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Abstract: The paper discusses issues concerning the occurrence of anomalies affecting the process
of phase transitions. The considered issue was examined from the perspective of phase transitions
in network structures, particularly in IT networks, Internet of Things and Internet of Everything.
The basis for the research was the Potts model in the context of IT networks. The author proposed
the classification of anomalies in relation to the states of particular nodes in the network structure.
Considered anomalies included homogeneous, heterogeneous, individual and cyclic disorders. The
results of tests and simulations clearly showed the impact of anomalies on the phase transitions in
the network structures. The obtained results can be applied in modelling the processes occurring in
network structures, particularly in IT networks.
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1. Introduction

Network structures are common in natural and artificial environments. Both natural
and artificial ones belong to the group of complex systems [1]. These systems are charac-
terised by such properties as: self-similarity, power law, self-adaptation, etc. [2]. Most of
them were examined and analysed in the context of natural, economic, social, political, and
technical sciences [3,4]. Thus far, due to the complexity of the problem of complex system
analysis, it has not been possible to develop a single model that takes into account all the
features of these systems. Therefore, at this stage of the research, complex systems are
analysed in the context of an individual or a limited number of features. The occurrence
of the phase transition phenomenon in complex systems is one of their properties. This
phenomenon is related to a rapid change in the value of significant parameters of a given
object/system/structure, which usually leads to a change in its properties. Thus, this
phenomenon is critical. One of the models allowing the analysis of phase transitions is the
Ising magnetism model [5–11] and its generalisation in the form of the Potts model [12–14].
The potential of this model in studying the behaviour and properties of IT structures was
presented in the author’s earlier study [15]. The properties and implementation of these
models confirm their wide area of application. They are ideally suited to the study of
phenomena of change in the properties of a given system in the fields of physics and
electronics, but also to the analysis of economic and social relations [16–18]. Of course,
they are also used in widely understood IT systems. However, typically, these models are
used in these cases to model the interaction between nodes in wired, wireless or social
networks [19–22]. It is important to note that in [23], the authors also analysed the spread
of malware based on the Ising model. This approach confirms the potential of the Potts
and Ising model to analyse IT systems in terms of the properties characteristic of complex
systems. Nevertheless, so far, these models have not been used to model the phenomena of
anomalies and disturbances in the structures of IT networks more generally.

Anomalies or disorders occurring in the studied environment have attracted the
interest of scientists from various fields [24]. The aim of the aforementioned paper was
to determine the causes of the formation of such phenomena, as well as to determine the
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possible effects and consequences of their presence. In addition, processes related to the
occurrence of this type of phenomena have also been subject to research. An important
aspect of the research is to determine the nature of these phenomena, i.e., whether they are
random, regularly repeated, individual (relate to a single anomaly) or group anomalies,
and whether they occur locally or in the whole environment. Conducted research covers
mostly issues related to the security of IT systems [25]. In this context, systems are tested
in terms of work under normal conditions and then under abnormal conditions. On this
basis, the system reference states are defined. By analysing possible discrepancies, it is
possible to detect attacks on IT but also on IoT and IoE networks. This applies to both
computer systems as well as intermediate devices such as switches, routers and end-devices
including sensors, and other active elements. In the scientific literature, a great deal of
papers can be found on anomaly detection based on network traffic analysis using, among
others, artificial intelligence, machine learning, statistical analysis or properties of complex
systems [26–30]. However, there is an apparent lack of models to analyse the processes that
take place when such events occur and the phenomena that accompany them. Therefore,
the main objective of this article is to present the possibility of modelling the inter-node
interaction in a network structure, taking into account different types of disturbances. It
should be noted that this paper does not include analysis of the causes of anomalies in
network structures, only their impact on the phase change process, as well as the course of
changes taking place in the structure of IT networks. The paper will address issues related
to the random occurrence of disturbances/anomalies in the network structure, as well as
cyclic phenomena. The research was carried out on the basis of the Potts model.

