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����������
�������
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Abstract: Achieving real-time inference is one of the major issues in contemporary neural network
applications, as complex algorithms are frequently being deployed to mobile devices that have
constrained storage and computing power. Moving from a full-precision neural network model
to a lower representation by applying quantization techniques is a popular approach to facilitate
this issue. Here, we analyze in detail and design a 2-bit uniform quantization model for Laplacian
source due to its significance in terms of implementation simplicity, which further leads to a shorter
processing time and faster inference. The results show that it is possible to achieve high classification
accuracy (more than 96% in the case of MLP and more than 98% in the case of CNN) by implementing
the proposed model, which is competitive to the performance of the other quantization solutions
with almost optimal precision.

Keywords: image classification; Laplacian source; neural network; quantization

1. Introduction

Distributed neural networks, which process a lot of sensor data locally on edge devices
instead of communicating with a cloud server, are becoming popular due to significantly
reduced communication cost compared to a standard cloud offloading approach [1]. As
utilization of server-grade graphics processing units (GPUs) in many embedded systems is
impractical due to their enormous energy dissipation, there is a need to design resource-
efficient systems for the deployment of various neural networks that are already trained [2].
The goal is to optimize design and resources in a such way that inference is only slightly
degraded while there is significant energy saving. This goal can be commonly achieved by
implementing various quantization techniques to simplify the numerical representation
of weights, activations, and the intermediate results of convolution and fully connected
layers, as well as to reduce their numerical ranges. We can highlight two approximation
strategies that can be found in the literature: multilevel quantization and binarization. This
way, the 32-bit floating-point representation of numerical values (i.e., full precision) can be
reduced to lower representations.

Pioneering research focused on the effects of weight quantization in multilayer neural
networks has been presented in [3–5]. Their main focus was to understand the perfor-
mance degradation affected by weight quantization, including the convergence property
of the learning algorithm [5]. However, quantization theory was significantly improved
in later decades, and the contemporary understanding of an accurate quantizer design
differs a lot. Although non-uniform quantization provides a better performance for a
wide range of input signal variances [6,7] and advanced dual-mode asymptotic solutions
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are developed [8,9], simple uniform quantization [6,7,10–12] is the first choice when the
simplicity of the system is one of the major goals. Thus, uniform quantization has been
widely applied for quantizing parameters of neural networks (i.e., for neural network
compression) [13–18], and different solutions have been considered, e.g., using 8-bits [13],
4-bits [14], or 2-bits [15–18]; further, non-uniform quantization has also been used [19–21].
It has been found that quantizing network parameters using 8-bits [13] or 16-bits [19]
enable slightly lower performance when compared to the full precision case, mainly due to
the ability of quantizers to achieve high quality reconstructed data. Further, in the case of
applying quantizers with smaller resolution, e.g., with 4-bits [14] or 2-bits [15–18,20,21],
performance degradation has been observed; however, the achieved results are still compa-
rable, accompanied with a significantly high level of compression. Eventually, significant
attention was paid to the development of binary quantizer models to compress neural
networks [22–26], whose attractiveness lies in the amount of compression that can be
achieved, with a goal to preserve competitive performance achievements.

In general, 2-bit quantization models require less energy compared to the models
with a higher number of representative levels, which makes them appropriate for resource-
constrained real-time systems. Consequently, we decided to focus on the designing of
the simplest multilevel scalar quantizer model. The main contribution of this paper is the
proposal of an accurate 2-bit optimal uniform quantizer design, achieved by optimizing
step size or, equivalently, support region threshold (also known as the clipping factor).
Optimization is carried out by considering the mean squared error (MSE) distortion,
whereas the Laplacian source is assumed at the input. Specifically, the Laplacian source
is widely used to model signals, such as speech [6,7,26,27] or images [6,7,26,28]; recent
research conducted in [15,16,20,26,29] has shown its appropriateness in modeling the
weights of neural networks. Note that the determination of the clipping factor for various
quantizer solutions has been the subject of many research papers [14–16,26,29], implying
the significance of this parameter. In addition to other research papers, e.g., [13–21,29], we
perform several other analyses from the aspect of signal processing, including an analysis
in the wide range of input signal variances and adaptation of the quantization model.

