=
1
6

[
4 exp

(
ρt − εabc

2b

)
− exp

(
ρt − εabc

b

)]
, where ρt − εabc ≤ 0. (A29)

So:

P[τ̃t 6= τt|τt] =

{
P[τ̃t = 1|τt = 0], if ρt ≥ εabc

P[τ̃t = 0|τt = 1], otherwise
(A30)

=


1
6

[
4 exp

(
− ρt−εabc

2b

)
− exp

(
− ρt−εabc

b

)]
, if ρt ≥ εabc

1
6

[
4 exp

(
ρt−εabc

2b

)
− exp

(
ρt−εabc

b

)]
, otherwise.

The two cases can be combined with the use of an absolute value to give the result.
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Appendix E. Proof of Theorem 2

Proof of Theorem 2. Let H(x) be the Heaviside step function. Recall from our algorithm
that each accepted sample (θ, Y) is associated with two independent noise realizations:
mt ∼ Lap(b) (i.e., ε̂abc = εabc + mt) and νt ∼ Lap(2b) (added to ρ(Y∗, Yt)). With this
notation, we have τ̃t = H[εabc − ρ(Yt, Y∗) + mt − νt] for t = 1, . . . , T. Similarly, τt :=
H[εabc − ρ(Yt, Y∗)]. For brevity, we define ρt := ρ(Yt, Y∗). It follows that τ̃t ∼ Bernoulli(pt)
where pt := P(mt − νt > ρt − εabc) = P(τ̃ = 1).

Proof of the first claim: we start by establishing an upper bound for:∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2

=

∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t−
1
c′

T

∑
t=1

f (θt)τ̃t +
1
c′

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2

≤
∣∣∣∣1c − 1

c′

∣∣∣∣∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ 1
c′

∥∥∥∥ T

∑
t=1

f (θt)τ̃t −
T

∑
t=1

f (θt)τt

∥∥∥∥
=

1
c′
∣∣c′ − c

∣∣1
c

∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ 1
c′

∥∥∥∥ T

∑
t=1

f (θt)(τ̃t − τt)

∥∥∥∥
≤ 1

c′

∣∣∣∣∣ T

∑
t=1

τt −
T

∑
t=1

τ̃t

∣∣∣∣∣1c
∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ 1
c′

T

∑
t=1
‖ f (θt)‖2|τ̃t − τt|

≤ 1
c′

T

∑
t=1
|τ̃t − τt|

1
c

∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥+ KT
c′

T

∑
t=1
|τ̃t − τt|, (A31)

where KT := maxt=1,...,T ‖ f (θt)‖2. Consider 1
c

∥∥∥∥∑T
t=1 f (θt)τ̃t

∥∥∥∥. We can show that it is

bounded by KT by

1
c

∥∥∥∥ T

∑
t=1

f (θt)τ̃t

∥∥∥∥ ≤ 1
c

T

∑
t=1
‖ f (θt)‖2τ̃t ≤

KT
c

T

∑
t=1

τ̃t = KT .

Combining this bound with (A31), we have:∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ 2KT

c′
T

∑
t=1
|τ̃t − τt| (A32)

We will need to characterize the distribution of |τ̃t − τt|. Let Zt := mt − νt. By Lemma 2,
we have:

pt = P(τ̃t = 1) = P(Zt > ρt − εabc) = 1− FZ(ρt − εabc)

= 1− H[ρt − εabc] + (2H[ρt − εabc]− 1)Gb(|ρt − εabc|)
= τt + (1− 2τt)Gb(|ρt − εabc|),

where the decreasing function Gb(x) ∈ (0, 1
2 ] for any x ≥ 0 is defined in Lemma 2. We

observe that |τ̃t − τt| ∼ Bernoulli(qt) where qt := P(τ̃t 6= τt) = (1− pt)τt + pt(1− τt). We
can rewrite qt as

qt = τt + pt(1− 2τt)

= τt + [τt + (1− 2τt)Gb(|ρt − εabc|)](1− 2τt)

= Gb(|ρt − εabc|).
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To prove the first claim, we take the expectation on both sides of (A32):

Eτ̃1,...,τ̃T

∥∥∥∥1
c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ 2KT

c′
Eτ̃t

[
T

∑
t=1
|τ̃t − τt|

]

=
2KT

c′
µT ,

where µT = Eτ̃t

[
∑T

t=1 |τ̃t − τt|
]
= ∑T

t=1 Gb(|ρt − εabc|) and we use the fact that Eτ̃t |τ̃t −
τt| = qt. Note that these are T independent, marginal expectations, i.e., they do not depend
on the condition that noise is added to the ABC threshold.

Proof of the second claim: observe that Gb(|ρt − εabc|) → 0 as b → 0. The claim
follows by noting that b = O(1/N).

Proof of the third claim: based on (A32), characterizing the tail bound of∥∥∥∥ 1
c ∑T

t=1 f (θt)τ̃t− 1
c′ ∑T

t=1 f (θt)τt

∥∥∥∥
2

amounts to establishing a tail bound on ST := ∑T
t=1 |τ̃t−

τt|. By Markov’s inequality:

P(ST ≤ s) ≥ 1−E[ST ]/s

= 1− 1
s

T

∑
t=1

Gb(|ρt − εabc|)

= 1− 1
s

T

∑
t=1

1
6

[
4 exp

(
−|ρt − εabc|

2b

)
− exp

(
−|ρt − εabc|

b

)]

≥ 1− 2
3s

T

∑
t=1

exp
(
−|ρt − εabc|

2b

)
.

Applying this bound to (A32) gives:

P
(

2KT
c′

ST ≤
2KT

c′
s
)
= P(ST ≤ s).

With a reparametrization a := 2KT
c′ s so that s = ac′

2KT
, we have:

P
(

2KT
c′

ST ≤ a
)
≥ 1− 4KT

3ac′
T

∑
t=1

exp
(
−|ρt − εabc|

2b

)
,

Since
∥∥∥∥ 1

c ∑T
t=1 f (θt)τ̃t − 1

c′ ∑T
t=1 f (θt)τt

∥∥∥∥
2
≤ 2KT

c′ ST , we have:

P
(∥∥∥∥1

c

T

∑
t=1

f (θt)τ̃t −
1
c′

T

∑
t=1

f (θt)τt

∥∥∥∥
2
≤ a

)
≥ P

(
2KT

c′
ST ≤ a

)
.

which gives the result in the third claim.
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