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Abstract: The comprehensively completed BDS-3 short-message communication system, known as
the short-message satellite communication system (SMSCS), will be widely used in traditional blind
communication areas in the future. However, short-message processing resources for short-message
satellites are relatively scarce. To improve the resource utilization of satellite systems and ensure the
service quality of the short-message terminal is adequate, it is necessary to allocate and schedule
short-message satellite processing resources in a multi-satellite coverage area. In order to solve the
above problems, a short-message satellite resource allocation algorithm based on deep reinforcement
learning (DRL-SRA) is proposed. First of all, using the characteristics of the SMSCS, a multi-objective
joint optimization satellite resource allocation model is established to reduce short-message terminal
path transmission loss, and achieve satellite load balancing and an adequate quality of service. Then,
the number of input data dimensions is reduced using the region division strategy and a feature
extraction network. The continuous spatial state is parameterized with a deep reinforcement learning
algorithm based on the deep deterministic policy gradient (DDPG) framework. The simulation
results show that the proposed algorithm can reduce the transmission loss of the short-message
terminal path, improve the quality of service, and increase the resource utilization efficiency of the
short-message satellite system while ensuring an appropriate satellite load balance.

Keywords: BeiDou short-message; deep reinforcement learning; resource allocation; multi-objective
optimization

1. Introduction

The global BeiDou Navigation System (BDS-3) is the fourth fully-fledged satellite
navigation system to be developed after GPS, GLONASS, and Galileo. The BDS-3 has
timing, positioning, and short-messaging services, and its unique short-messaging is
widely used in meteorological and marine service, such as meteorological observation data
collection [1,2], early warning information dissemination [3–5], and high-precision ocean
measurements [6,7]. With the comprehensive completion of the BDS-3, the performance and
service range of BDS-3 short-message communication (BDS3-SMC) have further improved,
which has great practical significance for the more effective development of meteorological
and marine service [8].

BDS3-SMC can provide regional short-message communication (RSMC) and global
short-message communication (GSMC) [9]. The RSMC is served by three GEO satellites
with large communication and service capacities, a low response delay (≤1 s), and high
service frequency. GSMC is served by 14 MEO satellites, and its communication capacity
and service capacity are significantly lower than those of RSMC. The GSMC processing
resources for the satellite are scarce. For GSMC, on one hand, it is necessary to improve the
resource utilization of the short-message satellite to ensure adequate system throughput.
On the other hand, it is necessary to respond to the service requests of each terminal,
provide the required services for the terminal, avoid uplink congestion, and shorten the
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request delay by up to hundreds of milliseconds. However, to determine how to reasonably
allocate the global short-message processing resources of the BDS3-SMC, improve the
resource utilization rate, and ensure the service quality of the short-message terminal,
further study is required.

The existing satellite resource allocation (SRA) algorithms can be divided into tra-
ditional algorithms and artificial intelligence algorithms. Research involving the use of
traditional optimization algorithms in satellite resource allocation is quite advanced. Devel-
oped algorithms include the genetic algorithm (GA) [10], simulated annealing algorithm
(SA) [11], non-dominated sorting genetic algorithm (NSGA) [12], random geometry [13],
and game theory [14,15]. Artiga et al. [16] established the satellite system power allocation
optimization problem and used Lagrangian duality theory to optimize the total system
capacity. Similarly, Choi et al. [17] applied Lagrangian theory to Karush–Kuhn–Tucker
(KKT) conditions. Kan et al. [18] achieved multi-objective joint optimization of the energy
efficiency (EE) and spectral efficiency (SE) of multi-beam satellites. At the same time, it was
proven that the resource allocation problem in a multi-objective constraint scenario is an
NP-hard problem. Therefore, heuristic algorithms such as the GA, SA, and NSGA can be
widely used in satellite resource allocation scenarios. Aravanis et al. [19] proposed a multi-
objective optimization strategy to minimize the power consumption of user terminals and
satellites by using a meta-heuristic algorithm to reach a Pareto optimal solution. However,
the calculation delay of the algorithm is long, and it is difficult to meet the requirements of
real-time processing on the satellite using this method.

Based on the above problems, Efrem et al. [20] designed a continuous convex approxi-
mation algorithm to solve the multi-objective optimization problem of power distribution
for energy-sensing of multi-beam satellites. This algorithm has a fast convergence speed
and can be used for the dynamic allocation of satellite resources. By combining the
particle swarm optimization algorithm and the Lyapunov optimization framework, Jiao
et al. [21] solved the joint network stability and resource allocation optimization problems
of high-throughput satellites (HTSs). Lin et al. [22] achieved joint optimization of wireless
information resource allocation and power transmission of multi-beam solar satellites
through particle swarm optimization (SPO), the improved harmony search algorithm
(IHSA), and the monkey algorithm (MA), and analyzed SPO, ISHA, and MA algorithms.
The results showed that the IHSA algorithm can maximize power transmission without
affecting information transmission. However, the above work [20–22] did not consider the
transmission power consumption and the quality of service of the task initiator.

There has been little research on short-message satellite resource allocation. Yang
et al. [23] proposed a task-oriented satellite network resource allocation algorithm (SAGA)
based on the GA. Xia et al. [24] combined this with the BDS3-SMC to form a short-message
transmission mechanism and solved the problem of short-message satellite resource alloca-
tion by improving the Hungarian algorithm. However, for scenarios with a large number
of terminals, the applicability of the algorithm is poor.

With the development of artificial intelligence technology, deep reinforcement learn-
ing (DRL) has made a substantial breakthrough in many tasks that need to interpret
high-dimensional raw input data and implement sequential decision-making control [25].
Researchers have proven the effectiveness of DRL in many fields. Preliminary applications
of DRL include resource allocation in the Internet of Things [26], heterogeneous cellular
networks [27], and 5GHetNet uplink/downlink [28]; dynamic beam-hopping of satellite
broadband systems [29]; and edge computing in the Internet of Things [30]. DRL has fre-
quently been used in research work to optimize satellite resources. In fact, the SRA problem
can be modeled as an interaction between the satellite system and the user terminal service,
where the best solution to the problem is equivalent to the maximal cumulative reward that
the agent (satellite system or user terminal) can get from the environment. In terms of multi-
agent environments, DRL has been considered a solution for cognitive radio networks [31].
Ferreira et al. [32] proposed a reinforcement learning algorithm based on a deep neural
network to solve the multi-objective optimization problem of resource allocation in cogni-
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tive satellite communication. Hu et al. [29,33,34] used DRL to make dynamic decisions for
hopping beams in multi-beam satellite systems and next-generation broadband satellite
systems, which have a lower level of complexity than traditional algorithms. He also
proposed a resource allocation framework for multi-beam satellite systems based on DRL.
In contrast, Luis et al. [35] proposed a dynamic satellite power allocation method based
on DRL to minimize system power consumption. Yu et al. [36] proposed an optimization
method to balance energy, power consumption, and efficiency in heterogeneous computing
systems through reinforcement learning, and carry out hardware simulation experiments
based on FGPA. The results show that reinforcement learning can greatly reduce system
energy consumption without affecting hardware performance. Zhang et al. [37] proposed a
multi-objective optimization algorithm based on deep reinforcement learning (DRL-MOP),
which achieves multi-objective joint optimization of the satellite spectrum efficiency and
improvements in energy efficiency and the service satisfaction index. Compared with
the traditional GA and SA algorithms, it has been verified that the DRL-MOP algorithm
has the characteristics of fast convergence and low complexity. Qiu et al. [38] proposed
a software-defined satellite-terrestrial network (STN), which can be used to coordinate a
satellite cache and computing resources, and can be combined with the DQN algorithm to
optimize the cache and computing resources jointly.