The rest of the paper is organised as follows: Section 2 is a reference to the essence of
phase transition and the assumptions of the Potts model and presents the order parameter
as a tool to illustrate the phase transition process. Section 3 introduces the concept of
anomalies/disturbances in the network structure and presents their classification, taking
into account changes in the states of individual nodes. Section 4 covers the results of
simulations performed and their analysis. Potential areas of application of the developed
solution are presented in Section 5. The paper ends with a summary of the obtained
research results and conclusions.

2. Phase Transition and the Potts Model

In order to refer to a phase transition, the concept of phase should be defined at the
very beginning. Of course, numerous definitions exist depending on the field in which it is
used [5,6]. However, for the purposes of this publication, the following concept was adopted.

Each node can be in one of the allowed states at any given time. Therefore, the values
assigned to each node correspond to the individual states of the set s = {si, i ∈ N}. The
set s is a finite set. As a result of the interaction of neighbouring nodes, the state of a node
may change. Frequent changes in the states of individual nodes may indicate instability in
the entire network infrastructure. Therefore, the duration of continuous changes in node
states across the network infrastructure will be referred to as the unstable phase. Such a
phase is characterised by high dynamics, which is expressed by a change in the value of
the order parameter. This parameter will be described in more detail later in this section.
In contrast to the unstable phase, the network can be in a stable (ordered) phase. Then,
the value of the mentioned order parameter reaches a constant value. Thus, the transition
of a structure/system from one phase to another will be called a phase transition. It can
therefore be said that the individual phases are separated from each other by interfacial
surfaces, called phase boundaries, where a significant change in the properties of a given
system/structure occurs. Such a boundary can be observed by analysing the variation in
the value of the order parameter. Of course, in this case, we are talking about a boundary
in parametric terms, not spatially. External factors can change the state of individual nodes
as well as the entire infrastructure. This property has been used in this paper to model, as
well as analyse, different types of network anomalies.
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In order to define the phase transition in network structures, let us assume that
G = {V, E} is the network structure, where V is the set of vertices (nodes) and E the set
of edges. However, the system remains in one of the global S states (stable or unstable)
corresponding to a given phase. Then, the phase transition indicating the transition of the
network structure G from the state S to the state S’ is described by:

Gs f→ Gs′ (1)

As a result of the transition of the network structure from the S state to the S’ state,
macroscopic changes occur, which are closely related to changes in the G structure prop-
erties. It should be noted that, very rarely, a change in a single node or edge condition
directly contributes to the phase transition of the entire structure. However, it may be
the initial trigger of the transformation process. A good example of a structural phase
transition is the operation of the Girvan–Newman algorithm [31]. This algorithm is usually
used to extract a community in graphs by successively removing edges from the original
graph. In this case, we are talking about the phase of network cohesion and the phase of
inconsistency. However, this algorithm does not refer to the states of individual nodes;
therefore, the Potts model was used for the needs of the research [12–14]. This model is a
generalisation of the Ising model of magnetism [7]. The classic Ising model is based on the
assumption that each node (spin) can take one of two values, +1 or −1, i.e., si ∈ {−1, 1}.
The energy of any state is given by the Hamiltonian function [32]:

H = −∑
〈i,j〉

Jijsisj − B∑
i

si, (2)

where Jij is the coupling constant between the i-th and j-th nodes, while B is the outer
magnetic field. However, for the purposes of this paper, it was assumed that there could
be any finite number of states in the network structure. These states may refer to various
parameters, such as the opinion of a given node, the state of infection, the state of overload,
etc. Therefore, it was assumed that the Potts model correlates better with these assump-
tions. It allows more states to be considered (two states are assumed in the Ising model).
Furthermore, given the nature of IT networks, the part of the expression relating to the
impact of an external field has been omitted. In addition, the coupling constant J for these
considerations may take the value equal to one. Then, expression (2) takes the form:

H = −∑
〈i,j〉

sisj. (3)

However, to describe the relationship between the nodes si and sj, expression (3) is
presented as:

H = −∑
〈i,j〉

δ
(
sisj
)
, (4)

where δ
(
sisj
)

corresponds to the relationship between the states of two nodes and it is Kronecker
delta, which equals one whenever si = sj and zero otherwise. Each of the nodes can take one of

the q values from the set of available states si ∈
{

s1
i , s2

i , . . . , sq
i

}
at a given moment.