We analyze the effectiveness of the proposed adaptive 2-bit quantizer in a real en-
vironment by implementing it in a neural network compression task, and the obtained
performance is compared with the performance of the full-precision network, as well
as with the performance of other contemporary 2-bit quantization models, either uni-
form [17,18] or non-uniform ones [20,21]. The first neural network model adopted in this
paper is multi-layer perceptron (MLP) [30], which represents a kind of simple feedforward
artificial neural network. Although it can be considered as a classical model and it is
succeeded by the convolutional neural network (CNN) in advanced computer vision appli-
cations, its simplicity can be exploited in edge computing devices for real-time classification
tasks [31–34]. We also employ a simple CNN network [30] for analysis, and both networks
are used for image classification.

The rest of the paper is organized as follows: In Section 2, we describe in detail the
proposed quantizer, including the design for the reference variance and analysis in a wide
dynamic range. In Section 3, we provide the experimental results, obtained by implement-
ing the considered quantizer in a neural network compression task. Finally, the advantages
and disadvantages of the proposed model are summed up in the Conclusions Section.

2. A 2-Bit Uniform Scalar Quantizer of Laplacian Source

The 2-bit symmetrical uniform scalar quantizer we are interested in is illustrated
in Figure 1. To uniquely define the quantizer, it is necessary to specify its parameters,
namely the decision thresholds xi and the representative levels yi [6,7]. For such a uniform
quantizer, it holds:

xi = i∆, i = 0, 1, 2 (1)

yi =

(
i− 1

2

)
∆, i = 1, 2 (2)
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where ∆ is the parameter known as the step size. In Figure 1, with xmax = x2 = 2∆ we
denote the support region threshold of the quantizer (or equivalently the clipping factor).
As the quantizer is symmetrical, parameters in the negative range are the inversions of the
positive ones. Based on Equations (1) and (2), we can see that ∆ (or xmax) is a critical design
parameter. The general manner to specify its value assumes the usage of some performance
criterion, such as minimal MSE (mean squared error) distortion.
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Figure 1. Illustration of the observed 2-bit uniform quantizer.

Let us define the designed-for and applied-to sources as the memoryless Laplacian
with zero mean, described by probability density functions (PDFs) (3) and (4), respectively:

q(x, σq) =
1√
2σq

exp

(
−
√

2|x|
σq

)
(3)

p(x, σp) =
1√
2σp

exp

(
−
√

2|x|
σp

)
(4)

where σ2
q and σ2

p denote the variances.
In the following subsections, we consider the quantizer performance for two scenarios,

namely the variance-matched (σ2
q = σ2

p) and variance-mismatched (σ2
q 6= σ2

p).

2.1. The Variance-Matched 2-Bit Uniform Quantizer

The variance-matched situation implies that the variance for which the quantizer
is designed σ2

q and the variance of the input data to be quantized σ2
p are equal, and,

accordingly, the equality of PDFs defined by (3) and (4) also holds. Therefore, we use
q(x, σq) for the purpose of quantizer designing, and, further, we adopt σ2

q = 1, which is a
commonly used approach in scalar quantization [6,7].

To measure the error produced within the data quantization process, MSE distortion
is commonly used [7]. Considering Figure 1, we can see that the 2-bit uniform quantizer
divides the range of the input data values into two regions, the inner defined in (−xmax,
xmax) and the outer defined in (−∞,−xmax) ∪ (xmax, ∞). Therefore, the MSE distortion will
be the sum of the distortions incurred in the inner (Din) and outer regions (Do), defined
using the following lemmas:

Lemma 1. The inner distortion of a 2-bit uniform quantizer of Laplacian source depends on the
quantization step ∆, and it is equal to

Din = 1− ∆√
2
+

∆2

4
−
√

2∆ exp{−
√

2∆} −
(

1 +
∆√

2
+

∆2

4

)
exp{−2

√
2∆} (5)

Proof of Lemma 1. The inner distortion of an arbitrary quantizer Q with N representative
levels for a processing signal described by an arbitrary source p(x) can be defined as [6,7]:

Din =
N

∑
i=1

xi∫
xi−1

(x− yi)
2 p(x)dx (6)
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where {xi}N
i=0 are decision boundaries, whereas {yi}N

i=0 are representative levels. Let us
consider that the source p(x) is the Laplacian of a unit variance and zero mean, i.e., let us
p(x) = q(x, σq = 1). For a 2-bit quantizer, we obtain:

Din = 2

 ∆∫
0

(x− y1)
2q(x, σq = 1)dx +

2∆∫
∆

(x− y2)
2q(x, σq = 1)dx

 (7)

