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Abstract: Trajectories of endosomes inside living eukaryotic cells are highly heterogeneous in space
and time and diffuse anomalously due to a combination of viscoelasticity, caging, aggregation and
active transport. Some of the trajectories display switching between persistent and anti-persistent
motion, while others jiggle around in one position for the whole measurement time. By splitting the
ensemble of endosome trajectories into slow moving subdiffusive and fast moving superdiffusive
endosomes, we analyzed them separately. The mean squared displacements and velocity auto-
correlation functions confirm the effectiveness of the splitting methods. Applying the local analysis,
we show that both ensembles are characterized by a spectrum of local anomalous exponents and
local generalized diffusion coefficients. Slow and fast endosomes have exponential distributions of
local anomalous exponents and power law distributions of generalized diffusion coefficients. This
suggests that heterogeneous fractional Brownian motion is an appropriate model for both fast and
slow moving endosomes. This article is part of a Special Issue entitled: “Recent Advances In Single-
Particle Tracking: Experiment and Analysis” edited by Janusz Szwabiński and Aleksander Weron.

Keywords: heterogeneous; anomalous diffusion; endosomes

1. Introduction

Intracellular transport of organelles, such as endosomes, has been described by anoma-
lous diffusion caused by different mechanisms [1,2]. Various models have been proposed
to describe it, such as fractional Brownian motion (FBM), continuous time random walks
and fractional Langevin equations [3]. However, which of these models is the best is a
current topic of much debate.

To decipher which mechanism is at work and determine the appropriate mathematical
model to describe it, a large ensemble of trajectories is necessary. Modern experimental
techniques facilitate the tracking of large ensembles of intracellular objects for consid-
erable amounts of time. Therefore, the extraction of meaningful statistical information
from trajectories is becoming an important issue. The traditional statistical analysis of
trajectories includes quantification of ensemble evolution in time and space using the
ensemble-averaged mean squared displacements (EMSD), time-averaged MSD (TMSD),
probability density functions of displacements and correlation functions. As the accessible
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measurement time in experiments increases with better live-cell microscopy techniques,
the accurate analysis of single trajectories has become possible [4]. New methods of
trajectory analysis were developed, such as local time-averaged MSD [5], first passage
probability analysis [6–8] and time-averaged diffusion coefficients [9].

Improved microscopy imaging, tracking and analysis methods revealed the intrinsic
spatial and temporal heterogeneity within individual trajectories of numerous biological
processes [5,10–18]. Significant progress has also been made in analysis and interpretation
of superresolution single particle trajectories [19–23]. Recently, individual trajectories of
quantum dots in the cytoplasm of living cultured cells were found to perform subdiffu-
sive motion of the FBM type with switching between two distinct mobility states [24].
In contrast to homogeneous systems, heterogeneous trajectories are most prominently
described by broad distributions of diffusivities and anomalous exponents, an exponential
probability distribution of diffusivities and a Laplace probability distribution of displace-
ments [25]. These observations led to the development of various heterogeneous diffusion
models [26–39].

Recently, the intracellular transport of endosomes in eukaryotic cells was shown to be
described by spatiotemporal heterogeneous fractional Brownian motion (hFBM) with non-
constant Hurst exponents [40]. By analyzing the local motion of endosomes, we found that it
is characterized by power-law probability distributions of displacements and displacement
increments, exponential probability distributions of local anomalous exponents and power-
law probability distributions of local generalized diffusion coefficients. In this paper, we split
the ensemble of endosomes into slow and fast moving vesicles, which is the main difference
between this study and that of [40]. This splitting allows us to study sub-ensembles separately
in addition to studying the ATP driven active transport of endosomes. In particular, there is
the central question: What is the appropriate mathematical model to describe the subdiffusive
transport of slow moving endosomes? By analyzing locally the slow and fast endosomal
trajectories, we find that both are characterized by exponential distributions of anomalous
exponents and power-law distributions of generalized diffusion coefficients. This suggests
that hFBM is an appropriate model for both slow and fast endosomes.

Endosome trajectories are composed of segments of active and passive motion, and
therefore they could be further decomposed into directed runs and random motion. We seg-
mented endosomal trajectories in this way in [10]. In this study, we separated endosome
trajectories into superdiffusive trajectories and subdiffusive trajectories for their whole
duration. Subdiffusive trajectories do not contain segments of directed movement and
cannot be segmented further into active and passive motion. In contrast, fast superdiffusive
trajectories can be further segmented. We leave the segmentation of fast trajectories into
directed runs and random motion for future work.