When considering two separate states s and s’, as well as the probability of their
occurrence as p(s) and p(s′), the relative probability that the system is in two states is:

p =
p(s′)
p(s)

=
eβH′

eβH , (5)

where β = 1/kT parameter specified by the absolute temperature T and the Boltzmann
constant K, H is the Hamiltonian of state s, and H’ is the Hamiltonian of state s’. In ICT
networks, the temperature parameter cannot be taken into account because such a value
does not exist. Of course, this is a certain simplification, but a necessary one, and one that
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arises from the characteristics of IT systems. In this case, the change of states from s to s’
occurs when p(s′)/p(s) ≥ 1 and p(s), p(s′) denote the relative probability that the system
is in these particular states. Therefore, the probability of a node state change occurring can
be briefly written as p f lip = max(1, p).

The operation of two exemplary mechanisms based on the model described above
for five different initial node states is presented in Figure 1. The first refers to the standard
operation of the model, while the second presents the behaviour of the network structure
in the case of introducing a threshold determining the change in the status of individual
nodes. The results presented included a simulation of a network structure consisting of
250 nodes. Initially, each of these nodes could take on 1 of the 5 states. Threshold values
were randomly assigned to individual nodes from a set of available values of 25%, 50%,
75% and 100%. The introduction of the threshold value (sensitivity parameter) therefore
causes the mechanism to stabilise. Changes in the states of individual nodes are much
slower. Both approaches are discussed in detail in [15]. An order parameter was also
introduced, which clearly shows the process of phase transition:

M =
k

∑
i=1

∣∣∣∣Nsi −
N
k

∣∣∣∣, (6)

where N is the number of all nodes in the network structure, Nsi is the number of nodes
being in the si state, and k is the number of all states in the network. The order parameter
was used to present the phase of the structure/system at a given moment. Its value depends
on the number of individual states in which individual nodes are located in the network
structure. The frequency of its value changes may indicate the instability of the entire
structure related to frequent changes in the states of individual nodes. The further sections
of the article present the tracking of changes in the value of the ordering parameter in order
to detect various types of anomalies under consideration. However, example values of the
order parameter for the standard (classic) approach and approach with a threshold value
are presented at this point. Corresponding to Figure 1c,d, the value of the order parameter
is shown increasing to the maximum value, and then the system goes into a stable state
(ordered). Of course, in the case of a mechanism that takes into account the threshold
values, the transformation time in the unstable phase is longer and depends both on the
number of nodes, the number of initial states and the values of the threshold parameters. It
should be noted that in the cases under consideration, the connection structure does not
change—only the states of individual nodes change.

Based on the operation of the mechanism using the Potts model, it can be concluded
that the phase transition maps the dynamics of changes taking place in the network
structure. However, this course in relation to the presented examples is in fact dependent on
the state of the initial network structure and the number of different states assigned to nodes.
However, in order to broaden the analysis of the phase transition in network structures,
one should take into account the impact of anomalies occurring in these infrastructures
on the course of the phase transition process itself, and thus on the functioning of the
network structure. Therefore, this issue was subjected to further research, and the results
are presented in the further part of the paper.
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3. The Concept of Anomaly

Before the analysis of anomalies or disorders in the assumed Potts model, the very
concept of this phenomenon of anomalies should be defined. Numerous definitions relating
to various fields and areas of science and technology can be found in the literature [33,34].
For this research, it was assumed that:

Anomalies or disorders in the network structure G = {V,E} are the set
AT =

{
aτ

ij : i = 0, 1, 2, . . . ; j = 1, 2, . . . , N; τ ∈ T
}

, where aτ
ij means a sudden change in

state sm
j → sn

j of any node vj in time τ going beyond the current trend determined by the
value of the order parameter, whereby T denotes the analysed time interval, i denotes the
identifier of the specific anomaly, m and n refer to state identifiers and N = |V|.