Taking into account Equations (1)–(3), we obtain the following expression for the inner
distortion:

Din = 2

 ∆∫
0

(
x− ∆

2

)2 1√
2

exp{−
√

2x}dx +

2∆∫
∆

(
x− 3∆

2

)2 1√
2

exp{−
√

2x}dx

 (8)

Finally, by solving integrals from the previous equation, we obtain the expression (5),
which concludes the proof. �

Lemma 2. The overload distortion of a 2-bit uniform quantizer of Laplacian source depends on the
quantization step ∆, and it is equal to

Do =

(
1 +

∆√
2
+

∆2

4

)
exp{−2

√
2∆} (9)

Proof of Lemma 2. The overload distortion of an arbitrary quantizer Q for processing a
signal described by an arbitrary source p(x) can be defined as [6,7]:

Do = 2
+∞∫

xmax

(x− ymax)
2 p(x)dx (10)

where xmax is the support region threshold value, whereas ymax is the last representa-
tive level in the codebook. We observe the 2-bit uniform quantizer xmax= 2∆, whereas
ymax = 3∆/2. Thus, the overload distortion of the 2-bit uniform quantizer of Laplacian
source is defined as:

Do = 2
+∞∫

2∆

(x− 3∆/2)2q(x, σq = 1)dx (11)

By solving the previous integral, we obtain the expression for overload distortion defined
with (9), concluding the proof. �

Based on Lemmas 1 and 2, the total distortion Dt for the 2-bit uniform quantizer of
Laplacian source is defined using the following expression:

Dt = Din + Do = 1− ∆√
2
+

∆2

4
−
√

2∆ exp{−
√

2∆} (12)

It can be noticed that distortion also depends on ∆, and its optimal value (denoted
with ∆opt) is specified using the following lemma:

Lemma 3. The optimal value of ∆ of a 2-bit uniform quantizer of Laplacian source can be determined
using the following iterative rule:

∆(i+1) =
√

2−
√

2
2 + 1

2 exp{
√

2∆(i)}
, i = 0, 1, . . . (13)
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Proof of Lemma 3. Finding the first derivative of the total distortion (expression (12)) with
respect to ∆ and equaling it to zero, we obtain:

∂Dt

∂∆
=

∆
2
− 1√

2
+ (2∆−

√
2) exp{−

√
2∆} = 0 (14)

Based on the last equation, we can express ∆ as:

∆ =
√

2−
√

2

2 +
1
2

exp{
√

2∆}
(15)

indicating that ∆ can be determined iteratively, concluding the proof. �

As an appropriate initialization of the iterative process given with (13), one can use
∆(0) = 1√

2
ln 4 (motivated by the formula xmax =

√
2 ln N that was proposed in [35]

as an approximate solution for xmax of N-levels uniform quantizer of Laplacian source).
Moreover, by substituting this initial value into (13), one can obtain the asymptotic step
size value:

∆(1) = ∆a =
3
4

√
2 (16)

Such a determined asymptotic value can be useful if we want to quickly estimate the
performance of the Laplacian 2-bit uniform quantizer (clearly, a more exact and accurate
value for step size can be obtained using (13)). Let us define SQNR = 10·log10(1/D), which
is a standardly used objective performance measure of a quantization process [6,7]. Let
SQNR(∆a = 1.061) and SQNR(∆opt = 1.087) denote the SQNR obtained using the asymptotic
and optimal step size value, respectively. It can be shown that these two SQNRs are
very close, as the calculated relative error amounts to 0.08%, meaning that the proposed
asymptotic step size is very accurate when compared to the optimal one. Nevertheless, the
analysis conducted in this paper is focused only on the optimal 2-bit uniform quantizer of
Laplacian source. Next, we will show that the minimum of the total distortion is achieved
for ∆ = ∆opt, as it is defined with the following lemma.

Lemma 4. Total distortion of a 2-bit uniform quantizer of Laplacian source is a convex function
with a minimum at the point ∆ = ∆opt.

