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Abstract: For finding colorectal polyps the standard method relies on the techniques and devices of
colonoscopy and the medical expertise of the gastroenterologist. In case of images acquired through
colonoscopes the automatic segmentation of the polyps from their environment (i.e., from the bowel
wall) is an essential task within computer aided diagnosis system development. As the number of the
publicly available polyp images in various databases is still rather limited, it is important to develop
metaheuristic methods, such as fuzzy inference methods, along with the deep learning algorithms
to improve and validate detection and classification techniques. In the present manuscript firstly a
fuzzy rule set is generated and validated. The former process is based on a statistical approach and
makes use of histograms of the antecedents. Secondly, a method for selecting relevant antecedent
variables is presented. The selection is based on the comparision of the histograms computed from
the measured values for the training set. Then the inclusion of the Rényi-entropy-based structural
entropy and the spatial filling factor into the set of input variables is proposed and assessed. The
beneficial effect of including the mentioned structural entropy of the entropies from the hue and
saturation (H and S) colour channels resulted in 65% true positive and 60% true negative rate of the
classification for an advantageously selected set of antecedents when working with HSV images.

Keywords: computer-aided diagnostics; colour spaces; colonoscopy; Rényi entropies; structural
entropy; fuzzy classification

1. Introduction

Colorectal polyps and cancer are the third most common disease in the world nowa-
days [1]. The colorectal polyps–and thus the cancer developing from them–grow on the
surface of the colon/rectum. The literature distinguish several types of polyps. The five
most common polyps types are the inflammatory, the hyperplastic, the adenomatous, the
villous or tubulovillous adenoma, and the serrated adenoma. Structurally and shape-wise
two different fundamental forms can be distinguished within these types, these forms are
the pedunculated and sessile forms. The pedunculated polyps hang from a bowel wall into
the internal space of the bowel. Sessile polyps grow directly on the bowel wall and are
often quite flat.

A portion of these colorectal polyps progress into colorectal cancer over time: approx-
imately 10% of all these lesions [1]. This indicates that the colorectal polyp screening is
extremely important as colorectal cancer affects a large population, especially the popula-
tion over age 50.

Medical image processing systems help doctors in preparing their image-based diag-
noses. The medical image processing procedures and methods do not make a diagnosis
themselves and it is clear that they will not do so in the near future. Their present goal is
to assist the doctors by drawing their attention to image–and thus body–areas which are
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possibly problematic. These methods are referred to as computer-aided diagnosis (CAD)
methods. As the colon cancer and the colorectal cancer are among the leading causes
of death worldwide, many countries carry out screening for as wide a segment of the
population aged 50 and over years as possible. Nowadays, however, in most countries,
early-stage screening is not extensive enough, so it does not have a satisfactory impact
in the prevention of the disease. The colorectal polyps can be detected with a special
endoscope called colonoscope and also with a computer tomography device. CT scans
do not always provide adequate results, futhermore the doctors cannot take samples or
remove polyps during the examination procedure [2–4]. Both the CT and the colonoscopic
procedures are inconvenient for the patients and require thorough preparations from the
patients. In the course of colonoscopy examination the doctor inserts and leads a movable,
flexible endoscope into the bowel through the rectum. This device not only has a lighting
and recording device but also has small tweezers and loops with which samples may be
taken or even lesions can be removed.

Many of the colonoscopes comprise additional light sources for narrow-band imaging
(NBI), and a small container with which they can squish some bluish-coloured liquid
usually (indigo carmine food colour) to a designated area: this bluish-coloured liquid
concentrates in the groves, pits and valleys of the uneven bowel wall, and makes the surface
structure more perceptible. This branch of the endoscopy is called chromoendoscopy [5].

Capsule endoscopy is another relatively new alternative to classical colonoscopy, its
main drawbacks are that it cannot intervene, and it does not facilitate distance and size
estimations [6,7].

In the polyp classification the first step is to determine the shape of the polyp [8,9]. As
it has been mentioned above, polyps can be depressed into the bowel wall, i.e., flat, slightly
protruding sessile polyps or pedunculated polyps with expressed stalk.

As a second step the investigation of the polyp’s surface is carried out. Based on its
texture, the types that are likely to be of cancerous nature can usually be distinguished from
the non-cancerous polyp surfaces. The pit pattern analysis was developed by Kudo and
his coworkers for this purpose. They proposed a five-grade system based on the polyps
surface texture on magnified colonoscopy images [10–12]. Those polyps surface textures
that have almost regular, perfect circular pits of neither very dense and not too sparse
spatial density and have regularly distributed pattern, they are the benign polyps. These
polyps constitute the class A1. If the surface of the polyp has a pattern like a star, it is light
pink, and has regular arrangement, then these polyps–similarly to the A1 polyps–do not
tend to develop into malignancy. These polyps belong to the class A2. However, if the
surface of the polyp has tubular shapes (class B3L) or extremely small round pits with
high spatial density (class B3S), then those polyps may potentially develop into carcinoma.
These usually show some characteristic discoloration, at especially in NBI [5]. The class B4
consist of polyps that are dark and have elongated pits, or have meander-like pits-trenches.
These have already become cancerous. Those polyps that have irregularly textured surface
of black or whitish colour, are in the advanced stadium of cancer, these constitute class B5.

We note here that the question, whether a polyp is malignant or it can turn into a
malignant tumor, can only be answered unambiguously by biopsy, followed by a histologi-
cal examination.

Bernal and his coworkers developed a polyp detection method based on the general
shapes and colour of the polyps [13]. They have set up and organized an international
scientific challenge, i.e., a scientific competition, Medical Image Computing and Computer-
Assisted Intervention (MICCAI) for image segmentation and polyp detection [14]. They
prepared three still image databases with different emphasis for this scholarly competition.
These databases are called the CVC-Colon, Etis-Larib, and CVC-Clinic databases. In these
a specific binary mask is associated with each image. The mask specifies the shape(s)
and location(s) of the polyp(s) in the image. The mentioned masks are drawn by human
medical experts, thus–due to the limited annotation time–they might be inaccurate. Further
causes of the inaccuracy are the manual processing, and the possible vagueness of the polyp
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perimeter (i.e., due to occlusion or suboptimal lighting conditions). In the aforementioned
challenge a wide range of algorithmic methods had been applied by the competing teams,
from convolutional neural network coupled with fully automated learning to various
hybrid polyp detection methods. There was also absolutely handcrafted method that was
based on the idealized appearances of the polyps. As in medical image processing the
main issue is the low availability and high cost associated, therefore we decided to use a
dedicated method that relies on fuzzy inference.

