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Abstract: We study the increase in per-sample differential entropy rate of random sequences and
processes after being passed through a non minimum-phase (NMP) discrete-time, linear time-
invariant (LTI) filter G. For LTI discrete-time filters and random processes, it has long been established
by Theorem 14 in Shannon’s seminal paper that this entropy gain, G(G), equals the integral of
log |G(ejω)|. In this note, we first show that Shannon’s Theorem 14 does not hold in general. Then,
we prove that, when comparing the input differential entropy to that of the entire (longer) output
of G, the entropy gain equals G(G). We show that the entropy gain between equal-length input
and output sequences is upper bounded by G(G) and arises if and only if there exists an output
additive disturbance with finite differential entropy (no matter how small) or a random initial state.
Unlike what happens with linear maps, the entropy gain in this case depends on the distribution
of all the signals involved. We illustrate some of the consequences of these results by presenting
their implications in three different problems. Specifically: conditions for equality in an information
inequality of importance in networked control problems; extending to a much broader class of
sources the existing results on the rate-distortion function for non-stationary Gaussian sources, and
an observation on the capacity of auto-regressive Gaussian channels with feedback.

Keywords: differential entropy rate; non-minimum phase linear time-invariant systems; entropy
loss in linear filters; networked control; rate-distortion for non-stationary sources feedback capacity

1. Introduction

We study the difference between the differential entropy rate of a random process
u∞

1 = {u1, u2, . . .} entering a discrete-time linear time-invariant (LTI) system G and the
differential entropy rate of its (possibly noisy) output y∞

1 , as depicted in Figure 1.

x0 z∞
1

y∞
1u∞

1 G

Figure 1. A causal, stable, linear and time-invariant system G with input and output processes, initial
state, and output disturbance.

Recall that the differential entropy rate of a random process x∞
1 is given by h̄(x∞

1 ) ,
limn→∞ n−1h(x1, x2, . . . , xn), provided the limit exists, where h(x1, . . . , xn) = E[− log f (x1, . . . , xn)]
is the differential entropy of the ensemble x1, . . . , xn with probability density function (PDF)
f [1]. The system G is supposed to satisfy the following:

Assumption 1. The LTI system G in Figure 1 is causal and stable and such that

1. G has a rational p-th order transfer function G(z) with m zeros {ρi}m
i=1 outside the unit

circle, i.e., non-minimum-phase (NMP) zeros, where m ∈ {0, 1, . . . , p}, indexed in non-
increasing magnitude order, i.e., |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρm| > 1.
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2. The unit-impulse response of G, say, g0, g1, . . . satisfies |g0| = 1.

In this general setup, G may have a random initial state vector x0 ∈ Rp, p ∈ N, and a
real-valued random output disturbance z∞

1 . Our main purpose is to characterize the limit

G(G, x0, u∞
1 , z∞

1 ) , lim
n→∞

1
n
(h(yn

1 )− h(un
1 )), (1)

evaluating the possible effect produced by x0 and z∞
1 . This difference can be interpreted as

the entropy gain (entropy amplification or entropy boost) introduced by the filter G and (as
apparent from the other variables in the argument of G) the statistics of x0, u∞

1 , z∞
1 . We shall

refer to the special case in which x0 and z∞
1 are both zero (or deterministic) as the noise-less

case, and write G(G, 0, u∞
1 , 0) accordingly.

The earliest reference related to this problem corresponds to a noise-less continuous-
time counterpart considered by Shannon. In his seminal 1948 paper [2], Shannon gave a
formula for the change in differential entropy per degree of freedom that a continuous-time
random process uc, band-limited to a frequency range [0, B) (in Hz), experiences after
passing through an LTI continuous-time filter Gc (without considering a random initial
state or an output disturbance). Such entropy per degree of freedom is defined in terms of
uniformly taken samples as

h̄(uc) , lim
n→∞

1
n

h(uc(T), uc(2T), . . . , uc(nT)), (2)

with T , 1/(2B). In this formula, if the LTI filter has frequency response Gc(ξ) (with ξ
in Hz), then the resulting differential entropy rate of the output process yc is given by the
following theorem:

Theorem 1 (Reference [2], Theorem 14). If an ensemble having an entropy h̄(uc) per degree
of freedom in band B is passed through a filter with characteristic Gc(ξ) the output ensemble has
an entropy

h̄(yc) = h̄(uc) +
2
B

B∫
0

log|Gc(ξ)|dξ. (3)

Shannon arrived at (3) by arguing that an LTI filter can be seen as a linear operator
that selectively scales its input signal along infinitely many frequencies, each of them
representing an orthogonal component of the source. He then obtained the result by
writing down the determinant of the Jacobian of this operator as the product of the squared
frequency response magnitude of the filter over n frequency bands, applying logarithm,
dividing by n, and then taking the limit as n tends to infinity.

Remark 1. There is a factor of two in excess in the integral on the right-hand side (RHS) of (3).
To see this, consider a filter with a constant gain a over [0, B) (i.e., a simple multiplicative factor).
In such case, the entropy rate of yc should exceed that of uc by log|a| [1]. However, (3) yields
an entropy gain equal to 2 log|a|. This error arises because the determinant of the Jacobian of the
transformation is actually the product of |Gc| over the n frequency bands considered in Shannon’s
argument. Such excess factor of two is also present in the entropy losses appearing in Reference [2],
Table 1.

Theorem 14 in Reference [2] has found application in works ranging from traditional
themes, such as linear prediction [3] and source coding [4], to molecular communication
systems [5,6].

The available literature treating the phenomenon itself of the entropy gain (loss, boost,
or amplification) induced by LTI systems seems to be rather scarce. This is not surprising
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given that (3) was published in Reference [2], Theorem 14, the work which gave birth to
Information Theory.

The following publication concerned with this problem is Reference [7], following a
time-domain analysis for the corresponding discrete-time problem. In this approach, one
can obtain yn

1 , {y(1), y(2), . . . , y(n)} as a function of un
1 , for every n ∈ N, and evaluate the

difference between the limits h̄(y∞
1 ) and h̄(u∞

1 ), obtained by letting n→ ∞. More precisely,
for an LTI discrete-time filter G with impulse response g∞

0 = {g0, g1, . . .}, we can write

y1
n =


g0 0 · · · 0
g1 g0 · · · 0
...

. . .
...

gn−1 gn−2 · · · g0


︸ ︷︷ ︸

Gn

u1
n, (4)

where we adopt the notation y1
n for column vectors to avoid the abuse of notation incurred

by treating the sequence yn
1 as a vector, and because, by writing y1

n, it is easier to remember
that its samples are ordered from top to bottom. y1

n , [y(1) y(2) · · · y(n)]T and the
random vector u1

n is defined likewise. From this, it is clear (see, e.g., the corollary after
Theorem 8.6.4 in Reference [1]) that

h(y1
n) = h(u1

n) + log |det(Gn)|, (5)

where det(Gn) (or simply det Gn) stands for the determinant of Gn. This result is utilized
in Reference [7] to show that no entropy gain is produced by a stable minimum phase LTI
system G if and only if the first sample in its impulse response has unit magnitude.

In Reference [8], p. 568, the entropy gain of a discrete-time LTI system G (the noise-less
version of the setup depicted in Figure 1) is found to be

h̄(y∞
1 ) = h̄(u∞

1 ) +
1

2π

∫ π

−π
log
∣∣∣G(ejω)

∣∣∣dω, (6)

where y∞
1 is the filter’s discrete-time output process (without the effect of random initial

state or an output disturbance) and

h̄(y∞
1 ) , lim

n→∞

1
n

h(yn
1 ). (7)

This result was obtained starting from the fact that, for a Gaussian stationary process
u∞

1 with power spectral density (PSD) Su(ejω), h̄(u∞
1 ) = 1

2π

∫ π
−π Su(ejω)dω. If u∞

1 enters a
discrete-time LTI system with frequency response G(ejω), then the PSD of its output y∞

1

is Sy(ejω) = Su(ejω)
∣∣G(ejω)

∣∣2; thus, it is argued that (6) follows for Gaussian stationary
inputs. Then, Reference [8] extends the result for non-Gaussian inputs with a proof sketch
which uses a time-domain relation, like (4), to point out that the filter is a linear operator
and, as such, the differential entropy of its output exceeds that of its input by a quantity
that is independent of the input distribution. (It is worth noting that (6) is the discrete-
time equivalent of (3) (without its wrong factor of 2), which follows directly from the
correspondence between sampled band-limited continuous-time systems and discrete-
time systems.)

It is in Reference [9], Section II-C, where, for the first time, it is shown that, for a
stationary Gaussian input u∞

1 , the full entropy gain predicted by (6) takes place if the
system output y∞

1 is contaminated by an additive output disturbance of length p and
positive definite covariance matrix, where p is the order of G(z).
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The integral 1
2π

∫ π
−π log

∣∣G(ejω)
∣∣dω can be related to the structure of the filter G. It

is well known (from Jensen’s formula) that if G has a causal and stable rational transfer
function G(z) and an impulse response with its first sample g0 , limz→∞ G(z), then

1
2π

∫ π

−π
log
∣∣∣G(ejω)

∣∣∣dω = log |g0|+ ∑
i:|ρi |>1

log|ρi|, (8)

where {ρi} are the zeros of G(z) (see, e.g., Reference [10,11]). This provides a straightfor-
ward formula to evaluate 1

2π

∫ π
−π log

∣∣G(ejω)
∣∣dω of a given LTI filter with rational transfer

function G(z). When combined with (6), this equation also reveals that if the entropy gain
G(u∞

1 , y∞
1 ) is negative (i.e., if it corresponds to an entropy loss), then |g0| < 1 (with the

corresponding change of variables, this is the case in all the examples given by Shannon
in Reference [2], Table 1). More importantly, (8) allows us to concentrate, without loss of
generality, on LTI systems G(z), whose first impulse-response sample has unit magnitude,
as required by Assumption 1. Under the latter condition, (8) shows that the entropy gain is
greater than zero if and only if G(z) has zeros outside the unit disk D , {ρ ∈ C : |ρ| ≤ 1}.
A system with the latter property is said to be non-minimum phase (NMP); conversely,
a system with all its zeros inside D is said to be minimum phase (MP) [11].

1.1. Main Contributions of this Paper

The main contributions of this paper can be summarized as follows:

1. Our first main result is showing that (6) and (3) do not hold for a large class of
continuous-time filters and inputs. To see this, notice that

|g0| = 1 =⇒ |det(Gn)| = 1, ∀n ∈ N, (9)

which, in view of (5), is equivalent to h(y1
n) = h(u1

n), ∀n ∈ N. In turn, this implies that
h̄(y∞

1 )− h̄(u∞
1 ) = 0, regardless of whether G(z) (i.e., the polynomial g0 + g1z−1 + · · · )

has zeros with magnitude greater than one (choose, for example, g0 = 1, g1 = 2,
and gk = 0 for k ≥ 2). This reveals that (4) holds if and only G(z) is MP. But (6) and (3)
are equivalent (correcting for the in excess factor of 2 discussed in Remark 1); thus,
Theorem 14 in Reference [2] also does not hold for a class of continuous-time filters.
However, the transfer function Gc(s) of a band-limited continuous-time filter Gc is
defined only for imaginary values of s (because the bilateral Laplace transform of
sin(t)/t converges only on the imaginary axis), so one cannot classify such filters
as MP or NMP. Instead, we consider a class of continuous-time filters limited to
the frequencies in the band [0, B), where B > 0 is in [Hz], defined by having a
unit-impulse response of the form

g(t) ,
η

∑
k=0

gkφk(t), (10)

for some absolutely summable sequence of real-valued coefficients {gi}
η
i=0, η =

1, 2, . . ., where the sinc functions

φk(t) ,
sin(2πB[t− k/(2B)])

π[t− k/(2B)]
. (11)

Since every such g satisfies g(k/(2B)) = 0 for k < 0, it makes sense to refer to such
filters as “sample-wise causal”. For this class of band-limited filters, we show that
Theorem 14 holds if and only if the z-transform of {gi}

η
i=0 is MP:
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Theorem 2. Suppose Gc is a low-pass continuous-time filter with unit-impulse response as
in (10). Let the continuous-time random input of Gc be

uc(t) =
1

2B

∞

∑
k=1

u(k)φk(t), (12)

for some random sequence {u(k)}∞
k=1, with φk as in (11), and denote its output as yc. Then,

h̄(yc)− h̄(uc) = log|g0| = log
∣∣∣∣ 1
B

∫ B

0
<{Gc(ξ)}dξ

∣∣∣∣ (a)
≤ 1

B

∫ B

0
log|Gc(ξ)|dξ, (13)

with equality in (a) if and only if the polynomial g0 + g1z−1 + g2z−2 · · · has no roots outside
the unit circle.

2. We show that 1
2π

∫ π
−π log

∣∣G(ejω)
∣∣dω actually corresponds to the entropy gain intro-

duced by G but considering the new notion of effective differential entropy rate of y∞
1

proposed in this paper, defined next.

Definition 1 (The Effective Differential Entropy). Let y ∈ R` be a random vector. If y
can be written as a linear transformation y = Su, for some u ∈ Rn (n ≤ `) with bounded
differential entropy, S ∈ R`×n, then the effective differential entropy of y is defined as

h̆(y) , h(Ay), (14)

where S = ATTC is an SVD for S, with T ∈ Rn×n.

We can now state our second main result, the proof of which is in Appendix A:

Theorem 3. Let u∞
1 be the input of an LTI system G with transfer function G(z) without

zeros on the unit circle and with an absolutely summable unit impulse response {gi}
η−1
i=0 ,

with η = ∞ if G has an infinite impulse response. Denote the output of G as y∞
1 . Suppose∣∣h(un

1 )
∣∣ < ∞ for every finite n. Then,

lim
n→∞

1
n

(
h̆(yn+η

1 (un
1 ))− h(un

1 )
)
=

1
2π

∫ π

−π
log
∣∣∣G(ejω)

∣∣∣dω, (15)

where yn+η
1 (un

1 ) denotes the entire response of G to the input un
1 .

Theorem 3 states that, when considering the full-length output of a system, the effec-
tive entropy gain is introduced by the system itself.
Section 4 provides a geometrical description of the phenomenon behind Definition 1
and Theorem 3.

3. We show that 1
2π

∫ π
−π log

∣∣G(ejω)
∣∣dω is a tight upper bound to the entropy gain of

G (as defined in (1)), when the output is contaminated by some additional additive
signal, such as a random initial state (represented by x0 in Figure 1) or an output
disturbance (such as z∞

1 in Figure 1), with sufficiently many degrees of freedom
(a condition formally stated in Assumption 2 below). Moreover, we show that an
entropy gain equal to the latter upper bound can appear even when these distur-
bances or random initial state have infinitesimally small variances. To the best of
our knowledge, the latter phenomenon has been discussed in the literature first (and
only) in Reference [9], Section II-C, for Gaussian stationary inputs and an LTI filter.
We go beyond the latter result by explicitly and fully characterizing the entropy gain
of LTI systems for a large class of not necessarily Gaussian nor stationary random
input. We refer to this class as entropy-balanced processes, formally specified in the
following definition:
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Definition 2. A random process {v(k)}∞
k=1 is said to be entropy balanced if the following

two conditions are satisfied:

(i) Its sample variances σ2
v(n) are finite for finite n and

lim
n→∞

1
n

log(σ2
v(n)) = 0. (16)

(ii) For every ν ∈ N and for every sequence of matrices {Φn}∞
n=ν+1, Φn ∈ R(n−ν)×n

with orthonormal rows,

lim
n→∞

1
n

(
h(Φnv1

n)− h(v1
n)
)
= 0. (17)

The second condition guarantees that projecting an entropy-balanced process onto any
subspace having finitely fewer dimensions yields a process with the same differential
entropy rate.
The entropy gain induced by finite-length output disturbances is characterized by our
next theorem.

Theorem 4. In the system of Figure 1, let G satisfy Assumption 1 and suppose that u∞
1 is

entropy balanced. Suppose the random output disturbance z∞
1 is such that z(i) = 0, ∀i > κ,

and that |h(zκ
1)| < ∞. Let κ̄ , min{κ, m}, where m is the number of NMP zeros of

G(z). Then,

m
∑

i=m−κ̄+1
log |ρi| ≤ lim supn→∞

1
n (h(y

1
n)− h(u1

n)) ≤
κ̄

∑
i=1

log |ρi|
(a)
≤ 1

2π

π∫
−π

log
∣∣G(ejω)

∣∣dω (18)

with equality in (a) if and only if κ ≥ m.

The proof is presented in Section 6.4, and we provide geometrical insight explaining
the phenomenon underlying Definition 2 and Theorem 4 in Section 5.1.

4. We illustrate the relevance of the results summarized above by applying them to three
problems in three areas, namely:

(a) Networked Control: We show that equality holds in the inequality stated in Ref-
erence [12], Lemma 3.2 (a fundamental piece for the performance limitation
results further developed in Reference [13]), under very general conditions. In
addition, we extend the validity of a related equality for the perfect-feedback
case, given by Reference [14], Theorem 14, for Gaussian signals, to the much
larger class of entropy-balanced processes.

(b) The rate-distortion function for non-stationary Gaussian sources: This problem
has been previously solved in References [15–17]. We provide a simpler proof
based upon the results described above. This proof extends the result stated in
References [16,17] to a broader class of non-stationary sources.