Proof of Lemma 4. Second derivative of the total distortion is given by:

∂2Dt

∂∆2 =
1
2
+ (4− 2

√
2∆) exp{−

√
2∆} (17)

which also depends on ∆. On the other hand, the optimal value of ∆, i.e., ∆opt, is specified
as (see Lemma 1):

∆opt =
√

2−
√

2

2 +
1
2

exp{
√

2∆opt}
(18)

showing that the step size is upper bounded with
√

2, that is, 0 < ∆opt <
√

2. Using this fact
and applying it to (17), it holds that:

∂2Dt

∂∆2

∣∣∣∣∆=∆opt > 0 (19)

which proves that distortion is a convex function, and the minimum is achieved at the
point ∆ = ∆opt. �
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Figure 2 shows the total distortion with respect to ∆ for the 2-bit uniform quantizer
of Laplacian source obtained by numerical simulations, where perfect matching with the
outcomes of Lemmas 3 and 4 is provided.
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2.2. The Variance-Mismatched 2-Bit Uniform Quantizer

The variance-mismatched scenario considered here implies the application of a 2-bit
uniform quantizer, optimally designed in terms of MSE distortion for variance σq

2 = 1
(see Section 2.1), for processing the Laplacian data with variance σp

2, where it holds
σq

2 6= σp
2. In particular, this scenario is worth investigating, as it is often encountered

in practice and reveals the robustness level of the quantizer model, which is a very im-
portant property when dealing with non-stationary data [6,7]. On the other hand, it is
known that the variance-mismatch effect may cause serious degradation in quantizer
performance [6,7,36,37]. In this subsection, we derive the closed-form expressions for the
performance evaluation of the discussed quantizer.

As in the previous subsection, performance of the variance-mismatched 2-bit uni-
form quantizer is investigated using MSE distortion or, equivalently, using SQNR. Total
distortion can be assessed as follows:

Dt = 2

∆(σq)∫
0

(
x− ∆(σq)

2

)2
p(x, σp)dx+

+∞∫
∆(σq)

(
x− 3∆(σq)

2

)2
p(x, σp)dx


= σ2

p +
∆2(σq)

4
− σp

∆(σq)√
2

(
1 + 2 exp

{
−
√

2∆(σq)

σp

}) (20)

where ∆(σq) = σq ∆ denotes the optimal step size value determined for variance σq
2 = 1

(see Section 2.1).
Let us define the degree of mismatch ρ = σp/σq [36]. Then, total distortion becomes:

Dt = σ2
p

(
1 +

∆2

4ρ2 −
∆√
2ρ

(
1 + 2 exp

{
−
√

2∆
ρ

}))
(21)

SQNR can be calculated according to:

SQNR(ρ) = 10 log10

(
σ2

p

Dt(ρ)

)
= 10 log10

 1

1 + ∆2

4ρ2 − ∆√
2ρ

(
1 + 2 exp

{
−
√

2∆
ρ

})
 (22)

In Figure 3, we show SQNR as the function of ρ for the proposed quantizer. Observe
that the SQNR curve attains its maximal value of 7.07 dB for the variance-mismatch
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case (σp = σq = 1, that is, ρ = 1), but it does not retain that value over the entire range
and significantly decreases. Accordingly, the robustness of the quantizer is not at the
satisfactory level, as the variance-mismatch effect has a strong influence on its performance;
this, in turn, is reflected in limited efficiency of processing various Laplacian data.

Entropy 2021, 23, x FOR PEER REVIEW 8 of 18 
 

 

-20 -15 -10 -5 0 5 10 15 20
-15.0

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

 

 

S
Q

N
R

 [
d

B
]

20 log
10
[dB]

 

Figure 3. SQNR of 2-bit uniform quantizer (designed optimally with respect to MSE distortion) in a 

wide dynamic range of input data variances. 

2.3. Adaptation of the 2-Bit Uniform Quantizer 

The goal of this subsection is to make the proposed quantizer able to provide 

improved performance expressed by a constant SQNR over the variance range of interest. 

This can be achieved using an adaptation technique [6,7], where some statistical 

parameters, e.g., variance and mean, are estimated from the input data and further used 

for adaptation purposes. Let us denote with xi the data of the input source X, where i = 1, 

…, M, and M is the total number of data samples. A flowchart is depicted in Figure 4 and 

can be described with the following steps: 

Step 1. Estimation of the mean value and quantization. The mean value of the input 

data can be estimated as [6,7]: 





M

i
ix

M 1

1
  (23) 

This parameter is quantized using a floating-point quantizer [39] and stored using 32 

bits (32-bits floating point format is typically used in neural network applications 

[13−26,29,30]).  