Fuzzy sets are a conceptual extension of the Boolean sets (where any object can have
either 0 or 1 membership values in the sets): In 1965 Zadeh introduced memberships that
have real values between 0 and 1 [15,16]. Using fuzzy memberships instead of the classical
“yes” and “no” values, the “if A1 and A2 and . . . , then Bi”-type rules can be turned into
more flexible and more applicable rules and associated algorithms, e.g., for decision and
control. The fuzzy rules, however have to be determined, as also the membership functions
of each antecedent Aj for each of the consequents Bi, thus the use of a training set is also
necessary for fuzzy decision. If the number of training pictures is not very large, then the
rules can be adjusted, made more efficient by incorporating expert knowledge. These two
aspects justify the application of fuzzy inference for the purpose.

Also a technique called fuzzy rule interpolation [17] can be applied to images, for
those cases when some of the antecedent parameters have no membership at any of the
rules, and therefore a classical Mamdani-Assilian citeMamdani or other commonly used
inference method will not give valid output.

Based on our research interest and experience in fuzzy classification, we took an
fuzzy inference based approach for detecting and classifying colonorectal polyps and
developed a method that classifies image segments according to the inferred presence
of one or more polyp being shown in them [19]. The aim is not a perfect segmentation
of a polyp within a colonoscopic image, but to draw attention of the medical personnel
to a given image segment or to several image segments, where polyps might be visible.
Firstly, the images are cut into smaller segments, and ech segments is labeled with a fuzzy
decision value. Initially, we computed and used certain statistical parameters of the image
segments and fitted polynomials to these [20]. However, polynomials introduced rather
large sensitivity–in respect of the tile-size–into the method, so we dismissed this approach,
but instead applied an edge-sensitive approach [21]. Later different preprocessing methods
were incorporated into the approach and their influence were also studied [22].

After some experimentation it has become evident, that a general rulebase that is
derived from the whole image-base may not be effective, as there are many different types of
polyps furthermore, these polyps had been photographed from fairly different angles and
viewpoints, not to mention; the problem associated with the different state of cleansing, in
which the bowels appear in the pictures. For these reasons grouping process we made sure
to include within each group only images ta, we grouped the images within the databases
into image groups. During this grouping we made sure to include within each group
only images taken from fairly similar angles of the polyps. These different image groups
resulted in different classification rulebases, however the performance of other rulebases
were also tested on each image group. Nevertheless, many of the heterologous rulebases
showed similar efficiency as the homologous ones, therefore, these could be joined or
utilized in the construction of a joint rulebase, or of a multilevel fuzzy classification scheme.

Analysing the histograms of the factual (measured and computed) data for each of
the antecedents, it was realized that the fuzzy membership functions corresponding to
“polyp” and “no polyp” outputs were very similar for certain antecedents, suggesting that
by omiting them all, or at least some of these antecedents would be a viable option without
much contraproductive effect on the result.

Bernal and his coworkers [23–25] carried out a studies, in which they tracked, where
the human experts’ eyes were looking in the images during polyp searches, they found that
the circular or similarly shaped shadows, i.e., intensity valleys and intensity gradients, that
are characteristic to hemispheres, had been the foci that drew the experts’ attention, and
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therefore, such shadows are considered the key factors in the localization, identification,
recognition, characterization and classification of polyps. Guided by this study we selected
such statistical features of images that are closely linked to 3D shapes like hemispheres
and spherical calottes [26]. In conjuction with the image quality perceived by the experts,
it turned out to be beneficial to compensate for the poorly illuminated environment by
transformation from RGB to HSV colour space and increasing the V values [27]. In the
work presented herein, we also rely on the HSV colour channels furthermore, this colour
space have become an aspect of the investigation.

In the following conciderations, the effects of the above factors are analyzed, namely,
the advantages and disadvantages of the mentioned colour spaces, the selection of the
input parameters, and reduction of their number. In Section 2, the antecedents are listed
and motivated, with special attention to the Rényi entropy antecedents. Next, in Section 3
the mathematical background of the fuzzy inference and fuzzy rule interpolation is sum-
marized for the Readers’ convenience. In Section 4 the results are presented; and finally,
in Section 5, the conclusions are drawn and our plans for further research in the area
are outlined.

2. Antecedents

Colonoscopy images used in the present research are from the three databases pub-
lished during the MICCAI endoscopic vision challenge. This international scientific chal-
lenge was dicsussed above in the Introduction. These databases are the CVC-Colon,
Etis-Larib, and CVC-Clinic databases. These consist of 380, 195, and 612 colorectal endo-
scopic images, respectively. The images are of different size and resolution, the image sizes
are 574 × 500, 1225 × 966, and 384 × 288 pixels, respectively, while the resolutions are
72, 72, and 96 dpi, respectively. All three databases have a resolution of 24-bit in the RGB
colour space with the primary colours sharing equally the bits. Only the first database
uses some low-level compression, the other databases store and manage uncompressed
images. For each image in the databases, a binary mask had been manually created to
specify the position of polyps in the image. This makes the databases suitable for training
learning algorithms, as well as other intelligent methods; in the particular case a fuzzy
classification scheme.

Analysing characteristics of the areas where polyps were present, in the first step,
we partitioned the images into square tiles. Our primary purpose was to develop a
classification algorithm that can establish if the image segment contains polyp or not.
This decision is reached by means of a fuzzy classification system. The antecedents were
selected as described below, in Section 2.1.

2.1. Average, Standard Deviation, Gradients

In colonoscopy, the endoscopic camera takes snapshots in an originally dark, wet
and mucous environment lit by a number of point-like light sources. For this reason, the
pictures usually contain lots of reflections. Moreover, as the bowel wall is originally pink,
the colour range of these pictures is rather narrow (except for the cases, when either the
bowel is not cleansed sufficiently, or the lesion present in the image has turned malignant).
The input parameters for the fuzzy classification system need to be selected for such
an unfriendly spatial, biological, optical environment considering the mentioned colour
composition.