Combined with the previous work in the field of multi-objective optimization, we find
that DRL has surprising results in the field of multi-objective optimization. However, there
is no relevant literature on the resource allocation of the SMSCS in the current research.
Considering the actual scenario, the global short message resources of the SMSCS are very
scarce. Due to the uneven distribution of short message terminals in various world regions
(similar to IoT communication terminals, mobile phone terminals, etc.) it is reasonable to
allocate the short message satellite processing resources as a critical way to improve the
use efficiency of satellite resources and meet the needs of terminal services. Because of the
above situation, the main work of this paper includes: (1) establishing a resource allocation
model for the global short message satellite system of the SMSCS; and (2) proposing a
resource allocation strategy to meet the needs of short message satellites and short message
terminals.

According to the parameters of the short-message satellite communication system
(SMSCS) [39], we first established a resource allocation model for the SMSCS. Furthermore,
a resource allocation strategy for the BDS-3 short-message satellite is proposed with the
optimization goals of improving the utilization of satellite resources and ensuring the
service demands of the terminal are met. The resource allocation problem is described as a
Markov decision process (MDP) and is solved by DRL.

The main contributions of the study are as follows.

(1) Based on the characteristics of the BDS3-SMC, an ideal SMSCS model is proposed. We
formally describe the path transmission loss of the short-message terminal, satellite
load balance, and satellite service quality through the above model and then estab-
lish a multi-objective optimization mathematical model for short-message satellite
resource allocation.

(2) Considering that the number of short message terminals in the application scenario
can reach more than one million, the huge input data makes DRL-SRA challenging
to perform in the training process. We improve the ideal model of short-message
satellite resource allocation and propose a region division strategy and a resource
allocation model based on this strategy to reduce the computational complexity. The
state space, action space, and reward mechanism of satellite resource allocation are
defined according to the improved model.

(3) We design a feature extraction network to extract features from the state space to
reduce the dimensions of the input data. Combined with the DDPG framework,
it solves resource allocation in continuous states. Finally, we propose a BeiDou
short-message satellite resource allocation algorithm based on DRL (DRL-SRA).
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The rest of the paper is presented as follows. In Section 2 we introduce the system
model. In Section 3 we optimize the proposed model and propose the DRL-SRA to solve
the multi-objective optimization problem of short-message satellite resource allocation. In
Section 4 we evaluate the performance of the proposed algorithm and the corresponding
strategy through a simulation and compare it with the traditional algorithm and other
reference strategies. In Section 5 we provide conclusions and present ideas for future work.

2. System Model

We consider the following scenario. In a snapshot [40] of an SMSCS, there are n
short-message satellites (SAT) that cover the ground area; these are recorded as a set
SAT = {SAT1, SAT2, · · · , SATn}, where n is the total number of short-message satellites
in the SAT. At the same time, there are m short-message terminals (ST) in the coverage
area; these are recorded as a set ST = {ST1, ST2, · · · , STm}, where m is the total number
of short-message terminals in the ST. The communication link of the system adopts the
Gaussian white noise channel, and the task requests of the short-message terminal have a
Poisson distribution.

Our system model is shown in Figure 1 and consists of the BDS-3 short-message
satellite constellation, ground station, and short-message terminal.
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Figure 1. Short-message satellite communication system model.

The short-message satellite constellation adopted is the Walker 24/3/1 constellation,
which is used to collect short-message transmission requests and return related information
such as the working status to the ground station, and then wait for control commands
from the ground station. The ground station can collect information on the working
status, resource information, and transmission control instructions from the short-message
satellite. The short-message terminal initiates task requests and receives short messages
from other terminals.

The system workflow is divided into three stages. (1) The short-message terminal and
the short-message satellite establish uplink and downlink communication links. (2) The
short-message satellite establishes a communication link with the ground station, and the
inbound information from the short-message terminal is sent to the ground station. (3) The
short-message satellite sends the short message to the target terminal through itself or
via the intersatellite link depending on the service instructions provided by the ground
station. Short-message satellites can establish intersatellite links to achieve intersatellite
information exchange. The red arrow in Figure 1 shows the end-to-end communication
flow of a complete short-message terminal. First, ST2 sends a short-message task request.
Secondly, SAT2 collects the request and informs the ground station, and the ground station
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sends the request to SAT2 so that it can respond. Finally, SAT2 transmits the short message
from ST2 to ST3 through the intersatellite link established with SAT3.

In the system model, the task requests from each short-message terminal can only be
answered by a unique short-message satellite. Multiple short-message terminals can be
distributed within the coverage area of each short-message satellite in the short-message
satellite constellation. There is a one-to-many mapping relationship between a short-
message satellite and the short-message terminal. As the short-message satellite has the
characteristics of a large ground coverage area, the vast majority of short-message terminals
are covered by multiple short-message satellites. Therefore, there is competition among
short-message satellites to respond to short-message terminal tasks. For example, the task
request of ST1 shown in Figure 1 can be responded to by SAT1 or SAT4.

In different snapshots of the above model, due to the characteristics of short-message
satellite coverage and the uneven distribution of short-message communication traffic in
different regions, the resource utilization of the SMSCS and the energy efficiency of the
short-message terminal are low. Consequently, our optimization objectives include the
following:

(1) To reduce the transmission energy consumption of short-message terminals;
(2) To improve the resource utilization of short-message satellites;
(3) To produce adequate short-message terminal service quality.

To achieve these three optimization objectives, we formally describe the transmission
energy consumption in the short-message terminal, the resource utilization of the satellite
system, and the quality of service from the terminal.

Definition 1. Path transmission loss (L) is used to describe the transmission energy consumption
of the short-message terminal, and it represents the transmission loss during the process of task
transmission from the short-message terminal to the target satellite in dB.

Definition 2. The load balancing index (LI) is used to describe the resource utilization rate of the
satellite system. It indicates the degree of balance in task processing by short-message satellites,
where the larger LI is, the higher the resource utilization rate of the satellite system will be.

