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Abstract: Genome-wide expression study is a powerful genomic technology to quantify expression
dynamics of genes in a genome. In gene expression study, gene set analysis has become the first
choice to gain insights into the underlying biology of diseases or stresses in plants. It also reduces the
complexity of statistical analysis and enhances the explanatory power of the obtained results from
the primary downstream differential expression analysis. The gene set analysis approaches are well
developed in microarrays and RNA-seq gene expression data analysis. These approaches mainly
focus on analyzing the gene sets with gene ontology or pathway annotation data. However, in plant
biology, such methods may not establish any formal relationship between the genotypes and the
phenotypes, as most of the traits are quantitative and controlled by polygenes. The existing Quan-
titative Trait Loci (QTL)-based gene set analysis approaches only focus on the over-representation
analysis of the selected genes while ignoring their associated gene scores. Therefore, we developed an
innovative statistical approach, GSQSeq, to analyze the gene sets with trait enriched QTL data. This
approach considers the associated differential expression scores of genes while analyzing the gene
sets. The performance of the developed method was tested on five different crop gene expression
datasets obtained from real crop gene expression studies. Our analytical results indicated that the
trait-specific analysis of gene sets was more robust and successful through the proposed approach
than existing techniques. Further, the developed method provides a valuable platform for integrating
the gene expression data with QTL data.

Keywords: gene set; RNA-seq; gene expression; gene set analysis; quantitative trait loci; false
discovery rate

1. Background

Gene expression (GE) studies including RNA sequencing (RNA-seq) and microarrays
are powerful techniques for studying expression dynamics and regulation of genes in
human and non-human genomes. RNA-seq has surpassed microarrays by providing better
quantification of the expression of genes with higher accuracy and better reproducibil-
ity [1]. Through RNA-seq, expression levels of genes are measured in terms of discrete
read counts obtained by mapping the sequence reads to the reference genome followed
by quantification of transcript abundance [2]. It also allows studying alternative splic-
ing [3], new coding and non-coding RNA transcripts, and long non-coding RNAs [4,5].
In other words, RNA-seq is much more prevalent and efficient, as it answers a much
more comprehensive range of questions than the existing microarrays technology. Fur-
ther, differential expression (DE) analysis is one of the significant downstream analyses
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performed on the RNA-seq count data to detect DE genes with higher resolution than
microarrays across the two different experimental conditions [6]. Biologists considered
this DE analysis as the end of their analysis. In order to interpret the long list of DE genes
in the context of the underlying phenotypic differences and gain insights into biological
mechanisms [7], secondary genomic data analytics, e.g., gene set analysis (GSA), are usually
widespread. GSA allows us to interpret the high-throughput RNA-seq count data in a broader
biological context.

GSA methods were initially developed for microarrays but later extended to RNA-
seq [7]. In GSA, the preparation of a ranked gene list (i.e., DE analysis) is a major process
that depends on the data’s nature and distributional properties. For instance, GSA ap-
proaches for microarrays deal with continuous data and are expected to follow Gaussian
distribution. Contrarily, GE data in RNA-seq are non-negative counts (discrete in nature)
and assumed to follow a negative binomial distribution. Therefore, it may be improper
to use GSA techniques meant for microarray data directly with RNA-seq data. Initially,
GSA for RNA-seq data analysis was adopted from microarrays with data transformation;
subsequently, new approaches exclusively for RNA-seq were also developed [8]. For
instance, the VOOM-normalization technique was used to normalize the read counts for
sequence-depths, then microarray GSA approaches are applied to the normalized data [9].
Then, specialized GSA methods for RNA-seq were developed, which includes GOseq [10].
It performs over-representation of gene ontology (GO) categories enriched with the long
list of DE genes in RNA-seq data. Further, an easy-to-use web application, iDEP (Integrated
Differential Expression and Pathway analysis), was developed for the in-depth analysis
of RNA-seq data based on the available pathway information [11]. Both the methods
belong to the over representation analysis (ORA) category of the GSA, which uses the GO
and pathway information to analyze the RNA-seq data [10,11]. These GSA methods only
consider the number of DE genes alone and ignore any values associated with them, such
as read counts, DE scores, etc. By discarding this information, ORA-based GSA methods
treat each gene equally by assuming that each gene is independent of the others, which
is quite unrealistic in biology [12]. The ORA typically focuses on the genes in the gene
set and discards the others [13]. Hence„ GSA methods based on gene enrichment statis-
tic(s), such as AbsFilterGSEA [14,15], seqGSEA [16], ssGSEA [17], EGSEA [18], GSVA [19],
GSEPD [20], and RNA-Enrich [21], were developed exclusively for RNA-seq data analysis.
Further, the researchers can find the details of these methods’ reviews, their comparison,
and their unique features in recent literature [7,13]. However, these techniques also suffer
from limitations, such as using the DE score to prepare ranked transcripts/gene list but
further ignore this information for gene set testing. These approaches also use the data
transformation technique, through which over-dispersion, zero inflation, count nature, and
other inherent nature of RNA-seq data are lost [13].

The contemporary GSA approaches mostly use GO and pathway information for
analyzing gene sets [10,11,14–21] and are very useful in establishing the links of gene sets
with underlying biological/molecular processes. However, in plant and complex disease
biology, such approaches may not show any formal relationship between the underlying
genotypes and the trait/phenotype. This is because most of the traits are quantitative
in nature and controlled by polygenes [22–25]. Apart from the GO and pathways, other
biological information, such as Quantitative Trait Loci (QTL), are available in public domain
databases that can be effectively used in GSA to gain biological insights into the etiology of
complex diseases in humans as well as other non-human organisms (e.g., plants). For this
purpose, statistical approaches and tools were developed to perform GSA with genetically
enriched QTL data for GE microarray studies [25]. These approaches may have immense
use for performing trait/QTL enrichment analysis of gene sets. For instance, the QTL-
enriched gene sets can be used for molecular breeding programs for biotic/abiotic stress
engineering in plants.

A Gene Set Validation with QTL (GSVQ), or microarray-QTL, test was developed
based on the enrichment testing of selected gene sets with the QTL regions through
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hypergeometric statistical tests [26]. This approach is not so statistically sound, as it
violates the basic assumptions of the hypergeometric statistical tests (e.g., sampling without
replacement) [25]. To tackle these issues in analyzing the gene sets with QTL, another
approach, i.e., Gene Set Analysis with QTL (GSAQ) for microarrays, has been reported
in the literature and found to be better and robust compared to GSVQ [25]. However,
GSAQ has some serious limitations. First, it only considers the genes present in the
selected gene set but failed to use the corresponding DE scores of genes present in that
gene set. Second, GSAQ treats each gene as equally important by assuming the genes
are independently and identically distributed, contrary to fundamental biology. Third,
GSAQ and GSVQ approaches use only the most significant genes while discarding other
genes. For instance, a gene input list from microarrays is obtained by setting the arbitrary
threshold(s) for fold-change and p-values as 1.5 and 0.01, respectively. With this method,
marginally less significant genes (e.g., fold-change~1.499 and p-value~0.011) are missed,
resulting in information loss for some essential genes. Under these circumstances, the
statistical methodologies for GSA with QTL requires further improvements and advances,
which will be very helpful in unraveling genotype–phenotype relationships in plants or in
complex diseases.