In [23] the images were classified into three classes based on the angle of the view of
the polyp: zenithal, lateral, and semilateral, see Figure 1. In the zenital case, the polyps can
be seen in a top view, from this view they are not significantly lighter than the environment,
but their circumference and the surface texture are usually well distinguishable. A polyp
when viewed from its side (i.e., from a lateral view) with a much darker–distant and
therefore, worse lit–bowel wall background. Then there is also an intermediate semilateral
view. In this case, the background is somewhat darker than the polyp but often the contour,
especially at the polyp’s base’ is hardly visible.
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Figure 1. Sample pictures from widely used colorectal image-bases [13,23,24]. The left image shows
the zenithal view of a colorectal polyp, the second one is a lateral view, while the third is a semilateral
view. The resolution differences of the three databases are also visible on the images.

The polyps are usually protruding from the bowel wall, thus they are lighter in the
images than their surroundings. Based on the above viewing-direction-dependant visual
attributes of the polyps, the average pixel intensity, the standard deviation, the mean of the
gradients’ absolute values, the standard deviation of gradients magnitudes were chosen as
antecedents, as the gradients around the polyp-blobs can be quite large.

2.2. Edge Density

If the edges are strong and distinct (i.e., in most of the zenithal and lateral pictures and
in some of the semilateral ones) edge images provide much information on the location
of the polyp. When computing the edge density within a picture segment, firstly an edge
detection–using an edge detection filter–is carried out.

For instance, a Canny filter making use of the Sobel matrices Sx and Sy can be em-
ploiyed to select pixels where a rapid change in intensity occurs [28].

Sx =

 −1 0 1
−2 0 2
−1 0 1

 and Sy =

 −1 −2 −1
0 0 0
1 2 1

 (1)

As a simple measurable quantity, the ratio of the edges within the image segment was
calculated. If there are many edges in the picture segment (e.g., due to veins, polyp texture,
bowel wall folding, polyp contours), this value will be high, for smoother image segments
this value tends to be low.

2.3. The R ényi Entropy Based Structural Entropy and the Spatial Filling Factor

In image processing and computer vision, entropies are proven to be useful fea-
tures [29]. Beside the usual von Neumann [30] and Shannon [31] entropies, there are many
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other generalizations and these are also in use in the mentioned disciplines [32,33]. There
are a number of algorithmic approaches that apply some sort of enropies to images, but
they all need a conversion from the pixel intensities to probability distributions, i.e., firstly,
intensity histograms need to be computed for the images and then these histograms need
to be normalized. The entropy is defined by the probabilities of the elements of a set,

H(S) = −
N

∑
i=1

pi log pi, (2)

with H being the entropy of set S where the probability of the ith element’s occurance is pi
and the total number of these elements is N, e.g., in the above example N = 256. In other
approaches, certain neighbourhoods are looked at and their probability distributions are
derived, or even differences between corresponding elements of the neighbourhoods are
analysed in this manner. As pixel intensities relate to each other within neighbourhood,
and the differences of the neighbouring pixels are rather easy to calculate, a possible
approach to the “image-to-probability” task is to calculate the probability distribution
of these differences [34]. This results in a one-dimensional (i.e., neighbour difference)
distribution. It can be extended to 2D, if x and y directions are considered separately.
Moreover, many other dimensions could be introduced if greater (i.e., not just direct)
neighborhoods are to be considered.

Another, straightforward “image-to-probability distribution” conversion possibility
is to normalize the complete image (or a part of it) so that the sum of the pixel intensities
would be 1, thus they could be viewed as a 2D probability distribution [35]. Pipek and
Varga [36] introduced two entropy related quantities, that can give a quantitative measure
of the overall shape. One of the quantities, the logarithm of the spatial filling factor q,

log q = S2 − S0 (3)

was already used in quantum physics. Here S2 and S0 are the 2nd and 0th generalized
Rényi entropies, that can be calculated according to the following formula,

Sn =
1

1− n
log

N

∑
i=1

pn
i , (4)

where N is the number of pixels. The probability pi is the normalized pixel intensity,

pi = Ii/
N

∑
j=1

Ij, (5)

with Ij being jth pixel’s intensity value. For the limit n→ 1 the Formula (4) results in the
classical Shannon entropy.

The other quantity is the difference of the total entropy S1 and the entropy that is
associated with the ratio of the higher probability points, which is the 2nd Rényi entropy.
This quantity was named structural entropy, and can be calculated as

Sstr = S1 − S2. (6)

The position of the probability distribution on the Sstr(log q) map gives information
about the localization, shape of the distribution. Various distribution shapes, like Gaussian,
spherical, sinusoidal or power law distributions have different trend lines on the Sstr(log q)
map, see Figure 2, for instance, if a probability distribution is an exponential function, it will
have an exponential trend line. For further details and the connection between the physical
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quantities and the entropies, and the trend lines associated with various distribution shapes,
see [37]. In image processing, based on the shape of the trend lines associated with the

p(xi, yj) = A · e−|B·xi+C·yj |α (7)

Figure 2. Structural entropy (SStr = S1 − S2) vs. spatial filling factor (−log q = S0 − S2) for various
types of probability distributions. The thick solid line shows the theoretical limit: all the distributions
have to be below this line, i.e., SStr ≤ log q. The other curves show some examples of trend lines.

Bonyár introduced the notion of the localisation factor α [38], which he used for
characterising roughness of micro and nano surfaces [39]. The above Rényi entropy based
quantities are used in detecting the shape and the pattern on the surface of the polyp [29].
We found significant difference between the responses of corrugated bowel wall and the
semisphere-like polyps with or without shadow. For this reason, we introduced the Sstr
and log q quantities as antecedents.

2.4. Wavelets

Wavelet transformation is effective tool widely used in signal and image processing, if
different scale behaviour need to be identified or studied. A wavelet transform generates
the smoothed versions of the studied signal as well as the fine details that are necessary to
move from the smoothed signal to the original signal. The fine details are usually large
at the positions where rapid changes are present in the image. If the signal is 2D then
the wavelet transform should be performed in both dimensions. Our colonoscopy image
segments are also 2D discrete signals within each of the three colour channels. As around
the polyps there are rather rapid variations, we expect the fine scale components to be
relatively large near and around the polyps. The above properties served as motivation for
us to include wavelet transforms of the image segments in our study. The same parameters
were calculated for the wavelet transforms as for the original images themselves. See
antecedent indices 16–75 and 82–99 in Table 1.