Definition 3. The service satisfaction index (SI) is used to describe the service quality of a short-
message satellite transmitting to a short-message terminal. It indicates the efficiency at which a task
is sent by the short-message satellite to the short-message terminal: the larger the SI, the higher the
service quality.

Additionally, the system model includes a communication model and a resource
allocation model.

Communication model: The short-message terminal transmits the task request and
content to the short-message satellite via the satellite link. The transmission delay is related
to the size of the task data and the transmission rate. According to Shannon’s theorem, the
communication model of STi and SATj can be defined as shown in Equation (1):

ri,j = B log2

1 +
Pihi,j

σ2 + ∑
m∈ST,m 6=i

Pmhm,j

 (1)

where i is STi, j is SATj, and m is STm, m ∈ ST but m 6= i. ri,j represents the communi-
cation rate between STi and SATj. B is the channel bandwidth. σ2 is the communication
noise power (Gaussian white noise). Pi is the transmission power of STi, which can be
approximated by the path transmission loss Lij between STi and SATj, i.e., Pi ≈ Lij. hi,j is
the channel gain between STi and SATj. Pmhm,j is the interference to STi caused by other
short-message terminals.
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Resource allocation model: This is divided into the satellite resource allocation model
and the task queue model, as shown in Figure 2.
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For satellite resource allocation, a snapshot is divided into s time slices, where s is the
number of time slices in a snapshot. The duration of a time slice is called a time unit, and the
value of the time unit is determined by its actual application. Because the amount of data
transmitted by the short-message task is limited, the maximum single transmission length
of GSMC is 560 bits. In this article, a certain time unit is required for the short-message
satellite to process the task of maximum length Cmax (assuming that all satellites have the
same task processing ability). Thus, in a snapshot, the short-message satellite resource can
be formally described as resource matrix An×s with n× s. Each row in An×s represents
the utilization of the short-message request processing resource ais that a satellite has over
s time slices, is ∈ {1, 2, · · · , n}. For element ais ,it in matrix An×s, it ∈ {1, 2, · · · , nt}, ais ,it
represents the resource utilization on time slice it of SATis , where ais ,it ∈ {0, 1}. When
ais ,it = 0, the resource is available. When ais ,it = 1, the resource has been allocated.

The task queue is shared by all short-message satellites following the first-in-first-out
principle. The task queue is recorded as the set QT =

{
qt

1, qt
2, · · · , qt

ζ

}
, where ζ is the

maximum capacity of the task queue ζ ∈ N+, and the element qt
i is defined as a quadruple:

qt
i ,

〈
sizei, rsat

i , tstart
i , tend

i

〉
(2)

where sizei is the short-message task size. rsat
i is the response matrix, which records

the short-message satellites that can respond to the task. For example, when n = 3,
rsat

i = [0, 1, 1], which means that SAT2 and SAT3 can respond to qt
i . tstart

i records the time
when the task enters the queue. tend

i records the time that the task is processed.
The task queue is updated after the end of each snapshot, i.e., s time slices. The

unprocessed tasks in the previous snapshot are copied to the head of the queue, and new
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tasks continue to be received in the current snapshot, i.e., QT
t+1 ← QT

t − taskr + tasknew .
taskr indicates that the task has been responded to, and tasknew is the new task.

2.1. Path Transmission Loss Model

First of all, we discuss the path transmission loss L of the satellite-to-ground link
between the short-message satellite and the short-message terminal. n× m satellite-to-
Earth links can be established between the elements of set SAT and set ST, and the
satellite-to-Earth link matrix Em×n can be expressed as shown in Equation (3):

Em×n =


e11 e12 · · · e1n
e21 e22 · · · e2n
...

...
. . .

...
em1 em1 · · · emn

 (3)

where eij is a Boolean variable indicating the link relationship between STi and SATj. When
eij = 0, STi and SATj do not establish a link relationship, but when eij = 1, STi and SATj
establish a link relationship.

Suppose the path transmission loss of the satellite-to-Earth link is L, there is:

L = l f + lrain + la + lo. (4)

In Equation (4), L is the free-space path loss. lrain is the rain loss. la is the atmospheric
absorption loss, and its value is related to the antenna elevation angle ϕ at the transmitting
terminal. lo denotes other losses. l f satisfies Equation (5):

l f = 92.4 + 20 log fc + 20 log d. (5)

In Equation (5), d is the free-space transmission distance in km. f is the frequency in
MHz. Generally, in the case of a fixed band, l f is only related to d. lrain, la, and lo can be
used to obtain the corresponding value of the band used in the current scene by consulting
the related literature [41].

d can be obtained from geometric relations. Since the moving speed of the short-
message terminal is very slow relative to the satellite speed, it can be assumed that the
short-message terminal is motionless relative to the Earth [42]. In Figure 3, O is the
geocenter, and T is the short-message terminal. S and N are, respectively, the position of
the satellite and the sub-satellite point at time t. φ(t) is the geocentric angle between T and
N. ϕ(t) is the elevation angle of the short-message terminal between S and A. R and h are
the radius of the Earth and the orbital altitude, respectively.
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For φ(t), there is:

φ(t) = arccos
(

R
cos ϕ(t)

h + R

)
− ϕ(t). (6)
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Furthermore, the free-space transmission distance d is:

d =

√
(h + R)2 + R2 − 2R(h + R) cos φ(t). (7)

For n×m satellite-to-ground links, the path transmission loss matrix Lm×n between
the elements of set SAT and set ST can be expressed as shown in Equation (8):

Lm×n =


L11 L12 · · · L1n
L21 L22 · · · L2n

...
...

. . .
...

Lm1 Lm1 · · · Lmn

. (8)

Then, the total path transmission loss Ltotal that occurs when completing a message
transmission in the current snapshot in the above set ST can be expressed as:

Ltotal =
m

∑
i=1

n

∑
j=1

lijeji. (9)

2.2. Satellite Load Balancing Model

Satellite load balancing is an essential index for the rational utilization of satellite
resources and the efficient processing of short-message tasks. We use the load balancing
index LI to characterize the load balancing degree of the SMSCS.

Let SATj respond to the number of short-message tasks ψ, recorded as the set Task ={
task j1, task j2, · · · , task jψ

}
. A task task jψ will continuously occupy njψ time slices. Since

each satellite has, at most, nt time slices in a snapshot, the satellite resource utilization of
SATj in that snapshot is:

SRRj =

max

(
nt,

ψ

∑
i=1

nji

)
nt

(10)

After the short-message satellite responds to the short-message task, the processing of
each short-message does not affect the processing of others; they are processed in parallel.
Therefore, for LI:

LI =
1
m

m

∑
j=1

(
SRRj −

1
m

m

∑
j=1

SRRj

)2

. (11)

Intuitively, the smaller LI is, the more balanced the load of the short-message satellite
system is.