(c) Gaussian channel capacity with feedback: We show that capacity results based on
using a short random sequence as channel input and relying on a feedback
filter which boosts the entropy rate of the end-to-end channel noise (such as the
one proposed in Reference [9]), crucially depend upon the complete absence of
any additional disturbance anywhere in the system. Specifically, we show that
the information rate of such capacity-achieving schemes drops to zero in the
presence of any such additional disturbance. As a consequence, the relevance
of characterizing the robust (i.e., in the presence of disturbances) feedback ca-
pacity of Gaussian channels, which appears to be a fairly unexplored problem,
becomes evident.
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1.2. Paper Outline

The remainder of this paper begins with some necessary definitions and preliminary
results in Section 2. It continues with our detailed exposition in Section 3 of why Shannon’s
reasoning fails to yield the right expression for the entropy gain. We present an intuitive
discussion leading to the definition of effective differential entropy in Section 4, which is
ended by the proof of Theorem 3. Section 5 gives a geometric interpretation of how an
arbitrarily small additive perturbation is able to boost the differential entropy rate of the
process coming out of an NMP LTI filter. This exposition helps understanding and justifies
the introduction of entropy-balanced random processes, which are also characterized there.
Sections 6 and 7 contain our results for the entropy gain produced by an output disturbance
and a random initial state, respectively. Our illustrative application results are presented in
Section 8, followed by our conclusions in Section 9. Except when presented right after a
statement or in its own section, all proofs are given in Appendix B.

2. Preliminaries
2.1. Notation

The sets of natural, real and complex numbers are denoted N, R, and C, respectively.
For a complex x, <{x} is the real part of x. For a set S , the indicator function 1S (x)
equals 1 if x ∈ S and 0 otherwise. For any LTI system G, the transfer function G(z)
corresponds to the z-transform of the impulse response g0, g1, . . ., i.e., G(z) = ∑∞

i=0 giz−i.
For a transfer function G(z), we denote by Gn ∈ Rn×n the lower triangular Toeplitz matrix
having [g0 · · · gn−1]

T as its first column. We write xn
1 as a shorthand for the sequence

{x1, . . . , xn}, and, when convenient, we write xn
1 in vector form as x1

n , [x1 x2 · · · xn]T ,
where ()T denotes transposition. Random scalars (vectors) are denoted using non-italic
characters, such as x (non-italic and boldface characters, such as x). The notation x ⊥⊥ y
means x and y are independent. If x and z are conditionally independent given y, we write
x ←→ y ←→ z. For matrices, we use upper-case boldface symbols, such as A. We write
λi(A) to denote the i-th eigenvalue of A sorted in increasing magnitude. If A ∈ Cm×n, AH

is its conjugate transpose, and σi(A) ,
√

λi(AH A) , if m ≥ n, and σi(A) ,
√

λi(AAH) ,

if m < n. We define σmin(A) , σ1(A) and σmax(A) , σmin{m,n}(A). The term Ai,j denotes
the entry in the intersection between the i-th row and the j-th column. If A ∈ Cm×n, then
AT and A∗ denote the transpose and conjugate transpose of A, respectively. We write
[A]i1i2 , with 1 ≤ i1 ≤ i2 ≤ m, to refer to the matrix formed by selecting the rows i1 to i2 of

A. Likewise, for 1 ≤ j1 ≤ j2 ≤ n,
j1 j2

A is the matrix built with columns j1 to j2 of A. The
expression m1[A]m2 corresponds to the square sub-matrix along the main diagonal of A,
with its top-left and bottom-right corners on Am1,m1 and Am2,m2 , respectively. A diagonal
matrix whose entries are the elements in a set D (wherein elements may be repeated) is
denoted as diagD. If A ∈ Rn×m1 and B ∈ Rn×m2 , we write [A|B] ∈ Rn×(m1+m2) to denote
the augmented matrix built by placing the columns of A followed by those of B.

2.2. Mutual Information and Differential Entropy

Let x, y, and z be random variables with joint PDF fx,y,z, and marginal PDFs fx,
fy, and fz, respectively. The mutual information between x and y is defined as I(x; y) ,∫

fx,y(x, y) log
(

fx,y(x,y)
fx(x) fy(y)

)
dxdy. The conditional mutual information between x and y given

z is defined as I(x; y | z) ,
∫

fx,y,z(x, y, z) log
(

fx,y | z(x,y|z)
fx | z(x|z) fy | z(y|z)

)
dxdydz, where fx,y | z is the

joint PDF of x and y given z, and fx | z, fy | z are defined likewise. The conditional differential
entropy of x given y is defined as h(x | y) , −

∫
fx,y(x, y) log( fx | y(x|y))dxdy.

From these definitions, it is easy to verify the following properties Reference [1],
Sections 2.4–2.6 and 8.4–8.6:
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• Shift invariance: for every deterministic function f ,

h(x+ f (y)| y) = h(x | y). (19)

• Non-negativity:

I(x; y) ≥ 0, (20)

with equality if and only if x and y are independent.
• Chain Rule:

I(x; y, z) = I(x; y) + I(x; z | y). (21)

• Relationship with entropy:

I(x; y) = h(x)− h(x | y) = h(y)− h(y | x). (22)

2.3. System Model and Assumptions

Consider the discrete-time system depicted in Figure 1. In this setup, the block G
satisfies Assumption 1.

It is worth noting that there is no loss of generality in considering g0 = 1, since one
can otherwise write G(z) as G′(z) = g0 · (G(z)/g0); thus, the entropy gain introduced
by G′(z) would be log |g0| plus the entropy gain due to G(z)/g0 (in agreement with (6)),
which has an impulse response with its first sample equal to 1.

The following assumption is made about the output disturbance z∞
1 :

Assumption 2. The disturbance z∞
1 is independent of u∞

1 and belongs to a κ-dimensional linear
subspace, for some finite κ ∈ N. This subspace is spanned by the κ orthonormal columns of a matrix
Φ ∈ R|N|×κ (where |N| stands for the countably infinite size of N), such that |h(ΦTz1

∞)| < ∞.
Moreover, z1

∞ = Φs1
κ , where the random vector s1

κ , ΦTz1
∞ has finite differential entropy, its

covariance matrix Ks1
κ

satisfies λmax(Ks1
κ
) < ∞, and it is independent of u1

∞.

3. Revisiting Theorem 14 in Reference Shannon et al.

In this section, after presenting the proof of Theorem 2, we develop Shannon’s ap-
proach into a more detailed and formal exposition. This allows us to explain why, for part
of the continuous-time filters considered in Theorem 2, the approach chosen by Shannon to
prove Theorem 14 in Reference [2] is unable to predict the correct value for the entropy gain.

3.1. Proof of Theorem 2

To begin with, the Fourier transform of φk is

Φk(ξ) ,
∫ ∞

−∞
φk(t) e−j2πξt dt = 1[−B,B](ξ) e−j2πξk/(2B) . (23)

It is easy to verify that the functions φk satisfy the following orthogonality property:

∫ ∞

−∞
φk(t)φi(t)dt =

{
2B , k = i
0 , k 6= i

(24)

and

φk(−t) = φ−k(t). (25)

Notice that u(k) = uc(
k

2B ), k ∈ N.
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The output of Gc sampled at time t = `/(2B), ` ∈ N, is

y(`) , yc(
`

2B ) =
∫ ∞

−∞
g(τ)uc(

`
2B − τ)dτ (26)

=
1

2B ∑∞
k=1 ∑η

i=0 gi u(k)
∫ ∞

−∞
φi(τ)φk(

`
2B − τ)dτ (27)

=
1

2B ∑∞
k=1 ∑η

i=0 gi u(k)
∫ ∞

−∞
φi(τ)φ`−k(τ)dτ (28)

= ∑η

i=0 gi u(`− i), (29)

with u(k) = 0 for k ≤ 0. This means that the output samples y∞
1 are the discrete-time

convolution between u∞
1 and the filter coefficients {gi}

η
i=0. Therefore, the matrix relation (4)

holds. We then obtain that h̄(yc) = h̄(uc) + log |g0|.
The frequency response of Gc is given by

Gc(ξ) =
∫ ∞

−∞
g(t) e−j2πξt dt =

η

∑
k=0

gkΦk(ξ) =
η

∑
k=0

gk e−jπξk/B, (30)

where ξ is in [Hz]. This means that

g0 =
1

2B

∫ B

−B
Gc(ξ)dξ =

1
B

∫ B

0
<{Gc(ξ)}dξ, (31)

where the last equality holds because Gc(ξ) is conjugate symmetric. Thus, the entropy gain
introduced by Gc is the right-hand side of (13), concluding the proof. �

3.2. Formalizing Shannon’s Argument

In the approach followed by Shannon, it is argued that the entropy gain is the limit as
n→ ∞ of n−1 ∑n−1

r=0 log |Gc(ξr)| over uniformly spaced frequencies ξ0, . . . , ξn−1. Here, we
show that this summation corresponds to log |det(G̃n)|, where G̃n is an n-by-n Toeplitz cir-
culant matrix. Moreover, the sequences of Hermitian matrices {GnG∗n}∞

n=1 and {G̃nG̃
∗
n}∞

n=1
are asymptotically equivalent (as defined in Reference [18], Section 2.3), which would yield
limn→∞ n−1 log |det(Gn)| = limn→∞ n−1 log |det(G̃n)| if the eigenvalues of GnG∗n were
bounded between constants 0 < ζm < ζM < ∞ for all n ∈ N. However, if G(z) (the
z-transform of {gk}∞

k=0) has NMP zeros, then GnG∗n has eigenvalues tending to zero expo-
nentially as n→ ∞, which precludes these two limits to coincide.

To prove the above claims, we first apply the change of variable ω , πξ/B, with which
(30) becomes

Gc(Bω/π) = G(ejω) ,
η

∑
k=0

gk e−jωk, (32)

where G(ejω) is the frequency response of the discrete-time filter G with unit-impulse
response {gi}

η
i=1 and ω is in radians per second. Now, following Shannon’s approach, we

uniformly sample G(ejω) at n frequencies

ωr ,

{
r 2π

n , r/n ≤ 0.5
r 2π

n − 2π , r/n > 0.5
, r = 0, 1, . . . , n− 1, (33)

which, from (32), yields the spectral samples

G(e−jωr ) =
η

∑
k=0

gk e−j 2π
n rk . (34)
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We will cast the reason why (3) fails to coincide with the correct expression for the
entropy gain provided by (5) as a disagreement between the asymptotic behavior of the log-
arithm of the determinant of two sequences of asymptotically equivalent matrices. For that
purpose, since (34) coincides with Reference [18], Equation 4.34, we have that the spectral
samples

{
G(e−jωr )

}n−1
r=0 are the eigenvalues of the Toeplitz circulant matrix (Reference [18],

Chapter 3)

G̃n ,


g̃n,0 g̃n,n−1 · · · g̃n,1

g̃n,1
. . . . . .

...
...

. . . . . . g̃n,n−1

g̃n,n−1
. . . . . . g̃n,0

 = U∗n diag
{

G(e−jω0), . . . , G(e−jωn−1)
}

Un, (35)

where Un ∈ Cn×n is the n-point discrete Fourier transform (DFT) matrix, defined as

[Un]k,r ,
1√
n

e−j 2π
n kr, k, r = 0, 1, . . . , n− 1. (36)

From Reference [18], Lemma 4.5, g̃n,k , ∑i∈N0 :k+ni≤η gk+in, corresponding to the (possibly)
aliased impulse response g0, g1, . . . , gη as a result of sampling in frequency.

We can now see that the discrepancy between the entropy gain predicted by (3) and (5)
is the disagreement between the following limits:

lim
n→∞

1
2n

log(det(GnG∗n))
(31)
= log

∣∣∣∣ 1
B

∫ B

0
<{Gc(ξ)}dξ

∣∣∣∣, (37a)

lim
n→∞

1
2n

log(det(G̃nG̃
∗
n)) =

1
B

∫ B

0
log |Gc(ξ)|dξ, (37b)

where, due to (8), the expressions on both right-hand sides differ if and only if G(z) has
NMP zeros. According to Reference [18], Lemma 4.6, the sequences {Gn}∞

n=1 and {G̃n}∞
n=1

are asymptotically equivalent, which is written as Gn ∼ G̃n. Then, from Reference [18], The-
orem 2.1, the Hermitian matrices GnG∗n ∼ G̃nG̃

∗
n, which, from Reference [18], Theorem 2.4,

implies that

lim
n→∞

1
n

n

∑
i=1

f (λi(GnG∗n)) = lim
n→∞

1
n

n

∑
i=1

f (λi(G̃nG̃
∗
n)), (38)

for any function f continuous over a finite interval [ζm, ζM] such that

ζm ≤ λi(GnG∗n), λi(G̃nG̃
∗
n) ≤ ζM, i = 1, 2, . . . , n, n = 1, 2, . . . . (39)

However, when G(z) has m NMP zeros, Lemma 7 (in Section 6.3) establishes that
there are exactly m eigenvalues of Gn that tend to zero exponentially as n→ ∞. Crucially,
log(·) is discontinuous at 0, which precludes the limits in (37) from coinciding.

4. The Effective Differential Entropy

Theorem 3 establishes that the effective differential entropy rate of the entire or
complete output of an LTI system exceeds that of the (shorter) input sequence by the RHS
of (15). This section provides a geometrical interpretation of this problem and intuition
about the effective differential entropy already introduced in Definition 1.
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Consider the random vectors u , [u1 u2]
T and y , [y1 y2 y3]

T related viay1
y2
y3

 =

1 0
2 1
0 2


︸ ︷︷ ︸
,Ğ2

[
u1
u2

]
. (40)

Suppose u is uniformly distributed over [0, 1] × [0, 1]. Applying the conventional
definition of differential entropy of a random sequence, we would have that

h(y1, y2, y3) = h(y1, y2) + h(y3 | y1, y2) = −∞ (41)

because y3 is a deterministic function of y1 and y2:

y3 = [0 2][u1 u2]
T = [0 2]

(
1 0
2 1

)−1[y1
y2

]
.

In other words, the problem lies in that, although the output is a three-dimensional
vector, it only has two degrees of freedom, i.e., it is restricted to a 2-dimensional subspace
of R3. This is illustrated in Figure 2, where the set [0, 1]× [0, 1] is shown (coinciding with
the u-v plane), together with its image through Ğ2 (as defined in (40)).

0

1

2

3

0

0.5

1

1.5

2

2.5

3

0

1

2

3

u

v

w

Figure 2. Support of u (laying in the u-v plane) compared to that of y = Ğu (the rhombus in R3).

As can be seen in this figure, the image of the square [0, 1]2 through Ğ2 is a 2-
dimensional rhombus over which {y1, y2, y3} distributes uniformly. Since the intuitive
notion of differential entropy of an ensemble of random variables relates to the size of
the region spanned by the associated random vector (and determines how difficult it is to
compress it in a lossy fashion with a given precision), one could argue that the differential
entropy of {y1, y2, y3}, far from being−∞, should be somewhat larger than that of {u1, u2}
(since the rhombus Ğ2[0, 1]2 has a larger area than [0, 1]2). So, what does it mean that (and
why should) h(y1, y2, y3) = −∞? Simply put, the differential entropy relates to the volume
spanned by the support of the probability density function. For y in our example, the latter
(three-dimensional) volume is clearly zero.
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From the above discussion, the comparison between the differential entries of y ∈ R3

and u ∈ R2 of our previous example should take into account that y actually lives in a
two-dimensional subspace of R3. Indeed, since the multiplication by a unitary matrix does
not alter differential entries, we could consider the differential entropy of[

ỹ
0

]
,
(

Q̆
q̄T

)
y, (42)

where Q̆T is the 3× 2 matrix with orthonormal rows in the SVD of Ğ2

Ğ2 = Q̆T D̆ R̆, (43)

and q̄ is a unit-norm vector orthogonal to the rows of Q̆ (and thus orthogonal to y, as
well). We are now able to compute the differential entropy in R2 for ỹ, corresponding to
the rotated version of y such that its support is now aligned with R2.

The preceding discussion motivates the use of a modified version of the notion of
differential entropy for a random vector y ∈ Rn which considers the number of dimensions
actually spanned by y instead of its length.

It is worth mentioning that Shannon’s differential entropy of a vector y ∈ R`, whose
support’s `-volume is greater than zero, arises from considering it as the difference between
its (absolute) entropy and that of a random variable uniformly distributed over an `-
dimensional, unit-volume region of R`. More precisely, if in this case the probability density
function (PDF) of y = [y1 y2 · · · y`]

T is Riemann integrable, then [1], Thm. 9.3.1,

h(y) = lim
∆→0

[
H(y∆) + ` log ∆

]
, (44)

where y∆ is the discrete-valued random vector resulting when y is quantized using an
`-dimensional uniform quantizer with `-cubic quantization cells with volume ∆`. However,
if we consider a variable y whose support belongs to an n-dimensional subspace of R`,
n < ` (i.e., y = Su = ATTCu, as in Definition 1), then the entropy of its quantized version
in R`, say H`(y∆), is distinct from Hn((Ay)∆), the entropy of Ay in Rn. Moreover, it turns
out that, in general,

lim
∆→0

(
H`(y

∆)− Hn((Ay)∆)
)
6= 0, (45)

despite the fact that A has orthonormal rows. Thus, the definition given by (44) does not
yield consistent results for the case wherein a random vector has a support’s dimension
(i.e., its number of degrees of freedom) smaller that its length (The mentioned inconsistency
refers to (45).), which reveals that the asymptotic behavior H`(y∆) changes if y is rotated.
(If this were not the case, then we could redefine (44) replacing ` by n, in a spirit similar
to the one behind Renyi’s d-dimensional entropy [19].) To see this, consider the case in
which u ∈ R distributes uniformly over [0, 1] and y = [1 1]Tu/

√
2 . Clearly, y distributes

uniformly over the unit-length segment connecting the origin with the point (1, 1)/
√

2 . Then,

H2(y∆) = −
⌊

1
∆
√

2

⌋
∆
√

2 log
(

∆
√

2
)
−
(

1−
⌊

1
∆
√

2

⌋√
2 ∆
)

log
(

1−
⌊

1
∆
√

2

⌋√
2 ∆
)

. (46)

On the other hand, since, in this case, Ay = u, we have that

H1((Ay)∆) = H1(u∆) = −
⌊

1
∆

⌋
∆ log ∆− (1−

⌊
1
∆

⌋
∆) log(1−

⌊
1
∆

⌋
∆). (47)

Thus, the d-dimensional entropy would not generally be equal to the effective differ-
ential entropy, that is:

lim
∆→0

(
H1((Ay)∆)− H2(y∆)

)
= lim

∆→0

(⌊
1

∆
√

2

⌋
∆
√

2 log
(

∆
√

2
)
−
⌊

1
∆

⌋
∆ log ∆

)
= log

√
2 . (48)
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The latter example further illustrates why the notion of effective entropy is appropriate
in the setup considered in this section, where the effective dimension of the random
sequences does not coincide with their length (it is easy to verify that the effective entropy
of y does not change if one rotates y in R`).