Taking into account the above definition, the classification of various types of anoma-
lies that may appear in the network structure environment has been introduced.

• Homogeneous anomalies—these are disorders from the set AT, where aτ
ij = aτ

lk for
j 6= k and ∀τ ∈ T. This disorder is of the same nature for the entire network structure
and may occur at any time during the analysed time interval T.

• Heterogeneous anomalies—these are disorders from the set AT, where aτ
ij 6= aτ

lk for
j 6= k as well as i 6= l and ∀τ ∈ T. Thus, the disorder has a different character for
different elements (in the case of the nodes in question) of the network structure.
Typically, such disorders occur at different times of the analysed time interval T.
However, it may be the case that heterogeneous anomalies occur at the same time for
various elements of the network structure.

• Individual (single) anomalies—these are disorders occurring in the network structure
from the set AT, where aτ0

1j for τ0 ∈ T and ∀j ∈ V, whereby ∑j = 1. It should be
noted that this type of disorder usually has no major impact on the functioning of the
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network structure, and its cause may be a single error, failure, poor interpretation of
results, etc.

• Group anomalies—these are disorders occurring in the network structure from the set
AT, where aτ

ij for τ ∈ T and ∀j ∈ V, whereby ∑j > 1. A group disorder can occur both
in one moment and also at a certain time interval.

• One-off anomalies—these are disorders that occur in the network structure from the
set AT, where aτ0

ij for τ0 ∈ T. They are disorders occurring once in the analysed time
period, but they can cover more than one element of the network structure.

• Cyclic anomalies—these are disorders that occur in the network structure from the set
AT, where aτc

ij for c = 1, 2, . . . , C, and C means the number of cycles in a time interval
T; therefore, C ⊂ T.

Considering the above definitions, it should be remembered that not every change in
the state of a given element (node) of the network structure means an anomaly. If it results
from the processes occurring in a given network structure, e.g., described by the Potts
model, then such a change of state is not an anomaly. However, any unexpected changes
that go beyond the current trend will be treated as a disorder.

4. Simulation Tests

A network structure consisting of 250 nodes was adopted to carry out simulation tests in
the scope of the Potts model operation, taking into account anomalies. Each node could accept
only one state from the set at a time s = {si, i ∈ N}. During each iteration of the simulation,
a node is randomly selected. The Hamiltonian for each of the available states in the vicinity of
the node is then calculated. At the moment when the condition of changing the state of a given
node in accordance with the adopted model is being fulfilled, such a change takes place. The
condition for changing the current state of a given node is the predominance of another state in
its environment. This activity is repeated for each node. In order to simulate anomalies, at the
appropriate moment of the simulation, the corresponding function is activated, introducing a
sudden change in the states of the nodes according to the rule corresponding to the specific
type of anomaly. The forced change of individual nodes resulting from the anomaly is taken
into account in subsequent simulation steps.

Figure 2 presents the simulation results, where a cyclical and heterogeneous anomaly
with a different number of nodes covered by this anomaly was assumed, i.e., 4%, 20%, 50%
and 100%. The mechanism was tested within 100 cycles, with anomalies being introduced
10 times in these 100 cycles. In order to verify the impact of the anomaly on the operation of
the mechanism, the mechanism’s operation without anomalies was also taken into account.
In all tests, the same initial distribution of individual states in the test network structure
was adopted.