2. Materials and Methods
2.1. Experimental Trajectories

We studied a large ensemble of two dimensional experimental trajectories,
r(t) = {x(t), y(t)}, of early endosomes in a stable MRC5 cell line expressing GFP-Rab5. Tra-
jectories were obtained from tracking wide-field fluorescence microscopy videos (see [10]
for experimental details). We studied 103,361 experimental trajectories of early endo-
somes, the same data acquired in [10]. Three live-cell microscopy videos of MRC5
cells stably expressing GFP-Rab5 could be found in the Supplementary Material (https:
//zenodo.org/record/5106450#.YPBsEuhKhPY, accessed on 23 July 2021). An example
of experimental trajectories is shown in Figure A1. The endosomes were tracked using an
automated tracking software (AITracker, based on a convolutional neural network) [41].
Currently, it is not yet feasible to determine the diameter of endosomes in these experiments,
because they are diffraction limited. Thus, it was possible to track the centers of endosomes
with sub-pixel accuracy, but not the sizes of the smaller endosomes (less than 200 nm).
The duration of all trajectories, T, has a good fit to a power law distribution, T−1.85 [40],
which is a manifestation of the heterogeneity of the trajectories. Slow moving endosomes
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stay longer within the observation volume and therefore have longer trajectories than fast
moving endosomes, leading to the emergence of the power-law probability distribution for
the trajectories’ duration.

2.2. Splitting of Ensemble into Slow and Fast Moving Endosomes

We split ensemble of trajectories into slow and fast moving endosomes using the
distance traveled by endosomes:

R(t) =
√
(x(t)− x(0))2 + (y(t)− y(0))2. (1)

Trajectories which possess active motion have periods of rapid increase or decrease of R
(Figure 1A). Fast trajectories which have active motion are defined as max{R(t)} > ε and
slow trajectories which exhibit only passive motion are defined by max{R(t)} < ε. Here,
max{R(t)} denotes the maximum values of R(t) attained in the time interval (0, t) and ε
is the threshold. We choose the threshold ε = 0.25 µm. In the Appendix, we show that
changing the threshold to ε = 0.2 µm in the splitting does not qualitatively change the
results. Therefore, we define fast moving endosomes as those that, in the time interval (0, t),
experienced at least one period of active motion and the maximum distance travelled from
the origin exceeds the threshold of ε = 0.25 µm. Otherwise, an endosome is defined as
slow moving. Small variations of the threshold value do not affect the EMSDs of slow and
fast moving endosomes, which suggests that the splitting method is robust (Figure A3).

Changing the splitting threshold from max{R(t)} = 0.25 µm to max{R(t)} = 0.2 µm,
the increase of the number of slow trajectories was 12%. Therefore, in addition to the
method of splitting trajectories which uses the minimum travelled distance, we also tested
a second method, which makes use of the time-dependent Hurst exponent H(t) neural
network (NN) estimate at the single trajectory level [10]. The procedure is as follows:
(1) estimate the time-dependent anomalous exponent αNN using the NN; (2) if the anoma-
lous exponent αNN is superdiffusive αNN(t) > 1 for more than 4 consecutive time points,
the endosome is considered as fast moving. Otherwise, the endosome is labeled as slow
moving (see Figure A2). The correct implementation of the NN procedure requires a
minimum time window [10] that is larger than the duration of some of the endosomal
trajectories. Hence, short trajectories were discarded in this analysis. The similarity of
the distributions of generalized diffusion coefficients (Figures A3B and A4B) suggests
that the chosen threshold max{R(t)} = 0.25 µm was reasonable. Alternative methods of
binary classification could be performed using the first passage probability analysis [7] or
implementing the normalized radius of gyration of each trajectory [42].