We finish this section with an example to illustrate the usefulness of the notion of
effective differential entropy beyond the context of entropy gain.

Application Example: Shannon Lower Bound

The rate-distortion function (RDF) R(D) is the infimum, among all codes, of the
expected number of bits per sample necessary to reconstruct a given random source with
distortion not greater than D [1]. Let the source and reconstruction be the vectors x1

`
and x1

` + v1
` , respectively, and suppose the distortion is assessed using the mean-squared

error (MSE) d(v1
`) , E[‖v1

`‖
2]. Then, restricting our attention to uniquely-decodable

codes Reference [1], p. 105), the Shannon Lower Bound (SLB) [20] establishes that

`R(D) ≥ h(x1
`)− max

d(v1
`)≤D

h(v1
`), (49)

provided h(x1
`) is bounded. Therefore, if x1

` is the entire forced response of an FIR filter G
of order p to an input un

1 , then ` = n + p and h(x1
`) is minus infinity, which precludes one

from using (49). We will show next that, in this case, the SLB can still be stated by using the
effective differential entropy h̆(x1

`) instead of h(x1
`). Following Definition 1, we can write

the source vector as x1
` = ATTCu1

n, where A ∈ Rn×` has orthonormal rows, T ∈ Rn×n is

diagonal with non-negative entries, and C ∈ Rn×n is unitary. Let H , [AT | AT
] ∈ R`×`

be a unitary matrix, which means that AAT = 0p×`. Then,

`R(D)
(a)
≥ I(x1

` ; x1
` + v1

`), (50)

= I(Hx1
` ; Hx1

` + Hv1
`), (51)

= I(Ax1
` ; Ax1

` + Hv1
`), (52)

= I(Ax1
` ; Ax1

` + Av1
` , Av1

`), (53)
(21)
= I(Ax1

` ; Ax1
` + Av1

`),+I(Ax1
` ; Av1

` | Ax1
` + Av1

`), (54)
(20)
≥ I(Ax1

` ; Ax1
` + Av1

`), (55)
(22)
= h(Ax1

`)− h(Ax1
` |Ax1

` + Av1
`), (56)

(19)
= h(Ax1

`)− h(Av1
` |Ax1

` + Av1
`), (57)

(b)
≥ h(Ax1

`)− h(Av1
`), (58)

≥ h(Ax1
`)− max

w1
n :d(w1

n)≤D
h(w1

n), (59)

(c)
= h̆(x1

`)− max
w1

n :d(w1
n)≤D

h(w1
n), (60)

where (a) stems from Reference [1], Theorems 5.4.1 and 5.5.1 and Equations (10).58-10.61,
(b) holds because conditioning does not increase entropy and (c) is from the definition of
effective differential entropy.

5. Entropy-Balanced Processes: Geometric Interpretation and Properties

In the first part of this section, we provide a geometric interpretation of the effect
that a non-minimum phase LTI system has on its input random process. This will give
an intuitive meaning to the notion of an entropy-balanced random process (introduced
in Definition 2 above) and provide insights into why and how the entropy gain defined
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in (1) arises as a consequence of an output random disturbance or a random initial state
(the themes of Sections 6 and 7, respectively).

The second part of this section identifies several entropy-balanced processes and
establishes two properties satisfied by this class of processes.

5.1. Geometric Interpretation

We begin our discussion with a simple example.

Example 1. Suppose that G in Figure 1 is a finite impulse response (FIR) filter with impulse
response g0 = 1, g1 = 2, gi = 0, ∀i ≥ 2. Notice that this choice yields G(z) = (z− 2)/z; thus,
G(z) has one non-minimum phase zero, at z = 2. The associated matrix Gn for n = 3 is

G3 =

1 0 0
2 1 0
0 2 1

,

whose determinant is clearly one (indeed, all its eigenvalues are 1). Hence, as discussed in the
introduction, h(G3u1

3) = h(u1
3); thus, G3 (and Gn, in general) does not introduce an entropy

gain by itself. However, an interesting phenomenon becomes evident by looking at the SVD of G3,
given by G3 = QT

3 D3R3, where Q3 and R3 are unitary matrices, and D3 , diag{d1, d2, d3}. In
this case, D3 = diag{0.19394, 1.90321, 2.70928}; thus, one of the singular values of G3 is much
smaller than the others (although the product of all singular values yields 1, as expected). As will be
shown in Section 6, for a stable G(z), such uneven distribution of singular values arises only when
G(z) has non-minimum phase zeros. The effect of this can be visualized by looking at the image of
the cube [0, 1]3 through G3, shown in Figure 3.

0 1 2 3
0

1
2

3
0

0.5

1

1.5

2

2.5

3

uv

w

Figure 3. Image of the cube [0, 1]3 through the square matrix with columns [1 2 0]T, [0 1 2]T, and [0 0 1]T.

If the input u1
3 were uniformly distributed over this cube (of unit volume), then G3u1

3
would distribute uniformly over the unit-volume parallelepiped depicted in Figure 3; hence,
h(G3u1

3) = h(u1
3).

Now, if we add to G3u1
3 a disturbance z1

3 = Φ s, with scalar s uniformly distributed over
[−0.5, 0.5] independent of u1

3, and with Φ ∈ R3×1, the effect would be to “thicken” the support
over which the resulting random vector y1

3 = G3u1
3 + z1

3 is distributed, along the direction pointed
by Φ. If Φ is aligned with the direction along which the support of G3u1

3 is thinnest (given by q3,1,
the first row of Q3), then the resulting support would have its volume significantly increased, which
can be associated with a large increase in the differential entropy of y1

3 with respect to u1
3. Indeed,

a relatively small variance of s and an approximately aligned Φ would still produce a significant
entropy gain.
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The above example suggests that the entropy gain from u1
n to y1

n appears as a com-
bination of two factors. The first of these is the uneven way in which the random vector
Gnu1

n is distributed over Rn. The second factor is the alignment of the disturbance vector
z1

n with respect to the span of the subset {qn,i}i∈Ωn of columns of Qn, associated with the
smallest singular values of Gn, indexed by the elements in the set Ωn. As we shall discuss
in the next section, if G has m non-minimum phase zeros, then, as n increases, there will
be m singular values of Gn going to zero exponentially. Since the product of the singular
values of Gn equals 1 for all n, it follows that ∏i/∈Ωn dn,i must grow exponentially with n,
where dn,i is the i-th diagonal entry of Dn. This implies that Gnu1

n expands with n along the
span of {qn,i}i/∈Ωn , compensating its shrinkage along the span of {qn,i}i∈Ωn , thus keeping
h(Gnu1

n) = h(u1
n) for all n. Thus, as n grows, any small disturbance distributed over the

span of {qn,i}i∈Ωn , added to Gnu1
n, will keep the support of the resulting distribution from

shrinking along this subspace. Consequently, the expansion of Gnu1
n with n along the

span of {qn,i}i/∈Ωn is no longer compensated, yielding an entropy increase proportional to
log(∏i/∈Ωn dn,i).

The above analysis allows one to anticipate a situation in which no entropy gain would
take place even when some singular values of Gn tend to zero as n→ ∞. Since the increase
in entropy is made possible by the fact that, as n grows, the support of the distribution of
Gnu1

n shrinks along the span of {qn,i}i∈Ωn , no such entropy gain should arise if the support
of the distribution of the input u1

n expands accordingly along the directions pointed by the
rows {rn,i}i∈Ωn of Rn.

An example of such situation can be easily constructed as follows: Let G(z) in Figure 1
have non-minimum phase zeros and suppose that u∞

1 is generated as G−1ũ∞
1 , where ũ∞

1 is
an i.i.d. random process with bounded entropy rate. Since the determinant of G−1

n equals 1
for all n, we have that h(u1

n) = h(ũ1
n), for all n. On the other hand, y1

n = GnG−1
n ũ1

n + z1
n =

ũ1
n + z1

n. Since z1
n = [Φ]1ns1

κ for some finite κ (recall Assumption 2), it is easy to show that
limn→∞

1
n h(y1

n) = limn→∞
1
n h(ũ1

n) = limn→∞
1
n h(u1

n); thus, no entropy gain appears.
The preceding discussion reveals that the entropy gain produced by G in the situation

shown in Figure 1 depends on the distribution of the input and on the support and
distribution of the disturbance. This stands in stark contrast with the well known fact
that the increase in differential entropy produced by an invertible linear operator depends
only on its Jacobian, and not on the statistics of the input [2]. We have also seen that the
distribution of a random process along the different directions within the Euclidean space
which contains it plays a key role, as well. This motivates the need to specify a class of
random processes which distribute more or less evenly over all directions. This is precisely
the intuitive meaning of an entropy-balanced process.

The following section identifies a large family of processes belonging to this class,
as well as two properties which greatly expands this family.

5.2. Characterization of Entropy-Balanced Processes

We have defined the notion of an “entropy-balanced” process in Section 1.1. In words,
the first condition in this definition allows one to guarantee that the orthogonal projection
of an entropy-balanced process onto any ν-dimensional linear subspace has a differential
entropy whose magnitude remains bounded or grows at most sub-linearly with n. The
second condition states that the projection of an entropy-balanced process v∞

1 onto any
linear subspaces having ν fewer dimensions has the same differential entropy rate as the
original process. This condition is equivalent to requiring that every unitary transformation
on vn

1 yields a random sequence yn
1 such that limn→∞

1
n h(yn

n−ν+1 | y
n−ν
1 ) = 0. This property

of the resulting random sequence yn
1 means that one cannot predict its last ν samples with

arbitrary accuracy by using its previous n− ν samples, even if n goes to infinity.
We now characterize a large family of entropy-balanced random processes and estab-

lish some of their properties. Although intuition may suggest that most random processes
(such as i.i.d. or stationary processes) should be entropy balanced, that statement seems
rather difficult to prove. In the following, we show that the entropy-balanced condi-
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tion is met by i.i.d. processes with per-sample probability density function (PDF) being
uniform, piece-wise constant or Gaussian. It is also shown that adding to an entropy-
balanced process an independent random processes independent of the former yields
another entropy-balanced process, and that filtering an entropy-balanced process by a
stable and minimum phase filter yields an entropy-balanced process, as well. The proofs
can be found in Appendix B.

Lemma 1. Let u∞
1 be a Gaussian random process with independent elements having positive and

bounded variance, i.e., there exist 0 < σ̌2 ≤ σ̂2 < ∞ such that σ̌2 ≤ σ2
u(n) ≤ σ̂2, n ∈ N. Then,

u∞
1 is entropy balanced.

Lemma 2. Let u∞
1 be a random process with independent elements satisfying Condition i) in

Definition 2, in which each ui is distributed according to a (possibly different) piece-wise constant
PDF such that each interval where this PDF is constant has measure less than θ and greater than ε,
for some constants 0 < ε < θ < ∞. Then, u∞

1 is entropy balanced.

Lemma 3. Let u∞
1 and v∞

1 be mutually independent random processes. If u∞
1 is entropy balanced,

and w∞
1 , u∞

1 + v∞
1 satisfies σ2

w(n) < ∞ for finite n and limn→∞ n−1 log(σ2
w(n)) = 0, then w∞

1
is also entropy balanced.

The proof of Lemma 3 is on page 33. The working behind this lemma can be interpreted
intuitively by noting that adding to a random process another independent random process
can only increase the “spread” of the distribution of the former, which tends to balance
the entropy of the resulting process along all dimensions in Euclidean space. In addition,
it follows from Lemma 3 that all i.i.d. processes having a per-sample PDF which can be
constructed by convolving uniform, piece-wise constant or Gaussian PDFs as many times
as required are entropy balanced. It also implies that one can have non-stationary processes
which are entropy balanced, since Lemma 3 imposes no requirements for the process v∞

1 .
The next lemma related to the properties of entropy-balanced processes shows that

filtering by a stable and minimum phase LTI filter preserves the entropy balanced condition
of its input.

Lemma 4. Let u∞
1 be an entropy-balanced process and G an LTI stable and minimum-phase filter.

Then, the output w∞
1 , G u∞

1 is also an entropy-balanced process.

This result implies that any stable moving-average auto-regressive process constructed
from entropy-balanced innovations is also entropy balanced, provided the coefficients of
the averaging and regression correspond to a stable MP filter.

The last lemma of this section states a crucial property of entropy-balanced processes
(the proof is in Appendix B, page 34).

Lemma 5. Let u∞
1 be an entropy balanced process. Consider a disturbance z∞

1 satisfying Assump-
tion 2 and define y∞

1 , u∞
1 + z∞

1 . Then, limn→∞ n−1(h(yn
1 )− h(un

1 )) = 0.

We finish this section by pointing out two examples of processes which are non-
entropy-balanced, namely the output of a NMP-filter to an entropy-balanced input and the
output of an unstable filter to an entropy-balanced input. The first of these cases plays a
central role in the next section.

6. Entropy Gain Due to External Disturbances

In this section, we formalize the ideas which were qualitatively outlined in the previ-
ous section. Specifically, for the system shown in Figure 1 we will characterize the entropy
gain G(G, x0, u∞

1 , z∞
1 ) defined in (1) for the case in which the initial state x0 is zero (or
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deterministic) and there exists a random disturbance of (possibly infinite length) z∞
1 which

satisfies Assumption 2.

6.1. Input Disturbances Do Not Produce Entropy Gain

In this section, we show that random disturbances satisfying Assumption 2, when
added to the input u∞

1 (i.e., before G), do not introduce entropy gain. This result can be
obtained from Lemma 6, as stated in the following theorem:

Theorem 5 (Input Disturbances do not Introduce Entropy Gain). Let G and z∞
1 satisfy

Assumptions 1 and 2 , respectively. Suppose that u∞
1 is entropy balanced and consider the output

y∞
1 = G (u∞

1 + z∞
1 ). (61)

Then,

lim
n→∞

1
n
(h(yn

1 )− h(un
1 )) = 0 (62)

Proof. From Lemma 5, the differential entropy rate of u∞
1 equals that of u∞

1 + z∞
1 . The

proof is completed by recalling that G yields no entropy gain for its input u∞
1 + z∞

1 because
it corresponds to the noise-less scenario.

6.2. The Entropy Gain Introduced by Output Disturbances when G is MP is Zero

The results from the previous section yield the following corollary, which states that
an LTI system with transfer function G(z) without zeros outside the unit circle (i.e., an MP
transfer function) cannot introduce entropy gain.

Corollary 1 (Minimum Phase Filters do not Introduce Entropy Gain). Consider the system
shown in Figure 1 wherein the input u∞

1 is an entropy-balanced random process and the output
disturbance z∞

1 satisfies Assumption 2. Besides Assumption 1, suppose that G(z) is minimum
phase. Then,

lim
n→∞

1
n
(h(yn

1 )− h(un
1 )) = 0. (63)

Proof. Since G(z) is minimum phase and stable, the result follows directly from Lemmas 4
and 5.

6.3. The Entropy Gain Introduced by Output Disturbances when G(z) is NMP

We show here that the entropy gain of an LTI system with transfer function G(z) and
an output disturbance is at most the sum of the logarithm of the magnitude of the zeros of
G(z) outside the unit circle.

The following lemma will be instrumental for that purpose.

Lemma 6. Consider the system in Figure 1, and suppose z∞
1 satisfies Assumption 2, and that

the input process u∞
1 is entropy balanced. Let Gn = QT

n DnRn be the SVD of Gn, where Dn =
diag{dn,1, . . . , dn,n} are the singular values of Gn, with dn,1 ≤ dn,2 ≤ · · · ≤ dn,n, such that
|det Gn| = 1 ∀n. Let m be the number of these singular values which tend to zero exponentially as
n→ ∞. Then,

lim
n→∞

1
n
(h(yn

1 )− h(un
1 )) = lim

n→∞

1
n

(
−

m

∑
i=1

log dn,i + h
(
[Dn]

1
mRnu1

n + [Qn]
1
mz1

n

))
. (64)

The proof of this lemma can be found on page 34, in Appendix B.
Lemma 6 leaves the need to characterize the asymptotic behavior of the singular

values of Gn. This is accomplished in the following lemma, which relates these singular
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values to the zeros of G(z). It is a generalization of the unnumbered lemma in the proof
of Reference [16], Theorem 1 (restated in Appendix C as Lemma A3), which holds for
FIR transfer functions, to the case of infinite-impulse response (IIR) transfer functions (i.e.,
transfer functions having poles).

Lemma 7. For a transfer function G(z) satisfying Assumption 1, where its zeros {ρi}
p
i=1 satisfy

|ρ1| ≥ · · · ≥ |ρm| > 1 ≥ |ρm+1| ≥ · · · ≥ |ρp|. Then,

λl(GnGT
n ) =

{
α2

n,l |ρl |−2n , if l ≤ m,
α2

n,l , otherwise ,
(65)

where the elements in the sequence {αn,l} are positive and increase or decrease at most polynomially
with n.