As shown in Figure 2, the operation of the Potts model without anomalies as well as
with numerous cyclical anomalies proceeds in a similar direction. Once an anomaly has oc-
curred, the system immediately stabilises in the distribution of individual states/opinions.
As can be seen from the graphs presented, in this case, the unstable phase lasted for two
simulation steps. As a result of the operation of this model, out of five initial states, three
remained. However, the introduction of a cyclical anomaly forced the reappearance of these
two vanished states during the simulation. Nevertheless, the trend of the model without
anomalies and with anomalies has been the same. This is a result of the fact that even after
an unforeseen change of state in a given node, the change in the next step resulted from
the general impact of the surrounding environment. In order to be able to change such a
trend, one should accept the principle that the changed state of a given node as a result of
the anomaly will not be subject to further, normal effects of the Potts model.



Entropy 2021, 23, 949 7 of 13

Entropy 2021, 23, x FOR PEER REVIEW 6 of 13 
 

 

be noted that this type of disorder usually has no major impact on the functioning of 
the network structure, and its cause may be a single error, failure, poor interpretation 
of results, etc. 

• Group anomalies—these are disorders occurring in the network structure from the 
set AT, where ija τ  for Tτ ∈  and j V∀ ∈ , whereby 1j > . A group disorder can 
occur both in one moment and also at a certain time interval. 

• One-off anomalies—these are disorders that occur in the network structure from the 
set AT, where 0

ijaτ  for 0 Tτ ∈ . They are disorders occurring once in the analysed time 
period, but they can cover more than one element of the network structure. 

• Cyclic anomalies—these are disorders that occur in the network structure from the 
set AT, where c

ijaτ  for 1, 2, ,c C=  , and C means the number of cycles in a time in-

terval T; therefore, .C T⊂  
Considering the above definitions, it should be remembered that not every change in 

the state of a given element (node) of the network structure means an anomaly. If it results 
from the processes occurring in a given network structure, e.g., described by the Potts 
model, then such a change of state is not an anomaly. However, any unexpected changes 
that go beyond the current trend will be treated as a disorder. 

4. Simulation Tests 
A network structure consisting of 250 nodes was adopted to carry out simulation 

tests in the scope of the Potts model operation, taking into account anomalies. Each node 
could accept only one state from the set at a time { },is s i N= ∈ . During each iteration of 
the simulation, a node is randomly selected. The Hamiltonian for each of the available 
states in the vicinity of the node is then calculated. At the moment when the condition of 
changing the state of a given node in accordance with the adopted model is being fulfilled, 
such a change takes place. The condition for changing the current state of a given node is 
the predominance of another state in its environment. This activity is repeated for each 
node. In order to simulate anomalies, at the appropriate moment of the simulation, the 
corresponding function is activated, introducing a sudden change in the states of the 
nodes according to the rule corresponding to the specific type of anomaly. The forced 
change of individual nodes resulting from the anomaly is taken into account in subse-
quent simulation steps. 

Figure 2 presents the simulation results, where a cyclical and heterogeneous anomaly 
with a different number of nodes covered by this anomaly was assumed, i.e., 4%, 20%, 
50% and 100%. The mechanism was tested within 100 cycles, with anomalies being intro-
duced 10 times in these 100 cycles. In order to verify the impact of the anomaly on the 
operation of the mechanism, the mechanism’s operation without anomalies was also 
taken into account. In all tests, the same initial distribution of individual states in the test 
network structure was adopted. 

  
(a) (b) 

Entropy 2021, 23, x FOR PEER REVIEW 7 of 13 
 

 

  
(c) (d) 

 
(e) 

Figure 2. The course of operation of the standard Potts model along with cyclical anomalies for various numbers of nodes 
covered by anomalies (a) without anomalies; (b) 4% of nodes (c) 20% of nodes; (d) 50% of nodes; (e) 100% of nodes. 

As shown in Figure 2, the operation of the Potts model without anomalies as well as 
with numerous cyclical anomalies proceeds in a similar direction. Once an anomaly has 
occurred, the system immediately stabilises in the distribution of individual states/opin-
ions. As can be seen from the graphs presented, in this case, the unstable phase lasted for 
two simulation steps. As a result of the operation of this model, out of five initial states, 
three remained. However, the introduction of a cyclical anomaly forced the reappearance 
of these two vanished states during the simulation. Nevertheless, the trend of the model 
without anomalies and with anomalies has been the same. This is a result of the fact that 
even after an unforeseen change of state in a given node, the change in the next step re-
sulted from the general impact of the surrounding environment. In order to be able to 
change such a trend, one should accept the principle that the changed state of a given 
node as a result of the anomaly will not be subject to further, normal effects of the Potts 
model. 