Figure 1. Endosomes are split into slow and fast moving: (A) Distance R(t) traveled by fast
(black curves) and slow (red curves) endosomes (nine sample experimental trajectories are shown).
Most experimental trajectories possess active motion visible as a rapid increase or decrease of R;
(B) EMSDs (solid curves) and E-TMSDs (dashed curves) of fast (black curves) and slow (blue curves)
endosomes compared with EMSD and E-TMSD of all trajectories (orange curves). The dashed-dotted
and dashed-double-dotted lines represent t1.26 and t functions.
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2.3. Ensemble and Time Averaged Mean Squared Displacements

From the two dimensional experimental trajectories r(t) = {x(t), y(t)}, we calculated
the ensemble-averaged mean squared displacement (EMSD) as

EMSD(t) =
〈r〉2(t)

l2 , (2)

where l is the length scale which we choose l = 1 µm,

〈r〉2(t) =
〈
(xi(t)− xi(0))2 + (yi(t)− yi(0))2

〉
, (3)

where the angular brackets denotes averaging over an ensemble of trajectories, 〈A〉 = ∑N
i=1 Ai/N

and N is the number of trajectories in the ensemble.
By fitting the EMSD to power law functions, the anomalous exponent α and the

generalized diffusion coefficient Dα can be extracted using

EMSD(t) = 4Dα

(
t
τ

)α

, (4)

where α and Dα are constants which characterize averaged transport properties of ensemble
of endosomal trajectories. The time scale τ = 1 s and the length scale l = 1 µm are
introduced in order to make the generalized diffusion coefficient Dα dimensionless.

The time-averaged mean squared displacement (TMSD) of an individual trajectory
{xi, yi} of a duration T is calculated as:

TMSDi(t) =
δ2(t)

l2 , (5)

where l is the length scale, for which we chose l = 1 µm, and

δ2(t) =

∫ T−t
0

(
xi(t′ + t)− xi(t′))2 + (yi(t′ + t)− yi(t′))2)dt′

T − t
. (6)

TMSDs of individual trajectories are averaged further over the ensemble of trajectories to
get the ensemble-time-averaged MSD (E-TMSD):

E-TMSD(t) = 〈TMSDi(t)〉, (7)

where the angular brackets denotes averaging over an ensemble of trajectories as before.

2.4. Local Analysis of Endosomal Trajectories

The time-local statistical analysis was implemented as follows. We considered only the
portion of a single endosomal trajectory within a window of size W and centered around
the time t, i.e., (t−W/2, t +W/2). We calculated the TMSD within this chunk of trajectory
only: this is the reason for the acronym L-TMSD, i.e., the local TMSD. The experimental
detection of the endosomal motion is achieved with the frame rate 1/∆t s−1, hence t = i∆t
(here, i = 0, 1, 2, . . . is the time index) and W = N∆t, with N > 10. The first 10 points of
the L-TMSD were fitted with the power-law function

L-TMSD = 4DL(t)
(

t′

τ

)αL(t)

, (8)

where t′ = 10∆t. αL(t) and DαL(t) are the local anomalous exponent and generalized
diffusion coefficient, respectively. We iterate this procedure by shifting the time window of
a single ∆t (i→ i + 1) until the end of the experimental endosomal trace, thus obtaining
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αL(t) and DαL(t) along the entire trajectory. Notice that αL and DL are not constants in
time and they vary, being local properties of each endosomal trajectory.

2.5. The Time and Ensemble-Time Averaged Velocity Auto-Correlation Functions

The time averaged auto-correlation function (TVACF) along a single trajectory is
defined as:

TVACFi(t) =

∫ T−t−τ
0 ~v(t′ + t)~v(t′)dt′

T − t− τ
, (9)

where ~v = ~r(t+τ)−~r(t)
τ . TVACFs of individual trajectories are averaged further over the

ensemble of trajectories to get the ensemble-time averaged VACF (E-TVACF):

E-TVACF(t) = 〈TVACFi(t)〉, (10)

where the angular brackets denotes averaging over an ensemble of trajectories. The velocity
autocorrelation function was suggested as a tool to distinguish between subdiffusion
models [43].