Step 2. Estimation of the standard deviation (rms value) and quantization. The rms of 

the input data can be evaluated according to [6,7]: 

 
2

1

1 M

p i

i

x
M

  


    (24) 

This parameter is also quantized using a 32-bits floating-point quantizer [39].  

Step 3. Form the zero mean input data. Each element of the input source X is reduced 

by the quantized mean, and zero mean data denoted with T are obtained:  

qT X    (25) 

where μq is the quantized version of μ. Note that this is carried out in order to properly 

use the quantizer (as it is designed for a zero mean Laplacian source).  

Step 4. Design of adaptive quantizer and quantization of zero mean data. The 

quantized variance, σq, is used to scale the crucial design parameter Δ as follows: 

     1 q
p q        (26) 

Figure 3. SQNR of 2-bit uniform quantizer (designed optimally with respect to MSE distortion) in a
wide dynamic range of input data variances.

In a real situation, such as the quantization of neural network parameters, the conver-
gence of the model depends on several aspects, including the dataset size, network archi-
tecture, number of epochs etc.; therefore, differences between designed-for and applied-to
sources may exist. In particular, the decreasing of SQNR (note that we deal with low-
resolution quantization where SQNR values are rather small) can be a serious issue, as it
may have negative effects on classification accuracy, which is undesirable. Furthermore, the
mentioned effect is also present even in the case of high-resolution (N is high) quantization,
as pointed out in [38], where the post-quantization of neural network weights is performed.
Hence, it is of particular interest to avoid variance-mismatch and enhance performance of
the quantizer by achieving constant SQNR across a wide variance range of input data. To
this end, we describe an efficient method that is based on adaptive quantization, which can
also be important for the final deployment.

2.3. Adaptation of the 2-Bit Uniform Quantizer

The goal of this subsection is to make the proposed quantizer able to provide improved
performance expressed by a constant SQNR over the variance range of interest. This can
be achieved using an adaptation technique [6,7], where some statistical parameters, e.g.,
variance and mean, are estimated from the input data and further used for adaptation
purposes. Let us denote with xi the data of the input source X, where i = 1, . . . , M, and M is
the total number of data samples. A flowchart is depicted in Figure 4 and can be described
with the following steps:

Step 1. Estimation of the mean value and quantization. The mean value of the input data
can be estimated as [6,7]:

µ =
1
M

M

∑
i=1

xi (23)

This parameter is quantized using a floating-point quantizer [39] and stored us-
ing 32 bits (32-bits floating point format is typically used in neural network applica-
tions [13–26,29,30]).

Step 2. Estimation of the standard deviation (rms value) and quantization. The rms of
the input data can be evaluated according to [6,7]:
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σ = σp =

√√√√ 1
M

M

∑
i=1

(xi − µ)2 (24)

This parameter is also quantized using a 32-bits floating-point quantizer [39].

Step 3. Form the zero mean input data. Each element of the input source X is reduced by
the quantized mean, and zero mean data denoted with T are obtained:

T = X− µq (25)

where µq is the quantized version of µ. Note that this is carried out in order to properly use
the quantizer (as it is designed for a zero mean Laplacian source).

Step 4. Design of adaptive quantizer and quantization of zero mean data. The quantized
variance, σq, is used to scale the crucial design parameter ∆ as follows:

∆
(
σp
)
= (1 + ε)σq∆

(
σq
)

(26)

and the adaptive quantizer is obtained, where ε is a constant used to compensate the
imperfections between the theoretical model and the distribution of the experimental data.
Input data ti of the source T are passed through the adaptive quantizer, and the quantized
data ti

q are obtained.
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Step 5. Recover the original data. Since the mean value is subtracted from the original
data and further quantized (using 32 bits), an inverse process has to be performed to
recover the original data:

xQ
i = tq

i + µq, i = 1, . . . , M (27)

where xi
Q denotes the data recovered after quantization. It should be emphasized that the

described process is equivalent to the normalization process widely used in neural network
applications [15,18,22], as the same performance in terms of SQNR can be achieved [40].
Particularly, the normalization process assumes the following steps:

Step 1. Estimation of the mean value and quantization.
Step 2. Estimation of the standard deviation (rms value) and quantization.
Step 3. Normalization of the input data. Each element of the input source X is normal-

ized according to:

T =
X− µq

σq(1 + ε)
(28)

and the source T with transformed (normalized) coefficients is formed.
Step 4. Quantization of the normalized data. To quantize normalized data (modeled as

the PDF with zero mean and unit variance), the quantizer designed in Section 2.1
can be used, and quantized data ti

q are obtained.
Step 5. Denormalization of the data. Since the input data are appropriately transformed

for the purpose of efficient quantization, an inverse process referred to as denor-
malization has to be performed to recover the original data:

xQ
i = tq

i σq + µq, i = 1, . . . , M (29)

To measure the theoretical performance of the adaptive 2-bit uniform scalar quantizer,
we can also use Equation (22) under the constraint that ∆ is replaced with ∆(σp) defined
with (26), which gives:

SQNR = 10 log10

 1

1 +
∆2(σp

)
4ρ2 −

∆
(
σp
)

√
2ρ

(
1 + 2 exp

(
−
√

2∆
(
σp
)

ρ

))


≈ 10 log10

 1

1 +
(1 + ε)2∆2

4
− (1 + ε)∆√

2

(
1 + 2 exp

(
−
√

2(1 + ε)∆
))


(30)

since σq = σ
q
p ≈ σp, as we use a high number of bits for its quantization.

Figure 5 plots the SQNR of the adaptive 2-bit uniform quantizer, where it is obvious
that adaptation successfully improves performance when compared to the case observed
in Section 2.2 (see Figure 3), since a constant SQNR value is achieved in the considered
range (that is, SQNR is independent of the input data variance). Note also the influence
of parameter ε on the performance, where the case ε = 0 implies perfect adaptation of
the quantizer to the data variance and the achieved SQNR is equal to 7.07 dB (this value
corresponds to the optimal 2-bit uniform quantizer). With the increasing of ε, performance
becomes slightly lower, as adaptation is not perfect.
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3. Experimental Results and Discussion

This section investigates the suitability of 2-bit uniform quantization in the compres-
sion of neural networks. Firstly, we consider the MLP network architecture [30] applied
to an image classification task and investigate how the quantization of weights affects
performance of the network measured by classification accuracy. Specifically, MLP is still
attractive and is applied in solving different challenges occurring in different research
areas, e.g., [30–34], and, hence, it is worth investigating. Further, the results from the aspect
of SQNR will also be analyzed by checking the agreement between the theoretically and
experimentally obtained values.

The MLP network used in the experiment is constituted by the input, hidden, and
output layer. Training, validation, and test data are taken from the MNIST database [41],
which contains 70,000 grayscale images of handwritten single digits with a resolution
of 28 × 28 pixels, where 60,000 and 10,000 images are intended for training and testing
purposes, respectively. We apply the rectified linear unit (ReLU) activation function in
the hidden layer and softmax activation function in the output layer. We also perform the
following setup: regularization rate = 0.01, learning rate = 0.0005, and batch size = 128.

In our consideration, the goal is to apply an adaptive 2-bit uniform quantizer to quan-
tize the weights of a trained MLP network, that is, to perform post-training quantization.
Thus, Figure 6 shows the learning curves for the employed network, where after 20 epochs
we obtain a training accuracy of 97.37%. As our model is evaluated on the training dataset
and on a hold-out validation dataset after each update during the training, we show the
measured performance by drawing two learning curves (training and validation learning
curves). In this case, training and validation accuracy increase to a point of stability and
have a minimal gap between their values, so that overfitting and underfitting do not exist.
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In Figure 7, we present the histograms for the weights both between the input and
hidden layer (784 × 128 = 100,352 in total) and between the hidden and output layer
(128 × 10 = 1280 in total) of the trained MLP network (training is completed at the 20th
epoch). Note also that there is a significantly lower number of weights between the hidden
and output layer, and, hence, there is little benefit to compress them. It should be noted that
the good approximation of the distribution given in Figure 7a is the Laplacian distribution
with some specific value σw

2 and mean value µw that is very close to zero. This, in turn,
enables proper implementation of the developed adaptive quantizer model (Section 2.3).
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Let us further define SQNRex, by which the experimental value of SQNR can be
measured:

SQNRex = 10 log10

(
σ2

w
Dw

)
= 10 log10


1

W

W
∑

i=1
w2

i

1
W

W
∑

i=1

(
wi − wq

i

)2

 (31)

where Dw is the distortion inserted by the adaptive uniform quantization (using 2-bits)
of weights, W is the total number of weights, and wi are original while wi

q are quantized
values of the weights. Recall that beside classification accuracy, this is an additional
objective performance measure used for the analysis of the quantized neural network.