A 1D discrete wavelet analysis is a set of transformations with the following properties.
The original series xn, x = 0.1, . . . are expanded into series cn and dn with approximately
half of the original length cn and dn. The former is computed by expanding the series
according to a scaling function φi, that is

cbn/2c =
Ns−1

∑
i=1

φixn−i if n = 2k, (8)
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where Ns is the size of the sliding window and b·c denotes floor operator, i.e., the integer
part of the value. Here it is visible, that the length of the series is (approximately) halved.
Also, the odd indices n are omitted for simplicity from the present paper. This transfor-
mation gives sliding-windowed weighted average over a sliding window of lenth Ns. It
characterizes the larger scale behaviour of the discrete signal. Practically, this operation
is implemented as a low-pass convolutional filter and then downsampling. The latter
series, i.e., dn is the output of a high-pass convolutional filter, that is represents the rapidly
varying components of the signal. Similarly to (8), it can be represented as expansion of
series according to a wavelet ψ as

dbn/2c =
Ns−1

∑
i=1

ψixn−i if n = 2k. (9)

In the case of 2D signals, such as images, the wavelet transform is usually carried out
separately in both dimensions, thus producing four output pictures, see Figure 3. The low-
pass–low-pass output (LL) gives the average behaviour of the image. The second and third,
correspond to the mixed filters, that is low-pass–high-pass (LH) and high-pass–low-pass
(HL). The respective output images have near-zero pixel intensity in the slowly varying
domains, and high intensity, where vertical, or horizontal changes occur in the original
image parts are present. The fourth image is the output after the two high-pass filters (HH),
it has non-zero pixels where the variations are large between the neighbouring pixels in
both directions. These transformed images were analyzed similarly to the original ones.

Figure 3. A picture presented in greyscale from database [24], and its respective wavelet transforms.
In this case only the LH wavelet transformed version carries perceptable information.
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2.5. Initial Set of Antecedents

We generated 99 input parameters including also the above listed measurable quanti-
ties. The antecedents (i.e., these 99 input parameters) of the fuzzy rule base are listed in
Table 1.

Table 1. The indices for the initial antecedent parameters. The indices are given for both the RGB
and the HSV colour representations, e.g., antecedents 1 and 2 are the mean and standard deviation
of the first colour channel, i.e., of the red (R) and of the hue (H) channel, respectively. The wavelet
transformed images are denoted by their respective low-pass and high-pass filters, i.e., LL, LH, HL,
and HH.

Index Antecedent Name

1–2 mean and standard deviation, R/H
3–4 mean and standard deviation, G/S
5–6 mean and standard deviation, B/V

7 edge density, R/H
8 edge density, G/S
9 edge density, B/V

10–11 Sstr, ln q, R/H
12–13 Sstr, ln q, G/S
14–15 Sstr, ln q, B/V
16–30 similar to 1–15, wavelet transform LL
31–45 similar to 1–15, wavelet transform LH
46–60 similar to 1–15, wavelet transform HL
61–75 similar to 1–15, wavelet transform HH
76–77 gradient magnitude’s mean and standard deviation, R/H
78–79 gradient magnitude’s mean and standard deviation, G/S
80–81 gradient magnitude’s mean and standard deviation, B/V
82–87 similar to 76–81, gradient direction
88–93 similar to 76–81, gradient x component
94–99 similar to 76–81, gradient y component

2.6. Colour Spaces HSV and RGB

First we carried out research on RGB (red, green, blue) images from the mentioned
image-bases, then we tested our approach on images converted to HSV colour space. The
RGB colour space is used primarily in computer graphics, and seemed a natural choice.
However, the results derived from RGB images were not encouraging. As according to
the findings in [27] the H and the S channels of the HSV colour space are suitable for
both suppressing and highlighting shadows and this advantageous feature is relied on by
many image processing methods in various application areas, we decided to continue our
experiments in this colour space.

3. Fuzzy Inference and Interpolation
3.1. Fuzzy Sets and Inference

As mentioned in the Introduction, the fuzzy sets which had been introduced in the
seminal work by Zadeh [15], are set-like constructs, whose members (in case of ordinary
sets: elements) can have not only full, membership represented by (binary) 1, but also
partial membership values represented by real values between 0 and 1. Such a “fuzzy”
approach is used by people in conjunction with everyday notions such as ‘tall’, ‘lean’,
and ‘fat’. This is expressed with words like ‘very’, ‘somewhat’ and so on. For example
a human can be considered tall with 1 membership value if they are taller than 2 m, but
in the case of 1.7 m, they can be considered only with, say, 0.1 or 0.3 membership values.
The membership function µ(x) associates membership values with all the possible values
x of the set X being studied, like in our above example the possible human heights. The
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interval Iα of the base set x ∈ X that arises if the membership function is thresholded at a
given membership value α, i.e., the {x : µ(x) ≥ α} is called the α-cut.

Using fuzzy membership functions as rules for decision makes it possible to classify
some measured data with respect to overlapping intervals and regions. Furthermore it
makes the decision process more flexible. A statement like “if a man is tall and has slow
reaction time then he can not be a successful Formula 1 pilot” could be a rule-of-thumb for
the selection of the Formula 1 pilots. However, the separation between being tall and not
being tall is far from being distinct. Similar sentences that are understandable for humans
and common are not interpretable by computers, using only Boolean logic, such sentences
obtain meaning vialy used in everyday talk fuzzy logic. Nonetheless, in order to construe
a meaning to the above example, also the logical operators “and” and “or” need to be
adapted to the fuzzy logic, i.e., need to be fuzzified. In the fuzzy logic literature, there are
a number of different adaptations, definitions of these operators/operations. One of the
most widespread is the Zadeh t-norm and s-norms, where the “and” operation between
two membership values is their minimum, and the “or” operation is their maximum. See
the relevant definitions in [15] and some applications of these in [40,41].

Using these operations complex decisions can be carried out in a straightforward
manner. For the purpose of fuzzy inference, for example, Mamdani and Assilian suggested
in [18] a fairly simple scheme: the antecedents are fuzzy-logically connected with an “and”
while the consequents are connected in the mentioned sense by an “or”; see Figure 4.

Figure 4. Graphical representation of the Mamadani-Assilian type inference. The antecedents are
denoted by Aij, their actual measured value by xi, their membership value in the rule corresponding
to the consequent Bj with wij. The defuzzified decision is shown as B∗.