3. Results

We split the ensemble of endosomes into slow and fast moving vesicles using the
two methods described above (see Methods, Figures 1A and A2). For both slow and fast
endosomes, the EMSDs and E-TMSDs show similar behavior, which suggests ergodicity
(see Methods and Figure 1B). MSDs of slow endosomes are not increasing in time, which
confirms that these trajectories have no active periods of motion. Surprisingly, we found
that both EMSDs and E-TMSDs of slow endosomes are decreasing functions of time, which
to our knowledge has never been observed before. We explain this behavior in terms
of the coupling between the average diffusivities of slow trajectories and their duration
(see Figure 4 and the discussion below). Conversely, MSDs of fast endosomes are increasing
functions of time in the intermediate time scale (0.2, 2) s. The anomalous exponent extracted
from EMSD or E-TMSD of fast endosomes is α ' 1, smaller than the anomalous exponent
obtained by considering all trajectories without distinction into fast or slow, i.e., α ' 1.26.
Notice that two subdiffusive regimes characterize the MSD time behavior for fast and all
trajectories. The first, at small time scales (t ≤ 10−1 s), can be attributed to the measurement
errors [44–46]. The second, at longer time scales (t > 10 s), was shown to be spurious
and originate from the coupling of the trajectories’ duration and their diffusivities [40,47].
We suggest that, due to this coupling, the anomalous exponents deduced from the power-
law fit of EMSD and E-TMSD, do not capture the essential characteristics of the endosome
superdiffusive motility, nor shed light on its fundamental aspects. Therefore, to reveal the
effect of the duration of trajectories on the statistical analysis, we consider only trajectories
longer than a certain threshold T [40].

Figure 2A,B shows the EMSDs and E-TMSDs of slow and fast endosomes, considering
only experimental trajectories with duration longer than T seconds (2 or 8 s). Unlike the
slow moving endosomes, the MSDs of fast vesicles (Figure 2B) present similar qualitative
behaviors by choosing T = 2 s, T = 8 s or no T at all (all the fast molecules considered as in
Figure 1B, black curve). However, in the intermediate regime, the superdiffusive behavior
becomes more and more apparent, ∝ t1.26, and stable. In [40] we found that this process is
described by the space-time heterogeneous FBM with the Hurst exponent H that randomly
switches between persistent H > 0.5 and anti-persistent regimes H < 0.5, together with the
coupling between the diffusivity and duration of trajectories which account for spurious
subdiffusion at longer time scales. Moreover, the EMSD curves obtained for T = 2 s and
T = 8 s deviates considerably from the corresponding E-TMSD curves.
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Figure 2. EMSDs and E-TMSDs (solid and dashed curves) of experimental trajectories of slow (A)
and fast moving endosomes (B). Black curves correspond to T → ∞ s. Red and blue curves represent
EMSDs and E-TMSDs of experimental trajectories which have duration longer than 2 and 8 s, respec-
tively. The dashed-dotted line in (A) represents the function t0.5. In (B), the dashed-dotted line and
the dashed-double-dotted line represent the linear, t, and super-linear, t1.26, functions, respectively.

The MSDs of slow endosomes (Figure 2A) display very different, but ergodic, behavior.
For 0.01 < t < 2 s, the MSDs of all slow endosomes decreases in time. On the other side,
the MSDs of the sub-ensembles of slow endosomes with T = 2 s and T = 8 s reveal
subdiffusive trends with α∼0.5. As in the case of fast moving endosomes, we argue that
this behavior is due to the coupling between the diffusivity and duration of trajectories.
Therefore, we attempt to confirm this hypothesis, by performing simulations of an ensemble
of heterogeneous FBM trajectories with constant Hurst exponent H = 0.25 (see Figure 4).

The velocity auto-correlation functions (VACF) also confirm the effectiveness of this
simple threshold splitting (Figure 3A,B). Indeed, slow and fast endosomes have very differ-
ent VACFs. Ensemble-time averaged VACFs (E-TVACFs) of fast endosomes (Figure 3B) are
positive as expected for superdiffusive motion. In contrast, E-TVACFs of slow endosomes
have negative dips at t = τ and approach zero from negative values (Figure 3A). Such
behavior is characteristic of FBM and the generalized Langevin equation but cannot be
reproduced by the CTRW model [3].

Figure 3. Time-ensemble averaged VACF (E-TVACF) of experimental trajectories of slow (A) and fast
endosomes (B) calculated for different τ given in the legend.
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To verify that heterogeneous FBM describes slow moving endosomes, we simulated an
ensemble of hFBM trajectories. Individual hFBM trajectories were simulated with constant
Hurst exponent H = 0.25. For standard FBM, this would correspond to subdiffusive
MSDs,

〈
r2(t)

〉
∼t2H∼ t0.5. The duration of hFBM trajectories was drawn from the power-

law distribution φ(T)∼T−1.85, in accordance with the experimental evidence [40]. The
generalized diffusion coefficients were chosen inversely proportional to the duration of
trajectories, i.e., D∼T−0.6. As shown in Figure 4, the EMSDs of hFBM trajectories agree
well with the experimental data.