We, therefore, propose a novel statistical approach, i.e., GSQSeq, for analyzing gene
sets with trait-enriched QTL data for gene expression studies, including RNA-seq. This
approach considers the genes present in the gene set and their corresponding DE scores
to analyze the gene set in the presence of the trait-specific QTL data. Here, the gene sets’
enrichment significance was assessed through the p-values computed using the developed
test statistic(s). Further, we evaluated the proposed method’s performance with respect to
the existing approaches, including GSVQ and GSAQ, through performance metrics such as
False Discovery Rate (FDR) and −log10(p-value) on multiple real crop datasets. For this
purpose, we used five GE datasets obtained from microarrays and RNA-seq studies in rice.
Our analytical findings indicate that the developed approach more successfully detected
the QTL-enriched gene sets than the existing techniques. Additionally, GSQSeq has a
robust performance over the existing traditional methods, including GSVQ and GSAQ,
when assessed on multiple rice gene expression datasets. We implemented the proposed
statistical approach in a freely available R software package for the benefit of users.

2. Material and Methods
2.1. Real Microarray Datasets

Rice GE experimental datasets were collected from the Gene Expression Omnibus
(GEO) database of NCBI for Affymetrix platforms GPL2025 (www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GPL2025, accessed on 20 December 2020) [27]. We used rice GE datasets;
as it is a model crop plant, a massive amount of GE and QTL datasets are publicly available,
and its genome is well annotated. Here, we used the rice GE datasets for the GPL2025, as
this platform contains as many as 220 microarray experiments (series) comprising 3480
samples/subjects of Oryza sativa L. compared to other platforms. Among these 3480
samples, 150 experimental samples related to four different biotic and abiotic stresses for
rice were taken in this study. Initially, we collected the raw CEL file data for the cold,
drought, fungal, and insect stresses from 4, 5, 2, and 1 microarray studies, respectively,
in rice.

2.2. Pre-Processing of Rice Microarrays Datasets

The raw CEL files of the collected samples were processed using the Robust Multi-
chip Average (RMA) algorithm available in the affy Bioconductor package of R [28]. This
procedure involves background correction, quantile normalization, and summarization
by the median polish approach [29]. Further, the log2 scale transformed expression data
from RMA for the collected experimental samples were used for meta-analysis of each
stress separately to remove the outlier samples (Supplementary Document S1). In other
words, microarray GE samples for cold, drought, insect, and fungal stresses were integrated

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL2025
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through meta-analysis (under the parameter settings in Supplementary Table S2) to obtain
the meta-data. For example, the drought stress dataset, originating from 5 independent
studies available in the GEO database under the accession numbers GSE6901, GSE26280,
GSE21651, GSE23211, and GSE24048, were integrated through meta-analysis. Now, the
meta-data consists of expression measurements of 57,381 genes for over 70 samples (case:
35 and control: 35). Then, these meta-datasets for the respective stresses were further used
to remove the control and irrelevant features through the preliminary gene selection. This
process reduces the computational complexity and data sets’ dimensions. For instance,
out of 57,381 genes in the drought stress, the control (123) and irrelevant (48,180) genes
were filtered out by setting the fold change and p-value (from t-test) parameters as 1 and
0.05, respectively, through the preliminary gene selection. The summary and details of
these datasets are given in Table 1 and Supplementary Table S1, respectively. The detailed
descriptions of data collection, pre-processing, meta-analysis, and preliminary gene selec-
tion of these datasets are given in Supplementary Document S1. The QTL datasets for the
stresses in rice, viz. drought, cold, insect, and fungal, were collected from the Gramene
QTL database (http://www.gramene.org/qtl/, accessed on 15 December 2020) [30]. The
positions of the QTLs for each stress were mapped to a reference genome through the
MSU rice genome browser [31]. The lists of the respective stress-responsive QTLs and their
mapped positions on the rice genome are given in Supplementary Document S4.

Table 1. Rice gene expression datasets used in the study.

SN. Descriptions Type # Series Series Id # Genes # Samples Stress

1 Salinity stress RAN-seq 1 GSE109341 26454 24 (12, 12) Abiotic

2 Cold stress Microarray 4

GSE31077,
GSE33204,
GSE37940,
GSE6901

8840 28 (15, 13) Abiotic

3 Drought
stress Microarray 5

GSE26280,
GSE6901,
GSE21651,
GSE23211,
GSE24048

9078 70 (35, 35) Abiotic

4 Fungal (blast)
stress Microarray 2 GSE41798,

GSE7256 7072 26 (13, 13) Biotic

5
Insect (brown
plant hopper)

stress
Microarray 1 GSE29967 7241 18 (12, 6) Biotic

# Series: number of GEO series for each dataset; # Genes: number of genes; # Samples: number of GEO samples; (x, y): number samples for
case and control, respectively; number of classes (e.g., 2 in control vs. case genomic study); Type: study type from which gene expression
datasets are derived.

2.3. Real RNA-Seq Dataset

The raw sequence datasets of rice (Japonica group) under salinity stress were collected
from the NCBI database (https://www.ncbi.nlm.nih.gov/, accessed on 18 December 2020).
The datasets were generated from Illumina HiSeq 2000 sequencing platform and available
in the GEO database with platform GPL13834 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GPL13834, accessed on 18 December 2020). This platform consists of 323 samples and
29 series of Oryza sativa. Among these datasets, we used the sequence data pertaining to
GSE109341 accession, submitted by Formentin et al. on 18 January 2018, and last updated
on 13 June 2018, to test our proposed approach [32]. Unlike other datasets, GSE109341
has a relatively large number of samples belonging to two contrasting conditions, i.e.,
treated vs. control. Further, the sequence datasets were generated from root and leaf tissue
samples under untreated and treated plants of Vialone nano and Baldo rice genotypes.
Each sample was made of 6 pooled plants with three biological replicates. The raw data,
in .fastq files, of these samples were selected from the Sequence Read Archive (SRA)
database (https://www.ncbi.nlm.nih.gov/sra/, accessed on 18 December 2020) for further

http://www.gramene.org/qtl/
https://www.ncbi.nlm.nih.gov/
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13834
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13834
https://www.ncbi.nlm.nih.gov/sra/
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statistical analysis. The detail description about the raw data and their pre-processing is
given in Supplementary Document S2. The salinity stress QTL dataset was collected from
the Gramene QTL database (http://www.gramene.org/qtl/, accessed on 15 December
2020) [30]. The salinity responsive QTLs’ positions are mapped to the rice genome through
the MSU rice genome browser [31] and are given in Supplementary Document S4.