2.3. Terminal Satisfaction Model

In the previous section, the short-message tasks requested by m short-message ter-
minals were recorded as the set Task =

{
task j1, task j2, · · · , task jψ

}
. We define the short-

message task taski as a triple:
taski ,

〈
ci, sizet

i , τi
〉

(12)

where ci is the content of the short-message to be transmitted by taski. sizet
i is the size of

the transmission task taski (in bytes). τi is the acceptable processing delay for taski.
The satisfaction of the short-message terminal depends on the processing speed of

the short-message satellite in response to the short-message terminal task request. The
factors affecting the processing speed include the short-message transmission delay tt,i, the
processing delay tp,i, and the task queuing delay tq,i. Assuming that SATj responds to the
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task request of STi, Equation (13) shows that the communication rate is ri,j, the size of the
transmission task taski is si, and the transmission delay is:

tt,i =
sizet

i
ri,j

. (13)

The processing delay is:

tp,i =
sizet

i
f j

(14)

where f j is the computing power of the short-message satellite, i.e., the number of bytes
processed per unit of time.

The task queuing delay is:

tq,i = tend
i − tstart

i − tp,i. (15)

Equations (13)–(15) show that the total execution delay for taski is:

t∑
i = tt,i + tp,i + tq,i. (16)

If STi does not request a short-message task, t∑
i = 0.

Thus, the service satisfaction index for the short-message terminal set ST is:

SI =
m

∑
i=1

SIi =
m

∑
i=1

sgn
(

t∑
i − τi

)
(17)

where SIi is the service satisfaction index of STi.
The main problem considered in this article is determining how to improve the

resource utilization of the SMSCS, meet the quality-of-service requirements of the short-
message terminal, and reduce the energy loss of the short-message terminal at the same
time. In summary, the objective function of optimization under the snapshot t is:

U(t) = α1
Lmin

Ltotal(t)
+ α2

LI(t)
LImax

+ α3
SI(t)
SImax

(18)

where α1, α2, and α3 are weight values, and α1 + α2 + α3 = 1. Lmin represents the minimum
value of the overall path transmission loss of the short-message under the snapshot t. LImax
represents the maximum value of the load balance index. SImax represents the maximum
value of the terminal satisfaction index. The optimization objectives can be expressed as
follows:

max
Ltotal(t),LI(t),SI(t)

U(t) (19)

C1 :
m

∑
j=1

eij ≤ 1, ∀i ∈ {1, 2, · · · , n} (20)

C2 :
ψ

∑
i=1

sj,i ≤ ζCmax, ∀j ∈ {1, 2, · · · , m} (21)

C3 : Pi ≥ lijeji, ∀j ∈ {1, 2, · · · , m}, ∀i ∈ {1, 2, · · · , n} (22)

C4 : si ≤ Cmax, ∀i ∈ {1, 2, · · · , n} (23)

C1 is used to ensure that the short-message task of each short-message terminal in
the communication system is answered by, at most, one short-message satellite. C2 is
used to ensure that the number of short-message tasks answered by each short-message
satellite does not exceed the maximum capacity it can handle. C3 is used to ensure that the
energy consumed by the terminal transmission is not greater than the maximal amount of
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energy contained in the short-message terminal. C4 is used to ensure that the message size
transmitted by the terminal does not exceed the maximal length specified by the system.

3. Algorithm Design

Based on the work of predecessors in multi-objective optimization, we propose DRL-
SRA to solve the problem of short message satellite resource allocation. The area division
strategy and the short message resource allocation algorithm based on the DDRG frame-
work are used to solve two challenges: (1) Data preprocessing of SMSCS; and (2) DRL
solves resource allocation in a continuous state.

3.1. Regional Division Strategy

The terminal capacity of the GSMS is about 1 million, and the terminal capacity of the
RSMS is about 10 million. If the short-message satellites respond to the task requests of
each short-message terminal, the calculation time complexity and space complexity will
be high. Therefore, before designing the resource allocation algorithm, the system model
needs to be optimized to reduce the overall overheads of the resource allocation algorithm.

Because the BDS-3 MEO satellites use the Walker 24/3/1 constellation, an area is
often covered by multiple short-message satellites. The coverage area is divided into υ
subregions according to the type and number of covering satellites, and is recorded as
the set Ar =

{
ar

1, ar
2, · · · , ar

υ

}
, where ar

i is the i-th subregion, and the maximum number of
subregions that can be covered by a single short-message satellite is recorded as υmax. The
subregion is represented by a tuple, and for ar

υ, there is:

ar
υ ,

〈
CT

υ , Sυ

〉
(24)

where CT
υ is the number of short-message terminals included in subregion ar

υ. Sυ is the
number of short-message satellites covering subregion ar

υ. As shown in Figure 4b, the
coverage area can be divided into 11 subregions (because the Walker 24/3/1 constellation
can achieve global coverage, the uncovered area in the schematic diagram is not discussed).
The number of short-message satellites covered by subregions I, III, V, and XI is 1; therefore,
the mission request of the short-message terminal in this region can only be responded to
by the covered satellite. There are at least two short-message satellites in other subregions,
so the optimal response scheme needs to be considered to satisfy Equation (19).

By introducing regional division, short-message terminals in a given subregion are
regarded as a whole. The short-message satellite only needs to respond to the subregion,
and does not need to respond to each short-message terminal separately. Thus, the satellite
dynamic allocation problem of computation to the 106–107 power can be transformed into
computation to the 102–103 power. However, the model proposed in the previous section
needs to be improved further. The details are as follows.

The purpose of regional division is to approximate the number of short-message
terminals in the subregion. Therefore, it is necessary to treat the short-message terminals in
the subregion as a whole.

Firstly, considering the path transmission loss of a short-message terminal in a subre-
gion, the following definition is given.
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Definition 4. The regional distance is the average sum of distances of all the short-message
terminals in the subregion from the target short-message satellite, i.e.,

Ad
ij = ∑

χ∈A
dχj (25)

where Ad
ij is the regional distance from ar

i to SATj, and dχj is the distance from STχ to SATj

in ar
i .

Equation (5) shows that the path transmission loss lA
ij from the short-message terminal

in ar
i to SATj is:

lA
ij = λ

(
92.4 + 20 log fc + 20 log Ad

ij

)
(26)

where λ is the number of SATj responding to short-message task requests in ar
i and λ ∈ N+.

The path transmission loss matrix
~
Lυ×n between the elements of set SAT and set Ar

can be expressed as shown in Equation (27):

~
Lυ×n =


lA
11 lA

12 · · · lA
1n

lA
21 lA

22 · · · lA
2n

...
...