In the computer-aided diagnosis application considered herein, the rules that are used
in decision are represented by membership functions similar to the ones shown in Figure 4.
In this work, a method relying on triangular fuzzy sets and their characteristic points
(infima and suprema of the supports and the highest value points) was used. These values
were computed from the minimum, maximum and mean of the empirical measured data
from the training set [20], later also these triangles were fitted properly to the shape of the
training set’s measured data’s histograms [42].

Herein we also apply such fitted membership functions. However, the histograms
in some cases have very low numbers outside of a narrow interval, furthermore, in some
cases very sparse fuzzy rules arise, with small or no overlap at all between the supports.
Such an example is given in the 2nd column of Figure 4. In such cases, i.e., if the measured
data falls into a domain where both of the rules have zero membership. Hence, the fuzzy
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inference can not be carried out. For such cases the fuzzy rule interpolation can help to
come up with some meaningful membership values for the purpose of inference.

3.2. Fuzzy Rule Interpolation

As it was discussed above there are cases when conventional inference methods do not
lead to valid results in the inference, thus fuzzy rule interpolation is necessary. One of the
possible interpolation methods was developed by Kóczy and Hirota [17,43]. This method
uses the natural concept, that if an observed value (even fuzzy value) is more similar to
one of the antecedent rules, then its output will also be more similar the corresponding
consequent. To implement this approach, it is necessary to measure the distance of the
observed value from the fuzzy sets. In case of a simple triangular membership functions,
such a distance can be calculated simply from the characteristic points of the membership
functions, i.e., from the vertices of the corresponding triangle. In order to turn this vague
idea into a viable practically usable (e.g., stabil) method ita modification was necessary [44].
According to this modified method the characteristic α-cuts (α = 0 and α = 1) of the
conclusion B∗ based on the antecedent sets Ai, and consequent sets Bj can be calculated as

inf{B∗α} =
∑2n

i=1

(
1

dαL(A∗, Ai)

)k
inf{B∗iα}

∑2n
i=1

(
1

dαL(A∗, Ai)

)k , (10)

and

sup{B∗α} =
∑2n

i=1

(
1

dαU(A∗, Ai)

)k
sup{B∗iα}

∑2n
i=1

(
1

dαU(A∗, Ai)

)k , (11)

if the measured data is A∗, the number of the antecedents is k, and the Euclidean dis-
tance operator is denoted by d(·, ·). This type of rule interpolation was applied in the
present study. Furthermore, also the original, triangular rules were used in a Mamdani-like
inference system, as well as three types of membership functions with extended sup-
ports. This approach was necessary as the mentioned Kóczy-Hirota interpolation only
fills the gaps around the narrow rules that belong to different consequents in a given
antecedent dimension.

4. Experimental Setup

It has become an accepted development practice usual to test the classification methods
to be used on colonoscopy images on public annoted databases and develop and invest
in the method further only after these tests are succesful. In [14] many methods and their
respective results are listed therefore it is convinient to compare the results arrived to via
the methods proposed herein and use the databases that had been provided for the MICCAI
colonoscopy challenge mentioned in the Introduction [13,14,24]. Some information has
been already given in Section 2 on the image sizes used by the mentioned databases. In line
with this image-base oriented approach all the three MICCAI image-bases have been used.

As a first step, each colonoscopy image was cut into roughly the same number of
tiles. The tile sizes were chosen in the following manner for ETIS-Larib [24] it was 200 by
200 pixel, for the CVC Colon [23] 100 by 100, while for the CVC Clinic [13,14] 50 by 50.
From every second tile a training set was built, and the other half of the tiles was used for
testing the derived rulebases. The number of the non-polyp tiles vastly outnumbered those
with one or more polyp. There were 13733 from the former, while only 4066 from the latter
in the test set respectively. In the two reference cases, we used all the 99 antecedents from
Table 1, i.e., for RGB and HSV colour spaces. Later, however, during the experimentation
with various antecedent sets some of the antecedents were omitted.
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As a second step, the fuzzy rulebases were generated from the data gained from the
training set according to the method outlined at the end of Section 3.1. Thus three sets
of rules were created, the first corresponds to the triangle’s core at the mean (Figure 5),
the second at the median of the measured data, and the third rulebase was fitted to the
maximum of the histogram. The suprema and infima of the triangles in this case were set
to the first points where the historgram (that is normalized to 1 as its maximal column
value) surpasses the 0.01 limit starting form both sides.

Figure 5. The histograms of a training set of measured data. Black circles mark the no polyp results,
while the blue circles the tiles with polyp. The rulebases resulting from all three of the methods are
plotted. The black and blue continious poly-lines–used as above–denote the mean centered rules,
and the dashed lines the histogram based rules. Also, for the histogram based rules the Gaussian
and half Gaussian membership functions with extended support are plotted with cyan and magenta
colours. The half Gaussian extended rule membership function consists of two half Gaussians fitted
to the asymmetrical triangle membership functions.

As a last step we evaluated the tiles in the test set, and compared their inferred polyp-
content to that of the associated image masks which had been drawn by experts. Figure 6
shows the plan of the method that can help in finding polyps and our present work is still a
part of the preparatory phase: the selection of the antecedents and building the fuzzy rules.

4.1. Using All the Initial Antecedents

If all the initially selected input variables were used in the inference, both for the
mean centered triangles and for the median centered ones, the results turned out to be
not very encouraging. In the case of mean and median centered types of rulebases the
results were practically always “no polyp”. In case of the histogram fitted rulebase, both
the true positive and the true negative rates (TPR and TNR) were just marginally better
than the the corresponding rates associated with a random classification (TPR = 0.9567,
TNR = 0.1987, MCC = 0.18, PPV = 0.26, NPV = 0.94, κ = 0.08). The results in case of
HSV were either almost all positive, almost all negative. Furthermore, the results depend
on whether interpolation or classical inference was used with extended supports.
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Figure 6. Workflow chart. The first two boxes represent the development of the method, the boxes
with italic type letters represent those parts of method which can be automatically performed without
human interaction, the others need human control or in the case of the detail medical analysis it
should be performed and overseen by human medical experts.