2.4. RNA-Seq Preprocessing and Read Alignment

The single-end Illumina raw sequence reads were downloaded from the SRA database
using the SRA toolkit (version 2.9.1-1). The raw reads were then preprocessed with the
Trimmomatic toolkit (version 0.38), which involves removing adapter sequences, quality
filtering, etc. Further, the overall quality of the preprocessed results was manually inspected
using quality reports generated by FastQC (version 0.11.7). Then, the preprocessed reads
were mapped with HISAT (hisat2-2.1.0) [33] on the Oryza sativa v. Nipponbare reference
genome, downloaded from the MSU Rice Genome Annotation Project version 7.0 (http:
//rice.plantbiology.msu.edu/, accessed on 18 December 2020) [31]). The mapping of
sequence reads to the reference genome allows identifying their genomic positions. The
gene coordinates file (.GFF3) was collected from the MSU rice genome browser, which helps
to map the reads to spanning splice junctions to get the genes’ chromosomal positions.

2.5. Transcript Assembly and Quantification

The success of the RNA-seq data analysis requires accurate reconstructions and proper
quantification of all the isoforms expressed from each gene [2]. Here, we used and executed
the StringTie tool (version 1.3.4d) [34] to assemble transcripts from the RNA-seq reads
aligned to the genome, which primarily involves two steps. First, grouping the reads into
distinct gene loci and then assembling each locus into as many isoforms. After assembling
the transcripts with StringTie, we used the gffcompare tool [35] to assess the success of
matching the assembled transcript with pre-annotated genes, either fully or partially. It
was also used to identify the novel transcripts discovered in the mapping process.

The given experiment involved multiple RNA-seq samples generated for two varieties
(with two tissue samples) under two different contrasting conditions (salinity treated vs.
untreated). Hence, genes and transcripts present in one sample are rarely identical to others
due to varied sequencing depth. So, they need to be assembled in a consistent manner for
which the mapping results for individual samples can be compared. For this purpose, we
executed the merge function implemented in the StringTie tool, which prepares a final list
of genes by merging all the genes found in any of the samples.

2.6. Notations

Let, Yij: read counts of ith (i = 1, 2, . . . , N) gene in jth (j = 1, 2, . . . , M) sample/library;
Ω: collection of all genes present in the RNA-seq data (i.e., whole gene list); G: gene set
selected from Ω; N: size of Ω; M: number of samples/libraries; n: size of G; µij: mean of ith
gene in jth sample/library; θij(= ϕ−1

ij ) and ϕij: size and dispersion parameters respectively
of ith gene in jth sample/library; Q: set of associated QTLs; Di: differential gene expression
score for i-th gene; and Ti be the threshold placed at the i-th position in gene ranked list,
which divides the gene list into G and Gc = (Ω− G).

2.7. Preparation of Gene Ranked List

We used the edgeR R package [36,37] to prepare the gene ranked list for the RNA-seq
read count data. The edgeR tool models the Yij through a negative binomial model, and its
Probability Mass Function (PMF) is given in Equation (1). The expressions of the expected
value and variance of the observed read counts (Yij) are given in Equations (2) and (3),
respectively. For each gene, the expected value (µij) is assumed to be the product of the
total number of reads (i.e., library size) and the (unknown) relative abundance (Zij) of
that gene in the current experimental condition, expressed in Equation (4). Here, V

(
Yij
)

is a function of µij, as shown in Equation (3), and which requires the estimation of the

http://www.gramene.org/qtl/
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
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over-dispersion parameter (ϕij). So, edgeR estimates ϕij using a conditional Maximum
Likelihood Estimation procedure, conditioning on the total read count for each gene, and
an empirical Bayes procedure to shrink the dispersions toward a consensus value [36].
Here, we used the Likelihood Ratio Test (LRT) statistic(s) to calculate the DE scores of genes
under a generalized linear model framework, given in Equation (5). We computed the DE
scores of the genes through executing glmLRT implemented in edgeR R package [37], and
finally prepared the gene ranked list. Further, we used the t-test statistic(s) to compute the
DE scores of genes for preparing the gene ranked list for microarray GE data. The detailed
procedure is given in Supplementary Document S3.

The PMF of the Negative Binomial distribution is expressed as:

fNB(y) = P
[
Yij = y

]
=

G
(
y + θij

)
G(y + 1)G

(
θij
)( θij

θij + µij

)θij
(

µij

θij + µij

)y

∀ y = 0, 1, 2, . . . (1)

where µij ≥ 0; θij > 0 are the parameters of NB distribution, and G(.): gamma
function. Then, the expected value and variance of Yij is shown as:

E
(
Yij
)
= µij (2)

V
(
Yij
)
= µij +

µij
2

θij
= µij + ϕij (3)

If ϕij → 0 (No dispersion) .⇒ NB
(
µij, θij

)
→ Poisson

(
µij
)

µij = sjE
(
Zij
)

(4)

log2E
(
Zij
)
= β0i + β1iXj (5)

where sj: size factor of jth library/sample; Zij represents the true (unknown) concentration
of reads for ith gene of jth library/sample; Xj is simply the binary indicator of the group
membership of jth library/sample (case: 1 and control: 2); β0i: logarithm of mean parameter
for the ith gene in the reference control group; and β1i: log fold-change parameter for the
ith gene.

2.8. Proposed GSQSeq Approach

Earlier developed GSVQ and GSAQ approaches were based on the ORA of the QTL
hit genes (i.e., genes overlapped with QTL regions) in the selected gene set through
hypergeometric distribution [25,26]. This approach only considered the genes in the
selected gene set but ignored their corresponding DE scores. Hence, we developed the
GSQSeq approach that can integrate the available DE scores of the selected genes with QTL
analysis of the gene sets. For this purpose, we developed a scoring function for the gene
set in GSQSeq that combines features from over-representation and shifted expression-
based approaches [38]. Here, the scoring function is computed using hypergeometric
distribution based on enrichment scores weighted with the DE scores computed through
tests such as t-test, fold change, etc. Alternatively, GSQSeq uses the long list of genes (which
should be ordered based on the DE scores) along with the corresponding vector of the DE
scores. It divides the input gene list into the selected gene set (G) and not-selected gene
set (Gc) based on the chosen threshold value. Then, it calculates the test statistic, given in
Equation (6), for every gene set of the ordered gene list taken at each threshold value [39]
by using the following procedure.

The GSQSeq uses a function to calculate the difference between the sum of differential
gene expression test scores for G and Gc and is expressed in Equation (6).

SDGQ = ∑
i ∈ G
i ∈ Q

Di − ∑
i ∈ Gc

i ∈ Q

Di (6)
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This calculation is repeated for each threshold value, Ti. It is worthy to note that the Tis
are chosen based on the user’s discretion under the constraint that Ti ∈ {min(Di), max(Di)}.