. . .
...

lA
υ1 lA

υ2 · · · lA
υn

. (27)
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The total path transmission loss is:

L̃total =
υ

∑
i=1

n

∑
j=1

`ijlA
ij (28)

where `ij = 1 indicates that there is an intersatellite link between ar
i and SATj, and `ij = 0

indicates that there is no intersatellite link between ar
i and SATj.

Secondly, after completing regional division, each short-message satellite usually
needs to serve multiple subregions; as shown in Figure 4, SAT1 serves subregions I, II,
IX, and X. Unlike the previous model, task requests in a subregion can be responded
to by multiple satellites, and there are significant differences in the number and density
of terminals in different subregions. Furthermore, each short-message satellite needs to
allocate its own short-message processing resources to the subregions it covers. By using
the resource allocation model proposed above, an improved satellite resource allocation
model suitable for regional division can be obtained.

As shown in Figure 5, a snapshot is divided into nt time slices, and each short-message
satellite resource is allocated to a certain proportion of its covered subregion (the value
of the subregion ratio is explained in detail in the next section). The color of the squares
in Figure 5 corresponds to the colors of the subregions in Figure 4b, indicating how the
resources are allocated in the current snapshot. Resources from different satellites obtained
in the subregion are recorded as the set Rar =

{
R1

ar , R2
ar , · · · , Rn

ar
}

, a ∈ Ar, where Rn
ar

represents the resources allocated by SATn to subregion ar, and there is ∑
ar∈Ar

Rn
ar = 1.
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Each subregion has a task queue, and its operation mode is similar to the resource
allocation model mentioned in the second section. The difference lies in the task allocation
in the task queue. In the improved model, based on the proportion of resources allocated
by each satellite to the subregion, the tasks are divided among the covering satellites. For
example, in subregion VII, the proportion of resources allocated by SAT1 accounts for 45%
of the resources obtained by subregion VII, so then 45% of the tasks in subregion VII are
allocated to SAT1. The unprocessed tasks in the current snapshot are copied to the next
snapshot.
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3.2. DRL-SAR Algorithm

When the short-message satellite receives a task request from short-message termi-
nals in all subregions, it forwards the information, such as the short-message satellite
status and the short-message terminal task request, to the ground station. The ground
station determines the optimal strategy and returns the information to the short-message
satellite system by using the satellite resource allocation algorithm to respond to the task
request. Because the task request from the short-message terminal occurs randomly in
the time dimension, the state transition probability of the system is difficult to calculate,
and it is challenging to solve the problem by using the traditional value iteration method.
The critical problem is determining the optimal strategy for allocating the short-message
satellite response to short-message terminal tasks. As one of the basic methods of DRL,
DQN is widely used in many optimization fields and can be used to effectively deal with
tasks with a large state space and action space. However, because the output of DQN
is discrete and the resource capacity of the short-message satellite and the energy of the
short-message terminal are continuous variables, in order to meet the requirements for
DQN input, the above continuous variables need to be quantized into discrete variables.
This causes the action space to grow exponentially, which makes it challenging to guarantee
the performance of DQN.

In order to solve the resource allocation problem of the short-message satellite system
in continuous space, we propose a satellite short-message resource allocation algorithm
based on deep reinforcement learning (DRL-SAR). The DRL-SAR algorithm takes Equation
(18) as the optimization goal, models the short-message satellite as the agent, considers the
response to the short-message terminal request as the action of the agent, and models the
satellite-to-ground link as an interactive environment. The three elements of the DRL-SAR
—status, action, and reward—can be described as follows.

(1) Status

Suppose the state space of the DRL-SAR is S = {s1, s2, · · · , st}, where st is defined as
the system state under snapshot t. For st there is:

st =
{

Lt, Ar
n×nt , LIt

}
(29)

where Lt = {Lt,1, Lt,2, · · · , Lt,υ}. Lt,υ is the total path transmission loss of the terminal
in subregion υ under st. Ar

n×s is the resource matrix under st, which involves the use
information of satellite resources, such as resource occupancy and resource allocation. In
LIt = {LIt,1, LIt,2, · · · , LIt,υ}, LIt,υ is the satisfaction degree of the terminal in area υ under
st.

Since satellites and terminals are mobile, their levels of mobility are mapped as
the change in distance between the subregion and the covered satellite and then further
mapped to show the path transmission loss of the entire region. The mobility mentioned
above only affects the state change of the DRL-SAR, but does not affect the overall frame-
work design of the algorithm.

(2) Action

Suppose the action space is A, when all possible resource allocation decisions bn(t) of
the satellite under st are included:

at = {b1(t), b2(t), · · · , bn(t)} (30)

where bn(t) is the resource allocation decision of SATn under snapshot t.
bn(t) = [p1,n, p2,n, · · · , pυ,n], where pi,n is the proportion of resources allocated to sub-

region ar
i by the SATn using its own resources, and there is

υ

∑
i=1

pi,n = 1. The allocation ratio

has a continuous quantity, so it is necessary for the DRL-SAR to effectively deal with the
continuous action space to solve the action dimension problem.
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(3) Reward

Suppose that, under status st, the reward obtained by the system is r(st, at).
Using Equation (18), the gain of the optimization objective can be expressed as:

∆U = U(t + 1)−U(t). (31)

For r(st, at), there is:

r(st, at) =

{
rh, ∆U > 0
rl , ∆U ≤ 0

. (32)

When ∆U > 0, the system revenue is increasing, r(st, at) = rh. When ∆U ≤ 0, the
system revenue is unchanged or decreasing, r(st, at) = rl , and 0 ≤ rl < rh ≤ 1.

For the short-message satellite resource allocation scenario, the proposed DRL-SAR
framework is shown in Figure 6. The basic process is that the short-message satellite
and the short-message terminal continuously interact to determine the current state of
the environment and transmit environmental information to the ground station. Based
on the state of the current system, the ground station sends the action instructions to
the short-message satellite to be executed. After executing the instructions, the system
environment moves from the current state to the next state and receives rewards through
the environmental feedback. At the same time, the ground station stores the quadruple
〈st, st+1, at, r(st, at)〉 as a sample in the memory pool, which is composed of the current
environment state, the next state, executes actions and feeds back rewards. In the DRL-SAR
training process, the training speed can be accelerated through experience replay.
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The above algorithm framework is divided into two steps:

STEP 1: DRL-SAR input data reconstruction

The deep learning process carried out in the DRL-SAR involves the use of a feature
extraction network to extract state features. The essence of the feature extraction network
is the use of convolutional neural networks (CNNs). CNNs usually require input data to
conform to the form of a graph tensor. For the state st =

{
Lt, Ar

n×nt , LIt
}

, Lt, Ar
n×nt , and

LIt are split into one-dimensional vectors, and st is transformed into n + 2 graphic tensors
of α× α through operations such as zero padding and matrix transformation. The resource
allocation of n short-message satellites and information about the path transmission loss
of the terminal in the subregion and the service satisfaction of the short-message terminal
are recorded. The graphic tensor outputs a one-dimensional vector with dimensions of
14× υmax through the feature extraction network. The one-dimensional vector records the
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characteristics of each short-message satellite for its covered subregion and inputs this
information into the action decision mechanism.