4.2. Using Only the R ényi Entropy-Based Antecedents in the Rulebase

As the structural entropy and the spatial filling factor seemed to be promising in
this type of classification [29], therefore we decided to check, whether using only these
variables from the image tiles and their four wavelet transformed versions can lead to more
probable decisions. When this approach was followed then the histogram fitted results
improved significantly. For the HSV images, the TP and TN rates achieved 55.80% (95% CI
[0.5572, 0.5587]) and 65.79% (95% CI [0.6575, 0.6583]), respectively, which means, that these
entropies enable a better classification than all the previously selected variables together,
even though they are still low, the improvement is visible. The other performance metrics
for this case were MCC = 0.1857 (95% CI [0.1850, 0.1864]), PPV = 0.3257 (95% CI [0.3253,
0.3261]), NPV = 0.8341 (95% CI [0.8338, 0.8343]), κ = 0.1726 (95% CI [0.1719, 0.1732]). The
95% confidence intervals (95% CI) were calculated according to formula[

M− z∗ · σ√
n

, M + z∗ · σ√
n

]
(12)

where M is the mean, σ the standard deviation of the measured values, n is the number of
samples and z∗ is 1.96 for the confidence level of 95%. The generation of the population
was carried out by randomly selecting 80% of the possible test image segments, and the
population element number was n = 100.

As it can be seen from Figures A1–A8 in AppendixA, the histograms of structural
entropies and the spatial filling factors calculated from the HSV channels i.e., the 1st and
3rd columns of antecedent figures corresponding to the mentioned quantities. According
to Table 1, the antecedents concerned were those marked with 10 to 15, 25 to 30, 40 to 45, 55
to 60, and 70 to 75). For the tiles–both–with and without polyps are centered at one side of
the value set very near to each other, but the width of the supports for the two membership
functions that belong to the two consequents differ significantly.

It seemed to be a reasonable approach to select those antecedents, where the his-
tograms differ as much as possible, and the above finding about the structural entropy and
spatial filling factor corroborates this approach. After some consideration we extended this
set of antecedents somewhat. This extended set is detailed in the next subsection.
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4.3. Antecedents Resulting in Considerably Differing Histograms for Images with and
without Polyps

In order to select those antecedents where the histograms, and thus the resulting rules
differ the most, the total absolute distance between the three characteristic points of the
respective approximated histograms (i.e., the distances between the vertices of the purple
and the cyan triangles in Figures A1–A10) were calculated. The input variables where this
total distance was larger than 0.2 are as follows (in decreasing total distance order), see
Table 2.

Table 2. Antecedents where this total distance was larger than 0.2 in decreasing order of the
total distance.

51, 4, 61, 19, 85, 29, 73, 27, 35, 34, 32, 82, 97, 43, 72, 64, 13, 12, 94, 28, 36, 99, 78, 49, 84, 91,
31, 48, 80, 63, 79, 45, 74, 75, 44

For these antecedents, the best result for the RGB colour space was achieved by
interpolation, but it still was very poor, namely only 35% TPR and 75% TNR. The other
performance metrics were MCC = 0.1, PPV = 0.29, NPV = 0.795, κ = 0.35 . For the HSV
colours the results were even worse, almost all tiles in the test set were listed as negative.
Therefore, we investigated the reasons for this situation and found that this set contains
all the very narrow triangle rules (like antecedents 31, 48, 61, 63, 84, 94), and after some
closer investigation, we found that excluding these antecedents considerably improves
the results (40% TPR and 75% TNR), not only for the classical triangular Mamdani-type
classification, but even for interpolation and rules with extended support. We tested this
rather counter intuitive result for many original sets, and excluding these narrow, and
further placed triangle rules always increased the results.

The antecedents with total distance larger than 0.35 are presented in Table 3. This set
includes only 13 antecedents from the 99, however, in this case almost all the classification
results become negative (in medical sense), omitting the mentioned narrow triangle rules
it is still 67.16% TPR (95% CI [0.6708, 0.6725]) and 48.52% TNR (95% CI [0.4848, 0.4857]).
The other performance metrics were MCC = 0.1324 (95% CI [0.1316, 0.1332]), PPV = 0.2787
(95% CI [0.2784, 0.2790]), NPV = 0.8327 (95% CI [0.8327, 0.8335]), κ = 0.1049 (95% CI [0.1042,
0.1055]). As this approach did not seem very successful, we decided to use the difference
of the centers of the histograms as selection rule.

Table 3. The antecedents with total distance larger than 0.35.

12, 28, 36, 44, 45, 49, 74, 75, 78, 79, 80, 91, 99

4.4. Antecedents with Histograms Resulting in Considerable Distance between the Histogram
Centres for Images with and without Polyps

The antecedents, where the centers of the histograms for the two consequents’ training
set were fairly distant from each other, were those identified by the following numbers,
see Table 4. According to Table 1 these numbers correspond to the input variables listed in
Table 5.

Table 4. Antecedents, where the centers of the histograms for the two consequents’ training set were
fairly distant from each other.

2, 3, 5, 10, 11, 12, 13, 17, 18, 20, 25, 26, 27, 28, 37, 38, 39, 52,
53, 54, 62, 63, 64, 68, 69, 72, 73, 77, 79, 83, 85, 86, 89, 91, 95, 97
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Table 5. The antecedents of the reduced set. The colour channels were denoted the following way:
H: hue, S: saturation, V: value or intensity. The last group containts the gradients. As to different
cases were studied: one, which included these gradients, the other which did not, the last row was
denoted by ∗.

Antecedent Group Antecedent

Original tile

standard deviation H
mean of S and V
structural entropy of H and S
ln q of H and S

Low-pass–low-pass wavelet transform edge density of H, S and V
Low-pass–high-pass wavelet transform edge density of H, S and V
High-pass–low-pass wavelet transform edge density of H, S and V

High-pass–high-pass wavelet transform
standard deviation of H and S
edge densities of S and V
structural entropies of S

(Gradients) * (standard deviation of H and S)

For all the input parameters listed in Table 5 the resulting TPR was 64%, and the TNR
60%. Without the gradients (i.e. excluding last row denoted by ∗ in Table 5) 65% and
60% was the TPR and TNR, respectively. The Matthews correlation coefficient was with
gradient 0.1999 (95% CI [0.1991, 0.2007]), without gradient it improved slightly to MCC =
0.2119 (95% CI [0.2112, 0.2125]). The predictive rates behaved very similarly; for the case
with the gradients PPV = 0.3196 (95% CI [0.3192, 0.3200]), NPV = 0.8488 (95% CI [0.8485,
0.8492]), while for the case without the gradients they are only slightly better, PPV = 0.3247
(95% CI [0.3244, 0.3250]), NPV = 0.8538 (95% CI [0.8535, 0.8540]). The Cohen-κ increase
also a little, from κ = 0.1751 (95% CI [0.1744, 0.1758]), to κ = 0.1852 (95% CI [0.1847, 0.1858]).