Therefore, to perform the gene set analysis with the underlying trait-specific QTLs for
GE studies, including RNA-seq data, we developed the GSQSeq approach under a sound
computing framework. In other words, it can be used to evaluate the statistical significance
of selected gene sets related to a specific trait based on available QTL information. Under
the GSQSeq approach, the following hypotheses can be constructed for testing purposes.

H0: Genes in G are at most as often overlapped with the QTL regions as the genes in Gc (i.e.,
SDGQ = 0).

H1: Genes in G are more often overlapped with the QTL regions as compared to genes in Gc (i.e.,
SDGQ > 0).

The above constructed null hypothesis is a competitive hypothesis as it considers the
genes from both G and Gc [13,40,41]. Here, the H0 tells that the QTL hit gene set members
and non-members are distributed randomly across the gene list. Now, the QTL hits of the
genes present in G can be determined through the indicator function given in Equation (7).

Iq(gi) =

{
1 i f gi

c[a, b] ∈ qc[d, e]
0 i f gi[a, b] /∈ qc[d, e]

(7)

where gi ∈ G; a and b represent the start and stop positions (in terms of base pairs) in
chromosome c of the gene gi; q ∈ Q; and d and e represent the start and stop positions (in
base pairs) in chromosome c of the QTL q.

The NQHits statistic [25], based on the overlapping of the selected genes with the QTL
regions (given in Equation (7)), is shown in Equation (8).

NQHits =
n

∑
i=1

|Q|

∑
q

Iq(gi) (8)

It is important to note that the existing techniques, including GSVQ and GSAQ, use
the NQHits test statistic given in Equation (8) for gene set testing. This test statistic
considers each gene as equally important and does not consider their DE scores. Hence,
we developed the SDGQ test statistic (Equation (6)). However, the SDGQ alone cannot be
used for enrichment testing of gene sets, as it is unstable due to different sizes of the gene
sets G and Gc. Therefore, we used the Z-score transformation of the test statistic (SDGQ)
(Equation (8)) and which is expressed in Equation (9).

Z =
SDGQ − E

(
SDGQ

)√
V
(
SDGQ

) (9)

where E
(
SDGQ

)
and V

(
SDGQ

)
are the expected value and variance of the SDGQ, respectively.

Further, we obtained the distribution of the test statistic SDGQ, given in Equation (6),
under H0. The expressions for mean and variance of the test statistic are given in
Equations (10) and (11), respectively.

E
(
SDGQ

)
= 2E(X)E

(
NGQ

)
− nE(X) (10)

V
(
SDGQ

)
= 4

(
V(X)

n− 1
(E
(

NGQ
)
(n− E(NGQ))−V

(
NGQ

)
+ E(X)2V

(
NGQ

)
) (11)

where X: differential gene expression test scores of the genes in the gene set; NGQ: number
of gene set members in G got QTL hits; E(.): expected value; and V(.): variance.

The estimate of the expected value of SDGQ (Equation (10)) is a linear function of
the expected value of the hypergeometric distribution of NGQ, the expected value for the
differential gene expression test scores in the analyzed selected gene set, E(X), and the size
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of the selected gene set, n. The E(X) and V(X) in Equations (10) and (11) were computed
through the method proposed by Newton et al. (2007) [42], i.e., calculating the mean and
variance values of the DE test scores (X) for all the genes in the analyzed gene set followed
by normalization.

It is worthy to note that the NGQ given in Equations (10) and (11) is same as the
NQHits statistic proposed by Das et al. (2018) [25] and implemented in the existing GSAQ
approach [25], and its expression is shown in Equation (8).

Here, the NGQ follows a hypergeometric distribution and its PMF can be given as:

P
[
NGQ = v

]
=

(
V
v

)(
N −V
n− v

)
(

N
n

) (12)

where V: total number of genes covered by the QTLs in the whole Ω and v: number of
genes in G that are covered by QTLs.

The expected value and variance of the NGQ, given in Equation (8), can be expressed
in Equations (13) and (14), respectively.

E
(

NGQ
)
=

nV
N

(13)

V
(

NGQ
)
=

nV(N −V)(N − n)
(N − 1)N2 (14)

Under H0, the Z-transformation of the test statistic given in Equation (9) follows a
standard normal distribution (under statistical assumptions), i.e., Z ∼ N(0, 1). Through
this property, the statistical significance value for the selected gene set, G, was computed.
Similarly, this procedure was repeated for all the K gene sets obtained by placing the
threshold, Ti, (i = 1, 2, . . . , K) (K ≤ N) at K different places in the ranked gene list. Then,
we adjusted the gene sets’ statistical significance values through the multiple hypothesis
testing corrections, and the procedure is given as follows.

Let p1, p2, . . . , pK be the corresponding p-values for all the K gene sets, and α be
the level of significance. Here, we assume that all gene sets are equally important for
trait development. Hence, we employed the Hochberg procedure [43] to correct the
multiple testing and compute the adjusted (adj.) p-values for gene sets. It is worthy to
note that Hochberg’s procedure is computationally simple, quite popular in genomic data
analysis [44], and more powerful than Holm’s method [45]. The algorithm for Hochberg’s
procedure [43] is as follows.

Step 1. If p(l) > α, then retain the corresponding null hypothesis (H(l)) and go to the
next step. Else, reject it and stop.

Step 2. i = 2, 3, . . . , K− 1. If p(K−i+1) > α/i, then retain H(K−i+1) and go to the next
step. Else, reject all remaining hypotheses and stop.

Step 3. K. If p(1) > α/K, then retain (H(1)). Else, reject it.
Now, the adj. p-values are given recursively beginning with the largest p-value [43]:

p̃(i) =

{
p(i) i f i=K

min( p̃(i+1), (K− i + 1)p(i))
i f i = K− 1, . . . , 1 (15)

Further, based on the computed adj. p-values, the underlying QTL enrichment signifi-
cance of the selected gene sets was assessed. In other words, a lesser value of adj. p-value
indicates more QTL enrichment of the selected gene set for the target trait development
and vice-versa. Similarly, we also computed the False Discovery Rate (FDR) for the selected
gene set. The outlines and key analytical steps of the proposed GSQSeq approach are
shown in Figure 1.
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Figure 1. Operational procedure for GSQSeq approach. (A) Outlines of RNA-seq data analysis. (B) Analytical steps involved
in GSQSeq proposed approach. Various steps involved in RNA-seq data analysis are described, starting from data collection
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The major steps include: (i) preparation of the gene ranked list after differential expression analysis of RNA-seq count data
and selection of gene sets.