STEP 2: DRL-SAR training and update

In state st of the SMSCS, the ground station sends the instruction to execute action at.
At this time, it receives a reward r(st, at) and is transferred to state st+1. Assuming that the
initial state of the SMSCS is s0, strategy π is transferred from the initial state s0 to the state
st+1, as follows:

π = {π(s0|a0), · · · , π(st|at)}. (33)

In DRL-SAR, for π(st|at), the action value function Qπ(st, at) is used to evaluate the
benefits of action at in the current state st of the SMSCS. According to the Bellman equation,
the action function is:

Qπ(st, at) = r(st, at) + γ ∑
st+1∈S

P(st+1|st, at)Vπ(st+1). (34)

The state function is:

Vπ(st) = ∑
at∈A

P(at|st)Qπ(st, at) (35)

where γ is the attenuation factor. P(st+1|st, at) is the probability that the SMSCS transfers
to st+1 under state st and action at. P(at|st) is the probability of performing action at under
state st.

Equations (34) and (35) can be used to obtain the optimal action function Q∗π(st, at)
and the optimal state function V∗(st):

Q∗(st, at) = r(st, at) + γ ∑
st+1∈S

P(st+1|st, at) max
at+1∈A

Qπ(st+1, at+1) (36)

V ∗ (st) = max
at∈A

Q∗(st, at). (37)

The optimal strategy is π∗(st|at), the corresponding optimal action is a∗t , and its
expression is:

a∗t = argmax
at∈A

Qπ(st, at). (38)

Each snapshot in the SMSCS corresponds to the state action function Qπ(st, at), the
state function Vπ(st), and the optimal action a∗i . The optimal strategy π∗ for transferring
from the initial state s0 to the state st+1 is:

π∗ = {π∗(s0|a0), · · · , π∗(st|at)}. (39)

However, it is usually challenging to determine the state transition probability of the
SMSCS, the state of the resource allocation problem is continuous, and the scale of the
state set is large. We include the DDPG in the action decision mechanism of the DRL-SAR.
Through the introduction of actor–critic, the continuous spatial state is parameterized.

First, by introducing Ṽπ and Q̃π , the state function and the action function are approx-
imated. They are:

Ṽπ(st, θ) ≈ Vπ(st) (40)

Q̃π(st, at, θ) ≈ Qπ(st, at). (41)

Similarly, to approximate the strategy function, we have:

πω(st|at) = P(at|st, ω) ≈ π(st|at) (42)

where θ and ω are the weight parameters in the network.
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DDPG includes four networks, namely, the target critic network, the critic network,
the target actor network, and the actor network. The basic idea is that the strategy gradient
is approximated by the strategy function and the value function. In this process, the
strategy function can evaluate and optimize the strategy based on the value function.
The optimized strategy function can also make the value function reflect the value of the
state more accurately, and the functions can influence each other to obtain the optimal
solution [44]. The actor network has a policy function and is responsible for agent selection
and environment interactions. The critic network has a value function and is used to
evaluate the behavior of the actor. In the DRL-SAR, the main functions of the four networks
are as follows.

(1) The target critic network is responsible for calculating targets Ṽπ(st+1, θ′) and
Q̃π(st+1, at+1, θ′) based on the state sampled in the experience replay pool. Parameter
θ′ in the target critic network is regularly copied from θ in the critic network, i.e.,

θ′ = µθ + (1− µ)θ′ (43)

where µ is the updated coefficient, and 0 < µ� 1.
(2) The critic network is responsible for iteratively updating parameter θ in the value

function and calculating the current values of Ṽπ(st, θ) and Q̃π(st, at, θ). The loss
function of the critic network can be defined as:

J(θ) =
1
N

N

∑
i=1

[
r(st, at) + γQ̃π

(
st+1, at+1, θ′

)
− Q̃π(st, at, θ)

]2
(44)

where N is the number of samples drawn from the experience playback pool and
N > 0.

(3) The target actor target network is responsible for selecting the optimal action at+1
based on the state st+1 sampled in the experience replay pool. The parameter ω′ in
the target actor target network is periodically copied from ω in the actor network, i.e.,

ω′ = µω + (1− µ)ω′. (45)

(4) The actor network is responsible for iteratively updating parameter ω in the strategy
function. According to the state st of the SMSCS in the current snapshot t, it selects
the current action at, obtains the reward r(st, at), and determines the initial state st+1
of snapshot t+1. The loss of the actor network can be simply understood as follows:
the greater the value of the action obtained, the smaller the network loss. Therefore,
the loss function of the actor network can be defined as:

J(ω) = − 1
N

N

∑
i=1

Q̃π(st, at, θ). (46)

The loss functions J(θ) and J(ω) use gradient direction propagation to update the
neural network parameters. At the same time, they balance the exploration of new actions
and the use of known actions, increase the randomness of the learning process, and improve
the generalization ability of the DRL-SAR. We add random noise ξ to action at obtained by
the actor network in state st, which is given by:

at = πω(st) + ξ (47)

In summary, the DRL-SAR is shown as Algorithm 1.
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Algorithm 1 DRL-SAR

Input: ω, θ, S = {s1, s2, · · · , st}
Output: Optimization result
Begin

1: Initialize the actor network πω(st|at) and critic network Q̃π(st, at, θ) with weights ω and θ

2: Initialize the target actor network πω′ (st|at) and target critic network Q̃π(st, at, θ′) with
weights ω′ and θ′ with initial weights ω′ = ω and θ′ = θ

3: Initialize the parameters and initial states of n short-message satellites and m short-message
terminals

4: Initialize the replay memories D, weight update interval, and random noise ξ

5: Initialize the state space S = {s1, s2, · · · , st} and st =
{

Lt, Ar
n×nt

,τt
}

, and get the graph
tensor s1, s2, · · · , st

6: for i in range(Tmax):
7: Get at = πω(st) + ξ in S = {s1, s2, · · · , st}.
8: Get st+1 and r(st, at) by at.
9: Store transition 〈st, st+1, at, r(st, at)〉 in replay memories D
10: if len(D) > z:
11: Randomly sample a batch of experiences D̃ from D
12: Calculate Q̃π(st+1, at+1, θ′)
13: Update θ according to Equation (43)
14: Update ω according to Equation (44)
15: end if
16: if Tmaxmod n0 == 1:
17: θ′ = µθ + (1− µ)θ′

18: ω′ = µω + (1− µ)ω′

19: end if
20: end for
21: The model iteration ends and the optimization result is returned

End

4. Simulation and Performance Analysis

This section describes the evaluation of the performance of the algorithm proposed in
this article for different system parameters. To verify the effectiveness and convergence
of the DRL-SAR, we used the throughput and load balance index of the SMSCS, the path
transmission loss of the short-message terminal, and the terminal service satisfaction index
as the algorithm evaluation criteria. At the same time, the DRL-SAR was compared with
the DQN, GA, and TS-IHA [24]. An Intel(R) Xeon(R) W-2104 CPU @3.20 Hz, 16 GB RAM
computer was used for the simulation experiments conducted in this work. The simulation
platform was based on Python 3.6, and the neural network in the DRL-SAR was built
through TensorFlow.