(The proof of this lemma can be found in Appendix B, page 36).
Lemma 6 also precisely formulates the geometric idea outlined in Section 5.1. To

see this, notice that no entropy gain is obtained if the output disturbance vector z1
n

becomes orthogonal (with probability 1) to the space spanned by the first m columns of Qn
sufficiently fast as n→ ∞ . Recalling from Assumption 2 that

z1
n = [Φ]1ns1

κ , (66)

where the matrix Φ has κ orthonormal columns of infinite length, such orthogonality
condition can be formally stated by defining

κn , rank([Qn]
1
m[Φ]1n) (67)

κ̂∞ , lim sup
n→∞

κn (68)

κ̌∞ , lim inf
n→∞

κn (69)

as κ̂ = 0.
If this were the case, then the disturbance would not be able fill the subspace along

which Gnu1
n is shrinking exponentially. Indeed, if κn = 0 for all n , then h([Dn]1mRnu1

n +
[Qn]

1
mz1

n) = h(1[Dn]m[Rn]1mu1
n) = ∑m

i=1 log dn,i + h([Rn]1mu1
n), and the latter sum cancels

out the one on the RHS of (64), while limn→∞
1
n h([Rn]1mu1

n) = 0 since u∞
1 is entropy

balanced. On the contrary (and loosely speaking), if the projection of the support of z1
n onto

the subspace spanned by the first m rows of Qn is of dimension m (i.e., if κn = m) for all
n , then h([Dn]1mRnu1

n + [Qn]
1
mz1

n) remains bounded for all n, and the entropy limit of the
sum limn→∞

1
n (−∑m

i=1 log dn,i) on the RHS of (64) yields the largest possible entropy gain.
Notice that−∑m

i=1 log dn,i = ∑n
i=m+1 log dn,i (because det(Gn) = 1); thus, this entropy gain

stems from the uncompensated expansion of Gnu1
n along the space spanned by the rows

of [Qn]
m+1
n . Beyond these extreme cases (i.e., for general values of κ̌ and κ̂), the following

theorem provides tight bounds on the entropy gain.

Theorem 6. In the system of Figure 1, suppose that u∞
1 is entropy balanced, and that G(z) and

z∞
1 satisfy Assumptions 1 and 2, respectively, where the zeros {ρi}

p
i=1 of G(z) satisfy |ρ1| ≥ · · · ≥

|ρm| > 1 ≥ |ρm+1| ≥ · · · ≥ |ρp|. For each n ∈ N, let QT
n ∈ Rn×n be the unitary matrix holding

the left singular vectors of Gn ∈ Rn×n (as in Lemma 6), where Gn is as defined in (4) .

1. Then,

0 ≤ lim inf
n→∞

1
n
(h(yn

1 )− h(un
1 )) ≤ lim sup

n→∞

1
n
(h(yn

1 )− h(un
1 )) ≤

κ̂∞

∑
i=1

log |ρi|
(8)
≤ 1

2π

π∫
−π

log
∣∣∣G(ejω)

∣∣∣dω. (70)
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The bounds on both extremes are tight. Moreover, the lower bound is reached if κ̂∞ = 0.
2. If lim infn→∞

1
n log(σmin([Qn]

1
m[Φ]1n) = 0, then

m

∑
i=m−κ̌∞+1

log |ρi| ≤ lim inf
n→∞

1
n
(h(yn

1 )− h(un
1 )). (71)

Thus, the rightmost upper bound in (70) is achieved if κ̌∞ = m.

Proof. See Appendix B, page 37.

The next technical result is very useful for finding conditions under which the require-
ments of point 2 in Theorem 6 are satisfied (the proof is in Appendix B, page 39).

Lemma 8. Let F be an FIR LTI causal system of order m such that the m zeros of F(z) are NMP,
and Fn = QT

n DnRn be an SVD for Fn, for every n ∈ {m, m+ 1, . . .}. For each κ ∈ {1, . . . , n}, define

κn , rank

( 1 κ

[Qn]
1
m

)
, (72)

and κ̄ , min{m, κ}. Then,

lim
n→∞

σmin

( 1 κ

[Qn]
1
m

)
> 0, (73)

and limn→∞ κn = κ̄.

Now, we can prove Theorem 4.

6.4. Proof of Theorem 4

Factorize G(z) as G(z) = F(z)G̃(z), where G̃(z) is stable and minimum phase and
F(z) is a stable FIR transfer function with all the m non-minimum-phase zeros of G(z).
Letting ũ1

n , G̃nu1
n, we have that h(y1

n) = h(Fnũ1
n + z1

n), h(ũ1
n) = h(u1

n), and that ũ∞
1 is

entropy balanced (from Lemma 4). Thus,

h(y1
n)− h(u1

n) = h(Gnu1
n + z1

n)− h(u1
n) = h(Fnũ1

n + z1
n)− h(ũ1

n). (74)

This means that the entropy gain of G due to the output disturbance z∞
1 corresponds

to the entropy gain of F due to the same output disturbance.
Clearly, u∞

1 , F(z), and z∞
1 satisfy the assumptions of Theorem 6 with Φ = [ Iκ | 0 ]T

(see Assumption 2). Therefore,

[Qn]
1
m[Φ]1n =

1 κ

[Qn]
1
m . (75)

Combining this with Lemma 8, it readily follows that, for every κ ≥ 1, the condition
in point 2 of Theorem 6 is met, and also limn→∞ κn = κ̄. The proof is then completed by
substituting lim infn→∞ κn = lim supn→∞ κn = κ̄ into (70) and (71).

7. Entropy Gain Due to a Random Initial State

Here, we analyze the scenario illustrated by Figure 1 for the case in which there
exists a random initial state x0 independent of the input u∞

1 , and zero (or deterministic)
output disturbance.
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The treatment of an initial state of the LTI system G requires one to first define an
internal model for it. For this purpose, in this section, we consider the state-space realization
of G in the Kalman canonical form, given by

x(k) ,


xco(k)
xc̄o(k)
xcō(k)
xc̄ō(k),

 =


Aco A12 0 0
0 Ac̄o 0 0

A31 A32 Acō A34
0 A42 0 Ac̄ō




xco(k− 1)
xc̄o(k− 1)
xcō(k− 1)
xc̄ō(k− 1),

+


bco
0

bcō
0

u(k) (76a)

y(k) =
[
cT

co cT
c̄o 0 0

]
x(k− 1) + u(k), (76b)

(see, e.g., Reference [21] or Reference [22], Chapter 6) where the column state vectors
xco(k), xc̄o(k), xcō(k), xc̄ō(k) are, respectively, controllable and observable, non-controllable and
observable, controllable and non-observable, and non-controllable and non-observable. There is
no loss of generality in choosing this state-space representation, because every state-space
representation consistent with a rational transfer function G(z) can be written in this
form (Reference [22], Theorem 6.7).

Since our interest is on the effect of the random initial state of G on its output, we only
need to consider the observable subsystem within (76) and without its input, given by

xo(k) ,
[

xco(k)
xc̄o(k)

]
=

(
Aco A12
0 Ac̄o

)
︸ ︷︷ ︸

Ao

[
xco(k− 1)
xc̄o(k− 1)

]
, (77a)

ỹ(k) = [cT
co cT

c̄o]︸ ︷︷ ︸
cT

o

xo(k− 1), (77b)

where ỹ is the natural response of G to its initial state xo(0) and xco ∈ Rp and xc̄o ∈ Rq. We
shall decompose ỹ as

ỹ∞
1 = [ỹc̄o]

n
1 + [ỹco]

∞
1 , (78)

where ỹc̄o and ỹco are the natural responses of G to initial states [01×p xc̄o(0)T ]T and
[xco(0)T 01×q]

T , respectively. The natural response component ỹco can be generated by the
following minimal state-space representation of G(z), without the effect of its input u:


xco,1(k)
xco,2(k)
xco,3(k)

...
xco,p(k)


︸ ︷︷ ︸

xco(k)

=



b1 b2 b3 · · · bp
1 0 0 · · · 0

0 1 0
. . .

...
...

. . . . . . . . . 0
0 . . . 0 1 0


︸ ︷︷ ︸

Aco


xco,1(k− 1)
xco,2(k− 1)
xco,3(k− 1)

...
xco,p(k− 1)

,

︸ ︷︷ ︸
xco

(79)

ỹco(k) = [a1 a2 · · · ap]︸ ︷︷ ︸
aT

xco(k− 1) + [b1 b2 · · · bp]︸ ︷︷ ︸
pT

xco(k− 1). (80)

Now, we can state and prove the main result of this section:

Theorem 7. Suppose G satisfies Assumption 1 and u∞
1 is entropy balanced. Assume that xo(0)

(the observable part of the initial state of G) is independent of the input u∞
1 , |h(xo(0))| < ∞ and

that tr{Kxo(0)} < ∞. Then,

lim
n→∞

1
n
(h(yn

1 )− h(un
1 )) = ∑m

i=1 log|ρi|. (81)
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Proof. Both G and u∞
1 satisfy the conditions of Theorem 6. Thus, as in its statement, we

write G(z) = F(z)G̃(z), where G̃(z) is stable and minimum phase and F(z) is a stable FIR
transfer function with only the m non-minimum-phase zeros of G(z).

Defining w1
n , G̃nu1

n, we have

y1
n = FnG̃nu1

n + ỹ1
n = Fnw1

n + ỹ1
n, (82)

h(w1
n) = h(u1

n), (83)

and ỹ1
n ⊥⊥ w1

n. In addition, the fact that G is stable guarantees that the sample second
moment of ỹ∞

1 decays exponentially, which means that ỹ∞
1 satisfies Assumption 2. Thus,

the conditions of Lemma 6 are met considering Gn = Fn, where now Fn = QT
n DnRn is the

SVD for Fn, and dn,1 ≤ dn,2 ≤ · · · ≤ dn,n. Consequently, the proof would be completed if
we can show that limn→∞

1
n h([Dn]1mRnw1

n + [Qn]
1
mỹ1

n) = 0. But all the involved variables
have bounded variance, while Rn is unitary, [Qn]

1
m has orthonormal rows and the entries of

[Dn]1m decay exponentially with n. This implies that limn→∞
1
n h([Dn]1mRnw1

n + [Qn]
1
mỹ1

n) ≤
0. Therefore, it is only left to prove that

lim
n→∞

1
n

h([Dn]
1
mRnw1

n + [Qn]
1
mỹ1

n) ≥ 0. (84)

Recalling (78), let us decompose [ỹco]1n so that

ỹ1
n = FnP̃nxco(0) + Pnxco(0) + [ỹc̄o]

1
n, (85)

where P̃n, Pn ∈ Rn×(p+q), the sequences FnP̃nxco(0) and Pnxco(0), respectively, are the
natural responses of G̃ and F to the controllable and observable initial state xco, and [ỹc̄o]1n is
the natural response of G to the non-controllable and observable initial state xc̄o(0). Then,

h([Dn]
1
mRnw1

n + [Qn]
1
mỹ1

n)
(a)
≥ h([Qn]

1
mỹ1

n)
(85)
= h([Qn]

1
m(FnP̃nxco(0) + Pnxco(0) + [ỹc̄o]

1
n)), (86)

(b)
= h([Qn]

1
m(FnP̃nxco(0) + Pnxco(0)) | xc̄o(0)) = h([Qn]

1
m(FnP̃n + Pn)xco(0) | xc̄o(0)), (87)

where (a) is from the entropy-power inequality [1] and (b) holds because conditioning
does not increase entropy and [ỹc̄o]1n is a deterministic function of xc̄o(0). Let the SVD of
[Qn]

1
m(FnP̃n + Pn) be

[Qn]
1
m(FnP̃n + Pn) = SnTn Hn, n = m, m + 1, . . . , (88)

where Sn ∈ Rm×m is unitary, Tn = diag{t1, t2, . . . , tm} holds the singular values of
[Qn]

1
m(FnP̃n + Pn) and Hn ∈ Rm×p has orthonormal rows. Substituting this SVD into (87)

we obtain

h([Dn]
1
mRnw1

n + [Qn]
1
mỹ1

n) ≥ h(SnTn Hnxco(0) | xc̄o(0)) = log(det(Tn)) + h(Hnxco(0) | xc̄o(0)). (89)

This last differential entropy is bounded because |h(xo)| < ∞ and tr{Kxo} < ∞,
which implies (thanks to Proposition A1) that |h(Hnxco, xc̄o)| < ∞, and by the chain rule
of entropy,

h(Hnxco, xc̄o) = h(xc̄o) + h(Hnxco(0) | xc̄o(0)), (90)

so |h(Hnxco(0) | xc̄o(0))| < ∞ because |h(xc̄o(0))| < ∞ (again from Proposition A1). Thus,
in view of (89) and (84), all that remains to prove is that

lim
n→∞

σmin

(
[Qn]

1
m
(

FnP̃n + Pn
))

> 0, (91)
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For that purpose, notice that [Qn]
1
m
(

FnP̃n + Pn
)
= 1[Dn]m[Rn]1mP̃n + [Qn]

1
mPn. There-

fore, from Lemma A4 (in Appendix C), it follows that (91) holds if

lim
n→∞

σmin

(
[Qn]

1
mPn

)
> 0, (92)

and

lim
n→∞

σmax

(
1[Dn]m[Rn]

1
mP̃n

)
= 0. (93)

To prove (93), recall that the entries in the diagonal matrix 1[Dn]m decay exponentially
with n. On the other hand, the rows of [Rn]1m are orthonormal. Finally, the fact that G̃ is
stable implies that the p + q columns of P̃n have norms which are bounded for all n. These
three observations readily yield that (93) holds.

To prove that (92) holds, write the rational transfer function of G (described by (80)) as

G(z) =
1 + a1z−1 + · · ·+ apz−p

1 + b1z−1 + · · ·+ bpz−p = (1 + f1z−1 + · · ·+ fmz−m)︸ ︷︷ ︸
F(z)

1 + ã1z−1 + · · ·+ ãm̃z−m̃

1 + b1z−1 + · · ·+ bpz−p︸ ︷︷ ︸
G̃(z)

, (94)

where m̃ , p−m. The coefficients in the numerator of G(z) are related to those of F(z)
and G̃(z) by the convolution

ai = ∑m
j=0 f j ãi−j, i = 1, . . . , p, (95)

where ã0 = f0 = 1.
Denote the natural response of F (up to time n) to its initial state xF(0) (which is a

linear function of xco(0)) as

ÿ1
n , Pnxco(0). (96)

Let w̃1
n , P̃nxco(0) be the natural response of G̃ to its initial state xco(0). Following the

structure of (80), w̃(k) can be written as

w̃(k) = [ã1 · · · ãm̃ 0 · · · 0]xco(k− 1) + pTxco(k− 1), k = 1, 2, . . . , (97)

where xco satisfies (79). Considering the following minimal state-space representation of F

xF(k) ,


xF,1(k)
xF,2(k)
xF,3(k)

...
xF,m(k)

 =



0 0 · · · · · · 0
1 0 0 · · · 0

0 1 0
. . .

...
...

. . . . . . . . . 0
0 . . . 0 1 0


︸ ︷︷ ︸

AF


xF,1(k− 1)
xF,2(k− 1)
xF,3(k− 1)

...
xF,m(k− 1)

+


1
0
0
...
0

w(k), (98)

ỹco(k) = [ f1 f2 · · · fm]︸ ︷︷ ︸
cT

F

xF(k− 1) + w̃(k), (99)

it can be seen that the natural response of F to its own initial state xF(0) can be written as

ÿ(k) = ỹco(k)− w̃(k)− “the effect of f1, . . . , fk−1”. (100)

But, from (80) and (95),
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ỹco(k) = ãT diag{[ f1 · · · fm]}m̃+1xco(k− 1) + [ã1 · · · ãm̃ 0 · · · 0]xco(k− 1) + pTxco(k− 1)︸ ︷︷ ︸
w̃(k)

, (101)

where ã , [1 ã · · · ãm̃], and

diag{[ f1 · · · fm]}` ,


f1 · · · fm 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 f1 . . . fm

 `
ro

w
s

` = 1, 2, . . . ; (102)

therefore,

ÿ(1) = ãT diag{[ f1 f2 · · · fm]}m̃+1xco(0), (103)

ÿ(2) = ãT diag{[0 f2 · · · fm]}m̃+1 Acoxco(0), (104)

= ãT diag{[ f2 · · · fm 0]}m̃+1xco(0) (105)
... (106)

ÿ(m) = ãT diag{[0 · · · 0 fm]}m̃+1 Am−1
co xco, (107)

= ãT diag{[ fm 0 · · · 0]}m̃+1xco(0), (108)

with ÿ(k) = 0 for k > m. Therefore,

ÿ1
m = Exco(0) = [M | N]︸ ︷︷ ︸

E

xco(0), (109)

where M ∈ Rm×(p−m) and N ∈ Rm×m is a lower anti-triangular Toeplitz matrix with ãm̃ fm
along its main anti diagonal.

This implies that Pn = [ET | 0p×(n−m)]
T and

σmin(E) > 0. (110)

Thus, resuming the reasoning before (94), we have that

[Qn]
1
mPn = 1[Q(p)

n ]mE. (111)

It then follows from (110) and Lemma 8 that

lim
n→∞

σmin

(
[Qn]

1
mPn

)
= lim

n→∞
σmin

(
1[Qn]mE

)
. > 0. (112)

Hence, (91) is satisfied. Substituting (91) into (89) and the latter into (84) yields

lim
n→∞

1
n

h
(
[Dn]

1
mRnw1

n + [Qn]
1
mȳ1

n

)
= 0. (113)

The proof is completed by invoking Lemma (6).

Theorem 7 allows us to formalize the effect that the presence or absence of a random
initial state has on the entropy gain using arguments similar to those utilized in Section 6.

8. Some Implications

The purpose of this section is to illustrate how the results obtained in the previous
section can be applied to other problems. To do so, we present next some of the implications
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of these results on three different problems previously addressed in the literature, namely
finding the rate-distortion function for non-stationary processes, an inequality in networked
control theory, and the feedback capacity of Gaussian stationary channels. The common
feature in these three problems is that, in all of them, non-minimum phase transfer functions
play a role (either explicitly or implicitly).

8.1. Networked Control

The analysis developed in Reference [13] considers an LTI system P within a noisy
feedback loop, as the one depicted in Figure 4. In this scheme, C represents a causal
feedback channel which combines the output of P with an exogenous (noise) random
process c∞

1 to generate its output. The process c∞
1 is assumed independent of the initial

state of P, represented by the random vector x0, which has finite differential entropy.