From this point the results did not improve any further, including all the previously
omitted entropies affect the results by less than a percent. The resulting indices are not
too high, so our research results are not applicable for real diagnosis. It is clear, that a
further search for efficient antecedents is needed, as well as a systematic optimization of
the antecedents should be included [45], or perhaps some bacterial or other nature inspired
algorithms, it is worth to start in this direction, and whether the Rényi entropy based
quantities are applicable for this purpose.

In [13] recently finished colonoscopy challenges the performance of the methods were
quite varied, the TPR was between 71.4% and 16.7%, the TNR was between 98.6% and
26.6% and the PPV was between 93.5% and 13.6%. In the more up-to-date review [46] the
performances improved to (ETIS-Larib dataset) the TPR was between 54.2% and 23.43%, the
PPV was between 70.23% and 25.83%, and (CVC-ColonDB dataset) the TPR was between
60.46% and 12.93%, the PPV was between 76.06% and 37.46%.

5. Conclusions

A fuzzy inference method–making use of fuzzy interpolation and histogram estimation–
for colorectal polyp detection was proposed in this paper. Among the inputs were the
Rényi entropy based structural entropies along with other statistical parameters charac-
terizing the image and its wavelet transforms. The method partitions each image into
a number of tiles and suggests whether a given tile contains polyp, or not. In earlier
works [19,22] a simple triangular rulebase using the minimum, maximum, and mean or
median of the training sets’s empirical data was created, which turned out to be not very
effective. Later a histogram fitted triangular rulebase provided much better results, so
these types of antecedents were employed herein. Our study focused on the selection of
the relevant antecedents.

Intuitively, those antecedents seem to be essential for an effective inference system,
where the rules derived from the images with and without a polyp respectively, differ
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as much as possible. However, we found, that even with rule interpolation, the too
narrow supported antecedents have disadvantageous influence on the classification results.
The antecedents with larger distance between the α cuts in the membership function
corresponding to the positive and negative output rules, but still overlapping supports are
the most effective.

Using the mean, standard deviation, edge density and Rényi entropy based structural
entropy and spatial filling factor, and the gradients were selected as possible antecedents,
however, most of these antecedents, like the means and the gradients had no or had
negative influence on the classification results. Edge densities were important only in the
case of the mixed wavelet transform outputs.

The Rényi entropy based structural entropy from the H and S colour channels of the
original and low-pass wavelet transformed image segment, as well as of the (S) of the high-
pass wavelet transform was proven beneficial for the classification, but the others could
not improve the 65% TPR and 60% TNR of the classification.The influence of changing the
colour channel from RGB to HSV was proven to be positive.

In the future we plan to change the method of prepairing tiles, we would like to
introduce overlaps between the tiles as too small polyp percentage is not beneficial for the
detection efficiency. Also, The results presented in [29] showed that the sliding windows
can uncover such properties that can be used for distinguishing between bowel wall and
polyp-like structures.
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Appendix A. Figures of Histograms and Rules

Figure A1. The measured histograms of the HSV antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A2. The measured histograms of the HSV antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A3. The measured histograms of the HSV antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A4. The measured histograms of the HSV antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A5. The measured histograms of the HSV antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A6. The measured histograms of the RGB antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A7. The measured histograms of the RGB antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A8. The measured histograms of the RGB antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A9. The measured histograms of the RGB antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Figure A10. The measured histograms of the RGB antecedent parameters. The histograms are
normalized in both directions. The measured values are represented by black circles in the case of
the tiles with polyp (positive case), while blue asterisk means the number of tiles without polyp
(negative case). The rules are also plotted for the histogram based triangular membership functions
with the same colour (black for positive and blue for negative), just dashed lines were used, while
the skirted triangle and half Gaussian histogram fitted rules were shown in magenta colour in the
case of the tiles with polyp, and cyan for the polypless tiles.
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Table A1. The rule membership function parameters for the first 33 HSV antecedents. The following
notation was used. The first column, i means the antecedent number, xi0min and xi0max are the
infimum and supremum of the support of the rule corresponding to the non-polyp case, similaly,
xi1min and xi1max are the infimum and supremum of the support of the triangular membership
function of the polyp containing tiles. The columns xi0core and xi1core give the center points, i.e., the
α = 1 α-cuts.

i xi0min xi0core xi0max xi1min xi1core xi1max

1 0 0.0707 0.1414 0.0303 0.0606 0.1212
2 0 0 0.2323 0 0 0.0404
3 0 0.5556 0.9697 0.0909 0.5556 0.8485
4 0 0.0303 0.3434 0 0.0404 0.3939
5 0.0101 0.0707 0.9293 0.0202 0.6263 1.0000
6 0 0.0202 0.2424 0 0.0505 0.3030
7 0 0.1919 0.7576 0 0.5758 0.8283
8 0 0.5859 0.8283 0.1515 0.6465 0.8889
9 0 0.0606 0.7677 0.0303 0.3636 0.7273
10 0 0 0.0101 0 0 0.0101
11 0.9899 1.0000 1.0000 0.9899 1.0000 1.0000
12 0 0 0.0707 0 0.0101 0.0909
13 0.9293 1.0000 1.0000 0.9091 0.9899 1.0000
14 0 0 0.0909 0 0.0101 0.1111
15 0.9091 1.0000 1.0000 0.8990 0.9899 1.0000
16 0 0.0707 0.1414 0.0303 0.0606 0.1212
17 0 0 0.2424 0 0 0.0808
18 0 0.5556 0.9697 0.0909 0.5556 0.8485
19 0 0.0303 0.2929 0 0.0404 0.3939
20 0.0101 0.0707 0.9293 0.0202 0.6263 1.0000
21 0 0.0202 0.2222 0 0.0303 0.2929
22 0 0.2727 0.7677 0 0.2828 0.8485
23 0 0.1313 0.8586 0.1313 0.4949 0.8182
24 0 0.1313 0.5960 0.1212 0.2828 0.7374
25 0 0 0.0101 0 0 0
26 0.9899 1.0000 1.0000 0.9899 1.0000 1.0000
27 0 0.0101 0.0909 0 0.0101 0.1010
28 0.8889 0.9899 1.0000 0.8990 0.9899 1.0000
29 0 0 0.1414 0 0.0101 0.2020
30 0.8586 0.9899 1.0000 0.8485 0.9899 1.0000
31 0.2626 0.2727 0.2828 0.3939 0.4040 0.4242
32 0 0 0.0202 0 0 0.0101
33 0.4343 0.4848 0.5657 0.3636 0.4242 0.5051
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Table A2. The rule membership function parameters for the second 33 HSV antecedents. The
following notation was used. The first column, i means the antecedent number, xi0min and xi0max are
the infimum and supremum of the support of the rule corresponding to the non-polyp case, similarly,
xi1min and xi1max are the infimum and supremum of the support of the triangular membership
function of the polyp containing tiles. The columns xi0core and xi1core give the center points, i.e., the
α = 1 α-cuts.