3. Results and Discussion
3.1. Mapping Results

From the SRA database of NCBI, a total of 542,309,740 single-end reads (with 50 base
pair length) were obtained for 24 libraries. The number of read sequences in each library
and the GC content is given in Table 2. The average number of reads per library was found
to be 22,596,239, with a CV of 0.169 (=16.9 %). After pre-processing with Trimomatic, the
above summary statistic was reduced to 22,353,215 as the mean library size with a CV of
0.171 (=17.1%). However, through pre-processing, the average library size was reduced
compared to that of raw sequence datasets, but, the variability among the libraries remained
unchanged. Then, the qualities of the read sequences after removal of the adapter se-
quences were assessed through the FastQC tool, and the results are given in Supplementary
Figures S2–S4. From the distribution of the quality scores over the base pairs, it was
observed that the quality scores of the sequence reads are above 30, which indicated better
qualities of the samples/libraries (Figures S2–S4). In other words, we could not trace
any universally low-quality reads in the salinity stress data. Therefore, the processed
sequence datasets can be used for further analysis, such as mapping to the rice reference
genome followed by quantification transcript abundance. It was observed that most of
the pre-processed reads (94.3%) were successfully mapped to the rice reference genome.
Out of these mapped reads, 2.87% of reads were mapped to more than one position and
subsequently discarded from further analysis. Through StringTie, we quantified the tran-
scriptomic abundance of the transcripts/genes over 24 samples, resulting in the read count
data of 55,801 genes. This generated read count data matrix was used to prepare the ranked
gene list through the downstream DE analysis.
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Table 2. Description about the RNA-seq data for salinity stress response in rice.

Sampleid SRA id Genotype Tissue Class Class Label Total Seq %GC Length

GSM2940029 SRR6502085 Vialone Nano Leaves Salinity 1 24449975 53 50
GSM2940030 SRR6502086 Vialone Nano Leaves Salinity 1 20017598 53 50
GSM2940031 SRR6502087 Vialone Nano Leaves Salinity 1 20827821 52 50
GSM2940032 SRR6502088 Vialone Nano Leaves Control 0 21716861 53 50
GSM2940033 SRR6502089 Vialone Nano Leaves Control 0 20733565 53 50
GSM2940034 SRR6502090 Vialone Nano Leaves Control 0 21422404 54 50
GSM2940035 SRR6502091 Vialone Nano Roots Salinity 1 27840276 52 50
GSM2940036 SRR6502092 Vialone Nano Roots Salinity 1 23879836 53 50
GSM2940037 SRR6502093 Vialone Nano Roots Salinity 1 19205417 51 50
GSM2940038 SRR6502094 Vialone Nano Roots Control 0 19717555 54 50
GSM2940039 SRR6502095 Vialone Nano Roots Control 0 19368950 54 50
GSM2940040 SRR6502096 Vialone Nano Roots Control 0 21735612 53 50
GSM2940041 SRR6502097 Baldo Leaves Salinity 1 21831739 53 50
GSM2940042 SRR6502098 Baldo Leaves Salinity 1 19588041 52 50
GSM2940043 SRR6502099 Baldo Leaves Salinity 1 18806965 53 50
GSM2940044 SRR6502100 Baldo Leaves Control 0 23497719 54 50
GSM2940045 SRR6502101 Baldo Leaves Control 0 20177524 55 50
GSM2940046 SRR6502102 Baldo Leaves Control 0 18961877 54 50
GSM2940047 SRR6502103 Baldo Roots Salinity 1 19608758 51 50
GSM2940048 SRR6502104 Baldo Roots Salinity 1 24485505 51 50
GSM2940049 SRR6502105 Baldo Roots Salinity 1 34395309 54 50
GSM2940050 SRR6502106 Baldo Roots Control 0 24854382 53 50
GSM2940051 SRR6502107 Baldo Roots Control 0 30769580 52 50
GSM2940052 SRR6502108 Baldo Roots Control 0 24416471 51 50

Sample id: GEO sample id; SRA: SRA sample id; class labels for samples (1: treated and 0: control); GC content: content of G, C base pairs
in read sequences.

3.2. Genes Ranked List Preparation
3.2.1. Rice RNA-Seq Data

The read sequence count data for each sample/library belonging to two contrasting
classes, i.e., salinity treated vs. control, as given in Table 2, were used for the DE analysis.
The DE analysis was performed through the edgeR R package (v. 3.30.3) implemented in R
software (v. 4.0.1) (Supplementary Document S3). The DE test statistic(s) for the genes were
computed through LRT statistic(s). Based on the LRT statistic’s absolute value, the genes
were arranged in descending order to prepare the gene ranked list. Different threshold
(Ti) values are then placed on the gene ranked list to select different gene sets. Through
this process, gene sets of sizes such as 200, 300, 400, . . . , 2000 are selected from the ranked
gene list for further analysis with the underlying salinity responsive QTLs (Supplementary
Document S3).

3.2.2. Rice Microarray Datasets

The log2 scale transformed expression data from the RMA for the selected experi-
mental samples (Supplementary Document S1) for the cold, drought, fungal, and insect
stresses were used to prepare the gene-ranked list through the DE analysis. Here, the
DE analysis was performed through a t-test, and the test statistic(s) for the genes were
computed from the t-test. The genes were arranged in descending order for the preparation
of the gene-ranked list. Then, different values of the Ti are placed in various positions on
the gene-ranked list to select different gene sets. Through this process, gene sets of sizes
such as 200, 300, 400, . . . , 2000 are selected from the ranked gene lists for each dataset.

3.3. Distribution of the Test Statistic(s)

The distribution of the NQHits statistic(s), computed through the existing GSAQ
approach (under the parameter settings given in Supplementary Table S9) over the selected
gene sets for the different stresses are shown in Figure 2A. Further, the distribution of the
SDGQ statistic(s) computed from the GSQSeq approach is also shown in Figure 2B. The
distribution of the NQHits statistic(s) calculated from the GSAQ approach indicated that
the values of the NQHits statistic(s) were found to be higher for fungal stress, followed by
insect stress, as compared to other datasets (Figure 2A). This trend is due to the fact that
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a higher number (76) of QTLs are reported for this stress, followed by 57 in fungal stress.
Alternatively, the NQHits statistic is a linear function of the number of genes present in
gene sets, the number of QTLs reported for that stress, and the length of the QTL regions
(Figure 2A). Similar interpretations can be made for the distribution of the SDGQ statistic(s)
(Figure 2B). However, the NQHits statistic did not consider the DE scores of the genes
present in the selected gene set. Here, it is worthy to note that the SDGQ is a function of the
number of genes, their respective DE scores in the gene set, the number of QTLs reported
for that stress, and the QTL regions (Figure 2B).
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Figure 2. Distribution of test statistic(s) over the gene sets. (A) Distribution of NQHits test statistic over the selected gene
sets. (B) Distribution of SDGQ test statistic over the selected gene sets. The distribution of the test statistic(s), such as
NQHits and SDGQ, are shown for salinity stress (RNA-seq data), drought stress, cold stress, fungal stress, and insect stress
microarray datasets.