P

C

c∞
1

P

x0

y∞
1u∞

1 u∞
1

x0

y∞
1

G = 1
1−P

v∞
1w∞

1

Figure 4. (Left): LTI system P within a noisy feedback loop. (Right): equivalent system when the
feedback channel is noiseless and has unit gain.

For this system, it is shown in Reference [13], Theorem 4.2, that

h̄(y∞
1 ) ≥ h̄(u∞

1 ) + lim
n→∞

1
n

I(x0; yn
1 ), (114a)

where I(x0; yn
1 ) is the mutual information (see Reference [1], Section 8.5) between x0

and yn
1 , with equality if w is a deterministic function of v. Furthermore, it is shown

in Reference [12], Lemma 3.2, that, if |h(x0)| < ∞ and the steady state variance of system P
remains asymptotically bounded as k→ ∞, then

lim
n→∞

1
n

I(x0; yn
1 ) ≥∑pi :|pi |>1 log|pi|, (114b)

where {pi} are the poles of P. Thus, for the (simplest) case in which w = v, the output
y∞

1 is the result of filtering u∞
1 by a filter G = 1

1−P (as shown in Figure 4 right), and the
resulting entropy rate of y∞

1 will exceed that of u∞
1 only if there is a random initial state

with bounded differential entropy (see (114a)). Moreover, if w = v and G(z) is stable, (114)
(as well as Reference [13], Lemma 4.3) implies that this entropy gain is lower bounded by
the right-hand side (RHS) of (8), which is greater than zero if and only if G is NMP. However,
both [12,13] do not provide conditions under which this lower bound is reached.

In Reference [14], Theorem 14, it is shown that, when there is perfect feedback (i.e.,
when v = w), as in Figure 4 right, with P being the concatenation of a stabilizing LTI
controller and an LTI plant, and assuming u∞

1 is Gaussian i.i.d. and a Gaussian initial
state, then

h̄(y∞
1 )− h̄(u∞

1 ) = ∑pi :|pi |>1 log |pi|. (115)

Notice that this implies reaching equality in both (114a) and (114b).
By using the results obtained in Section 7 we show next that equality holds in (114b)

provided the feedback channel satisfies the following assumption:
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Assumption 3. The feedback channel in Figure 4 can be written as

w = AB v+BF(c), (116)

where:

1. A and B are stable rational transfer functions such that AB is biproper, ABP has the same
unstable poles as P, and the feedback AB stabilizes the plant P.

2. F is any (possibly non-linear) operator such that c̃ , F(c) has finite variance σ2
c̃(n) for finite

n, limn→∞ n−1 log(σ2
c̃(n)) = 0, and

3. c∞
1 ⊥⊥ x0.

We also extend Reference [14], Theorem 14, to situations including a feedback channel
satisfying Assumption 3. For the perfect-feedback case, this extends the validity of (115) to
a much larger class of distributions for u∞

1 .
An illustration of the class of feedback channels satisfying this assumption is depicted

on top of Figure 5. Trivial examples of channels satisfying Assumption 5 are a Gaussian
additive channel preceded and followed by linear operators [23]. Indeed, when F is an
LTI system with a strictly causal transfer function, the feedback channel that satisfies
Assumption 3 is widely known as a noise shaper with input pre and post filter, used in, e.g.,
Reference [24–27].

A(z)B(z) +

P(z)+u

+

B(z)

+

F(·)

c

c̃

y

x0

c̃

u

x̃0

P(z)A(z)B(z)
y

vw

Figure 5. (Top): The class of feedback channels described by Assumption 3. (Bottom): an equiva-
lent form.

Theorem 8. In the networked control system of Figure 4, suppose that the feedback channel satisfies
Assumption 3, that the plant P(z) has poles {pi}

p
i , and that the input u∞

1 is entropy balanced. If
the random initial states of AB and P, namely s0 ∈ Rq and x0 ∈ Rp, respectively, are independent,
have finite variance and |h(x0)| < ∞, then

lim
n→∞

1
n

I(x0; yn
1 ) = ∑|pi |>1 log|pi|. (117a)

Moreover,

lim
n→∞

1
n
(h(yn

1 )− h(ũn
1 )) = ∑|pi |>1 log|pi|, (117b)

where ũ , u+Bc̃ (see Figure 5 bottom).
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Proof. Let P(z) = N(z)/G(z) and T(z) , A(z)B(z) = Γ(z)/Θ(z). We will first show that
the output y1

n can be written as

y1
n = GnG̃nũ1

n + GnP̃n[xT
0 sT

0 ]
T + Pnx0, (118)

where G̃ is the stable LTI system with biproper and MP transfer function

G̃(z) ,
Θ(z)

Θ(z)G(z) + N(z)Γ(z)
, (119)

with s0 ∈ Rq, x0 ∈ Rp and [xT
0 sT

0 ]
T being the random initial states of T, G, and G̃,

respectively, and

ũ , u+Bc̃ (120)

(see Figure 5 bottom). The matrices P̃n ∈ Rn×p and Pn ∈ Rn×(p+q). From Figure 5, it is clear
that the transfer function from ũ to y is G(z) Θ(z)

Θ(z)G(z)+N(z)Γ(z) , validating the first term on

the RHS of (118). In addition, it is evident that the initial state of G̃ is a linear combination
of x0 and s0, justifying the term P̃n[xT

0 sT
0 ]

T as the natural response of G̃. Thus, it is only
left to prove that the initial state of G is x0. For that purpose, let G(z) = 1−∑

p
i=1 giz−i and

N(z) = ∑
p
i=1 niz−i. Define the following variables:

o ,
1
G

y, w , N o . (121)

Then, the recursion corresponding to P(z) is

ok = ∑p
i=1 gi ok−i + yk, k ≥ 1, (122)

wk = ∑p
i=1 ni ok−i, k ≥ 1. (123)

This reveals that the initial state of P(z) corresponds to

x0 = [o1−p o2−p · · · o0]. (124)

But, from (121), o is also the output of G̃ to the input ũ, and

yk = ok−∑p
i=1 fi ok−i, k ≥ 1, (125)

which means that the initial state of G is x0.
Now, using (118), we have that

I(x0; y1
n) = h(y1

n)− h(y1
n|x0), (126)

= h(y1
n)− h(Fn[G̃nũ1

n + P̃ns0]), (127)

= h(Fnū1
n + Pnx0)− h(ū1

n), (128)

where the first equality is because s0 ⊥⊥ x0 and ū1
n , G̃nũ1

n + P̃ns0. The last equality holds
since the first sample of the unit-impulse response of G is 1. Since u∞

1 is entropy balanced,
G̃(z) is biproper, stable, and MP, and both c̃∞

1 and P̃ns0 have finite variance, it follows from
Lemmas 3 and 4 that ū∞

1 is entropy balanced, as well. Thus, the proof of the first claim is
completed by direct application of Theorem 7.

For the second claim,

h(y1
n)− h(ũ1

n)
(a)
= h(y1

n)− h(G̃nũ1
n) = h(y1

n)− h(ū1
n) + (h(G̃nũ1

n)− h(ũ1
n)), (129)
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where (a) holds because the first sample of the unit-impulse response of G̃ is g̃0 =
limz→∞ G̃(z) = 1. Then,

lim
n→∞

1
n
(h(y1

n)− h(ũ1
n)) = lim

n→∞

1
n
(h(y1

n)− h(ū1
n)) + lim

n→∞

1
n
(h(G̃nũ1

n)− h(ũ1
n)), (130)

(a)
= lim

n→∞

1
n
(h(y1

n)− h(ū1
n)), (131)

(b)
= ∑|pi |>1 log|pi|, (132)

where (a) holds because G̃ũ is entropy balanced (from Lemma 4), and P̃ns0 has finite
variance, allowing us to apply Proposition A3. In turn, (b) follows from (128) and (117a).
This completes the proof.

Remark 2. If A(z) had poles outside the unit circle, then Theorem 8 can still be applied by
associating those poles to P.

Remark 3. Under the conditions of Theorem 8, one has that if either h̄(u∞
1 ) or h̄(c̃∞

1 ) exists, then
the other entropy rate exists too. In that case, if c ⊥⊥ u and defining c̄ , Bc̃, (117) yields

h̄(y∞
1 )− h̄(u∞

1 )− h̄(c̄∞
1 ) = lim

n→∞

1
n

I(x0; yn
1 ) = ∑|pi |>1 log|pi|, (133)

revealing that the gap in (114a) is exactly h̄(c̄∞
1 ). In addition, in the perfect-feedback scenario,

Theorem 8 extends the validity of (115) from the Gaussian i.i.d. u and Gaussian x0 considered
in Reference [14], Theorem 14, to an entropy-balanced u and an x0 with finite variance and finite
differential entropy.

8.2. Rate Distortion Function for Non-Stationary Processes

In this section, we obtain a simpler proof of a result by Gray, Hashimoto and Ari-
moto [15–17], which compares the rate distortion function (RDF) of a non-stationary
auto-regressive Gaussian process x∞

1 (of a certain class to be defined shortly) to that of
a corresponding stationary version, under MSE distortion. Our proof is based upon the
ideas developed in the previous sections, and extends the class of non-stationary sources
for which the results in Reference [15–17] are valid.

To be more precise, let {ai}∞
i=1 and {ãi}∞

i=1 be, respectively, the impulse responses of
two linear time-invariant filters A and Ã with rational transfer functions

A(z) =
zM

∏M
i=1(z− pi)

, (134)

Ã(z) =
zM

∏M
i=1 |p∗i |(z− 1/p∗i )

, (135)

where |pi| > 1, ∀i = 1, . . . , M. From these definitions, it is clear that A(z) is unstable, Ã(z)
is stable, and

|A(ejω)| = |Ã(ejω)|, ∀ω ∈ [−π, π]. (136)

Notice also that lim|z|→∞ A(z) = 1 and lim|z|→∞ Ã(z) = 1/ ∏M
i=1 |pi|; thus,

a0 = 1, ã0 =
M

∏
i=1
|pi|−1. (137)
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Consider the non-stationary random sequence (source) x∞
1 and the asymptotically

stationary source x̃∞
1 generated by passing a stationary Gaussian process w∞

1 through A(z)
and Ã(z), respectively, which can be written as

x1
n = Anwn

1 , n = 1, . . . , (138)

x̃1
n = Ãnwn

1 , n = 1, . . . . (139)

(A block-diagram associated with the construction of x is presented in Figure 6.)

x

u

yw A(z)

Figure 6. Block diagram representation of how the non-stationary source x∞
1 is built and then

reconstructed as y = x+u.

Define the rate-distortion functions for these two sources as

Rx(D) , lim
n→∞

Rx,n(D), Rx,n(D) , min
1
n

I(xn
1 ; xn

1 +un
1 ), (140)

Rx̃(D) , lim
n→∞

Rx̃,n(D), Rx̃,n(D) , min
1
n

I(x̃n
1 ; x̃n

1 + ũn
1 ), (141)

where, for each n, the minima are taken over all the conditional probability density func-
tions fun

1 | x
n
1

and fũn
1 |x̃

n
1

yielding E
[
‖u1

n‖2]/n ≤ D and E
[
‖ũ1

n‖2]/n ≤ D, respectively.
The above rate-distortion functions have been characterized in Reference [15–17] for

the case in which w∞
1 is an i.i.d. Gaussian process. In particular, it is explicitly stated in

Reference [16,17] that, for that case,

Rx(D)− Rx̃(D) =
1

2π

∫ π

−π
log |A−1(ejω)|dω = ∑M

i=1 log |pi|. (142)

We will next provide an alternative and simpler proof of this result, and extend
its validity for general (not-necessarily stationary) Gaussian w∞

1 , using the entropy gain
properties of non-minimum phase filters established in Section 6. Indeed, the approach
in References [15–17] is based upon asymptotically-equivalent Toeplitz matrices in terms
of the signals’ covariance matrices. This restricts w∞

1 to be Gaussian and i.i.d. and A(z)
to be an all-pole unstable transfer function, and then, the only non-stationarity allowed
is that arising from unstable poles. For instance, a cyclo-stationary innovation followed
by an unstable filter A(z) would yield a source which cannot be treated using Gray and
Hashimoto’s approach. By contrast, the reasoning behind our proof lets w∞

1 be any entropy-
balanced Gaussian process with bounded differential entropy rate, and then let the source
be A w, with A(z) having unstable poles (and possibly zeros and stable poles, as well).

The statement is as follows:

Theorem 9. Let w∞
1 be any Gaussian entropy-balanced process with bounded differential entropy

rate, and let x∞
1 and x̃∞

1 be as defined in (138) and (139), respectively. Then, (142) holds.

Thanks to the ideas developed in the previous sections, it is possible to give an intuitive
outline of the proof of this theorem (given in Appendix B, page 40) by using a sequence of
block diagrams. More precisely, consider the diagrams shown in Figure 7.
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A(z)w

u

y B(z) ỹ+C(z)x

A(z)

B(z)

+ +B(z)C(z)B(z)w

u

d

ȳ
ũ

ỹB(z)−1x x̃

A(z)

B(z)

+B(z)C(z)B(z)w

u

ũ
B(z)−1x x̃ ỹ

Figure 7. Block-diagram representation of the changes of variables in the proof of Theorem 9.

In the top diagram in this figure, suppose that y = C x+u realizes the RDF for the
non-stationary source x. The sequence u is independent of x, and the linear filter C(z) is
such that the error (y− x) ⊥⊥ y (a necessary condition for minimum MSE optimality). The
filter B(z) is the Blaschke product of A(z) (see (A83) in Appendix B) (a stable, NMP filter
with unit frequency response magnitude such that x̃ = B x).

If one moves the filter B(z) towards the source, then the middle diagram in Figure 7
is obtained. By doing this, the stationary source x̃ appears with an additive error signal
ũ that has the same asymptotic variance as u, reconstructed as ỹ = Cx̃ + ũ. From the
invertibility of B(z), it also follows that the mutual information rate between x̃ and ỹ equals
that between x and y. Thus, the channel ỹ = Cx̃ + ũ has the same rate and distortion as the
channel y = C x+u.

However, if one now adds a short disturbance d to the error signal ũ (as depicted
in the bottom diagram of Figure 7), then the resulting additive error term ū = ũ + d
will be independent of x̃ and will have the same asymptotic variance as ũ. Nonetheless,
the differential entropy rate of ū will exceed that of ũ by the RHS of (142). This will make
the mutual information rate between x̃ and ȳ to be less than that between x̃ and ỹ by the
same amount. Hence, Rx̃(D) is at most Rx(D)−∑m

i=1 log|pi|. A similar reasoning can be
followed to prove that Rx(D)− Rx̃(D) ≤ ∑m

i=1 log|pi|.

8.3. The Feedback Channel Capacity of (Non-White) Gaussian Channels

Consider a non-white additive Gaussian channel of the form

yk = xk + zk, (143)

where the input x is subject to the power constraint

lim
n→∞

1
n

E[‖x1
n‖2] ≤ P, (144)

and z∞
1 is a stationary Gaussian process.

The feedback information capacity of this channel is realized by a Gaussian input x,
and is given by

CFB = lim
n→∞

max
Kx1

n
: 1

n tr{Kx1
n
}≤P

I(x1
n; y1

n), (145)
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where Kx1
n

is the covariance matrix of x1
n, and, for every k ∈ N, the input xk is allowed

to depend upon the channel outputs yk−1
1 (since there exists a causal, noise-less feedback

channel with one-step delay).
In Reference [9], it was shown that if z is an auto-regressive moving-average process

of M-th order, then CFB can be achieved by the scheme shown in Figure 8. In this system,
B is a strictly causal and stable finite-order filter and v∞

1 is Gaussian with vk = 0 for all
k > M and such that v1

n is Gaussian with a positive-definite covariance matrix Kv1
M

.

B

z
x

v y

Figure 8. Block diagram representation a non-white Gaussian channel y = x+ z and the coding
scheme considered in Reference [9].

Here, we use the ideas developed in Section 6 to show that the information rate
achieved by the capacity-achieving scheme proposed in Reference [9] drops to zero if
there exists any additive disturbance of length at least M and finite differential entropy
affecting the output, no matter how small.

To see this, notice that, in this case, and for all n > M,

I(xn
1 ; yn

1 ) = I(vM
1 ; yn

1 ) = h(y1
n)− h(y1

n|v1
n), (146)

= h(y1
n)− h((In + Bn)z1

n + v1
n|v1

M), (147)

= h(y1
n)− h((In + Bn)z1

n|v1
M), (148)

= h(y1
n)− h((In + Bn)z1

n) = h(y1
n)− h(z1

n), (149)

= h((In + Bn)z1
n + v1

n)− h(z1
n), (150)

since det(In + Bn) = 1. From Theorem 4, this gap between differential entries is precisely
the entropy gain introduced by In + Bn to an input z1

n when the output is affected by the
disturbance v1

M. Thus, from Theorem 4, the capacity of this scheme will correspond to
1

2π

∫ π
−π log

∣∣1 + B(ejω)
∣∣dω = ∑|ρi |>1 log|ρi|, where {ρi}M

i=1 are the zeros of 1 + B(z), which
is precisely the result stated in Reference [9], Theorem 4.1.

However, if the output is now affected by an additive disturbance d∞
1 not passing

through B(z) such that dk = 0, ∀k > M and |h(d1
M)| < ∞, with d∞

1 ⊥⊥ (vM
1 , z∞

1 ), then we
will have

y1
n = v1

n + (In + Bn)z1
n + d1

n. (151)

In this case,

I(xn
1 ; yn

1 ) = I(vM
1 ; yn

1 ) = h(y1
n)− h(y1

n|v1
n), (152)

= h(y1
n)− h((In + Bn)z1

n + v1
n + d1

n|v1
M), (153)

= h(y1
n)− h((In + Bn)z1

n + d1
n|v1

M), (154)

= h(y1
n)− h((In + Bn)z1

n + d1
n). (155)

But limn→∞
1
n (h((In + Bn)z1

n + v1
n + d1

n)− h((In + Bn)z1
n + d1

n)) = 0, which follows
directly from applying Theorem 4 to each of the differential entries. Notice that this result
holds irrespective of how small the power of the disturbance may be.