i xi0min xi0core xi0max xi1min xi1core xi1max

34 0 0.0101 0.3838 0 0.0404 0.3333
35 0.6061 0.7071 0.7475 0.4747 0.6263 0.7374
36 0 0.0202 0.1313 0 0.0101 0.2626
37 0 0.2424 0.7677 0 0.2525 0.8687
38 0 0 0.9495 0.0707 0.5657 0.9596
39 0 0 0.9192 0.1212 0.6263 0.9293
40 0 0 0.0202 0 0 0.0101
41 0.9798 1.0000 1.0000 0.9899 1.0000 1.0000
42 0 0 0.0606 0 0 0.0606
43 0.9394 1.0000 1.0000 0.9293 1.0000 1.0000
44 0 0 0.0303 0 0.0101 0.1414
45 0.9697 1.0000 1.0000 0.8889 1.0000 1.0000
46 0.5152 0.5354 0.5455 0.4242 0.4343 0.4545
47 0 0 0.0101 0 0 0.0101
48 0.2222 0.2626 0.3030 0.4141 0.4747 0.5354
49 0 0.0101 0.2424 0 0.0202 0.2626
50 0.4141 0.5354 0.5960 0.3737 0.5051 0.6061
51 0 0.0101 0.1212 0 0.0101 0.2323
52 0 0.2424 0.8081 0 0.3838 0.9091
53 0 0 0.9495 0.1717 0.6465 0.9495
54 0 0.2323 0.9293 0.2222 0.5657 0.9293
55 0 0 0.0202 0 0 0.0101
56 0.9798 1.0000 1.0000 0.9899 1.0000 1.0000
57 0 0 0.0707 0 0 0.0505
58 0.9192 1.0000 1.0000 0.9394 1.0000 1.0000
59 0 0 0.0202 0 0 0.0404
60 0.9798 1.0000 1.0000 0.9596 1.0000 1.0000
61 0.4848 0.4949 0.4949 0.3434 0.3434 0.3535
62 0 0 0.0101 0 0 0.0101
63 0.4444 0.4545 0.4747 0.4343 0.4545 0.4848
64 0 0.0101 0.1414 0 0.0101 0.1313
65 0.6061 0.6263 0.6465 0.6667 0.6970 0.7273
66 0 0.0101 0.1010 0 0.0101 0.1515

Table A3. The rule membership function parameters for the thirs 33 HSV antecedents. The following
notation was used. The first column, i means the antecedent number, xi0min and xi0max are the
infimum and supremum of the support of the rule corresponding to the non-polyp case, similarly,
xi1min and xi1max are the infimum and supremum of the support of the triangular membership
function of the polyp containing tiles. The columns xi0core and xi1core give the center points, i.e., the
α = 1 α-cuts.

i xi0min xi0core xi0max xi1min xi1core xi1max

67 0 0 0.7475 0 0 0.8283
68 0 0 0.9495 0.1010 0.5152 0.9596
69 0 0 0.9596 0.1111 0.6263 0.9596
70 0 0 0.0202 0 0 0.0202
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Table A3. Cont.

i xi0min xi0core xi0max xi1min xi1core xi1max

71 0.9798 1.0000 1.0000 0.9798 1.0000 1.0000
72 0 0 0.0404 0 0 0.0303
73 0.9596 1.0000 1.0000 0.9697 1.0000 1.0000
74 0 0 0.0101 0 0 0.0404
75 0.9899 1.0000 1.0000 0.9596 1.0000 1.0000
76 0 0 0.1313 0 0 0.0707
77 0 0 0.0202 0 0 0.0101
78 0 0.1717 0.4242 0.0505 0.2020 0.5051
79 0 0.0101 0.3535 0 0.0404 0.5556
80 0 0.0606 0.2323 0.0505 0.1212 0.5051
81 0 0.0101 0.1515 0 0.0101 0.3636
82 0.6162 0.7980 0.8182 0.4646 0.6970 0.7980
83 0 0.1717 0.5556 0.0606 0.1111 0.4545
84 0.5657 0.6465 0.6970 0.3535 0.5051 0.6667
85 0 0.1616 0.5859 0.0505 0.1111 0.4141
86 0.1313 0.7071 0.8384 0.1313 0.7273 0.8788
87 0 0.1717 0.5960 0.0505 0.1414 0.5152
88 0.4747 0.4949 0.5253 0.5354 0.5556 0.5758
89 0 0 0.1919 0 0 0.0101
90 0.4141 0.4646 0.5152 0.3535 0.4343 0.5051
91 0 0.0202 0.3535 0 0.0303 0.3333
92 0.4242 0.4949 0.6162 0.4141 0.5253 0.6667
93 0 0.0202 0.1818 0 0.0101 0.3030
94 0.5253 0.5455 0.6061 0.7172 0.7475 0.7778
95 0 0 0.0202 0 0 0.0202
96 0.3434 0.4040 0.4747 0.3535 0.4242 0.5152
97 0 0.0202 0.4343 0 0.0505 0.4545
98 0.3838 0.4444 0.5657 0.3636 0.4444 0.6566
99 0 0.0101 0.1414 0.0101 0.0202 0.3333
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