4.1. Simulation Parameter Setting

The SMSCS uses MEO satellites with an orbital altitude of 21,528 km and an orbital
inclination of 55◦. It is distributed in the Walker 24/3/1 constellation, which contains a
total of 24 satellites, of which 14 provide GSMC. The scene was built with STK satellite
simulation software.

Considering future practical application scenarios, 1000 short-message terminals were
randomly placed in the Asia-Pacific region at 55◦ N–10◦ S and 75◦ W–135◦ E (the red area
in Figure 7). In the other region, 100,400 short-message terminals were randomly placed.

The short-message terminals in the two areas can randomly choose whether or not to
send short-message requests in each snapshot. The size of short-messages transmitted by
the short-message terminals obeys a normal distribution with an expectation of Cmax

2 and a
variance of 1.
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The network design consists of two parts. The feature extraction network includes
two convolution layers (Conv) and three FC layers (FC), which were used to extract the
features of the graph tensor. The specific parameters are shown in Table 1.

Table 1. The parameters of feature extraction network.

Layer Input Kernel Activation Output

Conv1 α× α× 26 1× 32× 26,4 Relu α× 32× 4
Conv2 α× 32× 4 α× 16× 4,8 Relu α× 16× 8

FC1 α× 16× 8 NA Relu 1024
FC2 1024 NA Relu 256
FC3 256 NA Relu 14× υmax

The four DDPG networks have the same network structure, in which there are three
hidden layers. The loss function adopts the Relu function, and the number of neurons
in each layer were set to 16, 32, 64, and 128, respectively. First of all, the deep neural
networks with different structures were run to analyze the training efficiency, as shown in
Figure 8. The abscissa represents the number of iterations, and the ordinate represents the
average loss of the network after continuous learning. The average loss was obtained by
exponential moving average (EMA) smoothing, and the smoothed curve better reveals the
changing trends of the data. The results show that deep neural networks with different
neurons converge after 35,000 iterations of training. However, the structure of 64 neurons
in each layer can ensure the minimum network parameters are met to ensure the best
convergence performance is achieved. Therefore, we set the number of neurons in the
hidden layers to 64, which can also be used as the training structure for the next part of the
network performance evaluation.

At the same time, we analyze the scalability of DRL-SRA when the number of short
message terminals is 1200, 1500, 1800, and 2400, and the impact on the performance of the
DRL-SRA algorithm. As shown in Figure 9, it can be found that when the number of short
message terminals takes different values, the algorithms can all converge. Moreover, the
smaller the number of short message terminals, the faster the convergence speed of the
algorithm, but the approximate convergence state can be obtained in the end, indicating
that the algorithm has good scalability.
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Finally, when the number of terminals is 1500, we compare the performance of the
feature extraction network with the PCA dimensionality reduction model and the random
forest feature extraction model based on information gain. As shown in Figure 10, the
comparison results show that the algorithm using the feature extraction network has a
better convergence effect during training.
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The specific simulation parameters are shown in Table 2.

Table 2. The parameters of the feature extraction network.

Simulation Parameter Value

Uplink operating frequency/MHz 1620
Downlink operating frequency/MHz 1207.14

Orbital altitude/km 21,528
Total number of short-message terminals 1100~2400

Cmax/bit 560
τ/s 60

Time taken up by each snapshot/s 60
nt 1000

f j/Mbit/s 50
υmax 10

Episodes 500
Steps T 500

Batch size 8
Discount factor 0.9

Soft update factor 0.01
Learning rate 0.01

Activation function Relu
α 64

4.2. Analysis of Simulation Results
4.2.1. Algorithm Performance Comparison

We compared the DRL-SRA with the DQN, TI-SHA, and GA. Using different numbers
of short-message terminals, the optimization effects of the total path transmission loss
(Ltotal), load balancing index (LI), and service satisfaction index (SI) were analyzed. The
comparison algorithm is described as follows:

(1) DQN: The Q network and target Q network with the same network structure are
included, the Q network has three hidden layers, and the number of neurons in each
layer is 64. The DQN strategy is shown in Equation (38).

(2) TS-IHA: The Hungarian algorithm is satisfied by adding a virtual satellite and termi-
nal.

(3) GA: The population size is 50, the termination evolution number is 400, the crossover
probability is 0.9, and the mutation probability is 0.01.

The above four algorithms have the same weights for the three objectives, i.e.,
α1 = α2 = α3 = 1

3 .
In addition, after the training has been completed, the network parameters in DRL-

SRA are not updated in subsequent experiments.
First of all, we evaluated the convergence of the proposed algorithm. Figure 11 shows

the convergence effect of the DRL-SRA when the number of short-message terminals was
1500, the number of training steps was 500, and the number of iterations was 500. The
abscissa shows the number of iterations, and the ordinate shows the objective function
for Equation (18), which is compared with the DQN. In the process of comparison, the
EMA was also used to smooth each original data curve for these objective function values.
As shown in Figure 11, the objective function value curves of the two algorithms grew
at different rates as the training process proceeded. In the first 50 iterations of DRL-SRA,
the value of the objective function quickly reached 0.492. After 350 iterative periods, the
value of the objective function increased to 0.957, obtaining a state of convergence. The
value of the objective function of the DQN reached 0.823 in the first 400 iterations and
did not continue to grow. At the end of the training period, the DRL-SRA algorithm had
a higher objective function value than the DQN algorithm; that is, a better convergence
performance.
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Furthermore, the running times of the four algorithms were compared. As shown in
Figure 12, the average time taken by the four algorithms to complete a strategy selection
process was calculated when there were 1100, 1800, and 2400 short-message terminals.
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When there were 1100, 1800, and 2400 short-message terminals, the average com-
pletion time for the DRL-SRA algorithm was 3.87 s, 3.93 s, and 3.92 s, respectively. The
average completion time for the DQN is slightly lower than that of the DRL-SRA because
there are fewer network parameters in the DQN compared with the DRL-SRA. With an
increase in the number of terminals in the TS-IHA and GA, the time required to run the
algorithm obviously increased. However, the time consumed by the DRL-SRA and DQN
remained unchanged, which shows that the average completion time of decision actions
input into the DRL-SRA and DQN is determined by the parameters of the network (such
as the number of network layers). In contrast, the network parameters are fixed after the
DRL-SRA and DQN complete the training period.