Figure 4. EMSDs calculated for simulated hFBM trajectories (solid lines) as a function of time interval.
Black curves correspond to EMSDs of all trajectories of slow endosomes and hFBM, blue curves are
EMSDs of trajectories longer than T = 2 s and cyan curves are EMSDs of trajectories longer than
T = 8 s. The subdiffusive behavior with the anomalous exponent α = 0.5 is shown as the dashed-
dotted line. The EMSDs of slow experimental endosomal trajectories are shown for comparison
(dashed lines). Notice that hFBM trajectories were simulated without external noise (measurement
error), which led to discrepancy between simulated and experimental EMSDs at small time scale.

We next implemented the local analysis [40] to better characterize the slow and fast
endosomal dynamics. We calculated the local TMSDs (L-TMSD) for each experimental
trajectory at various times t ( Methods). From the fit of L-TMSD to Equation (8), we ex-
tracted the local anomalous exponents αL(t) and the local generalized diffusion coefficients
DαL(t) for slow and fast endosomes separately. The local anomalous exponents αL(t)
and the local generalized diffusion coefficients DαL(t) appear to be positively correlated
both for slow and fast endosomes (see Figure A6). The origin of these correlations is not
known and will be investigated in future publications. In [40], we found that PDFs of local
anomalous exponents and local generalized diffusion coefficients do not depend on the
window size or the time t (stationary) and are best fitted with exponential and power law
functions, respectively.

The PDFs of αL and DαL for slow and fast endosomes are shown in Figure 5A,B.
In both cases, the PDFs of αL follow an exponential distribution, while those of DαL are best
fitted with a power-law. However, the parameters characterizing the distribution shapes
are very different. Furthermore the parameters for the fast endosomes’ PDFs coincide with
those found by considering all experimental trajectories [40]. This is in agreement with a
heterogeneous FBM model of endosomal transport [40], which describes the endosome
motion as FBM with non-constant Hurst exponents.
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Figure 5. Distribution of local anomalous exponents αL (A) and local generalized diffusion coefficients
DL (B) obtained from experimental trajectories of slow and fast endosomes. The dashed and dashed-
dotted lines are best fits to exponential (A) and power-law PDFs (B). In (A), they correspond to
1.86 exp(−1.86αL) for PDF of αL of fast endosomes (dashed line) and 4.3 exp(−4.3αL) for PDF of αL

of slow endosomes (dashed-dotted line). In (B) they correspond to (DL)−1.5 for PDF of DL of fast
endosomes (dashed line) and (DL)−2.7 for PDF of DL of slow endosomes (dashed-dotted line).

Finally, we calculated propagators of experimental trajectories for slow and fast endo-
somes (Figure 6). Using the power-law forms of distributions of local generalized diffusion
coefficients of slow pS(DL)∼(DL)−1−γS and fast pF(DL) ∼ (DL)−1−γF endosomes with
γS ' 1.7 and γF ' 0.5 (Figure 5), we fit the propagators with the propagators of hFBM,
PDF(ξ)∼|ξ|−1−2γ with γ = γS for slow endosomes and γ = γF for fast endosomes (see
Supplementary Note and [33]). For slow endosomes (Figure 6A), we also compare the ex-
perimental PDFs with the analytical propagator for obstructed diffusion in two dimensions,
ξ−0.108 exp(−|ξ|1.65) [48].

Figure 6. Distribution of scaled x-component of coordinate ξ = x/σx obtained from experimental
trajectories of slow (A) and fast (B) endosomes. The dashed-dotted lines correspond to power-law
fit |ξ|−1−2γS for slow endosomes (γS ' 1.7) and |ξ|−1−2γF for fast endosomes (γF ' 0.5). In (A),
we also compare PDF of slow endosomes with the analytical propagator for obstructed diffusion
(dashed line) [48].