Figure 8 gives SQNRex versus the parameter ε. It can be observed that SQNR decreases
as ε increases, which is in accordance with the theoretical results presented in Figure 5
(observing one particular variance value). In addition, both the theoretical and experimental
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values of SQNR agree well (considering some specific value of ε for a given variance value).
Moreover, we examined the influence of the parameter ε (observing the same range as in
Figure 8) on the MLP performance obtained in the test data [41], as shown in Figure 9.
Note that the increasing of ε slightly increases performance (classification accuracy), while
the performance maximum is achieved for ε = 0.09. Thus, we can conclude that ε affects
the introduced performance measures differently for the given network configuration and
input data. Since classification accuracy is a relevant measure for neural networks, for
the purpose of further analysis, we adopt corresponding values of classification accuracy
and the SQNR achieved for ε = 0.09, which are listed in Table 1. In addition, we plot in
Figure 10 the classification accuracy as the function of step size ∆/σw, when ε = 0.09. It
can be seen that the maximum score of classification accuracy is achieved for ∆ = 1.09,
which corresponds to the theoretically optimal value, confirming the applicability of the
optimal quantizer.
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ε = 0.09. 
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Table 1. Performance (classification accuracy and SQNR) of quantized MLP for various applied quantization models.

Quantizer
Full

Precision1-Bit [26] 2-Bit
Uniform [17]

2-Bit
Uniform [18]

2-Bit
Non-Uniform

[20]

2-Bit
Non-Uniform

[21]

2-Bit Uniform
Proposed

Accuracy (%) 91.12 94.70 94.49 92.38 92.73 96.26 96.86
SQNR (dB) 4.25 1.63 1.19 −8.89 −2.41 8.71 -
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Table 1 also summarizes the achieved performance (classification accuracy and SQNR)
for adaptive 1-bit (binary) quantization of Laplacian source [26] and existing 2-bit solutions
taken from [17,18,20,21], which serve as the baselines for comparison. The classification
accuracy score of the non-quantized MLP network (full precision weights) is also included.
Regarding the baseline 2-bit uniform quantizer [17], it is described by the following set
(in a positive part) of representative levels {y3 = wmax−∆, y4 = wmax} and by the set of
decision thresholds {xo = 0, x1 = ∆, x2 = 2∆}, where ∆ = 2wmax/2R − 1 [17], R = 2, and
wmax is the maximal value of the weights. For the 2-bit uniform quantizer defined in [18],
it holds: {y3 = wmax

a − 3∆/2, y4 = wmax
a − ∆/2} and {xo = 0, x1 = ∆, x2 = 2∆}, where

∆ = 2wa
max/2R [18], R = 2, and wmax

a is the maximal absolute value of the weights. In the
case of the 2-bit non-uniform quantizer described in [20], it holds: {y3 = ∆/2, y4 = 2∆} and
{xo = 0, x1 = ∆, x2 = 3∆ = xmax

opt}, where ∆ = 2xopt
max/3 [20] and xmax

opt denotes the value
of the optimal support region threshold of the proposed 2-bit uniform quantizer. Finally, a
2-bit non-uniform quantizer [21] is defined as follows: {5/8 = F(y3), 7/8 = F(y4)} and {xo = 0,
3/4 = F(x1)}, where F(x) = 1− 1

2 exp
(
−
√

2x
)

.
Observe in Table 1 that quantized MLP using the proposed adaptive 2-bit quantizer

provides a classification accuracy score that is only 0.6% below the full precision case,
while the network size is reduced by 16 times, which is significant. Note also that our
proposal is able to outperform all introduced 2-bit baselines, as quantized MLP in that case
attains higher classification accuracy scores at the same compression level, along with the
significantly higher SQNR. This can be interpreted in a manner that the benefit is attained
as the result of proper quantizer design, as the baseline quantizer approaches [17,18,20,21]
can be considered as suboptimal for the given task. Thus, we report the following gains
in SQNR (in dB) and classification accuracy (in %): 7.08 dB and 1.56% with respect to the
baseline in [17], 7.52 dB and 1.77% with respect to the baseline in [18], 17.6 dB and 3.88%
with respect to the baseline in [20], and 11.12 dB and 3.53% when compared to the baseline
in [21]. Moreover, a gain in performance over the 1-bit solution from [26] is also notable
(4.5 dB in SQNR and 5.1% for classification accuracy), which is achieved at the expense of a
slightly lower compression level.