Finally, to illustrate the performance of the DRL-SRA, we set the weight factor to(
α1 = 1

3 , α2 = 1
3 , α3 = 1

3

)
and analyzed the optimization of Ltotal , SI, and LI using the four

algorithms.
As shown in Figure 13, according to the deployment requirements of the short-message

terminals described above, as the number of short-message terminals increased from 1100
to 2400, the Ltotal obtained by different algorithms showed a trend of rising at first and then
decreasing. SI basically remained stable, and LI showed a trend of growing at first and then
becoming steady. This is in line with the expected effects. With an increase in the number of
short-message terminals, the number of short-message tasks received by the short-message
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satellite also increased, and L also increased. However, the number of tasks increased to a
certain extent because the choice of tasks that the satellite can respond to will also increase
when both SI and LI remain stable, and Ltotal will slowly decrease. At the same time, when
the short-message satellite resources are fixed and when the number of short-message
tasks reaches a certain threshold, the task processing capacity of the short-message satellite
reaches saturation, leading to the inability to respond to more short-message tasks in time.
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Figure 13a shows that the DRL-SRA performed the best and the TS-IHA performed
the worst. The Ltotal of the DRL-SRA was lower than that of the other three algorithms
in the simulation process. Figure 13b shows that DRL-SRA performed the best and GA
performed the worst. When the number of terminals was 1100 or 2250, the LI obtained by
the DRL-SRA algorithm was about 89.14%, which is higher than the values obtained by
the other algorithms: 83.58% by the DQN algorithm, 76.37% by the DQN, and 73.83% by
the GA. Figure 13c shows that the DRL-SRA performed the best and the GA performed
the worst. When the number of short-message terminals was 2050, the SI obtained by the
DRL-SRA was about 2000, which is higher than the value of 1800 obtained by the DQN
algorithm when the number of short-message terminals was 2100 and the value of 1700
obtained by the TS-IHA algorithm when the number of short-message terminals was 2250.

4.2.2. The Influences of Different Weight Values on the Optimization Results

Figure 14 shows the optimization effect of the DRL-SRA on the throughput of the short-
message satellite system and Ltotal , LI, and SI when the weight factors of Ltotal , LI, and SI
were

(
α1 = 1

3 , α2 = 1
3 , α3 = 1

3

)
,
(

α1 = 1
6 , α2 = 1

3 , α3 = 1
2

)
, and

(
α1 = 1

2 , α2 = 1
3 , α3 = 1

6

)
,

respectively.
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As shown in Figure 14d, as the number of short-message terminals increased, the total
throughput of each algorithm first increased and then stabilized. Because the user service
arrival model and service requirements used in the simulation were the same, when the
weight parameter was

(
α1 = 1

6 , α2 = 1
3 , α3 = 1

2

)
and the number of terminals was 2250,

the throughput of the system was 1790, which was the best because the weight of LI was
relatively high. To improve the quality of service of the short-message terminal as much
as possible, the DRL-SRA will have a greater requirement for the response time to the
short-message request. This can also be proven by looking at the satellite load balance
shown in Figure 14b. To improve the quality of service of the short-message terminal, the
utilization of satellite resources needs to be maximized, so when the weight of LI is less
than that of SI, LI is not significantly reduced relative to other weights.

When the weight parameter is
(

α1 = 1
2 , α2 = 1

3 , α3 = 1
6

)
, the system will reduce Ltotal

as much as possible, which will reduce the efficiency of short-message task processing, so
the quality of service of the terminal in this set of weight parameters will be reduced relative
to other weights. Additionally, the short-message satellite will respond to the task request
as accurately as possible, which will make it challenging to achieve a relative balance in
the use of satellite resources in the scenario of an uneven distribution of short-message
terminals. LI is significantly lower than other weights.
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5. Conclusions

In this paper we focused on the existing conditionally constrained short-message
satellite resource allocation model. In order to reduce the path transmission loss of the
SMSCS and maximize the satellite load balancing and terminal service quality, a multi-
objective optimization mathematical model was proposed. Due to the large number of
terminals and problems with the action dimension, we proposed a region division strategy
and the DRL-SRA algorithm based on the feature extraction network and DDPG. This
method can achieve dynamic multi-objective optimization and resource allocation with a
low level of complexity. By simulating a real application scenario, DRL-SRA was shown
to be more effective than traditional algorithms for optimizing the path transmission loss
of the short-message terminal and maintaining the load balance and quality of service
of the short-message satellite. When there are different numbers of terminals, the DRL-
SRA can send better results. The simulation results also show that, compared with other
algorithms, the DRL-SRA has a better effect on improving the throughput of short-message
task requests.

In future work, we will combine the short-message terminal equipment and the low-
power computing chip that supports the deep learning algorithm to consider the hardware
implementation flow of the DRL-SRA. We conclude that, in real application scenarios, our
algorithm improves the efficiency of short-message satellite resource allocation.
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Summary of Main Notations
Symbol Description
Model
SAT = {SAT1, SAT2, · · · , SATn}(SAT) The set of short-message satellites
ST = {ST1, ST2, · · · , STm}(ST) The set of short-message terminals
n The number of short-message satellite
m The number of short-message terminal
t Snapshoot
ri,j The communication rate between STi and SATj.
An×nt Resource matrix

QT =
{

qt
1, qt

2, · · · , qt
ζ

}
The set of task queue

Em×n The satellite-to-Earth link matrix
L The path transmission loss
Lm×n The path transmission loss matrix
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Summary of Main Notations
Symbol Description
Ltotal The total path transmission loss
LI The load balancing index
SRRj The satellite resource utilization of SATj
Task = {task1, task2, · · · , taskm} The set of short-message task
SI The service satisfaction index
U(t) The objective function
Algorithm
Ar =

{
ar

1, ar
2, · · · , ar

υ

}
The set of subregion

Ad
ij The regional distance from ar

i to SATj

dχj The distance from STχ to SATj in ar
i

~
Lυ×n

The path transmission loss matrix
~
Lυ×n

between the elements of set SAT and set Ar

S = {s1, s2, · · · , st} State space
st =

{
Lt, Ar

n×nt , LIt
}

The system state under snapshot t
bn(t) The resource allocation decisions
at The action under st
r(st, at) The reward function
α The size of tensor

π
π is transferred from the initial state s0
to the state st+1

Qπ(st, at) The action function
Vπ(st) The state function
Q∗π(st, at) The optimal action function
V∗(st) The optimal state function
a∗t The optimal action
J(θ) The critic network of loss function
J(ω) The actor network of loss function
ξ Random noise
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