4. Discussion

In this paper, we extend our investigation of the heterogeneous intracellular transport
of endosomes based on the local analysis of experimental trajectories [40]. Individual
endosomes move for long distances in a heterogeneous way with short bursts of directed
motility, interspersed with periods of subdiffusive motion [49,50]. The heterogeneous
character of this motion is also manifested as some endosomes are less motile than others.
Some endosomes look as if they are jiggling in one position for the whole period of
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observation. Therefore, we split the ensemble of trajectories into slow and fast moving
endosomes. The distinct time behavior of mean squared displacements and velocity auto-
correlation functions confirm the effectiveness of these methods. The splitting allowed us
to study passive subdiffusive and active superdiffusive transport of endosomes separately.

Comparing the behavior of fast endosomes (MSDs, VACFs and propagators) to the be-
havior of the entire ensemble, we find that they are most consistent with FBM models [40].
Therefore, we conclude that fast endosomes follow heterogeneous FBM [40]. The ergodicity
(Figure 2A) and the VACF (Figure 3A) suggest that slow endosomes are also described by
the hFBM or heterogeneous generalized fractional Langevin equation motion. For slow
endosomes, crowding and obstruction effects could also lead to subdiffusive behavior [2,4].
It is known that obstructed diffusion has many similarities with FBM such as stationar-
ity of the increments and the equivalence of the time and ensemble MSDs [48,51]. The
propagators provide a clear way to distinguish obstructed diffusion from FBM. Therefore,
we calculated propagators of experimental slow endosomes and compared them with
analytical prediction for the propagator of obstructed diffusion and prediction of heteroge-
neous fBM. The results shown in Figure 6 indicate that slow endosomes follow hFBM at
longer time scales, while on smaller scales obstructed diffusion likely contributes to their
subdiffusive behavior as well. Crowding effects remain as a possible source of anomalous
diffusion of slow endosomes. Recently, in numerical simulations, lipids in crowded condi-
tions of the membrane were shown to be multifractal and anomalous. The dynamics was
no longer described by the mechanism consistent with the fractional Langevin equation
or by any single known mechanism. Instead, the motion was found to be non-Gaussian
and heterogeneous, yet maintains its ergodic properties [52], which is similar to what we
observed for experimental trajectories of slow endosomes.

Both slow and fast endosomal trajectories are found to be highly heterogeneous in
space and time. The spatial heterogeneity in the form of coupling between endosome
diffusivity and duration of endosome trajectory explains the behavior of the MSDs. Longer
trajectories have smaller generalized diffusion coefficients since in experiments slowly
moving endosomes with smaller diffusion coefficients stay longer in the field of view,
having longer durations. For slow and fast endosomes, we can conclude that EMSD and
E-TMSD are not adequate to describe the large heterogeneity exhibited in space and time.
Therefore, we applied a time local analysis of individual trajectories.

From the local analysis, we found that slow and fast endosomal trajectories are
both characterized by exponentially distributed anomalous exponents and power-law
distributed generalized diffusion coefficients. However, the parameters of these distribu-
tions are different. Although the factors that cause the power-law distributed generalized
diffusion coefficients for slow and fast endosomes could be different, some common factors
can exist. One of them could be the scale free properties of endosomal networks [53].
Hence, the differences in endosome diameters could generate distinct diffusive proper-
ties intrinsic to each endosome. Heterogeneous diffusion generated by the fluctuations of
molecular size was found in single-molecule experiments within the cell [14,18,42]. Another
common factor promoting power-law distributions of generalized diffusion coefficients
could be non-specific interactions with the endoplasmic reticulum or other organelles and
large intracellular structures. Recently, non-specific interactions were shown to generate
heterogeneous diffusion of nanosized objects in mammalian cells [47].

Our analysis of endosomal transport would be valuable for both fundamental cell
biology and nanomedicine applications such as drug and gene delivery. In these appli-
cations, nanoparticles are often used as cargo-carrying vesicles, which in turn utilize the
endosomal network for their intracellular transport. For example, gold nanoparticles were
shown to cluster inside endosomes and move via sub- and superdiffusion [54]. Our results
would also be useful for the nanoparticle enhanced radiation therapy of cancer [55–57]
where clusters of nanoparticles inside endosomes are used for dose enhancement.