However, taking into account phase transitions, it is necessary to analyse the order 
parameter for the simulation results presented above. Then, it can be observed that de-
spite maintaining the proper trend of the Potts model (Figure 2), at the moment of the 
appearance of the anomaly, the network structure still goes into a disordered state, which 
is shown in Figure 3b–e. Of course, from the nature of the underlying Potts’s model, i.e., 
the influence of the surrounding environment on the state of the node, it follows that the 
structure in the case under consideration immediately returns to an orderly state. How-
ever, as long as there is an anomaly, the network structure cannot go to the stable (or-
dered) phase. Figure 3e shows that the time to reach a stable state is much longer. This is 
due to the fact that, in this case, all the nodes considered were covered by the anomaly. 
Moreover, this example shows clearly that the cyclic anomaly corresponds to the cyclic 
phase transitions. 

Figure 3 shows that the value of the order parameter increases to the maximum value, 
and then, depending on whether there are anomalies or not, it enters the orderly state or 
remains in a state of disorder. In the latter case, as long as there are anomalies in the net-
work structure, the phase transitions cannot take place. Moreover, the higher the anomaly 
ratio, the greater the discrepancy in the value of the order parameter. In the case of cyclical 

Figure 2. The course of operation of the standard Potts model along with cyclical anomalies for various numbers of nodes
covered by anomalies (a) without anomalies; (b) 4% of nodes (c) 20% of nodes; (d) 50% of nodes; (e) 100% of nodes.

However, taking into account phase transitions, it is necessary to analyse the order
parameter for the simulation results presented above. Then, it can be observed that despite
maintaining the proper trend of the Potts model (Figure 2), at the moment of the appearance
of the anomaly, the network structure still goes into a disordered state, which is shown in
Figure 3b–e. Of course, from the nature of the underlying Potts’s model, i.e., the influence
of the surrounding environment on the state of the node, it follows that the structure in the
case under consideration immediately returns to an orderly state. However, as long as there
is an anomaly, the network structure cannot go to the stable (ordered) phase. Figure 3e
shows that the time to reach a stable state is much longer. This is due to the fact that, in
this case, all the nodes considered were covered by the anomaly. Moreover, this example
shows clearly that the cyclic anomaly corresponds to the cyclic phase transitions.
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Figure 3 shows that the value of the order parameter increases to the maximum value,
and then, depending on whether there are anomalies or not, it enters the orderly state
or remains in a state of disorder. In the latter case, as long as there are anomalies in
the network structure, the phase transitions cannot take place. Moreover, the higher the
anomaly ratio, the greater the discrepancy in the value of the order parameter. In the case
of cyclical anomalies with an equal occurrence interval, one can notice point deviations
from the ordering state and an immediate return to the orderly state. In the case when such
an anomaly occurs for a short time, and then its appearance is distant in time, then it can
be said that the time of convergence of the network structure (i.e., return to the stable work
state) is short.