Thus, the capacity-achieving scheme proposed in Reference [9] (and further studied
in Reference [28]), although of groundbreaking theoretical importance, would yield zero
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rate in any practical situation, since in every physically implemented scheme, signals are
unavoidably affected by some amount of noise.

9. Conclusions

We have provided an intuitive explanation and a rigorous characterization of the
entropy gain of a linear time-invariant (LTI) system, defined as the difference between the
differential entropy rates of its output and input random signals. The continuous-time
version of this problem, considered by Shannon in Theorem 14 of his 1948 landmark paper,
involves an LTI system Gc band limited to B [Hz]. For this scenario, we restricted our
attention to systems such that the samples of its unit-impulse response, taken (2B)−1

seconds apart, correspond to the unit-impulse response g0, g1, . . . of a causal and stable
discrete-time system G. We show that the entropy gain in this case is log |g0|, which
implies that, for this class of systems, Shannon’s Theorem 14 holds if and only if Gc has a
corresponding discrete-time G that is minimum phase (MP).

For the discrete-time case, we introduced a new notion referred to as effective differen-
tial entropy, which quantifies the amount of uncertainty in vector signals that are confined
to subspaces of lower dimensionality than that of the signals themselves. (Note that this is
not possible by the conventional notion of differential entropy, which simply diverges to
minus infinity.) It turns out that the difference in effective differential entropy rate between
an n-length input to an LTI discrete-time system with frequency response G(ejω), and its
full length output, as n tends to infinity, equals 1

2π

∫ π
−π |G(ejω)|dω.

When comparing input and output sequences of equal length, our analysis revealed
that, in the absence of external random disturbances, the entropy gain of a discrete-time
LTI system G with unit-impulse response g0, g1, . . . is simply log |g0|. An entropy gain
greater than log |g0| can be obtained only if a random signal is added to the output of G
and if such output process has statistical properties that make it susceptible to the added
random signal. In order to characterize the role of G, its input has been assumed to be
entropy balanced (EB), a notion introduced herein. Crucially, the differential entropy rate of
an EB process is not susceptible to random signals. EB processes constitute a large family
that includes Gaussian processes with bounded, non-vanishing variance. We also show
that (i) the sum of an EB process and any bounded variance process is EB, too, and (ii)
passing an EB process by a stable MP filter yields an EB process. When the input is EB,
we show that if G has NMP zeros ρ1, ρ2, . . . , ρm, then the largest possible entropy gain
is |g0|+ ∑m

i=1 log |ρi|, which equals 1
2π

∫ π
−π |G(ejω)|dω. This upper bound is achieved by

adding a finite-length output disturbance with finite variance and bounded differential
entropy if and only if its length is at least m, no matter how tiny its variance may be. The
same entropy gain is also obtained if G has a random initial state with bounded differential
entropy and finite variance.

We used these fundamental insights about when the entropy gain occurs in order
to establish a new and more general proof of the quadratic rate-distortion function for
non-stationary Gaussian sources. Moreover, we demonstrated that the information rate of
the capacity-achieving scheme proposed in Reference [9] for the auto regressive Gaussian
channel with feedback drops to zero in the presence of any additive disturbance in the
channel input or output of sufficient (finite) length, no matter how small it may be. This
has crucial implications in any physical setup, where noise is unavoidable.
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Appendix A. Proof of Theorem 3

The total length of the output `, will grow with the length n of the input, if G is FIR,
and will be infinite, if G is IIR. Letting η + 1 be the length of the impulse response of G in
the FIR case, we define the output-length function

`(n) , length of y when input is u1
n =

{
n + η , if G is FIR,
∞ , if G is IIR.

(A1)

It is also convenient to define the sequence of matrices {Ğn}∞
n=1, where Ğn ∈ R`(n)×n is

Toeplitz with
[
Ğn
]

i,j = 0, ∀i < j,
[
Ğn
]

i,j = gi−j, ∀i ≥ j. This allows one to write the entire

output y`
1 of a causal LTI filter G with impulse response {gk}

η
k=0 to an input u∞

1 as

y1
`(n)(u

1
n) = Ğnu1

n. (A2)

Let the SVD of Ğn be Ğn = Q̆T
n D̆nR̆n, where Q̆n ∈ Rn×`(n) has orthonormal rows, D̆n ∈

Rn×n is diagonal with positive elements, and R̆n ∈ Rn×n is unitary.
The effective differential entropy of y`(n)

1 (un
1 ) exceeds the differential entropy of un

1 by

h̆(y1
`(n)(u

1
n))− h(u1

n) = h(Q̆nĞnu1
n)− h(u1

n) = h(D̆nR̆nu1
n)− h(u1

n) = log det(D̆n). (A3)

The determinant of Dn can be related to that of ĞT
n Ğn by noticing that

ĞT
n Ğn = (Q̆T

n D̆nR̆n)
T(Q̆T

n D̆nR̆n) = R̆T
n D̆nQ̆nQ̆T

n D̆nR̆n = R̆T
n D̆2

nR̆n. (A4)

Since R̆n is unitary, it follows that det D̆2
n = det ĞT

n Ğn, which from (A3) means that

h̆(y1
`(n)(u

1
n))− h(u1

n) =
1
2

log(det(ĞT
n Ğn)). (A5)

The product Hn , ĞT
n Ğn is a symmetric Toeplitz matrix, with its first column, [h0 h1 · · · hn−1]

T,
given by

hi = ∑n
k=0 gkgk−i. Thus, the sequence {hi}n−1

i=0 corresponds to the samples 0 to n− 1
of those resulting from the complete convolution g ∗ g−, even when the filter G is IIR,
where g− denotes the time-reversed (possibly infinitely long) response g. Consequently,
and since G(z) has no zeros on the unit circle, and g is absolutely summable, we can use
the Grenander and Szegö’s theorem [29], and Reference [18], Theorem 4.2, to obtain that

lim
n→∞

log
(

det(ĞT
n Ğn)

1/n
)
=

1
2π

π∫
−π

log
∣∣∣G(ejω)

∣∣∣2dω. (A6)

In order to finish the proof, we divide (A5) by n, take the limit as n → ∞, and re-
place (A6) in the latter.

Appendix B. Proofs of Results Stated in the Previous Sections

Proof of Lemma 1. Let σ2
u(k) be the variance of u(k). Thus, h(u1

n) =
1
2 log((2π e)n det(diag

{σ2
u(k)}

n
k=1)). Let yν+1

n , Φnu1
n. Then, Kyν+1

n
= Φn diag{σ2

u(k)}
n
k=1ΦT

n . As a consequence,

h(yν+1
n ) =

1
2

log
(
(2π e)[n−ν] det

(
Φn diag{σ2

u(k)}
n
k=1ΦT

n

))
. (A7)

But from the Courant-Fischer theorem [30],
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log
(

det(diag{σ2
u(k)}

n
k=1)

)
− ν log(σ̂2) ≤ log

(
det
(

Φn diag{σ2
u(k)}

n
k=1ΦT

n

))
≤ log

(
det(diag{σ2

u(k)}
n
k=1)

)
− ν log(σ̌2); (A8)

thus, limn→∞
1
n (h(y

ν+1
n )− h(u1

n)) = 0, satisfying Condition ii) in Definition 2. Adding
to this the fact that, in this case, σ2

u(n) ≤ σ̂2 < ∞ for all n, Condition i) in Definition 2 is
satisfied, as well, completing the proof.

Proof of Lemma 2. Let {bi,`}∞
`=1 be the intervals (bins) in R where the sample u(i) has

constant PDF. Define the discrete random process c∞
1 , where c(i) = ` if and only if u(i) ∈

bi,`. Let yν+1
n , Φnu1

n where Φn ∈ R(n−ν)×n has orthonormal rows. Then,

h(yν+1
n ) = h(yν+1

n |c1
n) + I(c1

n; yν+1
n ) (A9)

≤ h(yν+1
n |c1

n) + I(c1
n; u1

n), (A10)

where the inequality is due to the fact that u1
n and yν+1

n are deterministic functions of
u1

n; hence, c1
n ←→ u1

n ←→ yν+1
n . Subtracting h(u1

n) from (A9) we obtain

h(yν+1
n )− h(u1

n) ≤ h(yν+1
n |c1

n) + I(c1
n; u1

n)− h(u1
n) (A11)

= h(yν+1
n |c1

n)− h(u1
n|c1

n). (A12)

Hence,

lim
n→∞

1
n

(
h(yν+1

n )− h(u1
n)
)
≤ lim

n→∞

1
n

(
h(yν+1

n |c1
n)− h(u1

n|c1
n)
)
= 0, (A13)

where the last equality follows from Lemma A1 (in Appendix C) whose conditions are
met because, given c1

n, the sequence u1
n has independent entries each of them distributed

uniformly over a possibly different interval with finite and positive measure. The opposite
inequality is obtained by following the same steps as in the proof of Lemma A1, from (A124)
onwards, which completes the proof.

Proof of Lemma 3. Let y1
n , [ΨT

n |ΦT
n ]

Tw1
n, where [ΨT

n |ΦT
n ]

T ∈ Rn×n is a unitary matrix
and where Ψn ∈ Rν×n and Φn ∈ R(n−ν)×n have orthonormal rows.

Then,

h(yν+1
n ) = h(y1

n)− h(y1
ν|yν+1

n ) = h(w1
n)− h(y1

ν|yν+1
n ). (A14)

We can lower bound h(y1
ν|yν+1

n ) as follows:

h(y1
ν|yν+1

n ) = h(Ψnu1
n + Ψnv1

n |Φnu1
n + Φnv1

n) (A15)
(a)
≥ h(Ψnu1

n + Ψnv1
n |Φnu1

n + Φnv1
n , v1

n) (A16)

= h(Ψnu1
n |Φnu1

n + Φnv1
n , v1

n) (A17)

= h(Ψnu1
n |Φnu1

n, v1
n) (A18)

(b)
= h(Ψnu1

n |Φnu1
n) (A19)

(c)
= h(u1

n)− h(Φnu1
n), (A20)

where (a) holds because conditioning does not increase entropy, (b) is from the fact that
u1

n ⊥⊥ v1
n, and (c) follows from the chain rule of entropy.

Substituting this result into (A14), dividing by n, taking the limit as n → ∞, and re-
calling that u∞

1 is entropy balanced, we conclude that limn→∞
1
n (h(Φnw1

n)− h(w1
n)) ≤ 0.

The opposite bound over h(y1
ν|yν+1

n ) can be obtained from

h(y1
ν|yν+1

n ) = h(Ψnu1
n + Ψnv1

n |Φnu1
n + Φnv1

n) ≤ h(Ψnu1
n + Ψnv1

n) ≤ h(Ψn(wG)
1
n), (A21)
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where (wG)
1
n is a jointly Gaussian sequence with the same second-order moment as w1

n.
Therefore, h(Ψn(wG)

1
n) = 1

2 log((2π e)ν det(ΨnKw1
n
ΨT

n )) ≤ ν
2 log(2π e λmax(Kw1

n
)). But

w1
n satisfies the assumptions of Proposition A2; thus, limn→∞ n−1 log(λmax(Kw1

n
)) = 0.

Therefore, limn→∞ n−1h(Ψn(wG)
1
n) ≤ 0, which substituted in (A14) yields

lim
n→∞

− 1
n

h(y1
ν|yν+1

n ) = lim
n→∞

1
n
(h(Φnw1

n)− h(w1
n)) ≥ 0.

Hence, w∞
1 satisfies Condition ii) of Definition 2. Since w∞

1 also satisfies Condition i) of
Definition 2, it follows that w∞

1 is entropy balanced, completing the proof.

Proof of Lemma 4. Pick any ν ∈ N and let y1
n , [ΦT

n |ΨT
n ]

Tw1
n where [ΦT

n |ΨT
n ]

T ∈ Rn×n is
a unitary matrix and the matrices Ψn ∈ Rν×n and Φn ∈ R(n−ν)×n have orthonormal rows.
Since w1

n = Gnu1
n, we have that

Φnw1
n = ΦnGnu1

n. (A22)

Let ΦnGn = AnΣnBn be the SVD of ΦnGn, where An ∈ R(n−ν)×(n−ν) is an orthogonal
matrix, Bn ∈ R(n−ν)×n has orthonormal rows and Σn ∈ R(n−ν)×(n−ν) is a diagonal matrix
with the singular values of ΦnGn.

Hence

h(Φnw1
n) = h(ΦnGnu1

n) = h(AnΣnBnu1
n) = log det(Σn) + h(Bnu1

n). (A23)

The singular values of ΦnGn are σi(ΦnGn) =
√

λi(ΦnGnGT
n ΦT

n ) , i = 1, 2, . . . , n− ν. Now,
notice that

λi([Φ
T
n |ΨT

n ]
TGGT [ΦT

n |ΨT
n ]) = λi(GGT) (A24)

and that

[ΦT
n |ΨT

n ]
TGGT [ΦT

n |ΨT
n ] =

(
ΦnGGTΦT

n ΦnGGTΨT
n

ΨnGGTΦT
n ΨnGGTΨT

n

)
. (A25)

Thus, from (A24) and the Cauchy eigenvalue interlacing theorem [30],

λi(GnGT
n ) ≤ λi(ΦnGGTΦT

n ) ≤ λi+ν(GnGT
n ), i = 1, . . . , n− ν. (A26)

Hence,

− ν
2n log

(
λmax(GnGT

n )
)
≤ 1

n log(det(Σn))− 1
n log|det(Gn)| ≤ − ν

2n log
(

λmin(GnGT
n )
)

. (A27)

Recalling that G is minimum phase (which guarantees that its singular values change at
most polynomially with n, due to Lemma 7), we conclude that

lim
n→∞

1
n

log(det(Σn)) =
1
n

log |det(Gn)|. (A28)

Substituting back into (A23), we arrive to

lim
n→∞

1
n

h(Φnw1
n)

(a)
= lim

n→∞

1
n

log |det(Gn)|+ lim
n→∞

1
n

h(un
1 ) = lim

n→∞

1
n

h(wn
1 ), (A29)

where(a) holds because u∞
1 is entropy balanced. This completes the proof.
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Proof of Lemma 5. Let {Ψn}∞
n=1 be a sequence of matrices, each Ψn ∈ Rκ×n with orthonor-

mal rows spanning a subspace of Rn that contains the span of the columns of [Φ]1n. For
each n ∈ N, let Ψn ∈ R(n−κ)×n be such that Hn , [ΨT

n | Ψ
T
n ]

T is a unitary matrix. Then,

h(Ψny1
n) = h(Ψnu1

n). (A30)

Thus,

lim
n→∞

1
n

(
h(y1

n)− h(u1
n)
)
= lim

n→∞

1
n

(
(h(y1

n)− h(Ψny1
n))− (h(u1

n)− h(Ψnu1
n))
)
= 0,

(A31)

where the last equality holds because u∞
1 is entropy balanced and y∞

1 is entropy balanced
(from Lemma 3). This completes the proof.

Proof of Lemma 6. Since Qn is unitary, we have that

h(y1
n) = h(Qny1

n) = h(

w1
n︷ ︸︸ ︷

DnRnu1
n︸ ︷︷ ︸

v1
n

+ Qnz1
n︸ ︷︷ ︸

z̄1
n

) = h(w1
n), (A32)

where

w1
n , Qny1

n = v1
n + z̄1

n, (A33)

v1
n , DnRnu1

n, (A34)

z̄1
n , Qnz1

n. (A35)

Thus,

h(y1
n) = h(wn

1 )
(a)
= h(wm

1 ) + h(wn
m+1 |wm

1 ) = h([Dn]
1
mRnu1

n + [Qn]
1
mz1

n) + h(wn
m+1 |wm

1 ), (A36)

where (a) follows from the chain rule of differential entropy. It only remains to show that
the limit of (1/n)h(wn

m+1 |wm
1 ) as n→ ∞ equals the entropy rate of u∞

1 . We will do this by
deriving a lower and an upper bounds which converge to the same expression as n→ ∞.