3.4. Proposed Approach for Gene Set Analysis with QTLs

The NQHits and SDGQ statistic(s) failed to tell the trait-specific enrichment of the
gene sets or association of genotype–phenotype relation. Therefore, we proposed the
GSQSeq approach to test the gene sets’ trait-specific enrichments with the underlying
QTLs. We also explored the ability of the proposed GSQSeq and the existing methods,
including GSVQ and GSAQ, to provide biologically meaningful insights (e.g., establishing
genotype-trait-specific phenotype associations) using the real high-throughput GE datasets
derived from RNA-seq and microarrays. Through all the three tested GSA approaches, we
searched significantly associated gene sets enriched with underlying QTLs selected by a
particular gene selection method (e.g., t-test in microarrays, edgeR in RNA-seq) in each of
the datasets. The results of such analysis are shown in Tables 3 and 4.
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Table 3. List of the −log10(p-values) computed from the proposed GSQSeq and existing (GSVQ and
GSAQ) approaches for salinity and cold stress datasets.

Salinity Cold

Size GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq

200 1.05 18.85 222.71 0.05 1.00 222.46
300 0.67 8.29 212.71 0.01 2.00 223.02
400 0.69 8.02 211.71 0.08 2.00 224.30
500 0.82 12.99 302.23 0.02 2.00 225.83
600 0.62 5.85 270.66 0.02 2.00 226.60
700 0.75 10.74 226.11 0.01 1.30 227.13
800 0.77 13.23 197.34 0.00 1.30 228.46
900 0.89 14.98 168.77 0.00 1.30 229.41

1000 0.73 9.76 159.48 0.01 1.30 230.45
1100 0.85 14.63 138.47 0.02 1.30 231.46
1200 0.71 11.52 132.49 0.03 1.30 302.59
1300 0.91 17.85 112.50 0.02 1.30 249.00
1400 0.85 14.15 105.22 0.02 0.00 236.69
1500 0.72 8.29 101.95 0.03 1.19 232.29
1600 0.83 11.51 89.95 0.04 1.30 219.10
1700 0.71 8.09 87.65 0.02 1.46 213.22
1800 0.82 10.50 77.54 0.01 1.70 196.50
1900 0.93 14.24 68.47 0.01 2.30 203.26
2000 0.81 10.89 67.15 0.00 2.00 180.41

Size: size of the selected gene sets obtained from the gene expression data; −log10(p-value) are listed in the table;
GSQSeq: proposed approach; GSVQ and GSAQ are existing approaches. Performance analysis of the proposed
approach was carried out with the existing approaches on salinity stress RNA-seq data and cold stress microarray
expression data. Higher the value of −log10(p-value), better the gene set enrichment with QTL.

Table 4. List of the −log10(p-values) computed from the proposed GSQSeq and existing (GSVQ and GSAQ) approaches for
microarray datasets.

Drought Fungal Insect

Size GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq

200 0.83 11.80 276.94 0.00 0.00 254.48 0.65 6.36 229.17
300 0.64 9.29 252.76 0.31 0.87 220.28 0.94 13.44 234.13
400 0.45 1.86 254.48 0.06 0.00 202.94 0.69 8.45 236.10
500 0.81 11.66 252.28 0.22 0.02 190.28 1.08 18.20 228.86
600 0.79 12.97 252.16 0.23 0.00 181.58 0.92 13.93 228.69
700 0.49 2.75 252.06 0.34 0.62 219.58 1.23 21.99 228.56
800 0.78 11.56 251.98 1.04 10.44 219.50 0.81 12.97 228.47
900 0.70 10.90 251.92 0.98 5.69 219.43 1.09 17.49 228.39
1000 0.93 14.56 251.86 0.14 0.16 219.38 1.09 15.47 228.32
1100 1.01 15.11 251.81 0.00 0.00 219.33 1.43 23.98 228.26
1200 1.08 19.30 251.76 0.00 0.00 219.28 1.62 25.14 228.21
1300 1.00 18.04 293.50 0.04 0.00 219.24 1.43 24.35 228.17
1400 0.93 15.60 276.15 0.19 0.37 219.20 2.28 28.35 228.12
1500 1.01 13.95 252.76 0.34 1.22 219.17 1.99 27.67 228.09
1600 0.69 9.23 254.48 0.94 6.27 219.13 1.50 21.05 228.05
1700 1.01 14.48 220.28 2.29 19.08 219.10 1.62 21.52 228.02
1800 1.09 16.36 202.94 0.14 0.03 219.08 1.04 16.17 227.99
1900 1.10 17.91 190.28 0.00 0.00 219.05 1.19 20.39 227.96
2000 1.04 19.27 181.58 0.01 0.00 219.02 1.08 13.90 227.94

Size: size of the selected gene sets obtained from the gene expression data; −log10(p-value) are listed in the table; GSQSeq: proposed
approach; GSVQ and GSAQ are existing approaches. Performance analysis of the proposed approach was carried out with the existing
approaches on drought, fungal and insect stress microarray gene expression datasets. Higher the value of −log10(p-value), better the gene
set enrichment with QTL, and vice-versa.
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For salinity stress RNA-seq data, the magnitude of−log10 (p-values) from the GSQSeq
was found to be much higher than that of the existing GSVQ and GSAQ approaches
(Table 3). This observation indicated that the GSQSeq approach more often rejected H0 (i.e.,
equal salinity QTL enrichment of both selected and not-selected gene sets) than GSVQ and
GSAQ approaches. Therefore, it was found that the salinity trait-specific analysis of gene
sets derived from the RNA-seq study was successful through GSQSeq compared to the
GSVQ and GSAQ approaches (Table 3). In other words, the GSQSeq approach performed
better in terms of detecting the QTL-enriched gene sets compared to the existing methods.
In order to cross-validate these findings on the same RNA-seq data related to salinity stress,
we computed the FDR for the GSQSeq, GSAQ, and GSVQ approaches for all the gene sets.
The results are given in Tables 5 and 6. It was observed that the computed values of FDR
from the proposed GSQSeq approach for all the selected gene sets are far below those
of existing GSAQ and GSVQ approaches (Table 5). Therefore, it can be inferred that the
proposed GSQSeq approach was more robust than the GSAQ and GSVQ approaches for
performing gene set enrichment testing with salinity trait-specific QTLs.

Table 5. List of the FDRs computed from the proposed GSQSeq and existing approaches from salinity RNA-seq and cold
stress microarray gene expression datasets.