In the future, we expect microscopy techniques will improve in tandem with track-
ing algorithms, providing datasets with larger ranges of time scales and improved res-
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olution. Thus, further subclassification of ensembles of endosomal tracks (beyond the
binary fast and slow separation) will become possible towards the ultimate goal of single
molecule specificity. Increasing the dynamic range (to submillisecond time scales) will
allow the stepping motion of the motor proteins (kinesin and dynein) attached to micro-
tubules to be connected with the spectra of α and Dα for the fast moving endosomes at a
fundamental level.

Supplementary Materials: The following are available online at https://zenodo.org/record/510645
0#.YPBsEuhKhPY, Video S1: Videos for MRC5 cells stably expressing GFP-Rab5.
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Appendix A

Figure A1: An example of the experimental endosome trajectories measured in MRC5
cells stably expressing GFP-Rab5. See the main text for details.

Figure A1. An example of the experimental endosomal trajectories (30,000 trajectories are shown).

Figure A2: Two splitting methods used to separate endosome trajectories into slow
and fast moving endosomes. The first method uses the maximum distance traveled R(t).
The second method uses the time-dependent anomalous exponent H(t) estimated with the
neural network. An example of the two trajectories is shown, which were classified as slow
and fast by both methods. See the main text for details of the methods.

https://zenodo.org/record/5106450#.YPBsEuhKhPY
https://zenodo.org/record/5106450#.YPBsEuhKhPY
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Figure A2. An example of experimental trajectories of slow and fast moving endosomes obtained
using the maximum distance traveled R(t) (top) and the time-dependent anomalous exponent H(t)
estimated with the neural network (bottom).

Figure A3: The EMSD of slow and fast moving endosomes calculated with the splitting
method, which uses the maximum distance traveled R(t). Two values of the threshold ε
produce qualitatively similar results, which suggests that the splitting method is robust
against small variations of the threshold.

Figure A3. The EMSD of experimental trajectories of slow and fast moving endosomes calculated
with the splitting method, which uses the maximum distance traveled R(t) for two values of the
threshold: ε = 0.2 µm and ε = 0.25 µm.

Figure A4: Comparison of distributions of anomalous exponents αNN and generalized
diffusion coefficients DNN and local anomalous exponents αL and DL of slow moving
endosomes. Anomalous exponents αNN were estimated using a neural network with
window size 0.26 s. The generalized diffusion coefficients DNN were estimated by fitting
the local TMSD of the trajectory with the power law DNNtαNN

. The distribution of αNN has
a maximum of 0.6 and decays faster than the distribution of αL. This may be because many
short trajectories are missing in the NN analysis, since the NN could analyze trajectories
with durations longer than its window size [10]. The distributions of generalized diffusion
coefficients (right panel), on the other hand, are similar to each other.
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Figure A4. Slow endosomes. (Left) Distribution of anomalous exponents αNN of slow moving
endosome trajectories (the solid curve) compared with the distribution of local anomalous exponents
αL of slow moving endosome trajectories (the dashed curve); (Right) Distribution of generalized
diffusion coefficients DNN of slow moving endosome trajectories (the solid curve) compared with
the distribution of local generalized diffusion coefficients DL of slow moving endosome trajectories
(the dashed curve).

Figure A5: Comparison of distributions of anomalous exponents αNN and general-
ized diffusion coefficients DNN and local anomalous exponents αL and DL of fast moving
endosomes. Anomalous exponents αN N were estimated using neural network with win-
dow size 0.26 s. The generalized diffusion coefficients DNN were estimated by fitting the
local TMSD of trajectory with the power law DNNtαNN

. The distributions of anomalous
exponents (Left) are similar to each other, while the distributions of generalized diffusion
coefficients (Right) are almost indistinguishable.

Figure A5. Fast endosomes. (Left) Distribution of anomalous exponents αNN of fast moving endo-
some trajectories (the solid curve) compared with the distribution of local anomalous exponents
αL of slow moving endosome trajectories (the dashed curve); (Right) Distribution of generalized
diffusion coefficients DNN of fast moving endosome trajectories (the solid curve) compared with the
distribution of local generalized diffusion coefficients DL of fast moving endosome trajectories (the
dashed curve).

Figure A6: Local anomalous exponents αL and local generalized diffusion coefficients
DL are positively correlated for both slow and fast moving endosomes.
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Figure A6. Correlation between local anomalous exponents αL and local generalized diffusion
coefficients DL for slow (A) and fast (B) moving endosomes.
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