A lower bound for h(wn
m+1 |wm

1 ) can be obtained by noticing that

h(wn
m+1 |wm

1 ) = h(vn
m+1 + z̄n

m+1| vm
1 + z̄m

1 ) (A37)
(a)
≥ h(vn

m+1 + z̄n
m+1| vm

1 , z̄n
1 ) (A38)

(b)
= h(vn

m+1 | vm
1 , z̄n

1 ) (A39)
(c)
= h(vn

m+1 | vm
1 ) (A40)

(d)
= h(vn

1 )− h(vm
1 ) (A41)

(e)
= h(un

1 )− h(vm
1 ), (A42)

where (a) follows from the fact that conditioning on more information does not increase
differential entropy, (b) is due to the fact that h(x+a) = h(x), for any constant a, (c) holds
because z̄∞

1 ⊥⊥ v∞
1 , (d) is a direct application of the chain rule of differential entropy, and (e)

stems from (A34) and the fact that det(DnRn) = 1. On the other hand,

h(vm
1 ) = h([Dn]

1
mRnu1

n) =
m

∑
i=1

log dn,i + h([Rn]
1
mu1

n). (A43)
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Then, by inserting (A43) and (A42) in (A37), dividing by n, and taking the limit n → ∞,
we obtain

lim
n→∞

1
n

h(wn
m+1 |wm

1 ) ≥ lim
n→∞

1
n

(
h(un

1 )−
m

∑
i=1

log dn,i − h([Rn]
1
mu1

n)

)
(A44)

= h̄(u∞
1 )− lim

n→∞

1
n

m

∑
i=1

log dn,i, (A45)

where the last equality is a consequence of the fact that u∞
1 is entropy balanced (specifically,

from Proposition A3).
We now derive an upper bound for h(wn

m+1 |wm
1 ). Defining the random vector

xm+1
n , [Rn]

m+1
n u1

n,

and since Dn is diagonal, we can write

v1
m = [Dn]

m+1
n Rnu1

n = m+1[Dn]nxm+1
n , (A46)

where

m+1[Dn]n , diag{dn,m+1, dn,m+2, . . . , dn,n}. (A47)

Therefore,

h(wn
m+1 |wm

1 ) ≤ h(wm+1
n ) = h(m+1[Dn]nxm+1

n + z̄m+1
n ) (A48)

= log det(m+1[Dn]n) + h(xm+1
n + (m+1[Dn]n)

−1z̄m+1
n ). (A49)

Notice that, by Assumption 2, z̄m+1
n = [Qn]

m+1
n z1

n = [Qn]
m+1
n [Φ]1ns1

κ and, thus, is
restricted to the span of [Qn]

m+1
n [Φ]1n of dimension κn ≤ κ, for all n ≥ m + κ. Then,

for every n > m + κn, one can construct a unitary matrix Hn , (AT
n |BT

n )
T ∈ R(n−m)×(n−m),

with An ∈ Rκ×(n−m) and Bn ∈ R(n−m−κ)×(n−m), such that the rows of An span the space
spanned by the columns of (m+1[Dn]n)−1[Qn]

m+1
n [Φ]1n and such that Bn(m+1[Dn]n)−1[Qn]

m+1
n

[Φ]1n = 0. Therefore, from (A49),

h(wn
m+1 |wm

1 ) ≤ log det(m+1[Dn]n) + h(Hnxm+1
n + Hn(

m+1[Dn]n)
−1z̄m+1

n )

= log det(m+1[Dn]n) + h(Bnxm+1
n ) + h(Anxm+1

n + An(
m+1[Dn]n)

−1z̄m+1
n |Bnxm+1

n )

≤ log det(m+1[Dn]n) + h(Bnxm+1
n ) + h(Anxm+1

n + An(
m+1[Dn]n)

−1z̄m+1
n )

≤ log det(m+1[Dn]n) + h(Bnxm+1
n ) +

1
2

log
(
(2π e)κ det

(
KAnxm+1

n
+ KAn(m+1[Dn ]n)−1 z̄m+1

n

))
≤ log det(m+1[Dn]n) + h(Bnxm+1

n ) +
1
2

log

(
(2π e)κ

[
λmax(Kxm+1

n
) +

λmax(Kz̄m+1
n

)

λmin(m+1[Dn]n)2

]κ)
,

where KAnxm+1
n

and KAn(m+1[Dn ]n)−1 z̄m+1
n

are the covariance matrices of Anxm+1
n and

An(m+1[Dn]n)−1z̄m+1
n , respectively, and where the last inequality follows from [31]. The

fact that λmax(Kxm+1
n

) and λmax(Kz̄m+1
n

) are upper bounded for all n, and the fact that

λmin(
m+1[Dn]n) either grows with n or decreases sub-exponentially (from Lemma 7), im-

ply that

lim
n→∞

1
n

h(wn
m+1 |wm

1 ) ≤ lim
n→∞

1
n

log det(m+1[Dn]n) + lim
n→∞

1
n

h(Bnxm+1
n ). (A50)

But the fact that det Dn = 1 implies that log det(m+1[Dn]n) = −∑m
i=1 log dn,i. On the

other hand, recalling that xm+1
n = [Rn]m+1

n u1
n and noting that Bn[Rn]m+1

n has orthonormal
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rows, reveals that limn→∞
1
n h(Bnxm+1

n ) = h̄(u∞
1 ) (from the assumption that u∞

1 is entropy
balanced). Therefore,

lim
n→∞

1
n

h(wn
m+1 |wm

1 ) ≤ h̄(u∞
1 )− lim

n→∞

1
n

m

∑
i=1

log dn,i, (A51)

which coincides with the lower bound found in (A45), completing the proof.

Proof of Lemma 7. The transfer function G(z) can be factored as G(z) = G̃(z)F(z), where
G̃(z) is stable and minimum phase and F(z) is stable with all the non-minimum phase zeros
of G(z), both being biproper rational functions. From Lemma A2 (in Appendix C), in the
limit as n→ ∞, the eigenvalues of G̃T

n G̃n are lower and upper bounded by λmin(G̃
TG̃) and

λmax(G̃
TG̃), respectively, where 0 < λmin(G̃

TG̃) ≤ λmax(G̃
TG̃) < ∞. Let G̃n = Q̃T

n D̃nR̃n
and Fn = QT

n DnRn be the SVDs of G̃n and Fn, respectively, with d̃n,1 ≤ d̃n,2 ≤ · · · ≤ d̃n,n
and dn,1 ≤ dn,2 ≤ · · · ≤ dn,n being the diagonal entries of the diagonal matrices D̃n, Dn,
respectively. Then,

GT
n Gn = FT

n G̃T
n G̃nFn = (D̃nR̃nQT

n DnRn)
T D̃nR̃nQT

n DnRn. (A52)

Denoting the i-th row of Rn by rT
n,i be, we have that, from the Courant-Fischer theorem [30] that

λi(GT
n Gn) ≤ max

v∈span{rn,k}i
k=1 : ‖v‖=1

‖Gv‖2 (A53)

= max
v∈span{rn,k}i

k=1 : ‖v‖=1
‖D̃nR̃T

n QT
n DnRnv‖2 (A54)

≤ d2
n,i d̃

2
n,n. (A55)

Likewise,

λi(GT
n Gn) ≥ min

v∈span{rn,k}n
k=i : ‖v‖=1

‖Gv‖ (A56)

= min
v∈span{rn,k}n

k=i : ‖v‖=1
‖D̃nR̃T

n QT
n DnRnv‖2 (A57)

≥ d2
n,i d̃

2
n,1. (A58)

Thus,

lim
n→∞

λi(GT
n Gn)

d2
n,i

∈
(

λmin(G̃
TG̃) , λmax(G̃

TG̃)
)

. (A59)

The result now follows directly from Lemma A3 (in Appendix C).

Proof of Theorem 6 . To begin with, the entropy power inequality [1] gives h(y1
n) =

h(Gnu1
n + z1

n) ≥ h(Gnu1
n) = h(y1

n), proving the lower bound in (70).
To obtain the other bounds on the entropy gain of Gn, we will use Lemma 6. Recalling

the structure of z∞
1 specified in Assumption 2, the random vector whose differential entropy

appears on the RHS of (64) takes the form

[Dn]
1
mRnu1

n + [Qn]
1
mz1

n = [Dn]
1
mRnu1

n + [Qn]
1
m[Φ]1ns1

κ . (A60)

Notice that, for every n ≥ κ, the columns of the matrix [Qn]
1
m[Φ]1n ∈ Rm×κ span a space of

dimension κn ∈ {0, 1, . . . , κ̄}, with κ̄ , min{m, κ}. If κn = 0 (i.e., [Qn]
1
m[Φ]1n = 0), then

h([Dn]
1
mRnu1

n + [Qn]
1
mz1

n) = h([Dn]
1
mRnu1

n). (A61)
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If that is that case for every n ≥ κ, the lower bound in (70) is reached by inserting the latter
expression into (64) and invoking Lemma 7.

Let [Qn]
1
m[Φ]1n = AT

n TnBn be an SVD for [Qn]
1
m[Φ]1n, where An ∈ Rκn×m has orthonor-

mal rows,
Tn = diag{t1(n), t2(n), . . . , tκn(n)},

where 0 < t1(n) ≤ t2(n) ≤ · · · ≤ tκn(n) ≤ 1 are the singular values of [Qn]
1
m[Φ]1n, and

Bn ∈ Rκn×κ has orthonormal rows. Construct a unitary matrix Hn ∈ Rm×m such that

Hn ,
(

An
An

)
, (A62)

where An ∈ Rκn×m is as before, and An ∈ R(m−κn)×m has orthonormal rows, and its row
span is the orthogonal complement of that of An. Thus,

Hn[Qn]
1
m[Φ]1n =

(
An[Qn]

1
m[Φ]1n

0(m−κn)×κ

)
, n ≥ N. (A63)

From (A63) and (A60), we obtain

h
(
[Dn]

1
mRnu1

n + [Qn]
1
mz1

n

)
= h

(
[Dn]

1
mRnu1

n + [Qn]
1
m[Φ]1ns1

κ

)
(A64)

= h
(

Hn([Dn]
1
mRnu1

n + [Qn]
1
m[Φ]1ns1

κ)
)

(A65)

= h
(

An[Dn]
1
mRnu1

n + An[Qn]
1
m[Φ]1ns1

κ

∣∣∣∣ An[Dn]
1
mRnu1

n

)
+ (1− 1{m}(κn))h(An[Dn]

1
mRnu1

n), (A66)

where the indicator function 1{m}(κn) = 1 if κn = m and 0 otherwise. The first differential
entropy on the RHS of (A66) can be lower bounded as

h
(

An[Dn]
1
mRnu1

n + An[Qn]
1
m[Φ]1ns1

κ

∣∣∣∣ An[Dn]
1
mRnu1

n

)
(a)
≥ h

(
An[Qn]

1
m[Φ]1ns1

κ

∣∣∣∣ An[Dn]
1
mRnu1

n

)
(b)
= h

(
An[Qn]

1
m[Φ]1ns1

κ

)
= h

(
TnBns1

κ

) (c)
≥ κn log(t1(n)) + h(s1

κ)−
κ − κn

2
log(λmax(Ks1

κ
)), (A67)

where (a) is from the entropy power inequality [1], (b) holds because s1
κ ⊥⊥ u1

n and (c) is
from Proposition A1. An upper bound can be obtained as

h
(

An[Dn]
1
mRnu1

n + An[Qn]
1
m[Φ]1ns1

κ

∣∣∣∣ An[Dn]
1
mRnu1

n

)
(a)
≤ h

(
An[Dn]

1
mRnu1

n + TnBns1
κ

)
(b)
≤ 1

2
log
(
(2π e)m det(KAn [Dn ]1mRnu1

n
+ KTnBns1

κ
)
)

(c)
≤ κn

2
log
(
(2π e)

(
(dm)

2λmax(Ku1
n
) + (tκn(n))

2λmax(Ks1
κ
)
))

, (A68)

where (a) holds because conditioning does not increase entropy, (b) is because a Gaussian
distribution maximizes the differential entropy for a given covariance matrix, and (c) is
due to Reference [31]. Notice that u∞

1 satisfies the requirements of Proposition A2, implying
that limn→∞ n−1λmax(Ku1

n
) = 0. Thus, since tκn(n) ≤ 1, it follows from (A67), (A68),

and (A66) that

lim
n→∞

1− 1{m}(κn)

n
h(An[Dn]

1
mRnu1

n) + lim
n→∞

κn

n
log(t1(n))

≤ lim
n→∞

1
n

h
(
[Dn]

1
mRnu1

n + [Qn]
1
mz1

n

)
≤ lim

n→∞
(1− 1{m}(κn))h(An[Dn]

1
mRnu1

n). (A69)
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For the last differential entropy on the RHS of (A66), notice that [Dn]1mRn = 1[Dn]m[Rn]1m.
Consider the SVD An

1[Dn]m[Rn]1m = V T
n ΣnWn, with V n ∈ R(m−κn)×(m−κn) being unitary,

Σn ∈ R(m−κn)×(m−κn) being diagonal, and Wn ∈ R(m−κn)×n having orthonormal rows. We
can then conclude that

h(An[Dn]
1
mRnu1

n) = h(ΣnWnu1
n) = log|det(Σn)|+ h(Wnu1

n). (A70)

Now, the fact that

An
1[Dn]m

1[Dn]m AT
n = An

1[Dn]m[Rn]
1
m(An

1[Dn]m[Rn]
1
m)

T = V TΣWW TΣTV = V TΣΣTV

reveals that

log|det Σ | = 1
2

log |det(An(
1[Dn]m)

2 AT
n )|. (A71)

Recalling that An = [Hn]
κn+1
m and that Hn ∈ Rm×m is unitary, it is easy to show (by using

the Courant-Fischer theorem [30]) that

m−κn

∑
i=1

log dn,i
(a)
≤ 1

2
log
∣∣∣det(An(

1[Dn]m)
2 AT

n )
∣∣∣ (b)≤ m

∑
i=κn+1

log dn,i, (A72)

with equality in (a) and (b) if and only if An = [Im−κn | 0] and An = [0 | Im−κn ], respectively.
Substituting this into (A71) and then the latter into (A70), we arrive to

h([Wn]
1
mu1

n) +
m−κn

∑
i=1

log dn,i ≤ h(An[Dn]
1
mRnu1

n) ≤ h([Wn]
1
mu1

n) +
m

∑
i=κn+1

log dn,i. (A73)

Substituting the upper bound from this equation and from (A68) into (A66) and the latter
in (64), exploiting the fact that u∞

1 is entropy balanced (which ensures that u∞
1 satisfies

Condition i) in Definition 2) and invoking Lemma 7 yields the upper bound in (70).
Doing the same substitutions but with the lower bounds in (A73) and (A67), and using the

assumption that limn→∞
1
n log(t1(n)) = 0, gives the lower bound of (71). This completes

the proof.

Proof of Lemma 8. We will consider first the case κ = m and show that limn→∞ σmin
(1[Qn]m) > 0, where now QT

n is the left unitary matrix in the SVD Fn = QT
n DnRn. We will

prove that this is the case by using a contradiction argument. Thus, suppose the contrary,
i.e., that

lim
n→∞

σmin(
1[Qn]m) = 0. (A74)

Then, there exists a sequence of unit-norm vectors {vn}∞
n=1, with vn ∈ Rm for all n, such that

lim
n→∞

‖vT
n

1[Qn]m‖ = 0. (A75)

For each n ∈ N, define the n-length unit-norm image vectors tT
n , vT

n [Qn]
1
m. Then,

‖FT
n tn‖ = ‖RT

n DnQntn‖ = ‖DnQntn‖ = ‖1[Dn]mvn‖, (A76)

where the last equality follows from the fact that, by construction, tT
n is in the span of the first

m rows of Qn, together with the fact that Qn is unitary (which implies that [Qn]
m+1
n tn = 0).

Since the top m entries in Dn decay exponentially as n increases, we have that

‖FT
n tn‖ ≤ O(ζn|ρM|−n), (A77)

where ζn is a finite-order polynomial of n (from Lemma A3, in Appendix C).
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Now, notice that [Fn]m+1
n ([Fn]m+1

n )T is a Toeplitz matrix with the convolution of f and
f− (the impulse response of F and its time-reversed version, respectively) on its first row
and column. It then follows from Reference [18], Lemma 4.1, that

lim
n→∞

λmin([Fn]
m+1
n ([Fn]

m+1
n )T) = min

ω:ω∈[−π,π]
|F(ejω)|2 > 0 (A78)

(the inequality is strict because all the zeros of F(z) are strictly outside the unit disk). Then,
we conclude that

lim
n→∞

σmin([Fn]
m+1
n ) > 0. (A79)

Recall that ‖tn‖ = 1; thus, from (A75), limn→∞ ‖[tn]1m‖ = 0 and limn→∞ ‖[tn]m+1
n ‖ = 1, which

means that limn→∞ ‖FT
n tn‖ = limn→∞ ‖([Fn]m+1

n )T[tn]m+1
n ‖ ≥ limn→∞ σmin([Fn]m+1

n )
(A79)
> 0,

which contradicts (A77). Therefore,

lim
n→∞

σmin(
1[Qn]m) > 0. (A80)

Now, consider an arbitrary κ ≥ 1. Since

σmin

1 κ

[Qn]
1
m

 ≥ σmin

(
1[Qn]m

)
, (A81)

it follows from (A80) that

lim
n→∞

σmin

(
[Qn]

1
m[Φ]1n

)
= lim

n→∞
σmin

1 κ

[Qn]
1
m

 > 0; (A82)

thus, limn→∞ κn = κ̄. This completes the proof.