Salt Cold

Size GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq

200 0.324 2.69 × 10−18 6.99 × 10−160 0.226 0.10 1.58 × 10−249

300 0.424 6.14 × 10−9 6.50 × 10−139 0.254 0.50 2.96 × 10−237

400 0.224 9.97 × 10−9 5.63 × 10−133 0.352 0.68 6.90 × 10−233

500 0.124 2.45 × 10−13 2.82 × 10−302 0.226 0.46 9.96 × 10−220

600 0.238 1.40 × 10−06 8.31 × 10−271 0.226 0.23 7.09 × 10−214

700 0.024 2.86 × 10−11 2.46 × 10−226 0.344 0.01 3.32 × 10−197

800 0.024 1.61 × 10−13 1.23 × 10−197 0.226 0.18 1.78 × 10−236

900 0.424 6.67 × 10−15 4.08 × 10−169 0.241 0.14 2.07 × 10−236

1000 0.224 2.37 × 10−10 6.99 × 10−160 0.223 0.10 2.37 × 10−236

1100 0.224 1.12 × 10−14 6.50 × 10−139 0.223 0.06 2.67 × 10−236

1200 0.224 5.87 × 10−12 5.63 × 10−133 0.223 0.02 4.47 × 10−303

1300 0.254 1.35 × 10−17 4.98 × 10−113 0.223 0.02 1.58 × 10−249

1400 0.064 2.25 × 10−14 8.88 × 10−106 0.223 0.01 2.96 × 10−237

1500 0.274 6.14 × 10−9 1.53 × 10−102 0.223 0.051 6.90 × 10−233

1600 0.224 5.87 × 10−12 1.43 × 10−90 0.241 1 9.96 × 10−220

1700 0.224 9.00 × 10−9 2.63 × 10−88 0.223 1 7.09 × 10−214

1800 0.224 4.59 × 10−11 3.22 × 10−78 0.223 1 3.32 × 10−197

1900 0.524 2.19 × 10−14 3.60 × 10−69 0.223 1 6.10 × 10−204

2000 0.124 2.24 × 10−11 7.10 × 10−68 0.223 1 3.92 × 10−181

Size: size of the selected gene sets obtained from the gene expression datasets; False Discovery Rates are listed in the table; GSQSeq:
proposed approach; GSVQ and GSAQ are existing approaches. The performance analysis of the proposed approach was carried out with
the existing approaches on salinity stress RNA-seq data and cold stress microarray expression data. Lower the FDR values, better the gene
set enrichment with QTL, and vice-versa.

For cold stress data obtained from microarrays, the values of −log10 (p-values) from
GSQSeq were observed to be higher than those of the existing GSVQ and GSAQ approaches
over all the selected gene sets (Table 3). This finding indicated that the GSQSeq approach
more often rejected H0 (i.e., equal cold QTL enrichment of both the selected and not-selected
gene sets) than the GSVQ and GSAQ approaches. Further, the FDR values computed
through the proposed GSQSeq approach for all the selected gene sets of sizes 200, 300,
. . . , 200 were found to be least followed by the GSAQ compared to the GSVQ approach
(Table 5). Similar findings were observed for drought, fungal, and insect stress datasets
in rice (Tables 4–6). Therefore, it can be concluded that the proposed GSQSeq approach is
much better and more robust than GSAQ and GSVQ for performing gene set enrichment
testing with the underlying QTLs for the microarray-based GE studies. Furthermore, we
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found much greater consistency in QTL-specific gene set enrichment analysis across five
different stress scenarios, viz. salinity, cold, drought, fungal, and insect, by using GSQSeq
than the GSVQ and GSAQ approaches (Tables 3–6).

Table 6. List of the FDRs computed from the proposed GSQSeq and existing approaches from microarray gene expre-
ssion datasets.

Drought Fungal Insect

Size GSAQ GSQSeq GSVQ GSAQ GSQSeq GSVQ GSAQ GSQSeq

200 2.52 × 10−12 1.04 × 10−276 0.996 1 6.24 × 10−221 0.224 4.33 × 10−07 5.1 × 10−230

300 6.14 × 10−10 2.20 × 10−253 0.996 0.42 8.79 × 10−253 0.141 4.36 × 10−14 3.0 × 10−225

400 0.01383 4.47 × 10−255 0.996 1.00 1.10 × 10−252 0.215 3.77 × 10−9 1.8 × 10−220

500 3.21 × 10−12 6.24 × 10−221 0.996 1.00 6.59 × 10−249 0.121 1.19 × 10−18 1.1 × 10−215

600 1.83 × 10−13 8.79 × 10−253 0.996 1.00 3.95 × 10−245 0.141 1.58 × 10−14 6.2 × 10−211

700 0.00188 1.10 × 10−252 0.996 0.65 2.37 × 10−241 0.121 3.24 × 10−22 3.7 × 10−206

800 3.73 × 10−12 1.32 × 10−252 0.549 3.42 × 10−10 1.42 × 10−237 0.172 1.19 × 10−13 2.2 × 10−201

900 1.61 × 10−11 1.54 × 10−252 0.549 9.63 × 10−06 8.54 × 10−234 0.121 5.55 × 10−18 1.3 × 10−196

1000 6.61 × 10−15 1.76 × 10−252 0.996 1 5.12 × 10−230 0.121 4.98 × 10−16 7.5 × 10−192

1100 2.12 × 10−15 1.98E × 10−252 0.996 1 3.07 × 10−226 0.101 4.01 × 10−24 4.4 × 10−187

1200 5.11 × 10−19 2.20 × 10−252 0.996 1 1.84 × 10−222 0.101 4.56 × 10−25 2.6 × 10−182

1300 5.74 × 10−18 4.96 × 10−294 0.996 1 1.11 × 10−218 0.101 2.13 × 10−24 1.5 × 10−177

1400 7.92 × 10−16 1.04 × 10−276 0.996 1 6.64 × 10−215 0.098 8.54 × 10−28 9.0 × 10−173

1500 2.14 × 10−14 2.20 × 10−253 0.996 0.226411 3.98 × 10−211 0.098 2.04 × 10−27 5.3 × 10−168

1600 6.54 × 10−10 4.47 × 10−255 0.549 3.44 × 10−06 2.39 × 10−207 0.101 2.13 × 10−21 3.1 × 10−163

1700 6.94 × 10−15 6.24 × 10−221 0.097 1.57 × 10−18 1.43 × 10−203 0.101 8.14 × 10−22 1.9 × 10−158

1800 1.65 × 10−16 1.30 × 10−203 0.996 0.150939 8.61 × 10−200 0.123 1.06 × 10−16 1.1 × 10−153

1900 5.89 × 10−18 5.57 × 10−191 0.996 2.64 × 10−01 5.16 × 10−196 0.121 8.51 × 10−21 6.4 × 10−149

2000 5.11 × 10−19 2.65 × 10−182 0.996 3.77 × 10−01 3.10 × 10−192 0.121 1.58 × 10−14 3.8 × 10−144

Size: size of the selected gene sets obtained from the microarray gene expression data; False Discovery Rates are listed in the table; GSQSeq:
proposed approach; GSVQ and GSAQ are existing approaches. The performance analysis of the proposed approach was carried out
with the existing approaches on drought, fungal and insect stress microarray datasets. The lower the FDR values, the better the gene set
enrichment with QTL, and vice-versa.