Additionally, we perform quantization of a simple CNN model [30] using the proposed
2-bit uniform quantizer. The model consists of one convolutional layer, one max-pooling
layer, one fully connected layer, and the output layer. The number of output filters in
the convolutional layer is set to 32, whereas it’s kernel size is 3 × 3. The size of the
pooling window is set to 2 × 2. The fully connected layer with 100 units on top of it,
which is activated by the ReLU activation function, is placed further, before the output
layer. Dropout of 0.5 is performed on the fully connected layer. The network is trained
for 10 epochs in batches of size 128 on the same MNIST dataset as the MLP model. The
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distribution of the weight coefficients in the fully connected layer after the training process
is presented in Figure 11.
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Figure 11. Distribution of fully connected layer weights of trained CNN network.

We obtained a classification accuracy of 98.7% in the test dataset, which is a higher
accuracy compared to that of the MLP model and could be expected. The quantized CNN
model is obtained by applying the proposed 2-bit quantizer (∆ = 1.09) for the task of fully
connected layer weight quantization. Figures 12 and 13 give the dependence of SQNR
and classification accuracy on the parameter ε, respectively, where similar conclusions can
be derived as in the previous case where MLP is considered (see Figures 8 and 9). The
achieved maximal classification accuracy of the quantized CNN model is 98.4%, achieved
for ε = 0.08, which is only 0.3% less than the full-precision accuracy.
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Finally, Table 2 compares the attained performance (classification accuracy and SQNR)
of the quantized CNN in cases when the proposed (∆ = 1.09, ε = 0.08) and baseline (the
same as in Table 1) quantization approaches are implemented. The superiority of the
proposed quantizer is clearly visible from the given table, as significant improvements
in SQNR and classification accuracy can be observed: 14.4 dB and 2.1% with respect to
the baseline in [17], 11.33 dB and 1.5% with respect to the baseline in [18], 22.17 dB and
2.3% with respect to the baseline in [20], and 16.39 dB and 2.3% with respect to the baseline
in [21]. Finally, better performance is also found in comparison to the 1-bit quantizer
reported in [26].

Table 2. Performance (classification accuracy and SQNR) of quantized CNN for various applied quantization models.

Quantizer
Full

Precision1-Bit [26] 2-Bit
Uniform [17]

2-Bit
Uniform [18]

2-Bit
Non-Uniform

[20]

2-Bit
Non-Uniform

[21]

2-Bit Uniform
Proposed

Accuracy (%) 96.2 96.3 96.9 96.1 96.1 98.4 98.7
SQNR (dB) 3.21 −7.08 −4.01 −14.85 −9.07 7.32 -

Based on the overall analysis and results presented herein, we can point out that our
proposal is very effective and is worth implementing for the post-training compression of
neural networks.

4. Conclusions

In this paper, a detailed analysis of 2-bit uniform quantization for processing the data
described with the Laplacian PDF was conducted from both a theoretical and experimental
point of view. During the theoretical design, using MSE distortion as a criterion, it was
shown that distortion has a global minimum, specified by using the proposed iterative
rule; thus, the optimal 2-bit uniform quantizer model was developed. In addition, the
asymptotic value of the crucial designing parameter (step size) was provided, which is
very close to the theoretically calculated optimal value. The analysis in a wide range of
input data variances was also carried out, where a low robustness level and the need
for adaptation (as an efficient method for performance improvement) were indicated. To
obtain experimental results, the proposed adaptive model was employed in real-data
processing using the parameters of a neural network (weights), where, as proof of concept,
both MLP and CNN networks were used. It was demonstrated that the employed MLP
and CNN in combination with the proposed approach (i.e., quantized neural networks) are
able to achieve near-optimal performance, with significantly lower memory requirements
when compared to MLP and CNN with full precision weights, which also lead to faster
classification. Moreover, the advantage over different 2-bit quantizer solutions available in
the literature, providing the same compression level, as well as the 1-bit quantizer solution,
was demonstrated. Based on these promising results, one can expect implementation of the
proposed quantizer in the compression of some modern networks, knowing that they are
based on MLP, and also to IoT resource-constrained devices. Moreover, our future research
will be directed toward the compression of some of the state-of-the-art networks, such as
ResNet, AlexNet, or GoogleNet.
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