Proof of Theorem 9. Denote the Blaschke product [11] of A(z) as

B(z) , ∏m
i=1(z− pi)

∏m
i=1 p∗i (z− 1/p∗i )

, (A83)

which clearly satisfies

|B(ejω)| = 1, ∀ω ∈ [−π, π], (A84)

b0 , lim
|z|→∞

B(z) =
1

∏m
i=1 p∗i

, (A85)

where b0 is the first sample in the impulse response of B(z). Notice that (A84) implies that
limn→∞

1
n E[‖Bnu1

n‖2] = limn→∞
1
n E[‖u1

n‖2] for every sequence of random variables u∞
1

with uniformly bounded variance. Since B(z) has only stable poles and its zeros coincide
exactly with the poles of A(z), it follows that B(z)A(z) is an MP stable transfer function.
Thus, the asymptotically stationary process x̃∞

1 defined in (139) can be constructed as

x̃1
n , Bnx1

n, (A86)

where Bn is a Toeplitz lower triangular matrix with its main diagonal entries equal to b0.
Since w∞

1 is entropy balanced, so is x̃∞
1 , thanks to Lemma 4.
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The fact that B(z) is biproper with b0 as in (A85) implies that, for any u1
n with finite

differential entropy,

h(Bnu1
n) = h(u1

n)− n ∑m
i=1 log|pi|︸ ︷︷ ︸
,G

, (A87)

which will be utilized next.
For any given n ≥ m, suppose that C(z) is chosen and x1

n and u1
n are distributed so as

to minimize I(x1
n; Cnx1

n + u1
n) subject to the constraint E[‖y1

n − x1
n‖2] = E[‖(Cn − I)x1

n‖2] +
E[‖u1

n‖]2 ≤ D (i.e., x1
n, u1

n is a realization of Rx,n(D)), yielding the reconstruction

y1
n = Cnx1

n + u1
n. (A88)

Since we are considering mean-squared error distortion, it follows that, for rate-
distortion optimality, u1

n must be jointly Gaussian with x1
n. In addition, there is no loss

of rate-distortion optimality if u∞
1 is entropy balanced (otherwise, it would have a lower

entropy rate than its entropy-balanced counterpart, which differs from the former only on
a finite number of samples and has the same asymptotic MSE). From these vectors, define

ũ1
n , Bnu1

n, (A89)

ỹ1
n , Bny1

n = BnCn(Bn)
−1x̃1

n + ũ1
n, (A90)

ȳ1
n , ỹ1

n + d1
n = BnCn(Bn)

−1x̃1
n + ũ1

n + d1
n, (A91)

where d1
n is a zero-mean Gaussian vector independent of (ũ1

n, x̃1
n) with finite differential

entropy and finite variance such that dk = 0, ∀k > m. Then, we have that (the change of
variables and the steps in this chain of equations is represented by the block diagrams
shown in Figure 7)

nRx,n(D) = I(x1
n; y1

n)
(a)
= I(Bnx1

n; Bny1
n) = I(x̃1

n; ỹ1
n) (A92)

= h(ỹ1
n)− h(ỹ1

n|x̃1
n) (A93)

(b)
= h(ỹ1

n)− h(ũ1
n|x̃1

n) (A94)
(c)
= h(ỹ1

n)− h(ũ1
n) (A95)

(d)
= h(ỹ1

n)−
(

h(ũ1
n + d1

n) + [h(u1
n)− h(ũ1

n + d1
n)]− nG

)
(A96)

(e)
= h(ỹ1

n)− h(ũ1
n + d1

n|x̃1
n) + nG − [h(u1

n)− h(ũ1
n + d1

n)] (A97)
( f )
= h(ỹ1

n)− h(ȳ1
n|x̄1

n) + nG − [h(u1
n)− h(ũ1

n + d1
n)] (A98)

= h(ỹ1
n)− h(ȳ1

n) + I(x̃1
n; ȳ1

n) + nG − [h(u1
n)− h(ũ1

n + d1
n)] (A99)

= I(x̃1
n; ȳ1

n) + nG − [h(u1
n)− h(ũ1

n + d1
n)] + [h(ỹ1

n)− h(ỹ1
n + d1

n)], (A100)

where (a) follows from Bn being invertible, (b) is due to the fact that ỹ1
n = Pnx̃1

n + ũ1
n, (c)

holds because u1
n ⊥⊥ x1

n. The equality (d) stems from h(ũ1
n) = h(u1

n) − nG (see (A87)).
Equality holds in (e) because x̃1

n ⊥⊥ (ũ1
n, d1

n) and in ( f ) because of (A91). But from
Theorem 4 and since u∞

1 is entropy balanced, limn→∞
1
n (h(ũ

1
n + d1

m)− h(u1
n)) = 0. From

Lemma 3 and because u∞
1 is entropy balanced, so is ỹ∞

1 . This guarantees, from Lemma 5,
that limn→∞ n−1[h(ỹ1

n) − h(ỹ1
n + d1

n)] = 0. Thus, Rx,n(D) = limn→∞
1
n (x̃

1
n; ȳ1

n) + G ≥
Rx̃,n(D) + G.

At the same time, the distortion for the source x̃1
n when reconstructed as ȳ1

n is

lim
n→∞

1
n

E
[
‖ȳ1

n − x̃1
n‖2
]
= lim

n→∞

1
n

(
E
[
‖ỹ− x̃1

n‖2
]
+ E

[
‖d1

n‖2
])

(a)
= lim

n→∞

1
n

E
[
‖ỹ− x̃1

n‖2
]

(A101)

= lim
n→∞

1
n

E
[
‖Bn(y1

n − x1
n)‖2

]
(b)
= lim

n→∞

1
n

E
[
‖y1

n − x1
n‖2
]
, (A102)
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where (a) holds because ‖d1
n‖ = ‖d1

m‖ is bounded, and (b) is due to the fact that, in the
limit, B(z) is a unitary operator. Recalling the definitions of Rx̃(D) and Rx̃(D), we conclude
that limn→∞

1
n (x̃

1
n; ȳ1

n) ≥ Rx̃,n(D); therefore,

Rx(D)− Rx̃(D) ≥∑m
i=1 log |pi|. (A103)

In order to complete the proof, it suffices to show that Rx(D) − Rx̃(D) ≤ ∑m
i=1 log |pi|.

For this purpose, consider now the (asymptotically) stationary source x̃1
n, and suppose

that ŷ1
n = x̃1

n + u1
n realizes Rx̃,n(D). Again, x̃1

n and u1
n will be jointly Gaussian, satisfying

ŷ1
n ⊥⊥ u1

n (the latter condition is required for minimum MSE optimality). From this, one
can propose an alternative realization in which the error sequence is ũ , Bnu1

n, yielding an
output ỹ1

n = x̃1
n + ũ1

n with ỹ1
n ⊥⊥ ũ1

n. Then,

nRx̃,n(D) = I(x̃1
n; ŷ1

n) = h(x̃1
n)− h(x̃1

n|ŷ1
n) (A104)

(a)
= h(x̃1

n)− h(u1
n) (A105)

(b)
= h(x̃1

n)− h(ũ1
n)− nG (A106)

(c)
= h(x̃1

n)− h(ũ1
n|ỹ1

n)− nG (A107)
(d)
= h(x̃1

n)− h(x̃1
n|ỹ1

n)− nG (A108)

= I(x̃1
n; ỹ1

n)− nG (A109)

= I(Bnx1
n; Bny1

n)− nG (A110)
(e)
= I(x1

n; y1
n)− nG, (A111)

where (a) follows by recalling that ŷ1
n = x̃1

n + u1
n and because ŷ1

n ⊥⊥ u1
n, (b) stems

from (A87), (c) is a consequence of ỹ1
n ⊥⊥ ũ1

n, (d) follows from the fact that ỹ1
n = x̃1

n + ũ1
n.

Finally, (e) holds because Bn is invertible for all n. Since, asymptotically as n→ ∞, the dis-
tortion yielded by y1

n for the non-stationary source x1
n is the same which is obtained when

x̃1
n is reconstructed as ŷ1

n (recall (A84)), we conclude that Rx(D)− Rx̃(D) ≤ ∑M
i=1 log |pi|,

completing the proof.

Appendix C. Technical Lemmas and Propositions

Proposition A1. Let the random vector s1
κ have finite differential entropy, and suppose its co-

variance matrix Ks1
κ

satisfies λmax(Ks1
κ
) < ∞. Then, for any unitary matrix A ∈ Rκ×κ and

i = 1, 2, . . . , κ

h(s1
κ)−

κ − i
2

log(2π e λmax(Ks1
κ
)) ≤ h([A]1i s1

κ) ≤
i
2

log(2π e λmax(Ks1
κ
)). (A112)

Proof. Define r1
κ , As1

κ . Since A is unitary, it follows that h(r1
κ) = h(s1

κ) and that Kr1
κ

and
Ks1

κ
have the same eigenvalues. Therefore,

h([A]1i s1
κ) = h(r1

i )
(a)
≤ 1

2
log((2π e)i det(Kr1

i
))

(b)
≤ i

2
log(2π e λmax(Kr1

i
))

(c)
≤ i

2
log(2π e λmax(Kr1

κ
))

=
i
2

log(2π e λmax(Ks1
κ
)), (A113)

where (a) holds because a Gaussian distribution yields the largest differential entropy for a
given covariance matrix, (b) is from the fact that det(Ks1

i
) = ∏i

k=1 λk(Ks1
i
) and (c) is due
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to the Cauchy interlacing theorem [30]. This proves the upper bound in (A112). For the
lower bound, we have

h(r1
i )

(a)
≥ h(r1

κ)− h(ri+1
iκ )

(b)
≥ h(r1

κ)−
κ − i

2
log(2π e λmax(Ks1

κ
)), (A114)

where (a) stems from the fact that h(a, b) ≤ h(a) + h(b) and (b) follows from (A113). This
completes the proof.

Proposition A2. Let u∞
1 be a random process such that the variance of u(n), σ2

u(n) < ∞ for finite
n, and

lim
n→∞

1
n

log(σ2
u(n)) = 0. (A115)

Then, limn→∞ n−1 log(λmax(Ku1
n
)) = 0. N

Proof. The assumptions on u∞
1 imply that, for every ε > 0, there exists a finite Nε such

that, for every n ≥ Nε, σ2
u(n) < enε and S(Nε) , max{σ2

u(1), σ2
u(2), . . . , σ2

u(Nε)
} < ∞. Then,

1
n

ln(λmax(Ku1
n
))

(a)
≤ 1

n
ln

(
n

∑
k=1

σ2
u(k)

)
<

1
n

ln(NεS(Nε) + (n− Nε) enε)
(b)
<

1
n

ln((n− Nε) enε) +
NεS(Nε)

n(n− Nε) enε
,

where (a) holds because ∑n
k=1 λk(Ku1

n
) = tr{Ku1

n
}, while (b) stems from the fact that, for ev-

ery x, y > 0, ln(x+ y) < ln(x)+ y/x. Thus, for every ε > 0, limn→∞ n−1 log(λmax(Ku1
n
)) <

ε, which means that limn→∞ n−1 log(λmax(Ku1
n
)) = 0, completing the proof.

Proposition A3. Let v∞
1 be an entropy-balanced random process. Then, for each ν ∈ N and for

every sequence of matrices {Ψn}∞
n=ν, Ψn ∈ Rν×n with orthonormal rows,

lim
n→∞

1
n

h(Ψnv1
n) = 0. (A116)

Proof of Proposition A3. We will first show that

lim
n→∞

1
n

h(Ψnv1
n) ≥ 0. (A117)

To see this, notice that, for every Ψn ∈ Rν×n with orthonormal rows, there exists a matrix
Φn ∈ R(n−ν)×n with orthonormal rows which are also orthogonal to those of Ψn. This
means that the matrix [ΨT

n |ΦT
n ]

T ∈ Rn×n is unitary; thus,

h(v1
n) = h([ΨT

n |ΦT
n ]

Tv1
n)

(a)
= h(Φnv1

n) + h(Ψnv1
n|Φnv1

n)
(b)
≤ h(Φnv1

n) + h(Ψnv1
n), (A118)

where (a) holds due to the chain-rule of differential entropy and (b) follows because
conditioning does not increase differential entropy. Therefore, h(Ψnv1

n) ≥ h(v1
n)− h(Φnv1

n).
Dividing this by n, taking the limit when n → ∞ and recalling that v∞

1 satisfies (17)
yields (A117).

We will now prove that limn→∞
1
n h(Ψnv1

n) ≤ 0. For this purpose, let ṽ∞
1 be a jointly

Gaussian random process with the same second-order statistics as v∞
1 . Then,

h(Ψnv1
n) ≤ h(Ψn ṽ1

n) =
1
2

log
(
(2π e)ν det(ΨnKṽ1

n
ΨT

n )
)
≤ 1

2
log
(
(2π e)νλmax(Kṽ1

n
)ν
)

, (A119)
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with the inequality due to the fact that Ψn has orthonormal rows. But v∞
1 meets the

requirements of Proposition A2; thus, limn→∞
1
n h(Ψnv1

n) ≤ limn→∞
ν

2n (2π e λmax(Kṽ1
n
)) =

0. The proof is completed by combining this result with (A117).

Lemma A1. Let u∞
1 be a random process with independent elements, and where each element ui is

uniformly distributed over possible different intervals [− ai
2 , ai

2 ], such that amax > |ai| > amin >
0, ∀i ∈ N, for some positive and bounded amin < amax. Then, u∞

1 is entropy balanced.

Proof. Without loss of generality, we can assume that ai ≥ 1, for all i (otherwise, we could
scale the input by 1/amin, which would scale the output by the same proportion, increasing
the input entropy by n log(1/amin) and the output entropy by (n− ν) log(1/amin), without
changing the result). The input vector u1

n is confined to an n-box Un (the support of un
1 ) of

volume Vn(Un) = ∏n
i=1 ai and has entropy log(∏n

i=1 ai). This support is an n-box which
contains (n

k)2
n−k k-boxes of different k-volume. Each of these k-boxes is determined by

fixing n− k entries in u1
n to ±ai/2, and letting the remaining k entries sweep freely over

[− ai
2 , ai

2 ]. Thus, the k-volume of each k-box is the product of the k support sizes ai of the
associated selected free-sweeping entries. But recalling that ai > 1 for all i, the volume
of each k-box can be upper bounded by ∏n

i=1 ai. With this, the added volume of all the
k-boxes contained in the original n-box can be upper bounded as

V�k (Un) ≤
(

n
k

)
2n−k

n

∏
i=1

ai. (A120)

We now use this result to upper bound the entropy rate of yν+1
n .

Let y1
n , [ΨT

n |ΦT
n ]

Tu1
n where [ΨT

n |ΦT
n ]

T ∈ Rn×n is a unitary matrix and where
Ψn ∈ Rν×n and Φn ∈ R(n−ν)×n have orthonormal rows. From this definition, yν+1

n
will distribute over a finite region Yν+1

n ⊆ Rn−ν, corresponding to the projection onto the
(n − ν)-dimensional span of the rows of Φn. Hence, h(yν+1

n ) is upper bounded by the
entropy of a uniformly distributed vector over the same support, i.e., by logVn−ν(Yν+1

n ),
where Vn−ν(Yν+1

n ) is the (n− ν)-dimensional volume of this support. In turn, Vn−ν(Yν+1
n )

is upper bounded by the sum of the volume of all (ν− k)-dimensional boxes contained in
the n-box in which u1

n is confined, which we already denoted by V�n−ν(Un), and which is
upper bounded as in (A120). Therefore,

h(y1+ν
n ) ≤ logVn−ν(Yν+1

n ) ≤ logV�n−ν(Un) ≤ log

(
n!

(n− ν)!ν!
2ν

n

∏
i=1

ai

)
(A121)

= log(nν2ν) + log
(

n!
(n− ν)!nνν!

)
+ log

(
n

∏
i=1

ai

)
. (A122)

Recalling that h(u1
n) = log(∏n

i=1 ai), dividing by n and taking the limit as n→ ∞ yields

lim
n→∞

1
n

(
h(yν+1

n )− h(u1
n)
)
≤ 0. (A123)

On the other hand,

h(yν+1
n ) = h(y1

n)− h(y1
ν|yν+1

n )
(a)
= h(u1

n)− h(y1
ν|yν+1

n ) ≥ h(u1
n)− h(y1

ν), (A124)

where (a) follows because [ΨT
n |ΦT

n ]
T is an orthogonal matrix. Letting (yG)

1
ν correspond to

the jointly Gaussian sequence with the same second-order moments as y1
ν, and recalling

that the Gaussian distribution maximizes differential entropy for a given covariance, we
obtain the upper bound

h(y1
ν) ≤ h((yG)

1
ν)

(a)
= 1

2 log
(
(2π e)ν det(Ψn diag{σ2

ui
}n

i=1ΨT
n )
) (b)
≤ ν

2 log
(

2π e max{σ2
ui
}n

i=1

)
, (A125)
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where (a) follows since the {ui}n
i=1 are independent, and (b) stems from the fact that

Ψn ∈ Rν×n has orthonormal rows. Since max{σ2
ui
}n

i=1 is bounded for all n, we obtain by
substituting (A125) into (A124) that limn→∞

1
n (h(y

ν+1
n )− h(u1

n)) ≥ 0. The combination
of this with (A123) yields limn→∞

1
n (h(y

ν+1
n ) − h(u1

n)) = 0, satisfying Condition ii) in
Definition 2. From this, the proof is completed by noting that u∞

1 satisfies Condition i) in
Definition 2. This completes the proof.

Lemma A2. Let A(z) be a causal, finite-order, stable and strictly minimum-phase rational transfer
function with impulse response a0, a1, . . . such that a0 = 1. Then, limn→∞ λ1(An AT

n ) > 0 and
limn→∞ λn(An AT

n ) < ∞.

Proof of Lemma A2. The fact that limn→∞ λn(An AT
n ) is upper bounded follows directly

from the fact that A(z) is a stable transfer function. On the other hand, An AT
n is positive

definite, with limn→∞ λ1(An AT
n ) ≥ 0. Suppose that limn→∞ λ1(An AT

n ) = 0. If this were
true, then it would hold that limn→∞ λn(A−1

n A−T
n ) = ∞. But A−1

n is the lower triangular
Toeplitz matrix associated with A−1(z), which is stable (since A(z) is minimum phase),
implying that limn→∞ λn(A−1

n A−T
1 ) < ∞, thus leading to a contradiction. This completes

the proof.

We re-state here (for completeness and convenience) the unnumbered lemma in the
proof of Reference [16], Theorem 1, as follows:

Lemma A3. Let the transfer function G(z) satisfy Assumption 1 and suppose it has no poles. Then,

λl(GnGT
n ) =

{
α2

n,l(ρl)
−2n , if l ≤ m,

α2
n,l , otherwise ,

(A126)

where the elements in the sequence {αn,l} are positive and increase or decrease at most polynomially
with n.

Lemma A4. Let A, B be matrices with the same dimensions. Then,

λmin

(
(A + B)(A + B)T

)
≥ λmin(AAT) + λmin(BBT)− 2σmax(A)σmax(B). (A127)

Proof. For every x such that ‖x‖ = 1,

xT(A + B)(A + B)Tx = xT AATx + xT BBTx + xT ABTx + xT BATx

≥ λmin(AAT) + λmin(BBT)− 2σmax(A)σmax(B), (A128)

where the last inequality holds because AAT and BBT are symmetric and because of the
Cauchy-Schwartz inequality. The proof is completed by noting that (A128) holds for the x
that minimizes xT(A + B)(A + B)Tx , and λmin((A + B)(A + B)T) = minx:‖x‖=1 xT(A +

B)(A + B)Tx.
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