The proposed GSQSeq approach is an improved way to perform the trait-specific
analysis of the gene sets to establish genotype (polygenes)–phenotype (quantitative trait)
association testing with the help of genetically rich QTL data. It is more biologically
appealing to establish the association of genes (genotype) in the selected gene set with
the underlying QTLs (traits/phenotypes). However, in the existing GSVQ and GSAQ
approaches, the genes in gene sets are taken as input to hypergeometric distribution for
performing trait enrichment analysis. These approaches violated the basic assumptions
of the hypergeometric test (i.e., sampling units must be drawn without replacement) and
did not consider the DE scores of the gene set’s genes. Thus, the existing approaches
are expected to have poor performance in terms of gene set enrichment. Furthermore,
the GSQSeq approach was more successful and useful in detecting the trait-specific QTL-
enriched gene sets than the existing methods.

The proposed GSQSeq approach allowed us to statistically test the gene set for en-
richment with the underlying QTLs (i.e., rejection of the null hypothesis of the random
association of selected genes with QTLs). Through this, a p-value was assigned to each
selected gene set, which is statistically meaningful to genome researchers and experimental
biologists (as the value lies between 0 and 1). The gene sets with lower p-values are consid-
ered as more enriched with the underlying trait-specific QTLs, and vice-versa. It may be
noted that the proposed GSQSeq technique is a two-stage approach. First, it deals with
selecting gene sets through the downstream DE analysis from the large GE data. Second, it
assesses the QTL enrichment significance of gene sets by using a developed parametric
testing procedure. This analysis eases the interpretation of a large-scale experimental GE
data by identifying trait-specific enriched gene sets. Instead of focusing on the individual
QTL hit gene (i.e., genes overlapped with QTL region), researchers can focus on the QTL-
enriched gene sets (polygenes), which tend to be more reproducible, and more interpretable
(for quantitative traits).
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The proposed GSQSeq approach can be considered a valuable tool for performing
gene(s) enrichment analysis in a molecular plant breeding context, as most of the plant
traits are quantitative and controlled by polygenes. Further, it provides a valuable tool for
integrating the GE data from RNA-seq or microarray studies with genetically rich QTL
data to identify potential QTL-enriched gene sets or the sets of QTL candidate genes. These
QTL-enriched gene sets may provide valuable input or hypotheses to plant breeders to
design their breeding experiments.

4. R Software Package

To facilitate the use of the proposed gene set analysis with the QTL approach among
the researchers, we developed an R software package that includes GSQSeq R package
and accompanying documentation with examples. This package is supplied with the
manuscript as supplementary material and is also available in https://github.com/sam-
uofl/GSQSeq. The inputs and guidelines for the use of the GSQSeq R package are given
in Supplementary Document S5. This software can analyze the gene sets for GE datasets
derived from expression studies including microarrays and RNA-seq. For microarray GE
data, four different gene selection methods, such as t-test, F-score, Maximum Relevance
and Minimum Redundancy (MRMR), and Support Vector Machine (SVM) techniques [46],
are implemented for the selection of relevant gene sets from the high-dimensional GE data.
After that, a selected gene set of a particular ‘size’, obtained from microarray GE data, is
analyzed with the underlying QTL data. Both these steps can be executed by implementing
the GSQMicro function in the GSQSeq R package.

In the developed software, two popular and extensively used DE analytical methods,
including edgeR and DESeq2, are implemented in the GSQSeq R package to prepare the
gene ranked list for RNA-seq count data. Then, the selected genes obtained from the
RNA-seq data are analyzed with the underlying QTLs to establish the genotypes with
quantitative trait links. These steps are implemented in the GSQSeq function of the GSQSeq
R package. Moreover, the QTL enrichment significance of the selected gene sets obtained
from both the microarrays and RNA-seq can be assessed through the computed p-values.
However, different user-specific parameter options are provided to the users for their
desired analysis. Hence, the GSQSeq software offers opportunities to get the QTL-enriched
gene sets of desired ‘sizes’ from the microarray and RNA-seq GE data.

5. Conclusions

In the last decade, GSA has become the primary choice of secondary genomic data
analysis for explaining the underlying biology for high-throughput GE studies. Most of
the bioinformatics studies look for statistically significant gene sets as either biological
interpretations of long gene list in GE data or validation of computationally derived results
from DE analysis. Traditionally, the gene sets are analyzed based on the available GO or
pathway annotation data. However, such research may not establish the links between
gene sets (polygenes) with the underlying quantitative traits. Therefore, in this study, we
proposed an innovative statistical approach and tool, i.e., GSQSeq, to analyze gene sets with
genetically rich trait data, such as QTL. This approach is an improvement over the existing
GSVQ and GSAQ methods, as it considers the DE scores of the genes in the gene list in
performing GSA with the QTLs. In other words, the proposed approach may be regarded
as the second generation of GSA with QTL as it is an improvement over first-generation
GSA methods, such as GSVQ and GSAQ (based on ORA). Through this proposed GSQSeq
approach, the statistically meaningful and biologically interpretable p-values are assigned
to each gene set, which profoundly describes the trait enrichment of the gene sets.

The researchers and molecular biologists may focus only on the QTL-enriched gene
sets to frame their hypothesis without considering the long list of genes in the high-
throughput GE studies. The comparative performance analysis of the proposed approach
with respect to the existing methods indicated its better and more robust performance on
multiple crop GE datasets. This approach will have immense plant biology and breeding

https://github.com/sam-uofl/GSQSeq
https://github.com/sam-uofl/GSQSeq
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applications for the identification of trait-enriched gene sets (as plant traits are quantitative)
for stress response engineering. Further, the developed tool provides a statistically sound
computational environment for integrating high-throughput GE data with genetically rich
QTL data. This approach can also be extended to analyzing the GE datasets obtained from
single-cell RNA-seq GE studies. Here, due to the unavailability of rice single-cell data sets,
we cannot test the performance of the GSQSeq approach on such datasets.

Further, the researcher may consider testing the utility of the GSQSeq tool on other
plant and non-plant GE studies as a potential future work. In future, statisticians and
biologists may focus on developing the next generations of GSA with QTLs by using
graph/network theoretic approaches. These new approaches will analyze the high-
throughput GE data more efficiently to understand the biological systems better, which
will increase the specificity, sensitivity, utility, and relevance of GSA in GE studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/e23080945/s1. Document S1: Rice RNA-sequencing dataset collection and pre-processing.
Document S2. Differential Expression analysis of RNA-seq data. Document S3. Data collection, pre-
processing, meta-analysis and preliminary gene selection for rice. Document S4: Stress(es)-specific
Quantitative Trait Loci information for rice (Oryza sativa L.). Table S9. Number of gene samples and
sizes of gene sample for each selected gene set for GSAQ analysis. Document S5: Guidelines and
tutorials for GSQSeq R package. Supplementary Material 1. Example datasets for GSQSeq R package.
Supplementary Material 2. GSQSeq R package.
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