The next considered case is the homogeneous cyclic anomaly. Changes in this anomaly
refer to random n nodes, but change occurs to one specific state, regardless of the number of
states available in the structure. The sample results are presented in Figure 4. In this case, a
change was forced to state 1 in 10% of nodes. As can be seen, despite the temporary, sudden
increase in the value of nodes in state 1, the system returns to its previously determined trend.
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Despite the maintained trend shown in Figure 4, it is possible to completely change
the distribution of individual states as a result of a homogeneous anomaly. Such a change
is possible after exceeding a certain limit of nodes, in which forced changes of, e.g., one
state will appear. An example of this is shown in Figure 5. Then, the system is significantly
affected by one of the states. Figure 5b also shows four phase transitions, and then full
stability of the network structure appropriated by one state. Such anomalies may reflect
real situations created in the structures of IT networks, e.g., as a result of malware or
disinformation processes in social networks.
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The phenomenon of an exemplary one-off group anomaly was presented, which
covered 50% of nodes to give a broad perspective of various anomalies on the operation of
the mechanism based on the Potts model in Figure 6. In this case, the changes included
random nodes, and values of state changes were generated in a random manner. This
anomaly did not cause long-term changes in the structure. Thus, the short-term external
impact did not cause the nodes to remain in a modified state permanently. The environment
had an effect on the anomalously affected nodes and thus they returned to a stable state
consistent with the previous trend.
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Figure 6. (a) The course of operation of the standard Potts model for a one-off, group anomaly; (b) The values of the order
parameter for the Potts model for a one-off, group anomaly.

There may also be an anomaly which permanently forces a change in the state of given
nodes. As a result of this disorder, the network structure from the stable state will go to the
next stable state; then, we usually deal with a homogeneous multi-group anomaly. In this
anomaly, there are several simultaneous groups of homogeneous anomalies. If, in the case
of such an anomaly, it will not be accompanied by longer disturbances in the value of node
states, then the convergence time may be omitted and then we do not talk about entering
the unstable system phase again, but only a step change in the order parameter value. In
this case, a completely new or previously eliminated state may appear (as in Figure 7a).
One or more states that have stabilised earlier may also disappear. Such a situation will be
visible in the achieved values of the order parameter (Figure 7b).

Entropy 2021, 23, x FOR PEER REVIEW 10 of 13 
 

 

  
(a) (b) 

Figure 6. (a) The course of operation of the standard Potts model for a one-off, group anomaly; (b) The values of the order 
parameter for the Potts model for a one-off, group anomaly. 

There may also be an anomaly which permanently forces a change in the state of 
given nodes. As a result of this disorder, the network structure from the stable state will 
go to the next stable state; then, we usually deal with a homogeneous multi-group anom-
aly. In this anomaly, there are several simultaneous groups of homogeneous anomalies. 
If, in the case of such an anomaly, it will not be accompanied by longer disturbances in 
the value of node states, then the convergence time may be omitted and then we do not 
talk about entering the unstable system phase again, but only a step change in the order 
parameter value. In this case, a completely new or previously eliminated state may appear 
(as in Figure 7a). One or more states that have stabilised earlier may also disappear. Such 
a situation will be visible in the achieved values of the order parameter (Figure 7b). 

  
(a) (b) 

Figure 7. (a) The course of operation of the standard Potts model for homogeneous, group anomaly; (b) The values of the 
order parameter for the Potts model for homogeneous, group anomalies. 

5. Examples of Applications 
The introduction of anomalies or disorders to a mechanism based on the Potts model 

can be considered from two perspectives: firstly, taking into account unforeseen changes 
in the states of individual network nodes beyond the current trend; secondly, as a disrup-
tion in the phase change process. In the first case, we deal with a conscious or unconscious 
change in the value of these states. The reasons for these changes may vary—for example, 
a sudden change in opinion resulting from the emotions of a single person or a group of 
people in the social network structure (also conditioned by external factors), election spot, 
charity event, system error, appearance of malware in IT systems, congestion in computer 
network nodes caused by limited resources and damage to hardware or software, etc. The 
second perspective refers to the analysis of phase transition processes. As shown in Figure 
1c,d, the order parameter clearly illustrates the phase change process. As a result of the 
simulations carried out on the basis of the Potts model, it can be stated that under normal 

Figure 7. (a) The course of operation of the standard Potts model for homogeneous, group anomaly; (b) The values of the
order parameter for the Potts model for homogeneous, group anomalies.

5. Examples of Applications

The introduction of anomalies or disorders to a mechanism based on the Potts model
can be considered from two perspectives: firstly, taking into account unforeseen changes in
the states of individual network nodes beyond the current trend; secondly, as a disruption
in the phase change process. In the first case, we deal with a conscious or unconscious
change in the value of these states. The reasons for these changes may vary—for example,
a sudden change in opinion resulting from the emotions of a single person or a group of
people in the social network structure (also conditioned by external factors), election spot,
charity event, system error, appearance of malware in IT systems, congestion in computer
network nodes caused by limited resources and damage to hardware or software, etc.
The second perspective refers to the analysis of phase transition processes. As shown in
Figure 1c,d, the order parameter clearly illustrates the phase change process. As a result
of the simulations carried out on the basis of the Potts model, it can be stated that under
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normal conditions, i.e., without additional external disturbances, the network structure
after the change (unstable) phase passes into the stabilised phase (ordered). This stabilised
phase may last indefinitely. In contrast, the introduction of an anomaly to the mechanisms
(either a group or a higher percentage factor) means that the system either cannot go to
the ordered phase or returns to it after a certain time. By analysing this parameter, one can
observe the dynamics of changes taking place in the structure of IT networks.

It seems that the analysis of phase transitions in the form of an analysis of changes in
the value of the order parameter allows us to identify a specific type of anomaly. The exact
estimation of the characteristics of the course of these changes for individual anomalies
should be a separate study. Nevertheless, based on the results so far, it can be stated that
each type of anomaly presented in this paper is characterised by a separate distribution of
this parameter. The use of this property can be used in devices and systems, among others,
to detect disturbances in computer networks, attacks on IT infrastructure and deliberate
manipulation of behaviour (opinions) in social networks. For example, a homogeneous
cyclic anomaly may correspond to interval tests of IT infrastructure before the actual
DoS attack. However, in the case of this anomaly, with the increasing number of nodes
covered by the anomaly, we can deal with the operation of malware or the operation of
disinformation processes in social networks. Considering one-off anomalies, we can refer
to individual disturbances resulting from transmission errors, errors in reading information
from sensors or temporarily rejected packages as a result of congestion.

6. Conclusions

The aim of this paper was to present the possibilities of modelling various types of
anomalies that may appear in the network structure, especially in IT, IoT and IoE networks.
The causes of this type of phenomenon can be different. For example, in computer systems,
this may be the result of malware, network interface failures, network bottlenecks or DoS
attacks, and in social networks, the impact of external factors on the individual’s opinion
or a conscious, independent decision that appears in spite of certain established trends as
well as work disorders in the infrastructure of industry 4.0.

A mechanism based on the Potts model was used in the paper. Thanks to this, it
was possible to simulate the impact of the surrounding environment on a given node. In
addition, the introduction of the element of randomness into the mechanism allowed us
to examine the behaviour and susceptibility of the entire structure to the occurrence of
various types of anomalies. The classification of these anomalies was also presented, and
then individual types of anomalies were simulated during the operation of the Potts model.
The order parameter was also taken into account during the study. Thanks to this, it was
possible to observe the dynamics of changes, as well as the processes related to the phase
transitions accompanying the operation of the model itself, and the introduced anomalies.
Due to the fact that the value of this parameter depends on the number of particular
states in which particular nodes in the network structure are located, the frequency of its
changes may indicate instability of the whole structure. Under normal conditions, the
operation of the classical Potts model leads to the global ordering. On the other hand,
the appearance of different types of anomalies affecting the change in state of individual
nodes can significantly affect the change in the value of the order parameter. Therefore,
by tracking the change in the value of this parameter, it is possible to observe and even
diagnose a specific type of anomaly.

Summarising the results of tests and simulations, the impact of anomalies on phase
transitions occurring in network structures has clearly been revealed. The obtained results
can be used for the in-depth modelling of processes taking place in network structures,
and, in particular, in IT, IoT and IoE networks of complex systems. Thanks to this, to
increase the reliability and performance of the network’s industrial infrastructure, new
network solutions may be developed in the future. Therefore, a target model of network
disturbances implemented, e.g., in a simulation environment, can be built in the future.
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